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ABSTRACT

Knowledge graphs (KG) have shown great power in representing the facts for nu-
merous downstream applications. Notice that the KGs are usually evolving and
growing with the development of the real world, due to the change of old knowl-
edge and the emergence of new knowledge, thus the study of dynamic knowledge
graphs attracts a new wave. However, conventional work mainly pays attention
to learning new knowledge based on existing knowledge while neglecting new
knowledge and old knowledge should contribute to each other. Under this cir-
cumstance, they cannot tackle the following two challenges: (C1) transfer the
knowledge from the old to the new without retraining the entire KG; (C2) alle-
viate the catastrophic forgetting of old knowledge with new knowledge. To ad-
dress these issues, we revisit the embedding paradigm for dynamic knowledge
graphs and propose a new method termed Continual Learning Knowledge Graph
Embeddings (CLKGE). In this paper, we establish a new framework, allowing
new and old knowledge to be gained from each other. Specifically, to tackle the
(C1), we leverage continual learning to conduct the knowledge transfer and obtain
new knowledge based on the old knowledge graph. In the face of (C2), we utilize
the energy-based model, learning an energy manifold for the knowledge represen-
tations and aligning new knowledge and old knowledge such that their energy on
the manifold is minimized, hence can alleviate catastrophic forgetting with the as-
sistance of new knowledge. On top of this, we propose a theoretical guarantee that
our model can converge to the optimal solution for the dynamic knowledge graphs.
Moreover, we conduct extensive experimental results demonstrating that CLKGE
achieves state-of-the-art performance compared with the embedding baselines.

1 INTRODUCTION

In the past decades, knowledge graphs (KGs) have attracted extensive attention (Vrandecic &
Krötzsch, 2014), promoting the boosting of a number of downstream applications, e.g.,, seman-
tic search (Xiong et al., 2017), recommendation systems (Cao et al., 2019), and dialogue systems
(Lukovnikov et al., 2017). Typically, to learn the representation of knowledge, knowledge graph
embedding (KGE) is regarded as a promising direction, which can learn the vector embeddings for
knowledge in a low-dimensional space.

Up to now, there are emerging numerous previous work, which achieves remarkable success (Bordes
et al., 2013; Wang et al., 2014; Trouillon et al., 2016; Sun et al., 2019; Zhang et al., 2019). Notice
that they are usually focusing on the static knowledge graph while the knowledge graphs are practi-
cally dynamic in the real world, e.g., we will encounter the new entities/relations or the meaning of
original entities and relations will also change in different periods or snapshots. Under this circum-
stance, the conventional KGE methods cannot be applied to the real-world setting and hence how to
handle the dynamic knowledge becomes a critical problem to be addressed.

To this end, some researchers (Hamaguchi et al., 2017; Wang et al., 2019b) propose to learn the
knowledge from scratch every time or simply fine-tune them when meeting new facts. Unfortunately
the former will cause huge space loss and time cost and does not leverage the previously learned
knowledge. The latter would make new embeddings to overwrite the learned knowledge from old
snapshots and likely disrupt previously learned knowledge since the distribution of original entities
and new entities may be different. There are also some efforts (Rusu et al., 2016; Lomonaco &
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Maltoni, 2017; Daruna et al., 2021) propose to learn new knowledge based on existing knowledge,
unfortunately, they neglect the new and old knowledge should facilitate each other or the embedding
updating process is heuristic as well as lacks the theoretical guarantee.

Based on the above consideration, our interest is to develop a method to promote the updating
process of old knowledge and the learning process of new knowledge in a unified framework, where
the old knowledge and the new knowledge can contribute to each other. To be concrete, the main
challenges are as follows:

(C1) How to transfer the knowledge from old entities to the new entities without retraining the
entire knowledge graph;

(C2) How to alleviate the catastrophic forgetting of old knowledge with the assistance of new
knowledge.

Figure 1: Our goal is that knowledge transfer and
knowledge rentention can contribute to each other.
Green dots denote the old knowledge while blue
ones denote new knowledge.

To solve these challenges, we propose a novel
method named Continual Learning Knowledge
Graph Embedding (CLKGE). Specifically,
we introduce continual learning for dynamic
knowledge graphs embedding and divide the
representation learning process into two pro-
cedures as shown in Figure 1: the knowledge
transfer and the knowledge retention. Specifi-
cally, in the face of challenge (C1), we lever-
age continual learning and conduct the knowl-
edge transfer, which can overcome the distri-
bution divergence between new knowledge and
old knowledge, and learn new knowledge based
on old knowledge without retraining. To tackle
the challenge (C2), we first learn an energy-
based manifold where the representations of knowledge from the current snapshot have higher
energy, while the counterparts from the previous snapshots have lower energy. Next, the learned
energy-based model is used to align new knowledge and old knowledge such that their energy on
the manifold is minimized, thus achieving to alleviate the catastrophic forgetting with the assistance
of new knowledge. On top of this, we provide the analysis for convergence, which guarantees that
our model can achieve the optimal solution in the training. Moreover, experimental results demon-
strate the superiority of CLKGE on multi-modal knowledge graph completion tasks.

In a nutshell, the main contributions of this paper are summarized as follows:

• To handle the dynamic knowledge graph in a unified framework, we take the early trial
promoting old knowledge and new knowledge to contribute to each other. We propose
a new model termed CLKGE and it can conduct updating new knowledge and avoiding
catastrophic forgetting of old knowledge in a joint manner.

• Theoretically, we leverage continual learning to achieve knowledge transfer and reformu-
late the knowledge retain procedure as a aligning problem between old and newknowledge
utilizing an energy-based manifold. Moreover, we provide the convergence analysis guar-
anteeing that CLKGE can converge to the optimal solution in the evolution process.

• Extensive experiments show that CLKGE achieves state-of-the-art performance on four
multi-modal knowledge graph completion tasks.

2 RELATED WORK

Conventional Knowledge Graph Completion. Conventional KG embedding methods usually em-
bed the entities and relations into a low-dimensional space. Specifically, most existing KG embed-
ding models (Dettmers et al., 2017; Schlichtkrull et al., 2018; Guo et al., 2019; Vashishth et al.,
2020) focus on static graphs and cannot learn new knowledge on the growing KGs. Notice that
some researchers learn to represent an entity by aggregating its existing neighbors in the previous
KG snapshot. For instance, MEAN (Hamaguchi et al., 2017) uses a graph convolutional network
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Figure 2: The framework of CLKGE. (a) shows that the knowledge graph is growing among different
snapshots. (b) shows that in CLKGE, knowledge transfer, and knowledge retention work together
thus conducting the process of embedding updating for the evolution of KGs.

(GCN) (Scarselli et al., 2009) to conduct the neighborhood aggregation. The GCN would aggregate
its previously seen neighboring entities to generate an embedding when an unseen entity emerges.
Moreover, to attentively aggregate different neighbors, LAN (Wang et al., 2019b) adopts an attention
mechanism. Notice the fact that MEAN and LAN rely on the entity neighborhood for embedding
learning, one can observe that they cannot handle the new entities that have no neighbors in the
previous snapshot.

Knowledge Graph Embedding for new Entities. For the new entities, pu-TransE (Tay et al.,
2017) trains several new models jointly to handle this case. Inspired by this, DKGE (Wu et al.,
2022) learns contextual embeddings for entities and relations, which can be automatically updated
as the KG grows. However, they both need partial re-training on old facts, which will spend much
time. Moreover, there are also some subgraph-based models, such as GraIL (Teru et al., 2020),
INDIGO (Liu et al., 2021), and TACT (Chen et al., 2021), which can also represent unseen entities
using the entity-independent features and subgraph aggregation. Their subgraph-building process is
time-consuming, making them only applicable to small KGs. Moreover, these are also some current
research on temporal knowledge graphs achieving remarkable success (Xu et al., 2023; Jung et al.,
2020). Applied the model to large-scale KGs is a promising direction, inspired by the Bellman-Ford
algorithm, NBFNet (Zhu et al., 2021) proposes a fast node pair embedding model and NodePiece
(Galkin et al., 2022) uses tokenized anchor nodes and relational paths to represent new entities.
However, they only focus on the new entities while neglecting the new relations.

Dynamic Knowledge Graph Embedding. In the face of dynamic knowledge graphs, dynamic ar-
chitecture models (Rusu et al., 2016; Lomonaco & Maltoni, 2017) extend the network to learn new
tasks and avoid forgetting acquired knowledge. For instance, regularization-based models (Kirk-
patrick et al., 2016; Zenke et al., 2017) capture the importance of model parameters for old tasks
while adopting the strategy of limiting the update of important parameters. To learn the new knowl-
edge, Rehearsal-based models (Lopez-Paz & Ranzato, 2017; Wang et al., 2019a) memorize some
data from old tasks. Moreover, DiCGRL (Kou et al., 2020) splits node embeddings into different
components, which can be regarded as a disentangle-based lifelong graph embedding model. Fur-
thermore, LKGE (Daruna et al., 2021) utilizes class-incremental learning models with TransE for
lifelong KG embedding. However, the embedding updating process of these methods is heuristic as
well as lacking the guarantee of convergence.

3 METHODOLOGY

In this section, we introduce a new embedding method for dynamic knowledge graphs, termed
Continual Learning Knowledge Graph Embeddings (CLKGE). Specifically, noticing the represen-
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tations of entities in the dynamic may change between different snapshots, we introduce continual
learning and divide the learning process into knowledge transfer and knowledge retention.

Dynamic KG. Given a dynamic KG, its growth process can yield a snapshot sequence, i.e., G =
{S1,S2, · · · ,St}. Specifically, each snapshot Si can be represented as a triplet (Ti, Ei,Ri), where
Ti, Ei andRi denote the fact, entity and relation sets, respectively. Moreover, each fact is denoted in
the form of (h, r, t) ∈ Ti, where h, t ∈ Ei are the subject and object entities, respectively, and r ∈ Ri
denotes the relation. In this process, some old entities, relations, and triples would be removed in
dynamic KG or some new counterparts would be added in dynamic KG.

Continual KG embedding. Notice that the growing KG will yield a snapshot sequence G =
{S1,S2, · · · ,St} continually, a continual KG embedding model aims to learn the knowledge in
these sequences. Specifically, suppose we have a model trained in the previous period Si−1, when
the data in the next sequence are fed in, the KG embedding model should update to fit these new
facts and learn embeddings for the new entities E∆i

and new relationsR∆i
based on the old entities

and relations. Distinctions and relevances between continual Learning and dynamic KGs can refer
to A.2

3.1 KNOWLEDGE TRANSFER FROM THE OLD TO NEW

Given a dynamic KG, we train the entities and relations in the initial snapshot, and in the next
snapshot, we may meet new entities, relations, and facts. To avoid the repetitive training of the
KG, promoting knowledge transfer from old knowledge to new knowledge is a promising direction.
Specifically, it involves two steps: 1) we form the embeddings of old knowledge based on the
previous snapshots thus updating the knowledge representations, 2) we learn the new knowledge
from the obtained old entities thus achieving the knowledge transfer from old to new.

Embedding Transfer for Old Knowledge. Noticing that the representations of knowledge may
change in different snapshots, we first learn the representations of old knowledge. Researchers have
proposed a number of KGE approaches (e.g., TransE (Bordes et al., 2013), ComplEx (Trouillon
et al., 2016)), which can be utilized to exploit the associations between entities and relations, i.e.,
t = ft(h, r), where h, r, t denote the embeddings of the subject entity, relation and object entity,
respectively. Based on this, we can deduce two transition functions for entity and relation embed-
dings. The subject entity of (h, r, t) can be represented by h = fh(r, t), and the relation embedding
is r = fr(h, t). To reduce the reliance on learned data, we use ei−1 and ri−1 as the approximate
average embeddings of e and r in the i-1-th snapshot, respectively:

ei =
CL(ei−1) + g

(∑
(e,r,t)∈Ni(e) fh (ri, ti) +

∑
(h,r,e)∈Ni(e) ft (hi, ri)

)
∑i−1
j=1 |Nj(e)|+ |Ni(e)|

, (1)

ri =
CL(ri−1) + g

(∑
(h,r,t)∈Ni(r) fr (hi, ti)

)
∑i−1
j=1 |Nj(r)|+ |Ni(r)|

. (2)

where CL(ei−1) =
∑i−1
j=1 |Nj(e)| ei−1, CL(ri−1) =

∑i−1
j=1 |Nj(r)| ri−1 denotes the representa-

tions of e and r in the i − 1 snapshot in the continual learning, respectively. Nj(x) ⊆ Dj is the
set of facts containing x. Noticing that it may meet the unseen entities or relations during the up-
dating process, here g aims to alleviate the distribution gap between original embeddings and new
embeddings, which can be modeled by a network such as an MLP (more details refer to Appendix
C).

Embedding Transfer for New knowledge. During the evolution of a dynamic KG, there are abun-
dant unseen entities and some unseen relations emerge with the new facts. Notice that these unseen
ones are not included in any learned snapshots, so only inheriting the learned parameters cannot
transfer the acquired knowledge to their embeddings. To avoid learning from scratch, here we learn
the representation of new knowledge by knowledge transfer from the old knowledge. Specifically,
we initialize the embeddings of each unseen entity or relation by aggregating its facts:

ei =
1

|Ni(e)|
g

 ∑
(e,r,t)∈Ni(e)

fh (ri−1, ti−1) +
∑

(h,r,e)∈Ni(e)

ft (hi−1, ri−1)

 (3)
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ri =
1

|Ni(r)|
g

 ∑
(h,r,t)∈Ni(r)

fr (hi−1, ti−1)

 (4)

where Ni(e) ⊆ Di is the set of facts containing e. Ni(r) ⊆ Di is the set of facts containing r. For
the new entities that do not have common facts involving existing entities, we randomly initialize
their embeddings, and this strategy is also suit for new entities.

For each snapshot, to learn the knowledge from the new data and update the learned parameters, we
leverage the following loss function to train the embedding model:

Ltransfer =
∑

(h,r,t)∈Ti∪T −
i

log (1 + exp (−Yfactf(h, r, t))) (5)

where Yfact ∈ {−1, 1} denotes the label of the triple (h, r, t), and f(h, r, t) is the score function
(Bordes et al., 2013; Trouillon et al., 2016). Here suppose Ti denotes the set of observed triples,
then let T −i = E × R × E − Ti be the set of unobserved triples. In training, we adopt the negative
sampling strategies (e.g., uniform sampling or Bernoulli sampling (Wang et al., 2014)).

3.2 KNOWLEDGE RETENTION FROM THE NEW TO OLD

Figure 3: An illustration of energy
based model. We everage the earned
energy-based model used to align the
representation of new and old knowl-
edge, thus alleviating catastrophic for-
getting with the assistance of new
knowledge

In the process above, we have obtained the representa-
tion of entities and relations by knowledge transfer from
old knowledge to new knowledge. However, one can ob-
serve that learning new snapshots is likely to overwrite
the learned knowledge from old snapshots thus causing
the catastrophic forgetting of old knowledge. Here a crit-
ical issue comes as follows: given an entity, how can we
leverage the association between new knowledge and old
knowledge thus alleviating the catastrophic forgetting?

Energy-based Model (EBM). As shown in (LeCun et al.,
2006), EBMs are a type of maximum likelihood estima-
tion models that can assign low energies to observed data-
label pairs and high energies otherwise Du & Mordatch
(2019), hence effective in controlling the representational
shift that affects incremental models (more details can re-
fer to A.1). Inspired by it, denote pprevious is the distribu-
tion for previous snapshots and the pcurrent is the distribu-
tion for the current snapshot. In this way, we learn an en-
ergy manifold using two ingredients: (i) knowledge rep-
resentations for entities or relations obtained in the previ-
ous snapshots: zprevious ∼ pprevious, and (ii) knowledge representations entities or relations in the
model trained in the current snapshot: zcurrent ∼ pcurrent. An energy-based model Eφ is learned
to assign low energy values for zprevious, and high energy values for zcurrent. In this way, during
inference, zcurrent will have higher energy values in the energy manifold. We align zcurrent to
zprevious by new and old knowledge such that their energy on the manifold is minimized.

In this sense, for the representation z ∈ RD of the knowledge in CLKGE, we learn an energy
function Eφ(z) : RD → R to map it to a scalar energy value. Specifically, The energy function Eφ
is realized by a multi-layer perceptron with a single neuron in the output layer, which quantifies the
energy of the input sample. An EBM is defined as Gibbs distribution pφ(z) over Eφ(z):

pψ(z) =
exp (−Eψ(z))∫

z
exp (−Eψ(z)) dz

(6)

where
∫
z
exp(−Eφ(z))dz is an intractable partition function. One can notice that pprevious represents

the distribution of latent representations obtained from the model trained on the previous task at any
given time. Directly sampling from pφ(x) is infeasible due to the presence of the normalization
constant in Equation (6). Instead, an approximation of the samples is generated through the use of
Langevin dynamics (Neal et al., 2011; Welling & Teh, 2011), a well-known MCMC algorithm.

zi+1 = zi −
λ

2
∂zEψ(z) +

√
λωi, ωi ∼ N (0, I) (7)
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where λ is the step size and ω captures data uncertainty. Eq.(7) yields a Markov chain that stabilizes
to a stationary distribution within a few iterations, starting from an initial zi

Knowledge Retention Function. In this way, we have established the knowledge retention module
based on the energy-based model. In this way, we can conduct the knowledge updating and alleviate
catastrophic forgetting by the following formulation:

Lretention = Ez∼pprevious [−Eψ(z)] + Ezcurrent∼pφ [Eψ(zcurrent)] (8)

In this way, we can mitigate catastrophic forgetting by optimizing this energy function to achieve
representational alignment of new knowledge with old knowledge.

Overall Loss Function. To promote the process of knowledge transfer and knowledge retention in
a unified manner, the overall continual learning objective L is defined as follows:

L = β1Ltransfer + β2Lretention (9)

where β1 and β2 are hyperparameters for balancing the objectives.

4 THEORETICAL ANALYSIS

Convergence Statement. We have illustrated the framework of CLKGE with knowledge transfer
and knowledge retention processes, here we study the convergence of the algorithm (Garrigos et al.,
2023; Lin et al., 2022; Monjezi & Nobakhtian, 2022). To be simplistic, we utilize the gradient
descent algorithm to demonstrate it. For ease of exposition, consider the scenario with a sequence
of two datasets Dj−1 in snapshot j-1 and Dj in snapshot j forming the old embeddings and new
embeddings, respectively. Let F(w) = L(w,Dj−1) + L(w,Dj), g1(w) = ∆wL(w,Dj−1) and
g2(w) = ∆wL(w,Dj).

Notice that the entities and relations have been trained in the snapshot j-1, to avoid the retrain-
ing, we consider the updating process of parameters in Dj based on snapshot j-1. We take
the following updating formulation for parameters: wk+1 = wk − αg2 (wk) and w0 is the
parameters in snapshot j-1. In the updating process, we set

〈
∇Lj

(
wj
)
,∇Lj−1

(
wj−1

)〉
≥

ε1
∥∥∇Lj (wj

)∥∥
2

∥∥∇Lj−1

(
wj−1

)∥∥
2
. In this way, we have the following theorem:

Theorem 1 Suppose that the loss L is B-Lipschitz and H
2 -smooth. Let α < min{ 1

H ,
γ‖g1(wo)‖
HBK }

and ε1 > (2+γ2)‖g1(w0)‖
4‖g2(w0)‖ for some γ ∈ (0, 1). We have the following results:

(1) IfL is convex, we can make the parameters for new snapshot of KG converges to the optimal
model w∗ = argminF(w);

(2) If L is nonconvex, we can make the parameters for new snapshot of KG converges to the
first order stationary point, i.e.,

min
k
‖∇F (wk)‖2 < 2

αK
[F (w0)−F (w∗)] +

4 + γ2

2
‖g1 (w0)‖2 . (10)

Theorem 1 indicates that updating our model will guide to the convergence to the minimizer of the
joint objective function F(w) in the convex case, and the convergence to the first-order stationary
point in the nonconvex case when snapshot i and i − 1 satisfy ε1 > (2+γ2)‖g1(w0)‖

4‖g2(w0)‖ . That is to say,
our model can not only result in a good model for snapshot i but can also be beneficial for the joint
learning of snapshot i−1 and i. Note that sincew0 is the learned model of snapshot i−1, in general,
we have ‖g1(w0)‖ < ‖g2(w0)‖. Proof of Theorem 1 can be found in Appendix B.

The Connection to Other Models. Here we take some discussion between CLKGE and other mod-
els. First, we design a new knowledge transfer module, which can tackle the heterogeneity of new
knowledge and old knowledge while previous work does not take it into consideration. Moreover,
we propose a novel strategy for alleviating catastrophic forgetting in an adaptive way and we equip
this process with the physical explanation in the real world. Compared with other methods, we take
the early trial and provide the theoretical guarantee that our model can converge the optimal solu-
tion during training, which is the first to demonstrate the effectiveness of methods in the theory of
convergence. Furthermore, we believe that utilizing the physical process to model the embedding
updating strategy may be a promising direction.
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Table 1: Result comparison for ENTITY and RELATION on the union of the test sets in all snap-
shots. CLKGE-X (X=S,R,F) denotes different versions of CLKGE.

Model
ENTITY RELATION

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

MEAN .117±.005 .068±.003 .123±.006 .212±.007 .039±.004 .024±.005 .040±.005 .067±.008

LAN .141±.004 .082±.004 .149±.003 .256±.005 .052±.003 .033±.003 .052±.004 .092±.008

PNN .229±.001 .130±.001 .265±.001 .425±.001 .167±.002 .096±.001 .191±.001 .305±.001

CWR .088±.002 .028±.001 .114±.004 .202±.007 .021±.000 .010±.000 .024±.000 .043±.000

SI .154±.003 .072±.003 .179±.003 .311±.004 .113±.002 .055±.002 .131±.002 .224±.002

EWC .229±.001 .130±.001 .264±.002 .423±.001 .165±.005 .093±.005 .190±.005 .306±.006

GEM .165±.002 .085±.002 .188±.002 .321±.002 .093±.001 .040±.002 .106±.002 .196±.002

EMR .171±.002 .090±.001 .195±.002 .330±.003 .111±.002 .052±.002 .126±.003 .225±.004

DiCGRL .107±.009 .057±.009 .110±.008 .211±.009 .133±.007 .079±.005 .147±.009 .241±.012

LKGE .234±.001 .136±.001 .269±.002 .425±.003 .192±.000 .106±.001 .219±.001 .366±.002
CLKGE .248±.001 .144±.002 .278±.001 .436±.002 .203±.001 .115±.002 .226±.002 .379±.001

CLKGE-S .084±.001 .028±.000 .107±.002 .193±.003 .021±.000 .010±.000 .023±.000 .043±.001

CLKGE-R .236±.001 .137±.001 .274±.001 .433±.001 .219±.001 .128±.001 .250±.001 403±.002

CLKGE-F 165±.002 .085±.002 .188±.003 .321±.003 .093±.003 .039±.002 .106±.003 .195±.007

5 EXPERIMENTS

5.1 EXPERIMENT SETTINGS

Datasets. As shown in Table 7 in Appendix D, we use four datasets based on FB15K-237 (Toutanova
& Chen, 2015), which are entity-centric, relation-centric, fact-centric, and hybrid, and are denoted
by ENTITY, RELATION, FACT, and HYBRID, respectively (Cui et al., 2022). Moreover, we also
use the dataset WN18RR-5-LS (Shang et al., 2019). In this way, we can simulate a variety of the
KG evolution.

Baselines. We compare our model with 13 competitors, including (i) three baseline models: snap-
shot only, re-training, and fine-tuning; (ii) two inductive models: MEAN (Hamaguchi et al., 2017),
and LAN (Wang et al., 2019b); (iii) two dynamic architecture models: PNN (Rusu et al., 2016), and
CWR (Lomonaco & Maltoni, 2017); (iv) two regularizationbased models: SI (Zenke et al., 2017),
and EWC (Kirkpatrick et al., 2016); (v) four rehearsal-based models: GEM (Lopez-Paz & Ranzato,
2017), EMR (Wang et al., 2019a), DiCGRL (Kou et al., 2020), and LKGE (Cui et al., 2023).

Evaluation Metrics. Prediction is a typical task in the field of knowledge graphs. Following the
conventional methods, we adopt the following metrics to conduct the evaluation for all models:
(1) The metrics measuring accuracy for link prediction: mean reciprocal rank (MRR) and Hits@k
(k = 1, 3, 10, and we denote as H@k). (2) The metrics measuring knowledge transfer capability:
forward transfer (FWT) and backward transfer (BWT). Specifically, FWT = 1

n−1

∑n
i=2 hi−1,i is

the influence of learning a task on the performance of future tasks (The higher the value, the better
the performance), while BWT = 1

n−1

∑n−1
i=1 (hn,i − hi,i) is the influence of learning the previous

tasks (The smaller the value, the better the performance).

Implementation Details. In the experiments, we leverage grid-search to tune the hyperparam-
eters of the baseline model, searching learning rate in {0.0005,0.0001,0.001,0.01}, batch size in
{256, 521, 1024, 2048}, embedding dimension in {100, 200, 300}. For the overall loss, the hyper-
parameter β1 is searched in 0.1 to 0.9 and β2 = 1−α1. For all competitors, we use Adam optimizer
and set the patience of early stopping to 5. All experiments are conducted with a single NVIDIA
RTX 3090 GPU.

5.2 EXPERIMENTAL RESULTS

Link Prediction. The experimental results are shown in Table 1 and Table 2. To exclude the effect
of random seeds, we conduct link prediction tasks with 5-seed experiments on each dataset. First
of all, one can observe that our model can superior other models in four datasets significantly. The
reason lies in that CLKGE can promote knowledge transfer and knowledge retention jointly, which
can learn new knowledge meanwhile tackling catastrophic forgetting. Specifically, the relations in

7



Under review as a conference paper at ICLR 2024

Table 2: Result comparison for FACT and HYBRID on the union of the test sets in all snapshots.
CLKGE-X (X=S,R,F) denotes different versions of CLKGE

Model
FACT HYBRID

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

MEAN .084±.008 .051±.005 .088±.008 .146±.015 .046±.004 .029±.003 .049±.003 .080±.004

LAN .106±.007 .056±.006 .113±.007 .200±.011 .059±.005 .032±.005 .062±.005 .113±.007

PNN .157±.000 .084±.002 .188±.001 .290±.001 .185±.001 .101±.001 .216±.001 .349±.001

CWR .083±.001 .030±.002 .095±.002 .192±.005 .037±.001 .015±.001 .044±.002 .077±.002

SI .172±.004 .088±.003 .194±.004 .343±.005 .111±.004 .049±.003 .126±.006 .229±.006

EWC .201±.001 .113±.001 .229±.001 .382±.001 .186±.004 .102±.003 .214±.004 .350±.004

GEM .175±.004 .092±.003 .196±.005 .345±.007 .136±.003 .070±.001 .152±.004 .263±.005

EMR .171±.004 .090±.003 .191±.004 .337±.006 .141±.002 .073±.001 .157±.002 .267±.003

DiCGRL .162±.007 .084±.007 .189±.008 .320±.007 .149±.005 .083±.004 .168±.005 .277±.008

LKGE .210±.002 .122±.001 .238±.002 .387±.002 .207±.002 .121±.002 .235±.002 .379±.003
CLKGE .223±.003 .138±.002 .245±.001 .398±.003 .220±.004 .134±.003 .242±.001 .389±.002

CLKGE-S .082±.001 .030±.001 .095±.002 .191±.006 .036±.001 .015±.001 .043±.001 .077±.003

CLKGE-R .206±.001 .118±.001 .232±.001 .385±.001 .227±.001 .134±.001 .260±.002 .413±.001

CLKGE-F .172±.003 .090±.002 .193±.004 .339±.005 .135±.002 .069±.001 .151±.003 .262±.005

datasets such as ENTITY and FACT are stable. One can observe that most models perform well
while the performance of GEM, EMR, and DiCGRL is limited. the reason may lie in that these
models can only learn the specific entities and relations. As for RELATION and HYBRID, relational
patterns are constantly changing due to unseen relations. One can observe that most models perform
poorly, which implies that the variation of relational patterns is more challenging for continual KG
embedding. It is worth noticing that PNN can conduct the knowledge retention process well but
the performance on FACT is not well due to the new entities in datasets. In a nutshell, we can see
the ability of knowledge transfer and knowledge retention all play important roles in modeling the
dynamic knowledge graphs, demonstrating making these two processes contribute to each other is a
feasible direction. We also conduct the experiments on WN18RR-5-LS dataset as shown in Table 6
in Appendix D.

Figure 4: MRR changes for Mi in different
snapshots. For instance, M4 is learned in S4, we
evaluate it in the test data from previous snap-
shots hence the bar chart of M4 is empty in S5.
The same is true for the other Mi.

Evolution Ability of Model. In this part we
demonstrate the ability of our model for evolu-
tion during the learning process. Specifically, we
evaluate the model Mi the version of CLKGE
trained for the i-th snapshot (denoted as Si) us-
ing the test data from previous snapshots. The
MRR results are shown in Figure 4, and one can
observe that CLKGE can consistently maintain
the learned knowledge during continual learning.
Moreover, one can observe that the knowledge
updating process can improve the performance of
old test data, e.g., we learn the M5 in S5 and
the MRR of M5 on S5 is 0.20 and its perfor-
mance on S4 is increased to 0.21. It shows that
the embedding learned in the new snapshot can
effectively improve the performance in the old
snapshot, thus demonstrating the effectiveness of
knowledge transfer and knowledge retention.

The results for Different Versions. CLKGE-S
denoted the version where we reinitialize and train a model only on the training set Di. CLKGE-R
denotes the version where we reinitialize and train a model for the i-th snapshot on the accumulated
training data ∪ij=1Dj . CLKGE-F denotes the version where the model inherits the learned param-
eters of the model trained on the previous snapshots, and we incrementally train it on Di. We can
see that CLKGE-R can achieve the best performance in all versions. However, the original CLKGE
does not differ much from CLKGE-R, which demonstrates the effectiveness of CLKGE without
re-training.
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(a) Knowledge Transfer measured by FWT. (b) Knowledge Retention measured by
BWT.

Figure 5: Knowledge transfer and knowledge retention. (a) shows that CLKGE can achieve the best
score of FWT. In (b), one can observe that some histograms are empty since these models do not
update the model parameters they are not compared.

Table 3: Ablation results of link prediction on the union of the test sets in all snapshots.

Model
ENTITY RELATION

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

w/o transfer 0.236 0.139 0.265 0.426 0.172 0.089 0.195 0.328
w/o retention 0.161 0.083 0.178 0.309 0.137 0.072 0.146 0.285

Knowledge Transfer and Knowledge Retention. Here we conduct experiments to evaluate the
knowledge transfer and retention capability of all models in Figure 5. On one hand, the FWT
(The higher the value, the better the performance) of CLKGE is higher than all competitors, which
demonstrates the effectiveness of knowledge transfer in CLKGE. On the other hand, notice that
PNN, MEAN, and LAN do not update the learned parameters, so their BWT scores are ”NA”. The
poor BWT scores of CWR show the harmful effects of the average operation due to the overwrit-
ing of learned knowledge. Overall, CLKGE can achieve good performance of BWT scores as the
knowledge retention in CLKGE can well balance the learning of new and the update of old em-
beddings, which demonstrates the effectiveness of utilizing the energy-based manifold to model the
association of true embeddings and learned embeddings.

Ablation Study. We conduct an ablation study to validate the effectiveness of each model com-
ponent. We design two variants termed ”w/o transfer” and ”w/o retention”. Specifically, the ”w/o
retention” variant is trained on D1 and performs the embedding transfer on other Di. As shown
in Table 3, on one hand, compared with the original version, the performance of ”w/o transfer” is
declined. The impact of removing knowledge transfer on the ENTITY dataset is larger than that of
ENTITY, probably because the number of relationships is relatively small compared to entities, and
learning for unknown relationships is more dependent on knowledge transfer than on entities. On
the other hand, deleting knowledge retention can severely influence the performance of our model
due to catastrophic forgetting, which demonstrates the importance of knowledge retention.

6 CONCLUSION

This paper proposes and studies continual learning for dynamic KGs. Aiming at better knowledge
transfer and retention, we propose a continual learning KG embedding model termed CLKGE,
which can enable old and new knowledge to be gained from each other. Specifically, on one hand,
CLKGE introduces continual learning and thus can learn new knowledge based on the old knowl-
edge without retraining the entire knowledge graph. On the other hand, CLKGE leverages the
earned energy-based model used to align the representation of new and old knowledge, thus alle-
viating catastrophic forgetting with the assistance of new knowledge. Moreover, we provide the
theoretical guarantee that our model can converge the optimal solution during training. The experi-
mental results on four datasets show better link prediction accuracy, knowledge transfer capability,
and learning efficiency of our model. In future work, we plan to investigate continual learning for
dynamic KGs for more complex occasions such as temporal settings.
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Denny Vrandecic and Markus Krötzsch. Wikidata: a free collaborative knowledgebase. Commun.
ACM, 57(10):78–85, 2014.

Hong Wang, Wenhan Xiong, Mo Yu, Xiaoxiao Guo, Shiyu Chang, and William Yang Wang. Sen-
tence embedding alignment for lifelong relation extraction. In NAACL-HLT, pp. 796–806, 2019a.

Peifeng Wang, Jialong Han, Chenliang Li, and Rong Pan. Logic attention based neighborhood
aggregation for inductive knowledge graph embedding. In AAAI, pp. 7152–7159, 2019b.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph embedding by trans-
lating on hyperplanes. In AAAI, pp. 1112–1119, 2014.

Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient langevin dynamics. In
ICML, pp. 681–688, 2011.

Tianxing Wu, Arijit Khan, Melvin Yong, Guilin Qi, and Meng Wang. Efficiently embedding dy-
namic knowledge graphs. Knowl. Based Syst., 250:109124, 2022.

11



Under review as a conference paper at ICLR 2024

Chenyan Xiong, Russell Power, and Jamie Callan. Explicit semantic ranking for academic search
via knowledge graph embedding. In WWW, pp. 1271–1279, 2017.

Wenjie Xu, Ben Liu, Miao Peng, Xu Jia, and Min Peng. Pre-trained language model with prompts
for temporal knowledge graph completion. In ACL, pp. 7790–7803, 2023.

Lingfeng Yang, Xiang Li, Renjie Song, Borui Zhao, Juntian Tao, Shihao Zhou, Jiajun Liang, and
Jian Yang. Dynamic MLP for fine-grained image classification by leveraging geographical and
temporal information. In CVPR, pp. 10935–10944, 2022.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In ICML, pp. 3987–3995, 2017.

Shuai Zhang, Yi Tay, Lina Yao, and Qi Liu. Quaternion knowledge graph embeddings. In NeurIPS,
pp. 2731–2741, 2019.

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal A. C. Xhonneux, and Jian Tang. Neural bellman-
ford networks: A general graph neural network framework for link prediction. In NeurIPS, pp.
29476–29490, 2021.

12



Under review as a conference paper at ICLR 2024

A DETAILS FOR CLKGE

A.1 DETAILS FOR EBMS

As shown in (LeCun et al., 2006), theoretical basis for energy assignments in EBMs are as follows:

• Stability and Flexibility: The primary goal of EBMs in a continual learning context is to
balance stability with flexibility. Lower energy states are typically associated with more
stable, well-learned representations (from previous snapshots), as they are less likely to
change. This concept is supported by the stability-plasticity dilemma in neural networks,
where stability refers to the retention of old knowledge, and plasticity refers to the ability
to adapt to new information. Assigning lower energy to representations from previous
snapshots ensures that these stable representations are preserved, mitigating the risk of
catastrophic forgetting.

• Prioritizing New Information: Conversely, higher energy states for current snapshot repre-
sentations imply a more flexible, adaptive state that is still being integrated and solidified
within the model’s knowledge base. This aligns with the idea that new information requires
more attention and resources for effective learning and integration.

• Energy-Based Regularization: The differential energy levels act as a form of regulariza-
tion, ensuring that the model does not become too rigid (overfitting to old information)
or too flexible (overfitting to new information). This concept is akin to the idea of elastic
weight consolidation (EWC) in neural networks, which also aims to balance the stability
and plasticity through a regularization term.

In our paper, we first learn an energy-based manifold where the representations of knowledge from
the current snapshot have higher energy, while the counterparts from the previous snapshots have
lower energy. Next, the learned energy-based model is used to align new knowledge and old knowl-
edge such that their energy on the manifold is minimized, thus alleviating the catastrophic forgetting
with the assistance of new knowledge as follows:

• Advantages of EBM over Mathematical Optimization: Energy-Based Models (EBMs): as
highlighted by (LeCun et al., 2006), EBMs provide a dynamic and adaptable framework
compared to traditional mathematical optimization methods, which are often rigid in dy-
namic environments. EBMs’ ability to create energy landscapes for different data states
allows for more nuanced control over the learning process. In the context of CLKGE, this
adaptability is crucial for handling the evolving nature of knowledge graphs, where new
relationships and entities continuously emerge. EBMs can effectively distinguish between
and manage these varying data states, which is a significant advantage over traditional op-
timization methods that may struggle with the dynamic nature of knowledge graphs. The
work of (Du & Mordatch, 2019) further supports the efficacy of EBMs in such dynamic
settings, emphasizing their flexibility in handling representational shifts and evolving data
distributions.

• Mitigating Catastrophic Forgetting with EBM: In CLKGE, the use of EBMs is pivotal in
addressing catastrophic forgetting—a critical challenge in continual learning settings. As
(LeCun et al., 2006) describe, EBMs maintain lower energy states for previous tasks, en-
suring their stability and resistance to disruption by new data. This property is instrumental
in CLKGE, where new snapshots of knowledge graphs may otherwise overwrite previously
learned knowledge. The energy manifold created by EBMs in CLKGE actively preserves
the influence of prior knowledge, allowing the model to seamlessly integrate new informa-
tion without losing important historical data. This aligning of energy levels is crucial for
maintaining the integrity and continuity of the knowledge graph over time, as emphasized
by (Du & Mordatch, 2019).

• EBM’s Role in Effective Knowledge Transfer: In the CLKGE framework, EBMs play a
crucial role in facilitating effective knowledge transfer, particularly in the context of dy-
namic learning environments like knowledge graphs. By minimizing the energy difference
between new and old knowledge, EBMs ensure that latent representations of both remain
closely integrated. This approach is essential for maintaining the coherence and accuracy
of the knowledge graph as it evolves, allowing the model to adapt to new information while
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retaining crucial aspects of previous knowledge. In CLKGE, this energy alignment strategy
ensures that knowledge transfer is not just about adding new information, but also about
preserving and incorporating existing knowledge. The work of (LeCun et al., 2006) and
(Du & Mordatch, 2019) underscores the importance of such an energy-based approach in
maintaining balance and coherence in continually evolving systems.

A.2 DISTINCTION BETWEEN CONTINUAL LEARNING AND DYNAMIC KGS

Dynamic graphs and continual learning are interconnected concepts in the field of artificial intel-
ligence, particularly in knowledge graph embedding. Dynamic graphs represent evolving systems
where entities (nodes) and their relationships (edges) change over time. Continual learning, on the
other hand, focuses on a model’s ability to continuously adapt and learn from new data while retain-
ing previously acquired knowledge. In the context of knowledge graphs, this relationship becomes
crucial as the graph evolves, requiring the model to adapt without losing historical information.
While both dynamic graphs and continual learning address changes over time, they tackle different
aspects:

• Dynamic Graphs: Concentrate on the structural evolution of the data. In knowledge graphs,
this means accommodating new entities, facts, and relationships, as well as updating or
removing outdated information.

• Continual Learning: Focuses on the learning process itself. In the context of knowledge
graphs, it’s about updating the model’s understanding and representation of the graph while
preventing the loss of previously learned knowledge, known as catastrophic forgetting.

In our CLKGE framework, we effectively integrate these concepts to address the unique challenges
posed by dynamic knowledge graphs:

• Knowledge Transfer (Addressing Challenge C1)**: We leverage continual learning to fa-
cilitate the transfer of knowledge from old to new in the dynamic KG. This is done by
updating the embeddings of old knowledge based on previous graph snapshots and using
these updated embeddings to inform and shape the understanding of new knowledge. This
approach negates the need for retraining the model with each new graph snapshot, thereby
efficiently managing the graph’s evolution.

• Knowledge Retention (Addressing Challenge C2)**: To tackle catastrophic forgetting, we
employ an energy-based model (EBM) within the continual learning framework. This EBM
aligns the knowledge representations of new and old information on an energy manifold,
minimizing their energy differences. By doing so, we ensure that new knowledge em-
beddings are aligned with, and do not overwrite, the old ones. This method is crucial in
retaining the integrity of historical knowledge in the face of new data.

• Unified Framework and Loss Function**: The CLKGE model unifies the processes of
knowledge transfer and retention. It uses a combined loss function, balanced by hyperpa-
rameters, to ensure that both objectives are met. This unified approach not only maintains
the dynamic nature of the KG but also ensures that the learning process is cumulative and
coherent over time.

In summary, our CLKGE framework demonstrates a sophisticated integration of continual learning
within the realm of dynamic knowledge graphs, addressing both the transfer of knowledge from old
to new and the mitigation of catastrophic forgetting. This approach represents a significant advance-
ment in the field, ensuring that knowledge graphs remain accurate, up-to-date, and comprehensive
as they evolve.

B PROOF FOR THEOREM 1

First, we can easily prove the cross-entropy loss is L1-Smooth. Then we prove the Lrentention is L2-
Smooth. To simplify, we set k = 1. Then we have ∆yx(y) = 1

1−y + 1
2

1−2y
y−y2 . Notice that we set

0 < ‖y‖ < 1, hence we can easily prove that |∆y1 −∆y2 | ≤ L1‖y1− y2‖. In this way, we can have
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that the loss function in Eq.(9) is H/2-smooth loss function (we can let H/2 = αL1 + βL2), and it
can be easily shown that F is H-smooth.

(1) For any k ∈ [0,K], we can have

F (wk+1) ≤ F (wk) +∇F (wk)
T

(wk+1 −wk) +
H

2
‖wk+1 −wk‖2

= F (wk) + (g1 (wk) + g2 (wk))
T

(−αg2 (wk)) +
α2H

2
‖g2 (wk)‖2

= F (wk)−
[
α− α2H

2

]
‖g2 (wk)‖2 − α 〈g1 (wk) , g2 (wk)〉

(11)

For the term 〈g1(wk), g2(wk)〉, it follows that

〈g1 (wk) , g2 (wk)〉
= 〈g1 (wk)− g1 (w0) + g1 (w0) , g2 (wk)〉
= 〈g1 (wk)− g1 (w0) , g2 (wk)〉+ 〈g1 (w0) , g2 (wk)〉
= 〈g1 (wk)− g1 (w0) , g2 (wk)〉+ 〈g1 (w0) , g2 (wk)− g2 (w0)〉+ 〈g1 (w0) , g2 (w0)〉

(12)

Notice that

2 〈g1 (wk)− g1 (w0) , g2 (wk)〉+ ‖g1 (wk)− g1 (w0)‖2 + ‖g2 (wk)‖2

= ‖g1 (wk)− g1 (w0) + g2 (wk)‖2 ≥ 0
(13)

We have

〈g1 (wk)− g1 (w0) , g2 (wk)〉 ≥ −1

2
‖g1 (wk)− g1 (w0)‖2 − 1

2
‖g2 (wk)‖2 (14)

Following the same line, it can be shown that

〈g1 (w0) , g2 (wk)− g2 (w0)〉 ≥ −1

2
‖g2 (wk)− g2 (w0)‖2 − 1

2
‖g1 (w0)‖2 (15)

Combining Eq.(12), Eq.(14) and Eq.(15) gives a lower bound on g1(wk), g2(wk), i.e.,

〈g1 (wk) , g2 (wk)〉

≥ − 1

2
‖g1 (wk)− g1 (w0)‖2 − 1

2
‖g2 (wk)‖2

− 1

2
‖g2 (wk)− g2 (w0)‖2 − 1

2
‖g1 (w0)‖2 + 〈g1 (w0) , g2 (w0)〉

≥ − H2

8
‖wk −w0‖2 −

1

2
‖g2 (wk)‖2

− H2

8
‖wk −w0‖2 −

1

2
‖g1 (w0)‖2 + 〈g1 (w0) , g2 (w0)〉

=− H2

4
‖wk −w0‖2 −

1

2
‖g2 (wk)‖2 − 1

2
‖g1 (w0)‖2 + 〈g1 (w0) , g2 (w0)〉 ,

(16)

where the second inequality is true because of the smoothness of the loss function. Based on the
update formulation, it can be seen that

wk = w0 − α
k−1∑
i=0

g2 (wi) (17)

Therefore, continuing with Eq.(11), we can have

F (wk+1)

≤ F (wk)−
[
α− α2H

2

]
‖g2 (wk)‖2 − α 〈g1 (wk) , g2 (wk)〉

(18)
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Then we have:

F (wk+1)

≤F (wk)−
[
α− α2H

2

]
‖g2 (wk)‖2 +

α3H2

4

∥∥∥∥∥
k−1∑
i=0

g2 (wi)

∥∥∥∥∥
2

+
α

2
‖g2 (wk)‖2

+
α

2
‖g1 (w0)‖2 − α 〈g1 (w0) , g2 (w0)〉

=F (wk)−
[
α

2
− α2H

2

]
‖g2 (wk)‖2 +

α3H2

4

∥∥∥∥∥
k−1∑
i=0

g2 (wi)

∥∥∥∥∥
2

+
α

2
‖g1 (w0)‖2 − α 〈g1 (w0) , g2 (w0)〉

≤F (wk)−
[
α

2
− α2H

2

]
‖g2 (wk)‖2 +

α3H2

4

∥∥∥∥∥
k−1∑
i=0

g2 (wi)

∥∥∥∥∥
2

+
α

2
‖g1 (w0)‖2

− αε1 ‖g1 (w0)‖ ‖g2 (w0)‖ ,
(19)

where the last inequality is based on
〈
∇Lj

(
wj
)
,∇Lj−1

(
wj−1

)〉
≥

ε1
∥∥∇Lj (wj

)∥∥
2

∥∥∇Lj−1

(
wj−1

)∥∥
2
. Next, it can be shown that

α ≤ γ ‖g1 (w0)‖
HBK

≤ γ ‖g1 (w0)‖

H
∥∥∥∑k−1

i=0 g2 (wi)
∥∥∥ (20)

It then follows that

1

2
‖g1 (w0)‖2 +

α2H2

4

∥∥∥∥∥
k−1∑
i=0

g2 (wi)

∥∥∥∥∥
2

≤1

2
‖g1 (w0)‖2 +

γ2 ‖g1 (w0)‖2

4H2
∥∥∥∑k−1

i=0 g2 (wi)
∥∥∥2H

2

∥∥∥∥∥
k−1∑
i=0

g2 (wi)

∥∥∥∥∥
2

=
2 + γ2

4
‖g1 (w0)‖2 .

(21)

Therefore, we can obtain that

F (wk+1) ≤ F (wk)−
[
α

2
− α2H

2

]
‖g2 (wk)‖2 +

α
(
2 + γ2

)
4

‖g1 (w0)‖2 − αε1 ‖g1 (w0)‖ ‖g2 (w0)‖

≤ F (wk)−
[
α

2
− α2H

2

]
‖g2 (wk)‖2

< F (wk)
(22)

where the second inequality is true because ε1 > (2+γ2)‖g1(w0)‖
4‖g2(w0)‖ . This sufficient decrease of the

objective function value indicates that the optimal F(w∗) can be obtained eventually for convex
loss functions.
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(2) For a non-convex loss function L, we can have the following as in Eq.(11):

F
(
wrk+1

)
≤F (wk)−

[
α− α2H

2

]
‖g2 (wk)‖2 − α 〈g1 (wk) , g2 (wk)〉

(a)
= F (wk)−

[
α− α2H

2

]
‖g2 (wk)‖2 − α

2

[
‖∇F (wk)‖2 − ‖g1 (wk)‖2 − ‖g2 (wk)‖2

]
=F (wk)−

[
α

2
− α2H

2

]
‖g2 (wk)‖2 − α

2
‖∇F (wk)‖2 +

α

2
‖g1 (wk)‖2

=F (wk)−
[
α

2
− α2H

2

]
‖g2 (wk)‖2 − α

2
‖∇F (wk)‖2 +

α

2
‖g1 (wk)− g1 (w0) + g1 (w0)‖2

≤F (wk)−
[
α

2
− α2H

2

]
‖g2 (wk)‖2 − α

2
‖∇F (wk)‖2 + α ‖g1 (wk)− g1 (w0)‖2

+ α ‖g1 (w0)‖2

(b)

≤ F (wk)−
[
α

2
− α2H

2

]
‖g2 (wk)‖2 − α

2
‖∇F (wk)‖2 +

H2α3

4

∥∥∥∥∥
k−1∑
i=0

g2 (wi)

∥∥∥∥∥
2

+ α‖g1(w0)‖2

(23)
where (a) is because δF(wk) = g1(wk) + g2(wk), and (b) is because of the smoothness of L and
Eq.(17). Therefore,

min
k
‖∇F (wk)‖2

≤ 1

K

K−1∑
k=0

‖∇F (wk)‖2

≤ 2

αK

K−1∑
k=0

F (wk)−F (wk+1) +
H2α3

4

∥∥∥∥∥
k−1∑
i=0

g2 (wi)

∥∥∥∥∥
2

+ α ‖g1 (w0)‖2 −
[
α

2
− α2H

2

]
‖g2 (wk)‖2


≤ 2

αK
[F (w0)−F (wK)] +

H2α2

2(K − 1)

K−1∑
k=1

∥∥∥∥∥
k−1∑
i=0

g2 (wi)

∥∥∥∥∥
2

+ 2 ‖g1 (w0)‖2 − 1− αH
K

K−1∑
k=0

‖g2 (wk)‖2

(a)

≤ 2

αK
[F (w0)−F (wK)] +

γ2

2
‖g1 (w0)‖2 + 2 ‖g1 (w0)‖2 − 1− αH

K

K−1∑
k=0

‖g2 (wk)‖2

≤ 2

αK
[F (w0)−F (w∗)] +

4 + γ2

2
‖g1 (w0)‖2 − 1− αH

K

K−1∑
k=0

‖g2 (wk)‖2

≤ 2

αK
[F (w0)−F (w∗)] +

4 + γ2

2
‖g1 (w0)‖2

(24)
where (a) holds due to F(w∗) ≤ F(wK) and ‖

∑k−1
i=0 g2(wi)‖2 ≤ γ2

α2H2 ‖g1(w0)‖2 based on
Eq.(21).

C DETAILS FOR CLKGE

Abalation Study for g in Eq.(1). However, new entities may obey different distributions, hence
we need to alleviate the distribution gaps by a function g. To achieve this, as stated in (Yang et al.,
2022), some networks such as MLP can eliminate the difference in distribution by constructing an
implicit space. In this way, for the sake of simplicity, we specify g as an MLP. Furthermore, we
conduct the experiments on the ENTITY dataset as shown in Table 4, where CLKGE w/ g denotes
CLKGE utilizing the and CLKGE w/o g denotes CLKGE remove g. One can observe that CLKGE
w/ g can be superior to CLKGE w/o g significantly, which demonstrates the effectiveness of g.

Abalation Study for different KGE methods. Different KGE methods have somewhat impact on
performance. To demonstrate this point, we conduct the experiments on ENTITY datasets utilizing
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Table 4: Abalation Study for g in Eq.(1)
Models MRR H@1 H@3 H@10

CLKGE w g .233±.002 .138±.001 .245±.002 .398±.002

CLKGE w/o g .211±.003 .120±.002 .233±.002 .387±.003

Table 5: Abalation Study for different KGE methods
Models MRR H@1 H@3 H@10

CLKGEC .248±.001 .144±.001 .278±.002 .436±.002

CLKGER .250±.002 .145±.002 .279±.002 .439±.003

CLKGET .245±.003 .143±.002 .274±.003 .435±.003

the KGE method ComplEx, RotatE, and TransE as CLKGEC , CLKGER, and CLKGET , re-
spectively. As shown in the table 5, one can observe that the difference of performance for various
KGE method is not big, which also show the robustness of our method.

Experiments for WN18RR-5-LS dataset. We conduct experiments on the WN18RR-5-LS dataset.
Specifically, WN18RR-5-LS is divided into several snapshots. As shown in the table below, one can
notice that CLKGE superiors other methods, and the overall performance shows the effectiveness of
components including knowledge transfer and knowledge retention.

D EXPERIMENTAL DETAILS

Learning Efficiency. In this part, we conduct experiments to compare the training time. We report
the total time cost on FACT, which is easier for comparison. Table 8 shows the results. Unsur-
prisingly, one can observe that re-training is the most time-consuming. By contrast, our model is
the most efficient, and it can converge to the optimal embedding in a fast way. The reason is two-
fold. On one hand, the new knowledge can learn the representations via knowledge transfer by old
knowledge effectively. On the other hand, old knowledge can alleviate catastrophic forgetting via
knowledge retention with new knowledge significantly. In total, these components work together
thus reducing the training time, which demonstrates the effectiveness of our method.

Ablation Study for Knowledge Retention To demonstrate the effectiveness of utilizing the energy-
based manifold, we compare the performance of two versions. The first is the original version
(denoted as CLKGE1) while the retention loss in the second version (denoted as CLKGE2) is

Lretention =
∑

e∈Ei−1

ω(e) ‖ei − ei−1‖22 +
∑

r∈Ri−1

ω(r) ‖ri − ri−1‖22 , (25)

where where omega(x) is the regularization weight for x. The results are shown in Table 9. One
can observe that the performance of CLKGE1 is superior to CLKGE2. In this way, it validates the
rationality of our method and the effectiveness of CLKGE to model the association between true
embedding and the obtained embedding for knowledge.

Sensitivity Study. We carry out a sensitivity study on the β1 parameter in Eq.(9) in the text, in
the original we only need to change the value of β1 to study the sensitivity of the model since
β1 + β2 = 1. We varied β1 from 0-1 at intervals of 0.1. As shown in the Table 10 on ENTITY and

Table 6: Experiments for WN18RR-5-LS dataset.
Models MRR H@1 H@3 H@10

EMR .351±.002 .232±.002 .317±.003 .380±.001

DiCGRL .365±.002 .244±.003 .325±.002 .392±.002

LKGE .372±.002 .251±.002 .337±.003 .401±.001

CLKGE .384±.002 .260±.002 .347±.003 .415±.002
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Table 7: Statistical data of the four constructed growing KG datasets. For the i-th snapshot, T∆i

denotes the set of new facts in this snapshot, and Ei, Ri denote the sets of cumulative entities and
relations in the first i snapshots, respectively.

Datasets
Snapshot 1 Snapshot 2 Snapshot 3 Snapshot 4 Snapshot 5

|T∆1 | |E1| |R1| |T∆2 | |E2| |R2| |T∆3 | |E3| |R3| |T∆4 | |E4| |R4| |T∆5 | |E5| |R5|
ENTITY 46,388 2,909 233 72,111 5,817 236 73,785 8,275 236 70,506 11,633 237 47,326 14,541 237
RELATION 98,819 11,560 48 93,535 13,343 96 66,136 13,754 143 30,032 14,387 190 21,594 14,541 237
FACT 62,024 10,513 237 62,023 12,779 237 62,023 13,586 237 62,023 13,894 237 62,023 14,541 237
HYBRID 57,561 8,628 86 20,873 10,040 102 88,017 12,779 151 103,339 14,393 209 40,326 14,541 237

Table 8: Cumulative time (seconds) cost on FACT during 5 snapshots.
Models Re-tarining CWE DiCGRL PNN GEM EMR EWC SI LKGE Fine-tuning CLKGE

5000 3100 2150 1900 1750 1540 1500 1400 1300 1350 1200

RELATION datasets with the MRR metric. When β1 is 0, the model is degraded to use only the
knowledge retention module, so the model performance decreases more; when β1 is 1, the model is
degraded to use only the knowledge migration module, so the model performance decreases more;
this shows that the above two modules are very important. For the other parameters, it can be seen
that the model performance does not change much, indicating that our model is not sensitive to the
hyperparameters of the model.

Table 9: Ablation Study for Knowledge Retention.

Model
ENTITY RELATION

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

CLKGE1 0.248 0.144 0.278 0.436 0.203 0.115 0.226 0.379
CLKGE2 0.234 0.136 0.271 0.429 0.196 0.107 0.219 0.372
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Table 10: Sensitivity Study for ENTITY and RELATION dataset.
β1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ENTITY .236 .241 .243 .242 .245 .246 .248 .246 .240 .235 .161
RELATION .172 .194 .199 .201 .203 .204 .203 .198 .194 .192 .137
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