
Towards Modular Machine Learning Pipelines

Aditya Modi 1 Jivat Neet Kaur 2 Maggie Makar 3 Pavan Mallapragada 1 Amit Sharma 2 Emre Kıcıman 4

Adith Swaminathan 4

Abstract

Pipelines of Machine Learning (ML) components
are a popular and effective approach to divide
and conquer many business-critical problems. A
pipeline architecture implies a specific division of
the overall problem, however current ML training
approaches do not enforce this implied division.
Consequently ML components can become cou-
pled to one another after they are trained, which
causes insidious effects. For instance, even when
one coupled ML component in a pipeline is im-
proved in isolation, the end-to-end pipeline per-
formance can degrade. In this paper, we develop
a conceptual framework to study ML coupling in
pipelines and design new modularity regularizers
that can eliminate coupling during ML training.
We show that the resulting ML pipelines become
modular (i.e., their components can be trained in-
dependently of one another) and discuss the trade-
offs of our approach versus existing approaches
to pipeline optimization.

1. Introduction
Many impactful systems that we interact with — like search
advertising (Bottou et al., 2013), personalized recommen-
dation (Hron et al., 2021), and embedding-based retrieval
systems (Hu et al., 2022) — are powered by pipelines of
Machine Learning (ML) components. Pipelines allow large
teams to effectively divide-and-conquer a business-critical
problem. For example in search advertising, one team can
focus on the modular task of extracting the intrinsic qual-
ity of candidate ads, a second team can own the task of
selecting the ads to be displayed, while yet another team
can optimize the page layout for a good search experience.

1Microsoft 2Microsoft Research India 3Department of
Computer Science and Engineering, University of Michigan
Ann Arbor 4Microsoft Research Redmond. Correspondence
to: Aditya Modi <admodi@umich.edu>, Adith Swaminathan
<adswamin@microsoft.com>.

In ICML Workshop on Localized Learning (LLW), Honolulu,
Hawaii, USA. 2023. Copyright 2023 by the author(s).

Architecting ML pipelines today is a trial-and-error art, de-
spite our nuanced understanding of maintaining a single ML
component in production (Sculley et al., 2015). Why so?
An ML pipeline implies a specific division of the overall
problem into modular tasks; however training of any single
component does not enforce this division by default. When
an ML component has an implicit dependency on another
such that it violates pipeline modularity, we say that it is
coupled. This is a very common phenomenon when an ML
component consumes another ML prediction during training.
Consider the 2-component pipeline example in Figure 1a,
where M1,M2 are ML components mapping inputs {X1}
(e.g., user and ad features) and {Z,X2} to outputs Z (e.g.,
ad quality) and Y (e.g., revenue) respectively. When the
training data for the M2 component does not contain the
ground truth values for Z (e.g., ad qualities are not directly
observed in search advertising), they have to be imputed
somehow. If we use a specific M1 snapshot to impute Z
as in Figure 1b, Ẑ := M0

1(X1), then we inadvertently in-
troduce coupling between M2 and M0

1. This is because
when M1 is updated to M1

1 ̸= M0
1 (as shown in Figure 1c),

the updated Z predictions likely differ from the distribution
of Z seen during M2 training. This distribution shift can
surface unanticipated errors from the trained M2.

Coupled ML components can lead to insidious pipeline
effects, termed as “self-defeating improvements” (Wu et al.,
2021). These occur when an ML component is substantially
better (e.g., M0

1 ≪ M1
1) and yet the end-to-end pipeline

performance degrades because M2 is coupled to M0
1. This

is illustrated in Figure 1 where an M2 coupled to M0
1

produces a better prediction for Y than when it is composed
with a substantially better M1

1.

We argue that ML pipelines should satisfy three desirable
properties: (1) Independently trainable: multiple compo-
nents can be trained in parallel with very limited commu-
nication or coordination needed between them; (2) Con-
sistent: if a component is improved to its optimal version
(i.e., replaced with the true data generating process for that
component), the pipeline does not degrade; (3) Aligned:
if a component is incrementally improved, the pipeline is
again guaranteed to not degrade. Aligned pipelines may
not be consistent — incremental shifts need not capture
the large distribution shifts implied by consistency. When

1



Towards Modular Machine Learning Pipelines

(a) Data Generating Process. (b) M2 training couples it to M0
1. (c) So, improving M1 can be bad.

Figure 1: Demonstration of coupling in a pipeline with two ML components. (a) In the true Data Generating Process (DGP),
Z is a polynomial of degree 2. (b) M0

1 fits a linear model to Z and M0
2 trained with imputed values from M0

1 corrects for
its errors. (c) However when M1 is improved, M0

2 is now over-correcting which leads to worse pipeline performance.

components are coupled, all three properties are difficult to
guarantee.

Table 1: Desired properties for pipeline training, and the
training protocols that provide them. Our Causal proposal
is the first protocol to guarantee both Independent Train-
ability and Consistency.

Property Sync. Async. Proximal Causal

Indep. Trainable X ✓ ✓ ✓
Consistent ✓ X X ✓
Aligned ✓ X ✓ X

In Table 1 we list the current approaches to pipeline opti-
mization (and our proposed approach), and show the trade-
offs among the properties that they provide. The approaches
are — (1) Sync.: We train one component at a time; and
whenever we update a component, we queue all dependent
components to be retrained. (2) Async.: We train multiple
components in parallel, and rely on external measurements
(e.g., A/B tests) to reject component updates that cause the
pipeline performance to degrade. (3) Proximal: we throt-
tle the update rate of every ML component when training
async., to hopefully not induce large distribution shifts in
their downstream components.

Causal Pipeline Optimization: We propose new modu-
larity regularizers that compose with async. training to
guarantee consistency. Our regularizers are motivated by a
careful analysis of the components’ error sensitivities. The
analysis also unifies a folk process for achieving modularity
via robust optimization on perturbed inputs, along with a
new complementary approach of perturbing the desired out-
puts of a component. We show in synthetic experiments that
our regularizers effectively implement the Causal approach,
and that the resulting consistency of trained components en-
ables better pipeline optimization than existing protocols.

2. Preliminaries
We use uppercase X to denote random variables and low-
ercase x for their realizations in observed data. We reserve

M for all ML components, with subscripts to identify each
component, e.g., M1. Compositions describe a pipeline,
e.g., M2 ◦M1 means M2 consumes M1’s output. Every
trained snapshot of an ML component has a serial number
indicated using superscripts, e.g., M0

1. When a random
variable depends on an ML component, we use accents such
as X̂ . We reserve L to denote loss functions, with subscripts
identifying component-specific losses. We overload L to re-
fer also to a component’s aggregate loss, e.g., L(M2 ◦M1)
describes a pipeline’s overall loss.

Setting To simplify exposition, throughout the paper we
consider a two component pipeline as shown in Figure 1a,
which is the simplest example where ML coupling can oc-
cur, and which captures real-world pipelines. In a search
advertising system (Figure 1a), M1 is an ML component
that computes “user’s propensity to click on ad” Z (i.e., the
likelihood of the user to click-through if they are shown
the ad, represented by a probability [0, 1]) using “user and
ad features” X1; whereas the M2 component assesses the
“expected revenue” Y using additional “page layout features”
X2. M1 is typically trained by a separate team (using e.g.,
exogenous signals for ad quality), and the M2 team does
not have direct access to the true Z (i.e., the true user propen-
sities are unobservable) and imputes its training data using
a prediction Ẑ arising from a snapshot M0

1. The first team’s
goal is to predict user propensity accurately:

M1 : argmin
M

E(X1,Z)L1(Ẑ, Z); Ẑ := M(X1). (1)

Meanwhile the second team optimizes to predict revenue:

M2 : argmin
M

E(X2,Z,Y )L2(Ŷ , Y ); Ŷ := M(X2, Z).

(2)
The per-sample losses L1,L2 can be any classification or
regression loss, and we allow M2 to be either a prediction
component or a decision-making policy.

L(Ŷ , Y ) := (Y − Ŷ )2 Regression,

:= Y softmax(Ŷ ) Classification.

During pipeline operation, the M1 and M2 components
can be updated for several reasons (more data, better model

2



Towards Modular Machine Learning Pipelines

classes, hyper-parameter optimization, etc.). Although
each component uses a component-specific loss function
{L1,L2}, these losses depend on other components in gen-
eral. This is because when training on data which does
not have all the inputs and outputs of a particular compo-
nent annotated, we have to impute values using the other
components. For example, the training data available for
M2 only contains (x1, x2, y) without the corresponding z,
and so the learning objective for M2 (Equation 2) cannot
be implemented directly. M2 thus imputes Ẑ using a M0

1

snapshot ẑ := M0
1(x1).

M2 : argmin
M

E(X2,Ẑ,Y )L2(Ŷ , Y ); (3)

Ŷ := M(X2, Ẑ), Ẑ := M0
1(X1).

When training M2 on offline data, we can verify that a new
snapshot M0

2 7→ M1
2 is indeed better by checking:

L2(M1
2 ◦M0

1)
?
≤ L2(M0

2 ◦M0
1).

For instance, this is easily assured when M0
2 is in the model

class M. However an independent update of M1 can pose
a strong threat to generalization of M∈, so “better” M2 are
typically validated using online A/B tests also such as,

L2(M1
2 ◦M1

1)
?
≤ L2(M0

2 ◦M1
1),

where M1 has been updated independently of M2. Note
that the M1 snapshot used during M2 training can differ
from the A/B test (M1

1 ̸= M0
1) and so online validation can

reject what appeared to be “better” M2 on offline data.

Figure 1c shows an example of a “failed” model update.
Suppose we start with an M−1

2 that is blind to Z and learns
a linear mapping Ŷ := X2 + constant. Updating M2 as in
Figure 1b gives an M0

2 that is substantially better than M−1
2

but is coupled with M0
1. Then, if M1 is independently

updated, we find in an A/B test that M0
2 ◦ M1

1 is in fact
worse than M−1

2 ◦M1
1.

3. A Consistent Training Protocol
We seek a training procedure for ML components in a
pipeline that provides all of the properties in Table 1. To
build intuition, consider the Data Generating Process (DGP)
of Figure 1a. Define M⋆

1 as the DGP1 for Z and M⋆
2 as the

DGP for Y . Observe that {M⋆
1,M⋆

2} do not depend on the
current pipeline or on other components’ snapshots, and are
instead defined solely by the underlying DGP. Note also that
their composition M⋆

2 ◦M⋆
1 is the Bayes-optimal predictor

given the overall pipeline’s inputs, Y ≡ M⋆
2◦M⋆

1 | X1, X2.

1Realistically, {Z, Y } can depend on unobserved variables. In
general, interpret M⋆

1 ≡ Pr(Z | X1);M⋆
2 ≡ Pr(Y | X2, Z).

Recall the learning objectives of Equation 1 and 2. If the
model classes are rich enough to contain {M⋆

1,M⋆
2} re-

spectively, we observe that each component independently
and consistently optimizes2 to its Bayes-optimal predic-
tor M1 7→ M⋆

1;M2 7→ M⋆
2. Unfortunately, Equation 2

cannot be implemented because the data for M2 contains
imputed Ẑ ̸= Z. Similarly, if M1 is fine-tuned on data
without Z annotations, Equation 1 cannot be implemented.

Figure 2a indicates the observed random variables during
M2 training in black. We already see that Equation 2 com-
pares the predictions of M2 on the unobserved Z (denoted
in red) against the observed Y to drive M2 7→ M⋆

2. Instead,
define ỹ := M⋆

2(x2, ẑ) (i.e., what would be the DGP output
if we forced the Z variable to be ẑ). Consider the objective:

M2 : argmin
M

E(X2,Ẑ,Y )L2(Ŷ , Ỹ ); (4)

Ŷ := M(X2, Ẑ), Ỹ := M⋆
2(X2, Ẑ).

Note that when M⋆
2 is in the model class, this objective

also drives M2 7→ M⋆
2. Unfortunately, Ỹ also remains

unobserved during M2 training. We replace the unobserved
{Ỹ } with observable surrogates, and include correction
terms to capture the sensitivity of Equation 4 to their errors.
Consider the Taylor expansion3 of L2(Ŷ , Y ) around Y :

L(M(X2, Ẑ), Ỹ ) ≈ L(M(X2, Ẑ), Y ) + (5)
∂L
∂Y

[
Ỹ − Y

]
.

The first term is the typical training objective of M2 with
imputed Ẑ data (Equation 3), but we see that an additional
modularity regularizer4 is needed to ensure that M2 7→
M⋆

2. When M0
1 is such that it causes small end-to-end

pipeline error (i.e., Ỹ ≈ Y ), the modularity regularizer is 0.
Otherwise, M2 training with Ẑ ̸= Z must “residualize” the
prediction targets Y 7→ {Ỹ | Ẑ} to not over-fit to M0

1.

The difference
[
Ỹ − Y

]
is akin to the conditional aver-

age treatment effect (CATE) (Semenova & Chernozhukov,
2021) with X2 as the condition and treatment being[
Ẑ or Z

]
and the outcome as

[
Ỹ or Y

]
. For squared loss

and discrete X2, we can easily derive a closed form for
Equation 5 using a matching-based CATE estimator.

2In fact, in the asymptotic limit of infinite data the {M⋆
1,M⋆

2}
are the argmin models of their respective objectives no matter what
snapshots of the other components are in use.

3The first order expansion is sufficiently accurate for several
loss functions. For arbitrary losses, we may need additional terms
of the expansion for an accurate surrogate.

4Taylor expansion around Ŷ yields another modularity regular-
izer that can be beneficial for Lipschitz-smooth model classes.

3



Towards Modular Machine Learning Pipelines

(a) Insight: Train M2 with
(Z, Y ) or (Ẑ, Ỹ ) data.

(b) Our regularizers approximate unobservable data.
(c) So, improving M1 helps overall.

Figure 2: Demonstration of decoupling a 2-module pipeline. (a) M2 training only sees predictions Ẑ and the true Y .
Ỹ := M⋆

2(Ẑ) and true Z are never observed. If we somehow train M2 on {z, y} data or on {ẑ, ỹ} data, then M2 7→ M⋆
2

independent of any M1. (b) Comparing to Figure 1b, M̂0
2 is regularized to avoid correcting M0

1 mistakes. (c) While
M̂0

2 ◦M0
1 is worse than Figure 1b, we are guaranteed that M1

1 improvements will always improve the end-to-end pipeline.

4. Experiments
We conduct experiments on synthetic datasets to answer:
(1) Does the modularity regularizer indeed optimize the
unobservable Equation 2? (2) How do the different pipeline
training approaches fare on the three properties outlined in
Table 1? For additional details, please refer to our code
which will be made available before ICML 2023.

DGP We consider Figure 1a where X1 ∈ R10, X2 ∈
R5, Z ∈ R3, Y ∈ R and both M∗

1 and M∗
2 are realized

by randomly initialized fully-connected neural networks
with ReLU activations.

Pipeline Given that both Z and Y are real-valued outputs,
we use mean squared loss for training both M1 and M2.
M0

1 uses an under-parameterized function class, and is
then updated using an over-parameterized class to simu-
late a consistent update M1

1 ≈ M∗
1. The incremental

update M1
1 ≈ M0

1 is implemented by adding a proxi-
mal l2 norm regularizer during the M1 training so that
M1(x1) ≈ M0

1(x1). Given the initial M0
1 as a snapshot,

we train three different M0
2: (i) Masync

2 which is the best
fit model in M2’s class given (X2, Ẑ), (ii) Mcausal

2 using
the modularity regularizer in Equation 55 and (iii) Mprox

2

which uses a distributionally robust training objective by
using randomly perturbed Ẑ inputs (so as to accommodate
small distribution shifts in case M1 updates). As a sanity
check we use the DGP to compute the counterfactual output
Ỹ in the modularity regularizer of Equation 5. In prac-
tice, these counterfactual values are not directly available
and need to be estimated from data. We anticipate that our
proof-of-concept here will inspire future work on CATE-like
estimators for tackling general versions of Equation 5.

Results Table 2 shows the test mean squared error for the
consistent and incremental updates M1

1 relative to M0
1 error

(normalized to a value of 100). We see that using an under-
parameterized class causes high test loss for M1 (= 100),
which nearly vanishes for consistent updates but remains

5The first-order Taylor expansion in Equation 5 is exact, not an
approximation, for the mean squared loss.

Consistent M1 (≈ M∗
1) Incremental M1

0.642± 0.334 46.094± 0.449

Table 2: M1 component loss on its test set after two kinds
of updates, normalized w.r.t. initial M1 loss. See Figure 3
for M2 results with these M1.

high for incremental updates, across 10 independent runs.

For each M1 snapshot, we evaluate all four approaches for
pipeline optimization with the final pipeline mean squared
error reported in Figure 3. We again show errors on a rel-
ative scale where the loss of M⋆

2 ◦ M0
1 is normalized to

100. We see that synchronized updates to M2 (i.e., us-
ing the updated snapshots of M1) yield the best pipeline
loss for each M1 update. For the initial M0

1, Msync
2 and

Masync
2 are identical, while Mprox

2 has very similar perfor-
mance. When M1 is updated to its locally optimal M⋆

1

(consistency), Mcausal
2 achieves similar performance as the

synchronized M2, indicating that it can recover the under-
lying DGP M∗

2 for Y . Mprox
2 performs better than Masync

2

because the perturbations it saw during training avoids over-
fitting to the specific Ẑ from M0

1. When M1 is updated
incrementally, the pipeline performances are all aligned,
with Mprox

2 leading to slightly better performance than the
Masync

2 loss. Sufficiently big improvements to M1 (Table 2)
can mask the misalignment due to model coupling, and
Figure 1c shows that async is not aligned in general. The
observations from these experiments validate the proper-
ties outlined in Table 1. When we expect large updates
from other pipeline components, we recommend the causal
approach so as to produce consistent pipeline updates.

5. Discussion
We emphasize the need for causal modeling in pipeline de-
sign, and demonstrate an approach that guarantees pipeline
consistency when training components independently. Our
experiments demonstrate the subtle trade-offs in modular
ML pipeline design. We conjecture that our causal approach
and the proximal approach can be fruitfully combined to

4



Towards Modular Machine Learning Pipelines

Figure 3: Pipeline optimization approaches evaluated on
test set after different M1 updates. M⋆

2 ◦M0
1 loss is nor-

malized to 100. Causal approach for M2 is best when M1

undergoes a big update.

produce modular ML pipelines. Our findings can be gen-
eralized to arbitrary DAG pipelines and decision-making
settings, expanding their relevance and potential impact.

References
Bottou, L., Peters, J., Quiñonero-Candela, J., Charles, D. X.,

Chickering, D. M., Portugaly, E., Ray, D., Simard, P., and
Snelson, E. Counterfactual reasoning and learning sys-
tems: The example of computational advertising. JMLR,
14(11), 2013.

Hron, J., Krauth, K., Jordan, M., and Kilbertus, N. On com-
ponent interactions in two-stage recommender systems.
In NeurIPS, 2021.

Hu, W., Bansal, R., Cao, K., Rao, N., Subbian, K., and
Leskovec, J. Learning backward compatible embeddings.
In KDD, 2022.

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T.,
Ebner, D., Chaudhary, V., Young, M., Crespo, J.-F., and
Dennison, D. Hidden technical debt in machine learning
systems. In NeurIPS, 2015.

Semenova, V. and Chernozhukov, V. Debiased machine
learning of conditional average treatment effects and other
causal functions. Econometrics, 24(2), 2021.

Wu, R., Guo, C., Hannun, A., and van der Maaten, L.
Fixes that fail: Self-defeating improvements in machine-
learning systems. In NeurIPS, 2021.

5


