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Abstract001

Controllable speech generation methods typ-002
ically rely on single or fixed prompts, hin-003
dering creativity and flexibility. These limi-004
tations make it difficult to meet specific user005
needs in certain scenarios, such as adjusting006
the style while preserving a selected speaker’s007
timbre, or choosing a style and generating a008
voice that matches a character’s visual appear-009
ance. To overcome these challenges, we pro-010
pose FleSpeech, a novel multi-stage speech011
generation framework that allows for more012
flexible manipulation of speech attributes by013
integrating various forms of control. Fle-014
Speech employs a multimodal prompt encoder015
that processes and unifies different text, au-016
dio, and visual prompts into a cohesive rep-017
resentation. This approach enhances the adapt-018
ability of speech synthesis and supports cre-019
ative and precise control over the generated020
speech. Additionally, we develop a data collec-021
tion pipeline for multimodal datasets to facili-022
tate further research and applications in this023
field. Comprehensive subjective and objec-024
tive experiments demonstrate the effectiveness025
of FleSpeech. Audio samples are available at026
https://anyone499.github.io/FleSpeech/027

1 Introduction028

Speech synthesis plays a pivotal role in content029

creation and human-computer interaction. With030

the advancement of powerful generative models,031

such as large language models (Wang et al., 2023;032

Betker, 2023; Lajszczak et al., 2024; Anastassiou033

et al., 2024; Kim et al., 2024) and diffusion mod-034

els (Vyas et al., 2023; Eskimez et al., 2024; Chen035

et al., 2024a), speech synthesis has experienced036

rapid progress in recent years (Xie et al., 2024).037

Beyond a focus on realism, there is a growing em-038

phasis on flexible and controllable speech synthe-039

sis (Guan et al., 2024), such as the ability to manip-040

ulate the style of generated speech based on textual041

descriptions (Liu et al., 2023; Ji et al., 2024a; Leng042

FleSpeech

I want a voice...

Like this voice,
but slower.

One's style and
other one's timbre.

This is what I want

Sound like this
woman's voice,
but more angry.

A woman's voice, she
is surperised, with
strong variations in
tone.

Figure 1: FleSpeech can flexibly generate speech that
matches the given prompts.

et al., 2024; Zhu et al., 2024). 043

Despite the variety of available speech genera- 044

tion control methods, each approach has its inher- 045

ent limitations. For instance, while speech synthe- 046

sis based on natural language descriptions offers 047

flexibility, language often struggles to precisely 048

capture all desired attributes, particularly when it 049

comes to describing a speaker’s timbre, as textual 050

representations are inherently limited. In contrast, 051

the reference audio-based method can clearly de- 052

fine all attributes but relies on existing audio, which 053

lacks creativity and flexibility. These constraints 054

make it difficult to address specific user needs in 055

certain scenarios, such as adjusting style while pre- 056

serving a selected speaker timbre or choosing a 057

style and generating a voice that aligns with a char- 058

acter’s visual appearance. 059

To overcome these constraints and move beyond 060

controllable speech synthesis techniques based on a 061

single or a few control methods, we propose a more 062

flexible controllable speech generation method, 063

FleSpeech, which supports multiple forms of con- 064

trol and allows for the combination of different 065

1



control strategies, thereby meeting the flexible con-066

trol requirements across various scenarios as illus-067

trated in Fig. 1. To this end, we first introduce068

a multi-stage speech generation framework, with069

each stage modeling the style and timbre of speech.070

With this framework, we can provide different071

prompts at different stages, enabling flexibly con-072

trollable speech generation. Second, we propose a073

multimodal prompt encoder to embed multimodal074

prompts into a unified representation. Finally, con-075

sidering the scarcity of multimodal data, we built a076

data collection pipeline to facilitate research in this077

area. We will release this data collection pipeline078

upon the acceptance of this paper.079

In summary, the main contributions of this work080

are as follows:081

• We propose FleSpeech, a multi-stage speech082

generation framework that supports multiple083

prompt inputs to flexibly control different084

properties of speech. Experiments across dif-085

ferent tasks demonstrate both the objective086

and subjective superiority of this method.087

• We propose a unified multimodal prompt en-088

coder, which allows us to input any combina-089

tion of text, audio, and visual modal prompts090

and operate them in a unified embedding091

space.092

• We built a pipeline to facilitate data collection093

for subsequent multimodal speech generation094

work.095

2 Related Work096

2.1 Controllable Speech Synthesis097

The employment of category labels, such as098

speaker identity (Chen et al., 2020; Gibiansky et al.,099

2017) and emotion (Lee et al., 2017; Lorenzo-100

Trueba et al., 2018), serves as a prevalent tech-101

nique for controlling specific speech attributes. To102

address the limited control capabilities of labels,103

Skerry-Ryan et al. (Skerry-Ryan et al., 2018) intro-104

duced a style transfer method based on reference105

acoustic representation. Subsequently, this refer-106

ence audio-based approach has gained substantial107

popularity, particularly in the context of emotion108

transfer (Li et al., 2022; Lei et al., 2022) and zero-109

shot TTS (Wang et al., 2023; Kim et al., 2024; Du110

et al., 2024).111

To achieve more flexible control, In-112

structTTS (Yang et al., 2024) and PromptTTS (Guo113

et al., 2023) are pioneering text description-based 114

speech synthesis, employing natural language to 115

specify the attributes to be controlled. Subsequent 116

efforts (Lyth and King, 2024; Yamauchi et al., 117

2024; Ji et al., 2024b; Leng et al., 2024; Jin 118

et al., 2024) are focused on exploring the use of 119

automated methods to capture more diverse natural 120

language descriptions, thereby enabling control 121

over an expanded range of attributes. 122

Additionally, a speaker’s facial image can also 123

serve as a form of control information for speech 124

synthesis (Goto et al., 2020; Lee et al., 2023; Wang 125

et al., 2022; Lee et al., 2024). Specifically, Any- 126

oneNet (Wang et al., 2022) employs face embed- 127

dings, projecting them into the same embedding 128

space as reference audio embeddings. This ap- 129

proach aims to generate voices that align with 130

the character’s visual appearance, thus facilitating 131

the production of speaker videos that incorporate 132

speech, derived from a single facial image and ac- 133

companying text. 134

Most recently, research has begun to explore con- 135

trol methods beyond single-modality-based meth- 136

ods. MM-TTS (Guan et al., 2024) pioneers a 137

unified framework that accommodates multimodal 138

prompts from text, audio, or facial modalities. Fur- 139

ther advancing this field, StyleFusion TTS (Chen 140

et al., 2024b) introduces a multi-prompt framework 141

that leverages both style descriptions and an audio 142

prompt to simultaneously control audio style and 143

timbre. Unlike StyleFusion TTS, which necessi- 144

tates simultaneous input of both prompts during 145

inference, our proposed FleSpeech accommodates 146

inputs from any number of arbitrary modalities. 147

This flexibility significantly enhances the adaptabil- 148

ity and controllability of speech synthesis. 149

2.2 Speech Attribute Editing 150

Editing speech attributes typically involves modi- 151

fications to timbre or speaking styles. The former, 152

known as Voice Conversion (VC), specifically aims 153

to transform the timbre to match that of another tar- 154

get speaker while retaining the linguistic informa- 155

tion. A typical method employs pre-trained mod- 156

els to extract speaker timbre representations and 157

speech content features, which are then merged to 158

reconstruct the converted speech (Qian et al., 2019; 159

Wang et al., 2021; Ning et al., 2023). However, 160

this approach often struggles to generalize to un- 161

seen speakers due to model capacity constraints 162

when handling large-scale speech data. To address 163

this challenge, language model-based voice conver- 164
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Figure 2: The model architecture of FleSpeech.

sion methods have begun to emerge (Wang et al.,165

2024a,b).166

Instead of changing timbre, style editing focuses167

on modifying the speech style while preserving lin-168

guistic content and timbre. VoxEditor (Sheng et al.,169

2024) introduces a voice attribute editing model170

that facilitates the modification of speech style at-171

tributes using a given source audio and textual de-172

scription. Similarly, AudioBox (Vyas et al., 2023)173

presents a flow-matching-based framework that en-174

ables the restyling of any audio sample through175

text descriptions. Extending beyond just editing176

timbre or style, our proposed FleSpeech allows for177

the simultaneous editing of both speaker timbre178

and style.179

3 Method180

3.1 Overview181

FleSpeech is designed to flexibly control the syn-182

thesis of speech either through any single-form183

prompt or a combination of different prompt for-184

mats. For instance, it can control style using a text185

description while managing timbre with reference186

audio. To facilitate this, as illustrated in Fig. 2a,187

FleSpeech comprises a language model module for188

semantic token prediction and a Flow Matching-189

based module for acoustic feature prediction. To190

handle different forms of prompts, a multimodal191

prompt encoder (MPE) is proposed. Specifically,192

MPE is designed to handle prompts in any format,193

i.e., text, audio, or image, to obtain a unified repre-194

sentation. This unified representation serves as a195

condition in either the language model or the flow196

matching module, facilitating targeted control.197

Here, we first introduce the language model and198

flow matching, both of which play crucial roles in199

speech generation and are classified as components200

of the multimodal prompt-based speech generator.201

Subsequently, we describe MPE, which is used to 202

control the generator. 203

3.2 Multimodal Prompt-based Speech 204

Generator 205

Langauge model for semantic generation In- 206

spired by the outstanding performance of language 207

models in speech synthesis tasks (Wang et al., 208

2023), we tokenize speech into semantic tokens and 209

then employ a decoder-only transformer-based lan- 210

guage model to predict these tokens. Specifically, 211

the input text is first converted into a phoneme 212

sequence. The language model then takes this 213

phoneme embedding sequence, concatenated with 214

the global condition embedding obtained via MPE, 215

to predict semantic tokens in an autoregressive man- 216

ner. Details about the model parameters are pro- 217

vided in Appendix A. 218

As for speech tokenization, inspired by Vec- 219

Tok (Zhu et al., 2023), our tokenizer employs 220

WavLM (Chen et al., 2022a), pre-trained on 94k 221

hour dataset1, to extract speech features. We then 222

use the K-means clustering method to discretize 223

these features into 300 tokens, primarily associated 224

with linguistic information. 225

Flow matching for acoustic feature genera- 226

tion The absence of acoustic details in semantic 227

tokens results in a gap with the corresponding au- 228

dio. To bridge this gap, a diffusion transformer 229

based flow-matching-based module, similar to Sta- 230

ble Diffusion 3 (Esser et al., 2024), is used to gener- 231

ate acoustic features from semantic tokens, supple- 232

mented by the conditional embedding created by 233

the MPE. Details about this module can be found 234

in Appendix A. 235

Compared to pre-designed acoustic features such 236

as the Mel-spectrum, Glow-WaveGAN (Cong et al., 237

1https://huggingface.co/microsoft/wavlm-large
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2021) demonstrates that the acoustic latent rep-238

resentation learned by a variational autoencoder239

performs better in acoustic feature prediction and240

vocoder-based speech synthesis processes. There-241

fore, instead of using the Mel-spectrum as the242

acoustic feature to be predicted by the flow match-243

ing module as in CosyVoice (Du et al., 2024), we244

adopt WaveGAN implemented in Glow-WaveGAN245

to extract the latent representation as the acoustic246

feature via the encoder. The decoder is then used247

as a vocoder to generate the final audio.248

3.3 Multimodal Prompt Encoder249

The objective of the MPE is to obtain a unified con-250

dition embedding based on prompts from multiple251

modalities. Given that the reference audio con-252

tains the most comprehensive information and is253

always available during the speech generation train-254

ing process, the core idea behind MPE is to map the255

representations of textual and visual prompts to the256

space of reference audio embeddings. To achieve257

this, following the approach of IP-Adapter (Ye258

et al., 2023), a query-based encoder structure is259

employed, which uses some learnable query to-260

kens to extract speech-related information from the261

representations of different prompts. Additionally,262

due to the many-to-one relationship between ref-263

erence audio and other prompt modalities, such264

as multiple voices that correspond to the textual265

style description "a male speaking loudly and very266

fast", a diffusion-based method is adopted to model267

this diversity. Specifically, as shown in the Fig. 2b,268

the embeddings from different prompt modalities269

are input into the query-based encoder separately.270

These embeddings are then concatenated with the271

noisy audio embedding xt and fed into the diffusion272

process. The diffusion model subsequently predicts273

the ground truth audio embedding x0 through de-274

noising.275

The reference audio prompt embedding, serv-276

ing as the anchor for prompt embeddings from277

different modalities, captures all time-invariant in-278

formation, such as style and timbre. Consequently,279

the embedding created by the reference audio en-280

coder can be directly used as the conditional em-281

bedding in speech generation. Similar to Meta-282

StyleSpeech (Min et al., 2021), the reference audio283

encoder consists of six attention blocks, and the284

output of the last block is average-pooled to obtain285

a global audio embedding.286

The textual prompt embedding can be de-287

rived from either the description of the speaking288

style or facial visual information. In this case, the 289

description text is embedded using a pre-trained 290

BERT (Devlin et al., 2019)2, which is to capture 291

the semantic information of the descriptions. 292

The visual prompt embedding, specifically re- 293

ferring to the embedding of face information, is 294

inspired by ID-Animator (He et al., 2024) and aims 295

to capture both static and dynamic information nat- 296

urally present in face videos. Static information 297

encompasses the facial features of the speaker in 298

a specific frame, such as gender, age, hair colour, 299

and body type, and is closely related to the acoustic 300

features of the speaker. In contrast, dynamic infor- 301

mation reflects the speaker’s state and behaviour, 302

such as laughing or chatting. This dynamic infor- 303

mation complements the static facial features and 304

helps capture nuances that go beyond the capabili- 305

ties of static images. 306

MPE is designed to accept inputs from any 307

modality during both training and inference. Em- 308

beddings from non-input modalities are masked 309

prior to the diffusion process. Furthermore, given 310

that different speech attributes are modelled at vari- 311

ous stages, the parameters of MPE corresponding 312

to token prediction and acoustic feature generation 313

are not shared. 314

3.4 Training Strategy 315

To address the scarcity of multimodal data, we 316

propose a three-stage training strategy. We use 317

two types of data: 50,000 hours of large-scale low- 318

expressivity speech data from LibriHeavy and 616 319

hours of high-expressivity speech data collected 320

from the open-source dataset. 321

In the first stage, the model is trained on a com- 322

bination of two datasets to achieve basic speech 323

synthesis capabilities with the large-scale corpus 324

ensuring stability. In the second stage, the model 325

is fine-tuned on high-expressive data to achieve do- 326

main alignment. In the third stage, we freeze the 327

generation model backbone and start training the 328

multimodal encoder to enable the model to support 329

modal inputs other than speech prompts. Notably, 330

during this stage, the multimodal prompt encoder is 331

updated with the generation loss in addition to the 332

diffusion loss. The details of the training objective 333

can be found in Appendix B. 334

2https://huggingface.co/google-bert/bert-large-uncased
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4 Multimodal Dataset335

Due to the scarcity of multimodal controllable336

speech synthesis data, we propose a method for337

constructing such a database. Compared to exist-338

ing data, the collected data is not only larger in339

scale but also includes facial modality with richer340

facial annotation information. Details about the341

collected data and comparisons with other multi-342

modal speech synthesis datasets can be found in343

Appendix C.344

The collection of the talking head video345

dataset is based on the CelebV-HQ (Zhu et al.,346

2022), GRID (Cooke et al., 2006), LRS2 (Chung347

et al., 2017), and MEAD (Wang et al., 2020)348

datasets, which primarily feature talking faces with349

one person speaking most of the time. After web350

crawling, the videos are segmented according to351

the timestamps provided in the dataset. To ensure352

speech quality, we first apply the S-DCCRN (Lv353

et al., 2022) model to denoise the crawled videos,354

retaining only those with a Signal-to-Noise Ra-355

tio (SNR) test score greater than 0.6 and a DNS-356

MOS (Reddy et al., 2022) greater than 2.6. Finally,357

we use Whisper (Radford et al., 2023) 3 to get358

the speech transcription and filter out sentences359

with fewer than three words. Additionally, the face360

descriptions are also created, and the details are361

introduced in section 4.1.362

The collection of the speech dataset is based363

on a large-scale, high-quality TTS dataset, Textrol-364

Speech (Ji et al., 2024a), which concludes emo-365

tional content and attribute labels such as gender366

and emotion. Based on this, we re-caption the367

speaking style according to the distribution of our368

entire dataset. This re-caption method is detailed369

in section 4.2370

4.1 Face Description371

Following ID-Animator (He et al., 2024), we use372

both static and dynamic face descriptions. First,373

we crop all face videos based on timestamp and374

face range coordinates, selecting a random frame375

as the face image prompt. This image is processed376

ShareGPT4V (Chen et al., 2025) 4 to generate a377

static description focused on facial attributes (e.g.,378

gender, age, fatness). To capture the speaker tim-379

bre, influenced by facial expressions, we extract380

video clips and use Video-LLava (Lin et al., 2023)381

to generate dynamic descriptions focused on facial382

3https://huggingface.co/openai/whisper-large-v3
4https://huggingface.co/Lin-Chen/ShareGPT4V-7B

changes and movements during speech. Finally, we 383

combine both descriptions using a large language 384

model (LLM) 5 to ensure cohesive and high-quality 385

outputs with relevant details and human-like ex- 386

pression. 387

4.2 Speaking Style Description 388

To obtain text descriptions of speaking style, we 389

extract gender and emotion labels from the Tex- 390

trolSpeech and MEAD datasets. For other talking 391

head video datasets, we use a face gender classi- 392

fication model (Serengil and Ozpinar, 2021) 6 to 393

extract gender labels. Acoustic attributes, including 394

pitch, speech rate, and Root Mean Square(RMS) 395

of energy are extracted using the signal process- 396

ing method. Silent frames are filtered by checking 397

for zero pitch values. In addition, we calculate the 398

mean and variance of pitch to measure the pitch and 399

its fluctuation, and the average RMS to measure 400

the volume. 401

After feature extraction, we analyze their distri- 402

bution and apply Mean and One Standard Devia- 403

tion Splitting to divide each attribute into three in- 404

tervals: "low," "normal," and "high" intervals. We 405

then use a LLM to generate multiple synonymous 406

words or phrases for each attribute category. Using 407

different prompts, we combine these into single 408

sentences to create various speech style descrip- 409

tions with the same method. This stage enables the 410

simultaneous generation of multiple speech style 411

descriptions with similar meanings. This method 412

has been shown to provide rich and diverse contex- 413

tual clues to enhance the effectiveness of zero-shot 414

control. 415

5 Experiment Setup 416

5.1 Test Dataset 417

To comprehensively evaluate the performance and 418

generalization of the proposed model, two groups 419

of datasets are used for testing. One test set is re- 420

served from the collected multimodal data, which 421

includes 20 voice prompts from TextrolSpeech and 422

20 facial prompts from the talking head video 423

dataset. The other test set is an out-of-domain 424

dataset from the HDTF dataset (Zhang et al., 2021), 425

consisting of image and audio prompts that undergo 426

the same data processing procedures as the training 427

set. Additionally, we selected 16 emotional au- 428

dio and image prompts from the MEAD dataset to 429

5We use ChatGPT (gpt-3.5-turbo) as the LLM.
6https://github.com/serengil/deepface
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evaluate emotion accuracy. The synthesized tran-430

scripts were derived from a random selection of431

100 sentences from the multimodal dataset.432

5.2 Evaluation Metrics433

Objective metrics includes Word Error Rate434

(WER), Speaker Similarity (SPK-Sim), UT-435

MOS (Saeki et al., 2022) 7, Emotion Accuracy,436

Gender Accuracy, and other speech attribute accu-437

racy. Details about these objective metrics can be438

found in Appendix D.1.439

Subjective metrics include the Mean Opinion440

Score (MOS) to evaluate speech naturalness (N-441

MOS) and similarity (Sim-MOS). Higher N-MOS442

means better naturalness while higher Sim-MOS443

indicates better similarity with the specific target.444

Details about the subjective metrics can be found445

in Appendix D.2446

6 Experimental Results447

We evaluated FleSpeech using both single-type448

prompts and various combinations of prompt types.449

Additionally, the extended capabilities of Fle-450

Speech, including speech editing and voice con-451

version, were also assessed. The introduction452

to the various comparison methods, including453

MM-TTS (Guan et al., 2024), Salle (Ji et al.,454

2024a), NaturalSpeech2 (Shen et al., 2024), and455

PromptTTS2 (Leng et al., 2024) can be found in456

the Appendix E.457

6.1 Single-Prompt Controllable TTS458

To evaluate FleSpeech’s single-prompt control ca-459

pabilities, we compared it with other models using460

text, face image, or audio as the prompt. We also461

conducted an ablation study to show the effective-462

ness of FleSpeech’s design.463

6.1.1 Comparsion with Other Methods464

Speech generation with text prompt was con-465

ducted using a set of text prompts with various466

emotional and prosodic attributes. As shown in467

the Text section of Table 1, FleSpeech achieved ex-468

cellent results in terms of different style attributes469

and emotional accuracy. Subjective testing results470

indicate that the speech generated by FleSpeech471

closely follows the text prompts and exhibits high472

naturalness.473

Speech generation with audio prompt is pre-474

sented in the Audio section of Table 1. Compared475

7https://github.com/tarepan/SpeechMOS

to MM-TTS, FleSpeech demonstrates significantly 476

better speaker similarity, primarily due to the model 477

capacity of the large-scale speech synthesis sys- 478

tem. Furthermore, FleSpeech outperforms Natural- 479

Speech2 in terms of emotion accuracy, gender ac- 480

curacy, and speaker similarity, highlighting that its 481

multi-stage framework is more effective at captur- 482

ing various attributes, such as style and tone from 483

the audio prompts. With the cascading structure of 484

LM and flow matching, FleSpeech has significantly 485

improved naturalness and audio quality. 486

Speech generation with face prompt presented 487

in the Face section of Table 1 showcases that Fle- 488

Speech achieved optimal performance across most 489

metrics except for speaker similarity. This is pri- 490

marily due to the absence of an explicit objective 491

relationship between speaker timbre and facial fea- 492

tures. Instead, the matching is more subjective in 493

nature. Subjective results indicate that the speech 494

generated by FleSpeech has a higher correlation 495

with the facial images, suggesting its ability to cap- 496

ture key information from the face and synthesize 497

matching speaker timbre. 498

6.1.2 Ablation Study 499

To evaluate the effectiveness of face captions, an 500

ablation study was conducted, which can be found 501

in the Face section of Table 1. We first removed 502

the dynamic attributes of the face description (w/o 503

Face dyn-cap), which resulted in a sharp decline 504

in emotional similarity, indicating a reduced abil- 505

ity of the model to capture emotional information 506

from the face. Moreover, when we eliminated both 507

the static and dynamic attributes of the face de- 508

scription (w/o Face cap), the model relied solely 509

on Clip representations for speaker-timbre-related 510

information. The experimental results show a com- 511

prehensive decline in terms of all metrics, demon- 512

strating the effectiveness of combining Clip and 513

facial descriptions. Finally, we replaced Clip with 514

FaceNet (w/ FaceNet emb), a facial recognition 515

model capable of extracting embeddings that repre- 516

sent unique attributes among different individuals 517

for face-driven speech synthesis. The experimental 518

results indicated that FaceNet’s ability to capture 519

facial information is insufficient for synthesizing 520

speech corresponding to the face prompt. 521

We further visualized the speaker embedding 522

similarity matrix between different generated sen- 523

tences. As shown in Fig. 3, compared to the results 524

with w/ FaceNet emb, Clip (i.e., w/o Face cap) ex- 525

hibits higher speaker consistency, indicating the 526

6



Table 1: Experimental results on speech generation based on a single prompt. ♢ means the results are obtained from
the authors. † means the reproduced results.

Prompt Model
Accuracy(%)↑

WER(%)↓ SPK-Sim↑ UTMOS↑ N-MOS↑ Sim-MOS↑
Emotion Gender Speed Pitch Fluctuation Volum

Text

MM-TTS♢ 58.3 - - - - - 13.2 - 1.311 3.25 ± 0.08 3.32 ± 0.03
SaLLE† 22.4 55.2 58.3 53.5 56.8 61.7 27.2 - 1.764 3.02 ± 0.11 3.17 ± 0.09
PromptTTS2† 63.5 82.6 94.6 90.6 83.2 95.2 8.7 - 1.778 3.91 ± 0.08 3.61 ± 0.07
FleSpeech 66.7 89.3 95.1 93.3 95.5 92.9 7.5 - 2.351 3.95 ± 0.09 4.05 ± 0.07

Audio
MM-TTS♢ 58.8 79.3 - - - - 12.8 0.553 1.430 3.56 ± 0.12 3.38 ± 0.10
NaturalSpeech2† 64.4 88.1 - - - - 7.6 0.663 2.602 3.84 ± 0.04 3.52 ± 0.04
FleSpeech 66.8 89.9 - - - - 5.8 0.725 2.835 3.94 ± 0.04 3.75 ± 0.06

Face

MM-TTS♢ 56.6 70.6 - - - - 17.2 0.572 2.155 3.01 ± 0.04 3.08 ± 0.09
PromptTTS2† 63.2 72.7 - - - - 11.1 0.643 2.643 3.73 ± 0.08 3.88 ± 0.05
FleSpeech 64.5 87.3 - - - - 7.0 0.629 2.457 3.91 ± 0.08 3.96 ± 0.07
w/o Face dyn-cap 64.0 87.1 - - - - 7.1 0.629 2.393 3.82 ± 0.06 3.91 ± 0.03
w/o Face cap 63.0 83.7 - - - - 7.2 0.631 2.442 3.72 ± 0.06 3.83 ± 0.06
w/ FaceNet emb 58.5 63.8 - - - - 8.2 0.560 2.524 3.58 ± 0.04 3.25 ± 0.08

Table 2: Experimental results on speech generation based on multiple prompts.

Model Text2Token Token2Latent
Accuracy(%)↑

WER(%)↓ SPK-Sim↑ UTMOS↑
Emotion Gender Speed Pitch Fluctuation Volum

FleSpeech Text Audio 66.1 85.4 95.8 92.0 95.3 94.0 7.0 0.706 2.557
FleSpeech Text Face 64.9 86.3 95.2 93.7 94.9 96.4 7.2 0.610 2.598
FleSpeech Audio Audio 62.7 85.8 - - - - 5.9 0.702 3.008
FleSpeech Audio Face 63.3 86.1 - - - - 6.1 0.603 2.760
w/o Face cap Audio Face 63.1 81.3 - - - - 6.5 0.610 2.667

effectiveness of the Clip encoder in extracting im-527

plicit representations. By gradually adding static528

or dynamic face captions, the colors outside the529

diagonal gradually deepen, indicating a stronger530

binding between facial images and speaker timbre.531

FleSpeech demonstrates the highest speaker consis-532

tency, highlighting the effectiveness of combining533

Clip with dynamic and static captions.534

6.1.3 Overall Analysis535

In addition to individual tasks, we conducted an536

overall analysis of the different experimental re-537

sults. The comparative results in various sections538

of table 1 indicate that the audio modality achieves539

the highest accuracy in terms of emotion and gen-540

der, followed by text. This suggests that audio541

provides the most fine-grained information, and542

through the text prompt encoder, the model can543

effectively extract relevant speech attributes from544

textual descriptions. Image prompts, on the other545

hand, are generally less discernible, leading to a546

decrease in accuracy. Moreover, the WER and UT-547

MOS of speech generated from text prompts show548

a significant decline, which may be attributed to the549

one-to-many problem, especially in the text modal-550

ity, where a larger sample space results in poorer551

stability. Finally, despite being trained on a small-552

scale dataset, we observed that MM-TTS using553

face prompt outperforms the audio prompt in terms554

of SPK-Simi and UTMOS. This reflects the gener-555

alization advantage of the face prompt, considering 556

the complex acoustic environments present in the 557

audio prompt. 558

6.2 Multi-Prompt Controllable TTS 559

To evaluate the unique flexible control capability 560

of FleSpeech, we assessed its performance using 561

multiple prompts. Specifically, we provide differ- 562

ent prompts at various stages to control different 563

speech aspects. We examined four combinations 564

of prompts. To validate the effectiveness of each 565

stage, we included emotional or neutral prompts 566

in the first stage and only neutral prompts in the 567

second stage. As shown in Table 2, compared to 568

using a single prompt for control, FleSpeech effec- 569

tively controls style and emotional attributes while 570

reproducing the timbre of the target speaker despite 571

some performance loss. 572

Additionally, we removed the facial caption(w/o 573

Face cap) in the combination of audio and prompts. 574

We observed a significant decrease in gender accu- 575

racy, which indicates that fine-grained information 576

provided by the audio prompt affects speaker tim- 577

bre modeling in the second stage. The experimen- 578

tal results demonstrate that incorporating the face 579

caption can alleviate the impact of audio prompts, 580

leading to higher consistency with the face prompt. 581

Furthermore, by comparing the results of differ- 582

ent tasks, we found that the WER and UTMOS 583

7



w/ FaceNet emb w/o Face cap

w/o Face dyn-cap FleSpeech

0 1 2 3 4 5 6 7 8

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.4

Figure 3: Cosine similarity matrix of speaker embed-
dings between face-prompt-based synthesized speech
and ground-truth speech. The horizontal axis represents
different synthesized speech, while the vertical axis rep-
resents ground-truth speech. The diagonal indicates that
the image prompt and ground-truth speech are from the
same speaker. Lighter colors indicate higher similarity.

are highest for the model using two audio prompts,584

while models using text as the first-stage prompt585

have the lowest values. This further indicates a neg-586

ative correlation between the diversity and stability587

of the speech attribute space. Moreover, models us-588

ing text as the first-stage prompt generally achieve589

higher SPK-Sim compared to those using audio590

modality. This suggests that more fine-grained in-591

formation in the first stage can influence the speaker592

timbre modeling in the second stage.593

6.3 Extensibility594

In addition to speech synthesis, we conducted ad-595

ditional experiments on other tasks to evaluate the596

scalability of FleSpeech.597

6.3.1 Speaking Style Editing598

Speaking style editing refers to modifying speech599

attributes without altering the content or speaker600

timbre. To edit the attribute of a given utterance601

based on the text description, the transcription of602

this utterance obtained via Whisper and the text de-603

scription can be used as the input for the language604

model. Then this utterance can work as the audio605

prompt for the second stage. We compared our606

method with Audiobox (Vyas et al., 2023), a uni-607

fied audio generation model based on flow match-608

ing that can redesign the provided audio examples609

using natural language instructions. As shown in610

Table 3, FleSpeech achieves satisfactory results.611

Regarding emotional expression, FleSpeech scores 612

lower, primarily because Audiobox incorporates 613

non-verbal sounds, such as laughter, which enhance 614

emotional perception. 615

Table 3: Experimental results in speaking style editing.

Model
Accuracy(%)↑

WER(%)↓ SPK-Sim↑
Emotion Speed Pitch Fluctuation Volum

Audiobox 66.3 83.3 98.3 83.3 83.3 8.4 0.712
FleSpeech 63.6 91.6 98.3 91.6 91.6 7.2 0.745

6.3.2 Voice Conversion 616

FleSpeech allows for the speaker timbre editing by 617

facial caption when given a facial image and its cor- 618

responding caption. For instance, it can explicitly 619

specify attributes such as the speaker’s age, race, 620

and fatness, which have been previously proved 621

to be associated with speaker timbre (Stathopou- 622

los et al., 2011; Souza and Santos, 2018; Yang 623

et al., 2022). We evaluate the effectiveness of these 624

edits through accuracy testing and subjective pref- 625

erence assessments. The MOS indicates the de- 626

gree of match, with higher scores reflecting better 627

alignment. Preference indicates perceived accuracy, 628

where participants choose which audio, before or 629

after editing, better matches the edited facial cap- 630

tion. The test results are shown in Table 4, where 631

FleSpeech achieves an editing accuracy exceeding 632

70%, demonstrating its capability to effectively edit 633

speaker-timbre-related attributes to match facial 634

features. The subjective scores further corroborate 635

this conclusion. Additionally, the accuracy for age 636

is higher than for BMI, suggesting that age is more 637

perceptible in facial images. 638

Table 4: Experimental results in voice conversion.

Characteristic Acc(%)↑ MOS↑ Preference(%)↑
BMI 72.6 3.75 ± 0.04 62.4
Age 81.0 3.87 ± 0.08 74.1
Race 75.3 3.83 ± 0.06 66.5

7 Conclusion 639

In this work, we propose a flexible and controllable 640

speech generation framework called FleSpeech. 641

Specifically, we implement a two-stage speech gen- 642

eration framework composed of a language model 643

and a flow matching module, allowing for flexible 644

control by providing different prompts at various 645

stages. Additionally, we introduce a multimodal 646

prompt encoder that can accept prompts from differ- 647

ent modalities and embed them into a unified style 648

space, enabling more adaptable prompting. Com- 649

prehensive subjective and objective experiments 650

demonstrate the effectiveness of FleSpeech. 651
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Limitation652

Although our approach successfully achieves flex-653

ible control over speech attributes, it is important654

to acknowledge its limitations. First, the informa-655

tion extracted from face images is limited. Many656

unexplored aspects, such as accent, are related to657

speaking style and restrict the matching accuracy658

between face and speech. Second, the relatively659

small scale of our collected dataset limits the con-660

trol over additional attributes, such as background661

sound. Despite these limitations, our FleSpeech662

has taken an important step toward a more flexible663

and controllable speech generation system.664

References665

Philip Anastassiou, Jiawei Chen, Jitong Chen, Yuanzhe666
Chen, Zhuo Chen, Ziyi Chen, Jian Cong, Lelai Deng,667
Chuang Ding, Lu Gao, et al. 2024. Seed-tts: A family668
of high-quality versatile speech generation models.669
arXiv preprint arXiv:2406.02430.670

James Betker. 2023. Better speech synthesis through671
scaling. CoRR, abs/2305.07243.672

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Con-673
ghui He, Jiaqi Wang, Feng Zhao, and Dahua Lin.674
2025. Sharegpt4v: Improving large multi-modal675
models with better captions. In European Confer-676
ence on Computer Vision, pages 370–387. Springer.677

Mingjian Chen, Xu Tan, Yi Ren, Jin Xu, Hao Sun,678
Sheng Zhao, and Tao Qin. 2020. Multispeech: Multi-679
speaker text to speech with transformer. In INTER-680
SPEECH, pages 4024–4028.681

Sanyuan Chen, Chengyi Wang, Zhengyang Chen,682
Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki683
Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long684
Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu,685
Michael Zeng, Xiangzhan Yu, and Furu Wei. 2022a.686
Wavlm: Large-scale self-supervised pre-training for687
full stack speech processing. IEEE J. Sel. Top. Signal688
Process., 16(6):1505–1518.689

Yushen Chen, Zhikang Niu, Ziyang Ma, Keqi Deng,690
Chunhui Wang, Jian Zhao, Kai Yu, and Xie Chen.691
2024a. F5-TTS: A fairytaler that fakes fluent692
and faithful speech with flow matching. CoRR,693
abs/2410.06885.694

Zhengyang Chen, Sanyuan Chen, Yu Wu, Yao Qian,695
Chengyi Wang, Shujie Liu, Yanmin Qian, and696
Michael Zeng. 2022b. Large-scale self-supervised697
speech representation learning for automatic speaker698
verification. In ICASSP 2022-2022 IEEE Interna-699
tional Conference on Acoustics, Speech and Signal700
Processing (ICASSP), pages 6147–6151. IEEE.701

Zhiyong Chen, Xinnuo Li, Zhiqi Ai, and Shugong Xu.702
2024b. Stylefusion TTS: multimodal style-control703

and enhanced feature fusion for zero-shot text-to- 704
speech synthesis. In PRCV (11), volume 15041 of 705
Lecture Notes in Computer Science, pages 263–277. 706

Joon Son Chung, Andrew W. Senior, Oriol Vinyals, and 707
Andrew Zisserman. 2017. Lip reading sentences in 708
the wild. In 2017 IEEE Conference on Computer Vi- 709
sion and Pattern Recognition, CVPR 2017, Honolulu, 710
HI, USA, July 21-26, 2017, pages 3444–3453. 711

Jian Cong, Shan Yang, Lei Xie, and Dan Su. 2021. 712
Glow-wavegan: Learning speech representations 713
from gan-based variational auto-encoder for high fi- 714
delity flow-based speech synthesis. In 22nd Annual 715
Conference of the International Speech Communica- 716
tion Association, Interspeech 2021, Brno, Czechia, 717
August 30 - September 3, 2021, pages 2182–2186. 718

Martin Cooke, Jon Barker, Stuart Cunningham, and 719
Xu Shao. 2006. An audio-visual corpus for 720
speech perception and automatic speech recognition. 721
The Journal of the Acoustical Society of America, 722
120(5):2421–2424. 723

Brecht Desplanques, Jenthe Thienpondt, and Kris 724
Demuynck. 2020. Ecapa-tdnn: Emphasized 725
channel attention, propagation and aggregation in 726
tdnn based speaker verification. arXiv preprint 727
arXiv:2005.07143. 728

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 729
Kristina Toutanova. 2019. BERT: pre-training of 730
deep bidirectional transformers for language under- 731
standing. In Proceedings of the 2019 Conference of 732
the North American Chapter of the Association for 733
Computational Linguistics: Human Language Tech- 734
nologies, NAACL-HLT 2019, Minneapolis, MN, USA, 735
June 2-7, 2019, Volume 1 (Long and Short Papers), 736
pages 4171–4186. 737

Zhihao Du, Qian Chen, Shiliang Zhang, Kai Hu, Heng 738
Lu, Yexin Yang, Hangrui Hu, Siqi Zheng, Yue 739
Gu, Ziyang Ma, et al. 2024. Cosyvoice: A scal- 740
able multilingual zero-shot text-to-speech synthesizer 741
based on supervised semantic tokens. arXiv preprint 742
arXiv:2407.05407. 743

Sefik Emre Eskimez, Xiaofei Wang, Manthan Thakker, 744
Canrun Li, Chung-Hsien Tsai, Zhen Xiao, Hemin 745
Yang, Zirun Zhu, Min Tang, Xu Tan, Yanqing Liu, 746
Sheng Zhao, and Naoyuki Kanda. 2024. E2 TTS: 747
embarrassingly easy fully non-autoregressive zero- 748
shot TTS. CoRR, abs/2406.18009. 749

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim 750
Entezari, Jonas Müller, Harry Saini, Yam Levi, Do- 751
minik Lorenz, Axel Sauer, Frederic Boesel, Dustin 752
Podell, Tim Dockhorn, Zion English, and Robin 753
Rombach. 2024. Scaling rectified flow transformers 754
for high-resolution image synthesis. In Forty-first In- 755
ternational Conference on Machine Learning, ICML 756
2024, Vienna, Austria, July 21-27, 2024. 757

Andrew Gibiansky, Sercan Ömer Arik, Gregory Fred- 758
erick Diamos, John Miller, Kainan Peng, Wei Ping, 759
Jonathan Raiman, and Yanqi Zhou. 2017. Deep voice 760

9



2: Multi-speaker neural text-to-speech. In NIPS,761
pages 2962–2970.762

Shunsuke Goto, Kotaro Onishi, Yuki Saito, Kentaro763
Tachibana, and Koichiro Mori. 2020. Face2speech:764
Towards multi-speaker text-to-speech synthesis using765
an embedding vector predicted from a face image. In766
INTERSPEECH, pages 1321–1325.767

Wenhao Guan, Yishuang Li, Tao Li, Hukai Huang,768
Feng Wang, Jiayan Lin, Lingyan Huang, Lin Li,769
and Qingyang Hong. 2024. MM-TTS: multi-modal770
prompt based style transfer for expressive text-to-771
speech synthesis. In AAAI, pages 18117–18125.772

Zhifang Guo, Yichong Leng, Yihan Wu, Sheng Zhao,773
and Xu Tan. 2023. Prompttts: Controllable text-to-774
speech with text descriptions. In ICASSP 2023-2023775
IEEE International Conference on Acoustics, Speech776
and Signal Processing (ICASSP), pages 1–5. IEEE.777

Xuanhua He, Quande Liu, Shengju Qian, Xin Wang,778
Tao Hu, Ke Cao, Keyu Yan, Man Zhou, and Jie Zhang.779
2024. Id-animator: Zero-shot identity-preserving780
human video generation. CoRR, abs/2404.15275.781

Shengpeng Ji, Jialong Zuo, Minghui Fang, Ziyue Jiang,782
Feiyang Chen, Xinyu Duan, Baoxing Huai, and Zhou783
Zhao. 2024a. Textrolspeech: A text style control784
speech corpus with codec language text-to-speech785
models. In ICASSP, pages 10301–10305.786

Shengpeng Ji, Jialong Zuo, Minghui Fang, Ziyue Jiang,787
Feiyang Chen, Xinyu Duan, Baoxing Huai, and Zhou788
Zhao. 2024b. Textrolspeech: A text style control789
speech corpus with codec language text-to-speech790
models. In ICASSP 2024-2024 IEEE International791
Conference on Acoustics, Speech and Signal Process-792
ing (ICASSP), pages 10301–10305. IEEE.793

Zeyu Jin, Jia Jia, Qixin Wang, Kehan Li, Shuoyi794
Zhou, Songtao Zhou, Xiaoyu Qin, and Zhiyong Wu.795
2024. Speechcraft: A fine-grained expressive speech796
dataset with natural language description. In Pro-797
ceedings of the 32nd ACM International Conference798
on Multimedia, pages 1255–1264.799

Wei Kang, Xiaoyu Yang, Zengwei Yao, Fangjun Kuang,800
Yifan Yang, Liyong Guo, Long Lin, and Daniel801
Povey. 2024. Libriheavy: A 50, 000 hours ASR802
corpus with punctuation casing and context. In IEEE803
International Conference on Acoustics, Speech and804
Signal Processing, ICASSP 2024, Seoul, Republic of805
Korea, April 14-19, 2024, pages 10991–10995.806

Jaehyeon Kim, Keon Lee, Seungjun Chung, and Jae-807
woong Cho. 2024. Clam-tts: Improving neural codec808
language model for zero-shot text-to-speech. In809
ICLR.810

Mateusz Lajszczak, Guillermo Cámbara, Yang Li,811
Fatih Beyhan, Arent van Korlaar, Fan Yang, Ar-812
naud Joly, Álvaro Martín-Cortinas, Ammar Ab-813
bas, Adam Michalski, Alexis Moinet, Sri Karla-814
pati, Ewa Muszynska, Haohan Guo, Bartosz Pu-815
trycz, Soledad López Gambino, Kayeon Yoo, Elena816

Sokolova, and Thomas Drugman. 2024. BASE 817
TTS: lessons from building a billion-parameter text- 818
to-speech model on 100k hours of data. CoRR, 819
abs/2402.08093. 820

Jiyoung Lee, Joon Son Chung, and Soo-Whan Chung. 821
2023. Imaginary voice: Face-styled diffusion model 822
for text-to-speech. In ICASSP 2023-2023 IEEE Inter- 823
national Conference on Acoustics, Speech and Signal 824
Processing (ICASSP), pages 1–5. IEEE. 825

Minyoung Lee, Eunil Park, and Sungeun Hong. 2024. 826
Fvtts : Face based voice synthesis for text-to-speech. 827
In Interspeech 2024, pages 4953–4957. 828

Younggun Lee, Azam Rabiee, and Soo-Young Lee. 829
2017. Emotional end-to-end neural speech synthe- 830
sizer. CoRR, abs/1711.05447. 831

Yi Lei, Shan Yang, Xinsheng Wang, and Lei Xie. 832
2022. Msemotts: Multi-scale emotion transfer, pre- 833
diction, and control for emotional speech synthesis. 834
IEEE/ACM Transactions on Audio, Speech, and Lan- 835
guage Processing, 30:853–864. 836

Yichong Leng, Zhifang Guo, Kai Shen, Zeqian Ju, 837
Xu Tan, Eric Liu, Yufei Liu, Dongchao Yang, Leying 838
Zhang, Kaitao Song, Lei He, Xiangyang Li, Sheng 839
Zhao, Tao Qin, and Jiang Bian. 2024. Prompttts 2: 840
Describing and generating voices with text prompt. 841
In ICLR. 842

Tao Li, Xinsheng Wang, Qicong Xie, Zhichao Wang, 843
and Lei Xie. 2022. Cross-speaker emotion disentan- 844
gling and transfer for end-to-end speech synthesis. 845
IEEE/ACM Transactions on Audio, Speech, and Lan- 846
guage Processing, 30:1448–1460. 847

Bin Lin, Yang Ye, Bin Zhu, Jiaxi Cui, Munan Ning, 848
Peng Jin, and Li Yuan. 2023. Video-llava: Learn- 849
ing united visual representation by alignment before 850
projection. arXiv preprint arXiv:2311.10122. 851

Guanghou Liu, Yongmao Zhang, Yi Lei, Yunlin Chen, 852
Rui Wang, Lei Xie, and Zhifei Li. 2023. Promptstyle: 853
Controllable style transfer for text-to-speech with 854
natural language descriptions. In INTERSPEECH, 855
pages 4888–4892. 856

Jaime Lorenzo-Trueba, Gustav Eje Henter, Shinji 857
Takaki, Junichi Yamagishi, Yosuke Morino, and Yuta 858
Ochiai. 2018. Investigating different representa- 859
tions for modeling and controlling multiple emotions 860
in dnn-based speech synthesis. Speech Commun., 861
99:135–143. 862

Shubo Lv, Yihui Fu, Mengtao Xing, Jiayao Sun, Lei 863
Xie, Jun Huang, Yannan Wang, and Tao Yu. 2022. S- 864
dccrn: Super wide band dccrn with learnable complex 865
feature for speech enhancement. In ICASSP 2022- 866
2022 IEEE International Conference on Acoustics, 867
Speech and Signal Processing (ICASSP), pages 7767– 868
7771. IEEE. 869

Dan Lyth and Simon King. 2024. Natural language guid- 870
ance of high-fidelity text-to-speech with synthetic 871
annotations. arXiv preprint arXiv:2402.01912. 872

10

https://arxiv.org/abs/2404.15275
https://arxiv.org/abs/2404.15275
https://arxiv.org/abs/2404.15275


Ziyang Ma, Zhisheng Zheng, Jiaxin Ye, Jinchao873
Li, Zhifu Gao, Shiliang Zhang, and Xie Chen.874
2023. emotion2vec: Self-supervised pre-training875
for speech emotion representation. arXiv preprint876
arXiv:2312.15185.877

Dongchan Min, Dong Bok Lee, Eunho Yang, and878
Sung Ju Hwang. 2021. Meta-stylespeech: Multi-879
speaker adaptive text-to-speech generation. In In-880
ternational Conference on Machine Learning, pages881
7748–7759. PMLR.882

Ziqian Ning, Qicong Xie, Pengcheng Zhu, Zhichao883
Wang, Liumeng Xue, Jixun Yao, Lei Xie, and Mengx-884
iao Bi. 2023. Expressive-vc: Highly expressive voice885
conversion with attention fusion of bottleneck and886
perturbation features. In ICASSP, pages 1–5.887

Kaizhi Qian, Yang Zhang, Shiyu Chang, Xuesong Yang,888
and Mark Hasegawa-Johnson. 2019. Autovc: Zero-889
shot voice style transfer with only autoencoder loss.890
In ICML, volume 97 of Proceedings of Machine891
Learning Research, pages 5210–5219.892

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-893
man, Christine McLeavey, and Ilya Sutskever. 2023.894
Robust speech recognition via large-scale weak su-895
pervision. In International conference on machine896
learning, pages 28492–28518. PMLR.897

Chandan KA Reddy, Vishak Gopal, and Ross Cutler.898
2022. Dnsmos p.835: A non-intrusive perceptual899
objective speech quality metric to evaluate noise sup-900
pressors. In ICASSP 2022 IEEE International Con-901
ference on Acoustics, Speech and Signal Processing902
(ICASSP). IEEE.903

Takaaki Saeki, Detai Xin, Wataru Nakata, Tomoki904
Koriyama, Shinnosuke Takamichi, and Hiroshi905
Saruwatari. 2022. Utmos: Utokyo-sarulab sys-906
tem for voicemos challenge 2022. arXiv preprint907
arXiv:2204.02152.908

Sefik Ilkin Serengil and Alper Ozpinar. 2021. Hyper-909
extended lightface: A facial attribute analysis frame-910
work. In 2021 International Conference on Engineer-911
ing and Emerging Technologies (ICEET), pages 1–4.912
IEEE.913

Kai Shen, Zeqian Ju, Xu Tan, Eric Liu, Yichong Leng,914
Lei He, Tao Qin, Sheng Zhao, and Jiang Bian. 2024.915
Naturalspeech 2: Latent diffusion models are natural916
and zero-shot speech and singing synthesizers. In917
The Twelfth International Conference on Learning918
Representations, ICLR 2024, Vienna, Austria, May919
7-11, 2024.920

Zhengyan Sheng, Yang Ai, Li-Juan Liu, Jia Pan, and921
Zhen-Hua Ling. 2024. Voice attribute editing with922
text prompt. CoRR, abs/2404.08857.923

RJ Skerry-Ryan, Eric Battenberg, Ying Xiao, Yuxuan924
Wang, Daisy Stanton, Joel Shor, Ron Weiss, Rob925
Clark, and Rif A Saurous. 2018. Towards end-to-end926
prosody transfer for expressive speech synthesis with927
tacotron. In international conference on machine928
learning, pages 4693–4702. PMLR.929

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, 930
Abhishek Kumar, Stefano Ermon, and Ben Poole. 931
2021. Score-based generative modeling through 932
stochastic differential equations. In ICLR. 933

Lourdes Bernadete Rocha de Souza and Marquiony Mar- 934
ques dos Santos. 2018. Body mass index and acoustic 935
voice parameters: is there a relationship? Brazilian 936
journal of otorhinolaryngology, 84(4):410–415. 937

Elaine T Stathopoulos, Jessica E Huber, and Joan E 938
Sussman. 2011. Changes in acoustic characteristics 939
of the voice across the life span: Measures from 940
individuals 4–93 years of age. 941

Laurens Van der Maaten and Geoffrey Hinton. 2008. 942
Visualizing data using t-sne. Journal of machine 943
learning research, 9(11). 944

Apoorv Vyas, Bowen Shi, Matthew Le, Andros Tjandra, 945
Yi-Chiao Wu, Baishan Guo, Jiemin Zhang, Xinyue 946
Zhang, Robert Adkins, William Ngan, Jeff Wang, 947
Ivan Cruz, Bapi Akula, Akinniyi Akinyemi, Brian 948
Ellis, Rashel Moritz, Yael Yungster, Alice Rakotoari- 949
son, Liang Tan, Chris Summers, Carleigh Wood, 950
Joshua Lane, Mary Williamson, and Wei-Ning Hsu. 951
2023. Audiobox: Unified audio generation with nat- 952
ural language prompts. CoRR, abs/2312.15821. 953

Chengyi Wang, Sanyuan Chen, Yu Wu, Ziqiang Zhang, 954
Long Zhou, Shujie Liu, Zhuo Chen, Yanqing Liu, 955
Huaming Wang, Jinyu Li, Lei He, Sheng Zhao, and 956
Furu Wei. 2023. Neural codec language models 957
are zero-shot text to speech synthesizers. CoRR, 958
abs/2301.02111. 959

Disong Wang, Liqun Deng, Yu Ting Yeung, Xiao Chen, 960
Xunying Liu, and Helen Meng. 2021. VQMIVC: 961
vector quantization and mutual information-based 962
unsupervised speech representation disentanglement 963
for one-shot voice conversion. In Interspeech, pages 964
1344–1348. 965

Kaisiyuan Wang, Qianyi Wu, Linsen Song, Zhuoqian 966
Yang, Wayne Wu, Chen Qian, Ran He, Yu Qiao, 967
and Chen Change Loy. 2020. MEAD: A large-scale 968
audio-visual dataset for emotional talking-face gen- 969
eration. In Computer Vision - ECCV 2020 - 16th 970
European Conference, Glasgow, UK, August 23-28, 971
2020, Proceedings, Part XXI, volume 12366 of Lec- 972
ture Notes in Computer Science, pages 700–717. 973

Xinsheng Wang, Qicong Xie, Jihua Zhu, Lei Xie, and 974
Odette Scharenborg. 2022. Anyonenet: Synchro- 975
nized speech and talking head generation for arbi- 976
trary persons. IEEE Transactions on Multimedia, 977
25:6717–6728. 978

Zhichao Wang, Yuanzhe Chen, Xinsheng Wang, Zhuo 979
Chen, Lei Xie, Yuping Wang, and Yuxuan Wang. 980
2024a. Streamvoice: Streamable context-aware lan- 981
guage modeling for real-time zero-shot voice conver- 982
sion. arXiv preprint arXiv:2401.11053. 983

Zhichao Wang, Yuanzhe Chen, Xinsheng Wang, Lei Xie, 984
and Yuping Wang. 2024b. Streamvoice+: Evolving 985

11



into end-to-end streaming zero-shot voice conversion.986
IEEE Signal Processing Letters.987

Tianxin Xie, Yan Rong, Pengfei Zhang, and Li Liu.988
2024. Towards controllable speech synthesis in the989
era of large language models: A survey.990

Kazuki Yamauchi, Yusuke Ijima, and Yuki Saito. 2024.991
Stylecap: Automatic speaking-style captioning from992
speech based on speech and language self-supervised993
learning models. In ICASSP 2024-2024 IEEE Inter-994
national Conference on Acoustics, Speech and Signal995
Processing (ICASSP), pages 11261–11265. IEEE.996

Dongchao Yang, Songxiang Liu, Rongjie Huang, Chao997
Weng, and Helen Meng. 2024. Instructtts: Modelling998
expressive tts in discrete latent space with natural999
language style prompt. IEEE/ACM Transactions on1000
Audio, Speech, and Language Processing.1001

Zhihan Yang, Zhiyong Wu, and Jia Jia. 2022. Speaker1002
characteristics guided speech synthesis. In 2022 In-1003
ternational Joint Conference on Neural Networks1004
(IJCNN), pages 1–8. IEEE.1005

Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang.1006
2023. Ip-adapter: Text compatible image prompt1007
adapter for text-to-image diffusion models. CoRR,1008
abs/2308.06721.1009

Zhimeng Zhang, Lincheng Li, Yu Ding, and Changjie1010
Fan. 2021. Flow-guided one-shot talking face gener-1011
ation with a high-resolution audio-visual dataset. In1012
IEEE Conference on Computer Vision and Pattern1013
Recognition, CVPR 2021, virtual, June 19-25, 2021,1014
pages 3661–3670.1015

Hao Zhu, Wayne Wu, Wentao Zhu, Liming Jiang, Si-1016
wei Tang, Li Zhang, Ziwei Liu, and Chen Change1017
Loy. 2022. Celebv-hq: A large-scale video facial1018
attributes dataset. In Computer Vision - ECCV 2022 -1019
17th European Conference, Tel Aviv, Israel, October1020
23-27, 2022, Proceedings, Part VII, volume 13667 of1021
Lecture Notes in Computer Science, pages 650–667.1022

Xinfa Zhu, Yuanjun Lv, Yi Lei, Tao Li, Wendi He, Hong-1023
bin Zhou, Heng Lu, and Lei Xie. 2023. Vec-tok1024
speech: speech vectorization and tokenization for1025
neural speech generation. CoRR, abs/2310.07246.1026

Xinfa Zhu, Wenjie Tian, Xinsheng Wang, Lei He, Yujia1027
Xiao, Xi Wang, Xu Tan, Sheng Zhao, and Lei Xie.1028
2024. Unistyle: Unified style modeling for speaking1029
style captioning and stylistic speech synthesis. In1030
ACM Multimedia, pages 7513–7522.1031

A Model Configurations1032

The language model for semantic prediction adopts1033

the LLaMA architecture with 16 layers and 161034

attention heads. The hidden size and intermedi-1035

ate size are 1024 and 4096, respectively. The1036

flow matching for the acoustic feature prediction1037

is based on the DiT architecture with 12 layers, 121038

attention heads, and a hidden dimension of 768. 1039

For MPE, the number of queries in QueryMLP is 1040

set to 16, with 6 layers, 6 attention heads, and an 1041

intermediate size of 256. The reference audio en- 1042

coder consists of 6 attention blocks with a hidden 1043

size of 512. During both the training and inference 1044

stages, the length of the audio prompt is fixed at 6 1045

seconds. 1046

The diffusion model consists of a diffusion pro- 1047

cess and a denoising process. For the diffusion 1048

process, given the audio embedding x0, the for- 1049

ward diffusion process transforms it into Gaussian 1050

noise under the noise schedule β as follows: 1051

dxt = −1

2
βtxtt +

√
βtdωt, t ∈ [0, 1] (1) 1052

For the denoising process, the denoising process 1053

aims to transform the noisy representation xt to 1054

the audio embedding x0 by the following formula- 1055

tion (Song et al., 2021). 1056

dxt = −1

2
(xt +∇ log pt (xt))βt dt, t ∈ [0, 1]

(2) 1057

The diffusion module is trained to estimate the gra- 1058

dients of log-density of noisy data (▽logpt(zt)) by 1059

predicting the origin audio embedding x0, condi- 1060

tioned on the embeddings from different prompt 1061

modalities, noised audio embedding, and diffusion 1062

step t that indicates the degree of noise in the diffu- 1063

sion model. 1064

Both language model and flowing matching mod- 1065

ule are trained on 8 NVIDIA TESLA V100 GPUs 1066

(32GB each) with a batch size of 2 per GPU and a 1067

gradient accumulation step of 50. The two models 1068

are first trained 600k steps on the LibriHeavy (Kang 1069

et al., 2024) dataset which is a 50,000 hours ASR 1070

corpus, followed by an additional 300k steps on 1071

a collected multimodal dataset. We optimize the 1072

models using the AdamW optimizer, warming up 1073

the initial learning rate from 1× 10−7 over the first 1074

5k updates to a peak of 3×10−4, and subsequently 1075

applying cosine decay. 1076

B Training Objective 1077

In the first stage, the language model performs the 1078

next token prediction task and is optimized using 1079

the cross-entropy loss. Meanwhile, flow matching 1080

reconstructs the hidden layer features and is opti- 1081

mized with L2 loss. In the second stage, the MPE 1082

is optimized using the L1 loss calculated between 1083

the output embedding Pred x0 derived from differ- 1084

ent prompt modalities and ground-truth embedding 1085
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Table 5: Comparison between public datasets for controllable speech generation. Rec means recording, You means
youtube, Pod means podcast

Dataseet Duration Clips Modality Audio Source Description Form

FSNR0 26h 19k Speech Internal dataset Style tag

TextrolSpeech 330h 236k Speech Recording, Emotional dataset LLM template

MEAD-TTS 36h 31k Speech, Facial image Recording LLM template, Face image

Collected data 616h 449k Speech, Facial image Rec, You, Pod, Emotional dataset LLM template, Face image, Face caption

x0 obtained from the audio modality, in addition to1086

the loss function of the first stage.1087

To achieve flexible control, the MPE applies1088

masking to the received prompts of different modal-1089

ities. Specifically, the audio modality prompt, serv-1090

ing as the target for the MPE, remains consistently1091

present. For data containing both text and audio1092

modality prompts, the MPE maps the text prompt1093

embeddings to the audio embeddings without any1094

masking. In the case of data that includes prompts1095

from all three modalities, there is a one-third prob-1096

ability of masking the text style description, a one-1097

third probability of masking the facial image and1098

facial description, and a one-third probability of not1099

applying any masking. This strategy enables the1100

model to accept various combinations of prompts1101

as input during the inference stage.1102

C Details of Collected Data1103

As shown in Table 5, previous work has attempted1104

to construct public datasets for controllable speech1105

generation, but these datasets either have limited1106

size or lack multimodal prompts. In view of this,1107

we constructed a multimodal dataset collection1108

pipeline. Through this pipeline, we collected a1109

multimodal TTS dataset consisting of a 285.9-hour1110

talking head video dataset and a 330-hour speech1111

dataset, totaling approximately 615.9 hours.1112

D Evalution Metrics1113

D.1 Objective Metrics1114

WER is a commonly used metric to assess the in-1115

telligibility of generated speech. It is typically cal-1116

culated by comparing the transcribed text obtained1117

from an Automatic Speech Recognition (ASR) sys-1118

tem with the reference text. A lower WER indicates1119

higher intelligibility of the speech. Here, the WER1120

is calculated based on the Whisper (Radford et al.,1121

2023) 8 model.1122

8https://huggingface.co/openai/whisper-large-v3

SPK-Sim is used to evaluate the similarity be- 1123

tween the generated audio and the reference au- 1124

dio in terms of speaker characteristics. A higher 1125

SPK-Sim value indicates greater similarity between 1126

the synthesized speech and the reference audio 1127

in terms of the speaker’s identity. Here, we use 1128

WavLM-large (Chen et al., 2022b)fine-tuned on the 1129

speaker verification task, to obtain speaker embed- 1130

dings. These embeddings are then used to calculate 1131

the cosine similarity between the speech samples 1132

of each test utterance and the reference clips. 1133

Emotion Accuracy is used to measure the 1134

model’s ability to control emotions. A higher 1135

emotion accuracy indicates a stronger ability of 1136

the model to control emotions. Here, emo- 1137

tion2vec+seed (Ma et al., 2023) 9 is adopted to 1138

predict the emotion of the synthesized audio and 1139

compare it with the given emotion type. 1140

Gender Accuracy is used to measure the 1141

model’s ability to control gender. A higher gen- 1142

der accuracy means a better gender control abil- 1143

ity. Here, an internal ECAPA-TDNN (Desplanques 1144

et al., 2020) model fine-tuned on the gender classi- 1145

fication task is adopted. 1146

For the accuracy of other speech attributes, we 1147

utilize the previously mentioned pipeline for style 1148

label annotation to extract attribute values and com- 1149

pare their relative magnitudes across different la- 1150

bels. For example, the speech rate associated with 1151

the “fast speaking rate” label exceeds that of the 1152

“slow speaking rate” label. For face attribute evalu- 1153

ation, we extract speaker embeddings from MPE 1154

and use a face classifier 10 to predict Body Mass 1155

Index (BMI). Additionally, we apply the Deep- 1156

Face (Serengil and Ozpinar, 2021) model to de- 1157

termine gender, race, and age. We then train an 1158

MLP-based predictor to infer facial attributes from 1159

the speaker embeddings, comparing the predicted 1160

attributes against the provided facial descriptions 1161

to compute the accuracy. 1162

9https://huggingface.co/emotion2vec/emotion2vec_plus_seed
10https://github.com/lsimmons2/bmi-project

13



D.2 Subjective Metrics1163

In the subjective evaluation, each sample was rated1164

on a scale from 1 to 5, with increments of 0.5 based1165

on its similarity to the reference utterance, where1166

a score of 1 indicates “very bad” and a score of 51167

signifies “excellent.” Both Normalized Mean Opin-1168

ion Score (N-MOS) and Similarity Mean Opinion1169

Score (Sim-MOS) are reported with a 95% confi-1170

dence interval. We selected 50 speech samples for1171

each test, which were listened to by 20 listeners for1172

subjective evaluations.1173

To clarify, Sim-MOS here varied across different1174

tasks, focusing on aspects such as speech style1175

matching with a text prompt, speaker similarity1176

with an audio prompt, and voice-face matching1177

with a facial prompt.1178

E Comparison models1179

To evaluate the performance of FleSpeech, we im-1180

plemented the following system.1181

• MM-TTS (Guan et al., 2024): A FastSpeech2-1182

based multimodal controllable speech synthe-1183

sis framework that integrates multimodal in-1184

puts into a unified representation space. It sup-1185

ports text descriptions, face images, or speech1186

as prompts. Note that text descriptions in this1187

model are limited to describing the speaker’s1188

emotions.1189

• Salle (Ji et al., 2024a): A VALL-E-based text-1190

prompt-driven controllable speech synthesis1191

framework, where text descriptions are con-1192

catenated with synthesized phonemes as style1193

prompts.1194

• NaturalSpeech2 (Shen et al., 2024): A TTS1195

system with latent diffusion models to enable1196

zero-shot speech synthesis.1197

• PromptTTS2 (Leng et al., 2024): A1198

NaturalSpeech2-based speech synthesis1199

framework capable of generating speech that1200

aligns with text style descriptions. We extend1201

its function to support the face prompt just1202

as described in the PromptTTS2 appendix.1203

The CLIP model extracts embedding from the1204

face image, which is then fed into the TTS1205

model.1206

• FleSpeech (proposed): Our proposed frame-1207

work, which adopts a multi-stage training1208

framework and follows a multi-stage training1209

strategy.1210
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Figure 4: Fundamental Frequency (F0) curve of the
speech at different ages and BMI levels groups by gen-
der

F Visualizing the Relationship between 1211

Facial Attributes and Voice 1212

To further validate that FleSpeech can establish 1213

associations between facial attributes and voice 1214

characteristics, we extracted the fundamental fre- 1215

quency (F0) from synthesized speech prompted by 1216

different BMI and age groups. As shown in the 1217

upper two panels of Fig. 4, the F0 of older women 1218

decreases as age increases. In contrast, for elderly 1219

males, despite vocal cord atrophy, the F0 tends to 1220

increase. The lower two panels of Fig. 4 reveal 1221

that being overweight tends to cause articulation 1222

difficulties, leading to a decrease in F0 for females, 1223

whereas males experience an increase in F0. These 1224

findings align with conclusions from prior research, 1225

indicating that the proposed FleSpeech can capture 1226

variations in speech characteristics across different 1227

ages and BMI levels. 1228

G Visualization of MPE Embedding 1229

Space 1230

We design MPE to encode prompts from different 1231

modalities into a unified space. To validate this, 1232

we utilized the MPE to extract embeddings corre- 1233

sponding to each single-modality prompt. Consid- 1234

ering that the MPEs in the language model and flow 1235

matching do not share parameters, we conducted 1236

analyses on both. The test set comprised 2000 ran- 1237

domly selected sentences containing prompts from 1238

all three modalities, including 20 speakers with 200 1239

sentences each. The MPE outputs are projected to 1240

2D by t-SNE (Van der Maaten and Hinton, 2008). 1241

Each color represents a modality. 1242
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Figure 5: TSNE visualization of MPE output embedding
clustering.

As illustrated in Fig. 5, both MPEs exhibited1243

similar trends: embeddings mapped by the MPE1244

from different modalities reside within the same1245

embedding space and are not partitioned into mul-1246

tiple subspaces where partitioning into subspaces1247

would imply that each modality is encoded sepa-1248

rately, failing to capture the intermodal relation-1249

ships. Furthermore, the embeddings from audio1250

prompts demonstrated stronger clustering, indicat-1251

ing that audio prompts are more directional than1252

text and facial prompts. In contrast, text and facial1253

prompts exhibit a one-to-many relationship with1254

voice attributes, showing more significant variabil-1255

ity.1256
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