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Abstract

Each year, expert-level performance is attained in increasingly-complex multiagent
domains, where notable examples include Go, Poker, and StarCraft II. This rapid
progression is accompanied by a commensurate need to better understand how
such agents attain this performance, to enable their safe deployment, identify
limitations, and reveal potential means of improving them. In this paper we take
a step back from performance-focused multiagent learning, and instead turn our
attention towards agent behavior analysis. We introduce a model-agnostic method
for discovery of behavior clusters in multiagent domains, using variational inference
to learn a hierarchy of behaviors at the joint and local agent levels. Our framework
makes no assumption about agents’ underlying learning algorithms, does not
require access to their latent states or policies, and is trained using only offline
observational data. We illustrate the effectiveness of our method for enabling the
coupled understanding of behaviors at the joint and local agent level, detection of
behavior changepoints throughout training, discovery of core behavioral concepts,
demonstrate the approach’s scalability to a high-dimensional multiagent MuJoCo
control domain, and also illustrate that the approach can disentangle previously-
trained policies in OpenAI’s hide-and-seek domain.

1 Introduction

Multiagent approaches have driven numerous advances in artificial intelligence research, with seminal
examples including TD-gammon [1], DeepBlue [2], AlphaGo [3], AlphaZero [4], Libratus [5],
AlphaStar [6], OpenAI Five [7], and Pluribus [8]. During training, many of these approaches seek to
push the performance of agents as measured by a reward signal, or derivatives thereof.

Despite this, post-hoc methods that seek to understand agent interactions often use less reward-centric
techniques. Instead, insights are drawn from behavioral analysis to identify unique or interesting
agent strategies. Examples include clustering-based analysis of neuron activations and trajectories
in capture-the-flag [9], inspection of trajectories in a hide-and-seek domain to detect interesting
behaviors such as agents that learn to exploit the underlying physics engine [10], monitoring of
statistics such as pass ranges and frequencies in humanoid football [11], and analysis of AlphaZero’s
acquisition of chess knowledge [12]. Crucially, such insights are often drawn via manual analysis
and detection of behavioral clusters, or use of statistics associated with certain behaviors as defined
by humans experts (e.g., various skills and relevant metrics in humanoid football).
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Figure 1: Reward alone is not enough to understand underlying behaviors in a 3-agent hill-climbing
domain. Agents here start at the origin, each receiving rewards by navigating to any of 3 equidistant
hills. (a) visualizes the total returns of agents throughout training, over 50 independent trials. Two
trials (A and B) with similar final returns are highlighted. (b) visualizes the actual converged behaviors
of the agents at the end of Trials A and B, which are distinct despite their similar returns. Visualizing
these same trajectories in the behavior space learned by our approach immediately reveals differences
in the joint behavior of agents in the top panel of (c), where the two color markers correspond to the
trajectories from each trial. Simultaneously analyzing the agent-wise latent spaces in the bottom 3
panels of (c) highlight that agent 1 behaves the same way in both trials, in contrast to agents 0 and 2.

As evident above, understanding emergent multiagent behaviors is enriched by techniques beyond
pure reward-based analysis, as behavioral signifiers are not always discernible via rewards. Figure 1a
provides intuition on this notion, illustrating returns (sum of rewards) throughout training for a
multiagent hill-climbing domain (later described in detail). We highlight two independent training
trials (A and B) with similar final returns. Despite similar returns, comparing the trajectories generated
via the agents’ deterministic policies following each trial’s training (Fig. 1b) reveals entirely different
behaviors. Analogous examples are evident in the above works (e.g., Fig. 1 of Baker et al. [10], where
substantial behavior changes occur in multiagent hide-and-seek despite a smooth reward curve).

This paper formalizes the problem of offline multiagent behavior analysis. Our proposed algorithm,
Multiagent Offline Hierarchical Behavior Analyzer (MOHBA), learns a hierarchical latent space that
simultaneously reveals behavior clusters at the joint level (i.e., interactions between agents) and local
level (i.e., behaviors of individual agents). Our method is agnostic of the underlying algorithm used
to generate agents’ behaviors, requires no access or control of the underlying environment, does not
assume availability of a reward signal, and does not require access to agents’ models or internal states.
Our experiments investigate the structure of the learned behavior space, which goes beyond prior
works on latent-clustering by identifying relationships between individual agent and joint behaviors.
We illustrate that clusters identified by MOHBA are useful for highlighting similarities and differences
in behaviors throughout training. We also quantitatively analyze the completeness of discovered
behavior clusters by adopting a modified version of the concept-discovery framework of Yeh et al.
[13] to identify interesting behavior concepts in our multiagent setting. We then test the scalability
of our approach by using it for behavioral analysis of several high-dimensional multiagent MuJoCo
environments [14]. Finally, we evaluate the approach on the open-sourced OpenAI hide-and-seek
policy checkpoints [10], confirming that the behavioral clusters detected by MOHBA closely match
those of the human-expert annotated labels provided in their policy checkpoints.

2 Related Work

Significant research has been conducted in single-agent skill discovery, which seeks to learn reusable
policies useful for downstream tasks [15–28]. Related approaches discover motor primitives to express
longer-horizon policies [29], including use of offline reinforcement learning (RL) for learning useful
behaviors [30]. Option discovery methods learn temporally-abstracted actions (i.e., options [31]),
chained together to form cohesive skills [32–37]. In contrast to our work, these approaches focus
on maximizing performance in single-agent settings. There also exists a related line of work for
learning diverse policies in RL settings [38–46]; despite their focus on policy diversity, several of
these approaches make much stronger assumptions than ours (e.g., access to the policies generating
agent trajectories, or unique identifiers of the policy that generated each trajectory). By contrast, our
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Figure 2: Approach overview. (a) Graphical model of the latent-conditioned trajectory generation
process that MOHBA uses to learn multiagent behavior clusters. The joint behavior latent param-
eter zω informs local (agent-wise) behavior parameters ziα, which affects their behavioral policies.
Given a state-action trajectory dataset, our approach learns these joint and local behavior spaces.
(b) Architecture of the MOHBA model with variational lower bound terms (5) to (7) indicated.

work assumes no access to any of the underlying raw policies, or even labels of which policies agent
trajectories were obtained from. Recent works have also focused on hierarchical skill learning in
multiagent reinforcement learning (MARL). Lee et al. [47] use the mutual information maximization
objective introduced in Eysenbach et al. [16] to learn multiagent policies. Yang et al. [48] use a
bi-level policy to learn agent skills: a high-level policy first generates latent vectors for each agent,
and a low-level policy conditions behaviors on said vector to perform the task. In Wang et al. [49],
distinct ‘roles’ are learned for agents to enable decomposition of tasks. Mao et al. [50] investigate
use of consistent latent cognition variables in agent neighborhoods to induce increased cooperation.
Many MARL approaches have noted the emergence of interesting behaviors in multiagent systems in
specific domains of interest [51–55]. In contrast to our focus, these approaches use RL to maximize
agent performance, rather than understand arbitrary behaviors via offline analysis.

RL interpretability methods primarily focus on single-agent settings and either modify the RL al-
gorithm itself to increase transparency, or conduct post-hoc explainability [56]. These approaches
represent agent policies as programming languages [57], extract visual summaries of behaviors using
‘interestingness’ statistics such as uncertainty in selected actions or the value of state-transitions [58],
or combine agent neuron activations with gradient information to construct behavioral embed-
dings [59]. Behavioral clusters in our work share similarities with concept-based explanation
approaches in non-RL domains. Detecting ‘concepts’ in pre-trained models has been explored in
vision [60–62], discrete games [12], and language [63, 64]. In vision, clustering-based approaches
describe discovered concepts using examples [60] or use generative modeling to create new data
to describe concepts [62]. Ghorbani et al. [60] uses a vision-specific method (i.e., superpixels) to
sub-divide input before conducing clustering; while sub-division is less natural in RL, our LSTM and
VAE baselines serve as an RL-adopted counterpart of such works.

Works using latent-clustering and analysis are also related to ours. These include approaches using
multi-level variational autoencoders [65–68] to learn compositional latent spaces, although not in
decision-making domains such as ours. Hierarchical latent approaches have been used in single-agent
RL [69, 70]. Behavior analysis has also been conducted by embedding agent neuron activations into
a low-dimensional space, using a (non-hierarchical) variational approach [9]. The representation
power of agents’ internal states has also been gauged by predicting future events [11]. Overall, the
key difference between the above works and ours is that our method combined hierarchical learning
with behavior analysis and applies it to the multiagent setting.

3 Offline Analysis of Multiagent Behaviors

This section introduces the offline multiagent behavioral analysis problem and our proposed algorithm.

Preliminaries. We first formalize the problem of offline multiagent behavioral analysis. Consider
a rewardless multiagent Markov Decision Process (MA-MDP), defined by tuple (I,S,A, T ), where
I = {1, ..., N} is the set of N agents, S is the state space, A is the action space, and T denotes the
state transition probability function. By not relying on the presence of rewards, behaviors generated
even without reliance on a reward function (e.g., human interactions, or agents using curiosity-based
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exploration) can be considered. We use the term ‘local’ for elements associated with individual agents,
and ‘joint’ for those associated with the entire system. At each timestep t ∈ {0, . . . , T−1}, the agents
execute joint action at ∈ A in state st using joint policy π(at|st), causing the state to transition to
st+1 with probability p(st+1|st, at) = T (st+1, at, st). As standard in multiagent frameworks [71],
we assume the joint action space factorizes as A = ×iAi, such that at = (a1t , . . . , a

N
t ), where i ∈ I

and ait ∈ Ai. Similarly, πi(ait|st) is the local policy for agent i, and π =
∏
i π

i is the joint policy.

Let τ =
(
s0, (a

i
0)i∈I , . . . , sT−1, (a

i
T−1)i∈I , sT

)
denote a trajectory induced by this process, and

D = {τ1, . . . , τK} denote a dataset of K such trajectories. This dataset may consist of trajectories
from multiple training runs, including variations over agent algorithms, hyperparameters, random
seeds, or other factors influencing emergent behaviors. Given dataset D, the offline multiagent
analysis problem seeks to uncover potential clusters of agent behaviors.

Approach. Our approach, called the Multiagent Offline Hierarchical Behavior Analyzer (MOHBA),
uses offline trajectory data to discover behaviors exhibited by agents at the local and joint level.

We first use Fig. 2a to build intuition before discussing technical details. Let the agent interactions
exhibited in a trajectory τ be encoded by a latent variable, zω ∈ RDω , capturing their joint behavior.
For example, zω may encode (at a high level) whether agents were cooperating or competing in
a given trajectory; conditioned on joint signal zω, each agent then exhibits its own local behavior.
Let local latent vectors zα = (z1α, . . . , z

N
α ) encode individual agent behaviors, where ziα ∈ RDiα .

Conditioned on the local behavior vector ziα, each agent then executes actions using a behavior-
conditioned policy πi(ai|s, ziα). Given trajectory dataset D, we seek to learn the latent-conditioned
policies and distributions over latent vectors, such that we can reconstruct any behaviors exhibited by
the agents in D. Thus, latent vectors zω and zα will encode the agents’ behavioral spaces and, ideally,
identify behavioral clusters in the dataset. Given this framework, the joint policy is decomposed,

π(at|st) =

∫
zα,zω

π(at|st, zα)p(zα|zω)p(zω)dzαdzω (1)

=

∫
zα,zω

N∏
i=1

πi(ait|st, ziα)p(ziα|zω)p(zω)dzαdzω , (2)

where in (1) we have assumed that each agent’s latent-conditioned policy is conditionally-independent
of the high-level latent behavior zω given its low-level latent ziα (see Appendix A.1.1 for discussion).
Next, given initial state distribution p(s0) and latent behavior spaces, the probability of a trajectory τ
under joint policy π(·) is as follows:

pπ(τ) = p(s0)

T−1∏
t=0

p(st+1|st, at)π(at|st) (3)

=

∫
zα,zω

p(s0)

T−1∏
t=0

p(st+1|st, at)
N∏
i=1

πi(ait|st, ziα)p(ziα|zω)p(zω)dzαdzω . (4)

We seek to learn the distributions over variables zα and zω , alongside the latent-conditioned policies
πi(ai|st, ziα), which maximize trajectory probabilities (4). In Appendix A.1, we derive the following
variational lower bound, enabling approximation of these components using parametric models:

Jlb =Eτ∼D,zα∼qφ(zα|τ)
[∑
t,i

log πiθ(a
i
t|st, ziα)

]
(5)

−β
[
Eτ∼D,zω∼qφ(zω|τ)

[∑
i

DKL(qφ(ziα|τ)||pθ(ziα|zω))
]

(6)

+Eτ∼D [DKL(qφ(zω|τ)||pθ(zω))]

]
, (7)

where qφ(ziα|τ) and pθ(ziα|zω) are, respectively, learned encoder (posterior) and prior distributions
over the local behavior latents ziα; likewise, qφ(zω|τ) and pθ(zω) are, respectively, learned encoder
and prior distributions over the joint behavior latent zω; β is a KL-weighting term as in β-VAEs [72].
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Figure 3: Results for 3-agent hill climbing domain (see interactive version here). (a) Example
behavioral clusters discovered by MOHBA. (b) Trajectories corresponding to each cluster, with
reward-hills shown in grey. Clusters A to C show joint behaviors, whereas D to F separately show
local agent behaviors (with other agents faded in local trajectory plots for readability).
Figure 2b illustrates MOHBA’s model architecture, which is informed by the three bound compo-
nents (5) to (7). During training, each trajectory τ ∼ D is simultaneously passed through the joint
and local encoders, which respectively produce parameters for distributions over zω and zα (e.g.,
parameters of Gaussian distributions). Samples of low-level latent vectors zα are passed to the
reconstructed agent policies πiθ(a

i
t|st, ziα), which are trained via the reconstruction component (5).

The local KL-divergence component (6) induces the local encoder distribution (which is conditioned
directly on τ ) to be similar to the local prior distribution (which is conditioned only on samples
zω), thus enabling meaningful correlations between the encoded local and joint latent space, as
later shown. Finally, the joint KL-divergence component (7) is akin to that in a standard variational
autoencoder [73, 74]. Overall, MOHBA enables learning of a hierarchical behavioral space (at the
joint and local agent levels, zω and zα, respectively) that exposes interesting behavioral clusters.

4 Experiments

We showcase various use-cases for MOHBA in a range of domains including continuous coordination
games, multiagent MuJoCo [14], and OpenAI hide-and-seek [10]. Appendix A.2 provides data
generation, networks, computation, and hyperparameter details. Appendix A.7 provides pseudocode.

Data generation. Multiagent trajectory data is generated for each domain via the Acme RL li-
brary [75], using the TD3 algorithm [76] in a decentralized MARL fashion, with datasets managed
using RLDS [77]. Trajectories are collected at constant intervals throughout training, which also
enables analysis of behavioral emergence. We conduct a wide sweep over random seeds for data
generation, yielding a diverse trajectory dataset (see Appendix A.5 for dataset details and statistics).

MOHBA setup. To analyze the above data using MOHBA, we use a GMM (Gaussian Mixture
Model) for the joint prior, a bidirectional LSTM (long short-term memory network) with GMM head
for the joint encoder, an MLP (multi-layer perceptron) with Gaussian head for the local priors, a
bidirectional LSTM with Gaussian head for the local encoder, and an MLP for reconstructed policies.
GMMs are used for the joint prior and encoder as they produce discernible joint behavior clusters [78],
whereas the conditioning of the local prior on zω yields such clusters at the local level with a standard
Gaussian head. We use parameter-sharing across local priors, local encoders, and reconstructed
policies, as common in multiagent setups [79], with a unique one-hot vector identifier appended to
agent-specific network inputs to enable heterogeneity in model outputs.

Independent analysis of joint (zω) and local (zα) behaviors. We here analyze the hierarchical
latent structure learned by MOHBA. Specifically, we highlight differences in agent behaviors as
identified at the joint and local levels, respectively, by zω and zα. We first conduct a simple
sanity check in a 3-agent hill-climbing domain (our earlier example in Fig. 1b). States and actions
correspond, respectively, to 2D positions (x, y) and forces (∆x,∆y) imparted by each agent for
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Figure 4: Results for two-agent coordination game (see interactive version here). (a) to (c) show key
joint clusters, the coupled local clusters for each agent, and associated trajectories in the domain
(over all 50 MARL training runs in the dataset). (d) visualizes the progression of agent behaviors
throughout the original MARL training phase, for two example training runs (top and bottom panels).

movement. Agents spawn at the origin and are each rewarded for climbing any of three hills (shown
in grey in the domain figures) within the domain in episodes of 50 timesteps. We generate a dataset
using 50 independent MARL training trials, each conducted for 1e5 environment steps; trajectories
are saved every 200 steps, yielding 1.25e6 frames of data (25000 trajectories).

Figure 3a highlights several example clusters of joint and local behaviors identified by MOHBA,
using samples of zω and zα from the joint and local encoders. We use Euclidean distances in the
original latent spaces to identify nearby vectors, then visualize their 2D projection using principal
component analysis. For each cluster, we visualize all associated trajectories in Fig. 3b, thus enabling
analysis of behaviors captured in latent space. Clusters A, B, and C correspond to examples of joint
behaviors (zω). Cluster A contains trajectories early in training, where agents have not learned to
converge to a particular hill in the domain. In Cluster B, all agents have learned to navigate towards
the top-left hill. In Cluster C, agents 0 and 2 prefer the bottom-left hill, whereas agent 1 prefers the
right hill. Overall, clusters at the joint level capture meaningful collective behaviors of the agents.

Next, we analyze individual agent clusters. Note that for all agents, three prominent clusters are
apparent in their respective zα spaces, as each training trial in the data generation process can lead to
various agent-wise hill preferences. We compare two such clusters, D and E, for agent 1, observing
in the trajectory plots that these corresponds to this agent preferring the top-left and bottom-left hills,
respectively. Similarly, Cluster F corresponds to trajectories where agent 2 prefers the bottom-left hill.
These results illustrate that the local latents reasonably disentangle each agent’s observed behaviors.

Table 1: Coordination rewards.
Agent 1

A B C

A
ge

nt
0 A (1, 1) (1, 1) (0, 0)

B (1, 1) (0, 0) (0, 0)
C (0, 0) (0, 0) (0, 0)

Coupled analysis of joint (zω) and local (zα) behaviors.
The above experiments independently analyzed the joint and
local latent spaces. We can also concurrently analyze them to
better understand local agent contributions to joint behaviors.
Consider a two-agent domain with close inter-agent coordina-
tion (visualized in the top of Fig. 4a), with state and actions-
spaces similar to the hill domain and episodes consisting of
50 timesteps. Three regions are defined in this domain: A and B (circular regions), and C (region
exterior to the circles). When an agent enters a given region, it ‘activates’ the corresponding strategy
in Table 1, with agents receiving rewards at each timestep according to the joint strategy they have
activated. For example, if both agents enter region A, they each receive a reward of 1, whereas if
one agent enters A while the other is in exterior region C, neither receives a reward. This domain
involves a significant degree of coordination as agents must discover the rewarding regions, while
receiving a sparse reward signal until a valid combination of strategies is discovered. There is also
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potential for miscoordination: navigating to region B is rewarding assuming the other agent navigates
to A, but yields 0 reward if the other agent instead navigates to B (potentially destabilizing training).
We run 50 independent MARL sweeps in this domain, yielding 1e6 data frames (20000 trajectories).
As shown in Fig. 4, MOHBA discovers three dominant joint behavior clusters zω here. In each of
Figs. 4a to 4c, we highlight one of these clusters and its corresponding local behavior latents zα for
each agent. MOHBA reveals that across the dataset, the agents have learned to cover all 3 optimal
joint behaviors in Table 1: (A,A), (A,B), and (B,A). Moreover, despite each agent discovering two
local behaviors (A and B), zω highlights only the 3 observed joint behaviors (i.e., does not simply
highlight 4 clusters consisting of the Cartesian product of individual agents’ behavior spaces).

Behavior emergence throughout MARL training. We next use MOHBA’s latent space to inspect
behavior emergence during MARL training. Figure 4d visualizes the training progression of two
MARL runs used for data generation, tracking behavior changes throughout. In Training Run 1 (top
panel of Fig. 4d), the agents converge to and maintain a fixed joint behavior throughout training. By
contrast, Training Run 2 (bottom panel) has numerous behavior changepoints, where agents flip back
and forth between preferring one of two clusters in zω. Concurrently inspecting the zα space for
Training Run 2, we observe that agent 0 converges to and maintains a consistent behavior, whereas
agent 1 changes its preference sporadically, also explaining the detected changes in joint behaviors.

Baseline comparisons. We next compare against baselines previously used for multiagent behav-
ioral analysis in the literature [9, 11]. An LSTM baseline conducts next-action prediction at each
step in a trajectory τ , using an action-prediction loss (APL), defined as the L2 loss over predicted
vs. ground truth actions. This baseline targets using the LSTM hidden states, rather than a learned
distribution over latent variables, for understanding and clustering agent behaviors (akin to the
analysis in [9, 11]). A flat-VAE baseline provides a non-hierarchical ablation of MOHBA that simply
feeds the joint latent zω (rather than ziα) to reconstructed agent policies (i.e., πiθ(a

i|s, zω)); we use
our usual loss (with the local KL term (6) removed) to train this VAE. We conduct a hyperparameter
sweep for the baselines (see Appendix A.2), reporting the best results averaged over 3 random seeds.

Table 2: Baseline comparisons. Action-prediction loss (APL) and
intra-cluster trajectory distance (ICTD); lower is better for both.

Hill-climbing domain Coordination game
APL ICTD APL ICTD

LSTM 4.8± 0.1 0.47± 0.19 2.9± 0.1 0.34± 0.15
VAE 6.9± 0.4 0.18± 0.13 5.0± 0.3 0.16± 0.10

MOHBA 1.3± 0.1 0.17± 0.13 2.4± 0.3 0.16± 0.10

Comparisons are conducted
at the joint behavior level:
for the LSTM, we use the fi-
nal hidden state as an encod-
ing of each trajectory; for
our method and the VAE, we
use zω directly. Table 2 com-
pares the methods in the hill-
climbing and coordination game domains. Here we note the APL, which measures how well each
method reconstructs ground truth policies. Additionally, we use K-means (sweeping over the # of
clusters) to identify behavior clusters for each method, then report the intra-cluster trajectory distance
(ICTD), defined as the average distance of all trajectories in a cluster from the mean trajectory in
said cluster (akin to intra-cluster point scatter, a common cluster analysis statistic [80]) . Combined,
these measures provide a proxy for evaluating the latent representations in terms of enabling accurate
reconstructions (APL) while clustering similar trajectories together (ICTD). MOHBA significantly
outperforms the LSTM and VAE baselines in terms of APL, while also clustering similar trajectories
at the zω level in terms of ICTD. We provide additional results including APL throughout training,
full ICTD sweeps, and visualizations of the latent spaces for the baselines in Appendix A.3.2.

Behavior concept discovery. Next, we test the representation power of the latent spaces learned
by MOHBA, and illustrate a means of discovering ‘behavior concepts’ in the latent space. We adopt
the completeness-aware concept explanations framework of Yeh et al. [13], with slight changes to
make it amenable to this setting (see Appendix A.2.5). At a high-level, given a set of inputs, a set of
concept vectors C in the same space as inputs, and prediction targets (e.g., domain characteristics
of interest), Yeh et al. [13] define a framework to compute class-conditioned Shapley values, called
ConceptSHAP. To do so, every input is projected onto each of the concept vectors, yielding a vector
of ‘concept scores’, which is then passed to a simple prediction head g (e.g., small MLP or linear
model) to predict the targets and compute the ConceptSHAP. ConceptSHAP provides numerical
scores interpreted as the importance of each concept in C for predicting a given target class, which is
useful for identifying key concepts (and nearby inputs) associated with certain domain characteristics.
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Table 3: Discovered concepts using zω in hill-climbing domain. For each characteristic (agent
dispersion and return), 5 classes are constructed using the ground truth information in trajectories τ .
The concept explanation framework of Yeh et al. [13] is then used to first predict the correct classes
(using only zω , rather than the trajectory τ , as input), then identify core concepts related to each class.

Concept Top discovered concept using zω (per class, with average concept measure beneath)

Agent
Dispersion

(Classification
accuracy:
54.27%)

Class 0 Class 1 Class 2 Class 3 Class 4

0.05± 0.13 0.15± 0.06 1.79± 0.10 2.18± 0.19 2.36± 0.10

Total
Return

(Classification
accuracy:
60.98%) 361.0± 256.0 671.4± 115.1 611.1± 244.2 764.9± 72.4 820.4± 155.0

Agent 0 (z0)

A
B

C

Agent 1 (z1)

AB
C

Joint (z )

A

B

C

(a)

Example A (see animated version here)

Example B (see animated version here)

Example C (see animated version here)

(b)

Figure 5: Multiagent MuJoCo HalfCheetah behavioral space (see interactive version here). Agent 0
and 1, respectively, control the back and front limbs, coordinating to move the cheetah. (a) Detected
behavioral space, with three example trajectories indicated. (b) HalfCheetah behavior corresponding
to the same three examples (left panels showing trajectory frames, and right panels showing the same
frames with the cheetah torso aligned to disambiguate the back and front leg agent behaviors).

In Table 3, we use this technique to identify concepts in zω space associated with varying characteris-
tics in the hill-climbing domain. The concept set C considered is generated using K-means in the
zω space (see Appendix A.2.5 for details). The first row of Table 3 shows classes corresponding to
increasing levels of agent dispersion in the domain (with dispersion defined as the sum of L2-distances
of agents from their centroid at the final timestep). For each trajectory τ , we compute the associated
dispersion, creating 5 classes of equal-sized bins (labels 0 through 4 mapping to bins of increasing
dispersion). We create an 80-20 train-validation split, then train a 2-layer (8 hidden units each) MLP
g via a softmax-cross entropy loss to predict the classes using only zω as input (rather than the actual
trajectory τ ). We attain a validation accuracy of 54.27%, signifying the predictive capabilities of
zω . Next, we compute the class-conditioned ConceptSHAP, thus identifying the top-scoring concept
vector for each class. In Table 3, we visualize the 20 trajectories with the closest zω to the top-scoring
concept for each class (with the mean agent dispersion across these trajectories listed under each
image). Intuitively, the identified concepts involve agents becoming increasingly dispersed, with
agents first nearly stationary at the center (class 0), then all converging to the same hill (class 1),
spreading across two hills (class 2), and finally covering all hills (classes 3 and 4).

The second row of Table 3 repeats this experiment, now using classes associated with agents’ sum-
of-returns. We attain a validation set accuracy of 60.98%, and observe behaviors associated with
generally increasing reward by identifying top clusters in each class (with some overlaps, e.g.,
classes 1 and 2 with high standard deviation in returns). Overall, these experiments help quantify the
representational capacity of zω and identify clusters associated with distinct behavioral characteristics.
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A) Running and Chasing

B) Fort Building

C) Ramp Use

D) Ramp Defense

Figure 6: Results for the OpenAI hide-and-seek environment [10], involving two teams of agents
(2 hiders and 2 seekers). We mix the trajectories collected from 4 OpenAI-annotated behavioral
checkpoints (indicated on the left panel) together, then train MOHBA on this shuffled dataset. Using
MOHBA, we observe the presence of behavior clusters that correspond well to human-annotated
policy labels, both at the joint and local agent levels, despite our algorithm not having access to policy
labels during training. Domain screenshots reproduced with permission from Baker et al. [10].

Scalability to high-dimensional domains. We next test MOHBA’s scalability to high-dimensional
domains using the 2-Agent HalfCheetah multiagent MuJoCo domain [14], where agents 0 and 1,
respectively, control the back and front limbs of a cheetah to coordinate movement. Each agent’s state
consists of a 6D vector summarizing velocity and position information for the 3 joints it controls,
with its 3D action space corresponding to motor torques applied to these joints. The agents coordinate
to maximize the forward-speed of the cheetah over episodes of 200 timesteps each. We generate data
using 30 independent trials of MARL training, collecting 1e5 total trajectories to train MOHBA.

Figure 5a visualizes the behavior space learned by MOHBA, wherein we observe several clusters.
We highlight three example trajectories stemming from distinct clusters in the joint behavior space
zω, showing the corresponding HalfCheetah behaviors in Fig. 5b. The left panel of each example
provides a view of the cheetah’s overall movement, where we observe key behavior differences: in
Example A, the cheetah runs forward using subtle vibration of its limbs; in Example B, it bounces
forward with its torso arched up due to its front limb (agent 1) being more extended than its back limb
(agent 0); in Example C, it moves closer to the ground with its torso arched down. In the latent space
(Fig. 5a), we observe that for Examples B and C, the z0α (back limb) latents are close to one another,
while the z1α (front limb) latents are far apart. To investigate these local agent behavioral differences,
the right panel of Fig. 5b provides an overlaid view of the same frames, with the torso now aligned
(making it easier to discern the behaviors of agent 0 vs. agent 1). Here we observe that the back limb
(agent 0) behaves similarly across both examples, while the front limb (agent 1) stays much closer to
the head for Example C, in contrast to Example B, which coincides with the findings in the zα space.
Appendix A.3.1 provides additional results for a 4-agent MuJoCo AntWalker environment.

Application to externally-trained policies: hide-and-seek game. We next apply MOHBA to
policies trained by external teams. We consider the OpenAI hide-and-seek environment [10], where 2
hiders and 2 seekers compete in a rich environment with various interactive objects (boxes and ramps).
OpenAI has open-sourced policies [81] annotated by humans as exhibiting distinctive behaviors
at key stages of training. We consider four policy checkpoints that correspond to the following
human annotations: A) ‘running and chasing’, B) ‘fort building’, C) ‘ramp use’, and D) ‘ramp
defense’. The state-space used for each of the agents is 100-dimensional, consisting of the agent’s
own state (position, rotation, and velocity), states of the other 3 agents, and the states of 3 boxes and
1 ramp in the environment (position, velocity, and box size); each agent’s action space consists of a
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3-dimensional force vector, and a ‘glue’ and ‘lock’ action for interacting with objects. We collect 100
trajectories per policy checkpoint, each being 200 timesteps long. These trajectories exhibit a wide
distribution of behaviors, as agent and object initializations are random in each episode. We then mix
the trajectories collected from all policy checkpoints, then train MOHBA on this shuffled dataset.

Figure 6 visualizes the behavior spaces discovered by MOHBA in the hide-and-seek domain. Agents
0 and 1 in this figure correspond to ‘hiders’, whereas agents 2 and 3 are ‘seekers’. We label each of
the trajectories in this figure with the human-expert annotations provided by OpenAI. In Fig. 6, we
observe the presence of behavior clusters that correspond well to the human-expert labels, both at the
joint and local agent levels. Interestingly, for the seekers (agents 2 and 3), policy A (‘running and
chasing’) is highly distinctive and well-separated from the other behaviors. Moreover, despite the
order of emergent behaviors in the original hide-and-seek MARL training being A→ B→ C→ D,
policies B (‘fort building’) and D (‘ramp defense’) appear to be behaviorally slightly closer to one
another than C (‘ramp use’) and D, both in the joint space and also the local spaces of the seekers
(agent 2 and 3). This could perhaps be due to both the ‘fort building’ and ‘ramp defense’ policies
being associated with situations where the seekers cannot easily find the hiders, due to the hiders
using obstacles to block entrances (B) and moving ramps to prevent their effective use (D). Overall,
these experiments help to validate MOHBA’s learned latent spaces using policy labels manually
annotated by human experts, and highlight its applicability to behaviorally-rich domains.

5 Discussion

Our proposed method, MOHBA, leverages trajectory data to better understand multiagent behaviors
during and after training. MOHBA assumes no knowledge of agents’ underlying training algorithms,
does not require access to their hidden states or internal models, and applies even to reward-free
settings. Our experiments showcased a variety of applications of MOHBA, including the analysis of
joint and local agent behaviors, monitoring of behavior emergence throughout training, discovery
of behavioral concepts associated with certain domain criteria, and disentanglement of third-party-
labeled behaviors from open-source policies such as those for OpenAI hide-and-seek [10].

While we believe our approach is an important step in terms of increasing the understanding of
multiagent systems, there are several limitations and potential societal impacts of note. One limitation
is related to the collection of a dataset of agent behaviors. Understanding emergent behaviors
throughout MARL training using MOHBA requires the storage of large-scale trajectory datasets,
which could potentially take a lot of storage and compute power to generate. It would be interesting to
consider follow-ups to our model that learn behavioral clusters in a streaming fashion, thus building
knowledge of behaviors over time and permitting older data to be discarded throughout agent training.
Moreover, in our datasets, we collected trajectories at uniform intervals throughout original MARL
training. However, it might be interesting to consider a non-uniform collection scheme, e.g., collecting
trajectories only when they are detected to diverge from behavioral clusters of a pre-trained MOHBA
model. Finally, it might be interesting to enable the agents to first learn joint behaviors / ‘skills’ using
the proposed method, and leverage them to transfer to related downstream tasks (potentially more
sample-efficiently than training from scratch).

The study of behavioral interactions in multiagent systems can potentially be used for both positive
and negative societal applications. For example, such an approach could be used to prevent certain
undesirable behaviors by agents that interact with humans (e.g, self-driving cars), but potentially also
used by adversaries to predict and exploit other behaviors (e.g., exploiting certain human preferences
for harm), or even inadvertently cause harm due to misinterpretation of certain behavioral modes.
As such, further research and evaluation will be required prior to deployment of this and related
behavioral analysis approaches to human-facing domains. Nonetheless, as agent capabilities continue
to grow, our view is that behavioral analysis of multiagent systems will become increasingly important
and should complement traditional reward-based performance monitoring.
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