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Summary
In contrast to deep learning models trained with supervised data, visual reinforcement

learning (VRL) models learn to represent their environment implicitly via the process of seek-
ing higher rewards. However, there has been little research on the specific representations VRL
models learn. Using linear probing, we study the extent to which VRL models learn to linearly
represent the ground truth vectorized state of an environment, on which layers these represen-
tations are most accessible, and how this relates to the reward achieved by the final model. We
observe that poorly performing agents differ substantially from well-performing ones in the
representation learned in their later MLP layers, but not their earlier CNN layers. When an
agent is initialized by reusing the later layers of a poorly performing agent, the result is always
poor. These poorly performing agents end up with no entropy in their actor network output, a
phenomenon we call action collapse. Based on these observations, we propose a simple rule
to prevent action collapse during training, leading to better performance on tasks with image
observations with no additional computational cost.

Contribution(s)
1. We analyze how VRL models learn linear representations of the ground truth vectorized

environment states using Orthogonal Matching Pursuit (OMP), i.e., linear probing with a
sparsity constraint.
Context: Linear probing has been widely used to study representations in other domains,
but not in VRL.

2. The results of linear probing show that well- and poorly performing agents differ primarily
in their later MLP layers, but not their earlier CNN layers.
Context: This is counter to intuition that the CNN layers are primarily responsible for
representation learning.

3. We show that the linear probing results are predictive of agent quality after retraining.
Context: Linear probing has been questioned because it assumes the features are linearly
accessible from learned representations.

4. We identify that the MLP layers of a poorly performing agent suffer from action collapse, a
failure mode where all inputs to a network produce the same output.
Context: Dormant and dead neurons have previously been observed in VRL (Xu et al.,
2023), but action collapse is a more precise understanding of this failure mode.

5. By studying the metrics associated with action collapse, we show that it can be avoided with
a simple rule.
Context: None
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Abstract

In contrast to deep learning models trained with supervised data, visual reinforcement1
learning (VRL) models learn to represent their environment implicitly via the process2
of seeking higher rewards. However, there has been little research on the specific repre-3
sentations VRL models learn. Using linear probing, we study the extent to which VRL4
models learn to linearly represent the ground truth vectorized state of an environment,5
on which layers these representations are most accessible, and how this relates to the6
reward achieved by the final model. We observe that poorly performing agents dif-7
fer substantially from well-performing ones in the representation learned in their later8
MLP layers, but not their earlier CNN layers. When an agent is initialized by reusing9
the later layers of a poorly performing agent, the result is always poor. These poorly10
performing agents end up with no entropy in their actor network output, a phenomenon11
we call action collapse. Based on these observations, we propose a simple rule to pre-12
vent action collapse during training, leading to better performance on tasks with image13
observations with no additional computational cost.14

1 Introduction15

Visual reinforcement learning (VRL) trains agents to learn effective policies directly from raw im-16
age observations in domains such as Atari games and continuous control tasks (Schrittwieser et al.,17
2020; Badia et al., 2020; Yarats et al., 2021a; Zheng et al., 2023). Despite these impressive advances,18
our understanding of how these agents internally represent their environments remains limited. Ex-19
amining the learned representations is vital for two reasons: first, interpretable features explain why20
an agent makes a specific decision, helping trust and debugging; second, understanding how repre-21
sentations evolve during training can reveal possible failure modes caused by misrepresentations of22
key information about the environment.23

While earlier works have investigated internal representations in RL (Greydanus et al., 2018; Wi-24
jmans et al., 2023; Dabney et al., 2021; Wang et al., 2022; Zahavy et al., 2016), many of them25
focus on task-specific features that require careful designs. For example, Greydanus et al. (2018)26
finds that agents learn where-to-look in Atari games and Wijmans et al. (2023) demonstrates that27
map-like structures emerge in learned representations in navigation tasks. However, in VRL we can28
directly compare what the agent learns to the vectorized environment state to analyze how agents29
learn from raw image observations.30

Our work starts by investigating how well a model learns vectorized environment states from image31
observations using linear probing with a sparsity constraint, specifically, Orthogonal Matching Pur-32
suit (OMP) (Pati et al., 1993). In addition to confirming models learn vectorized states and where33
they are learned, our results show an interesting insight: later MLP layers of poorly performing34
agents do not learn representations as well as well-performing agents, while the learned representa-35
tions in earlier CNN layers are almost identical for all agents. This suggests that poorly performing36
agents struggle in their MLP, where learned representations in CNN fail to propagate. However,37
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since OMP assumes that the features are linearly accessible from learned representations, it might38
not tell us how well the vectorized environment states are captured by the model. Based on the39
idea that better representations should lead to better agent performance, we retrain the agents from40
different initializations to confirm that, indeed, the MLP is the source of the issue and the CNNs are41
interchangeable.42

After identifying MLP as the source of failure, we analyze what occurs in these MLPs. According43
to the videos, poorly performing agents repeatedly take the same actions regardless of the input44
observation, a phenomenon we call action collapse. With the hypothesis that MLP representations45
also collapse to a single point, we measure numerical rank, gradient norm, and other metrics that46
can reflect the extent to which the MLP representations collapse. In addition to confirming that47
hypothesis, we observe that if an agent does not escape action collapse before exploration noise48
decays to its minimum, it is unlikely to recover. Equipped with this insight, we propose a simple49
rule to prevent action collapse. We validate its effectiveness across multiple tasks.50

To summarize, our workflow serves as an example of how analyzing learned representations can51
help identify issues and develop solutions based on observed patterns. The key contributions of this52
work can be summarized below:53

• We are the first to use linear probing to analyze how well RL models learn vectorized environment54
states from image observations.55

• We confirm that linear probing is effective for studying whether RL models learn vectorized envi-56
ronment states despite its strict assumptions.57

• By analyzing model metric patterns, we derive a simple rule to help agents escape action collapse.58

In Section 2 and 3, we review related work and introduce necessary preliminaries. In Section 4,59
we first conduct a representation analysis using OMP, identifying the key difference between well-60
performing and poorly performing agents in their MLP layers, and then verify that the observations61
obtained from linear probing are reasonable through control experiments. Section 5 further examines62
action collapse by checking various related metrics, revealing that poorly performing agents lose63
diversity in their actions due to collapsed learned representations, and based on these findings, we64
propose a simple rule to help agents escape action collapse and validate its effectiveness empirically.65

2 Related Work66

Understanding Representations Learned in RL. Understanding the representations learned by RL67
agents is crucial for interpreting decision-making processes and improving performance (Greydanus68
et al., 2018; Wijmans et al., 2023; Dabney et al., 2021; Wang et al., 2022; Zahavy et al., 2016). Grey-69
danus et al. (2018) proposes a method for generating saliency maps to show which specific regions70
Atari agents focus on, revealing the evolution of agent attention throughout training. Wijmans et al.71
(2023) finds the emergence of spatial representations in blind navigation agents, demonstrating that72
the agents develop map-like structures in memory to support navigation tasks even without direct73
visual information. Studying representations in VRL is a natural idea because we can compare what74
is learned by the agent to the vectorized environment states, a near-ground-truth representation of the75
environment. Our work is the first to explore how agents learn those states from image observations.76

Representation Studies Using Linear Probing. Linear probing has been widely applied in differ-77
ent domains to investigate what models learn (Alain & Bengio, 2016; Belinkov, 2022). For example,78
some use linear probing to see if the hidden layer activations of models capture class-specific fea-79
tures in classification tasks (Chen et al., 2023; Morcos et al., 2018), while others employ it to uncover80
how and where linguistic or conceptual variables are encoded in (large) language models (Hewitt &81
Manning, 2019; Peters et al., 2018; Adi et al., 2016; Nanda et al., 2023; Zhao et al., 2024; Singh82
et al., 2024). However, the application of linear probing assumes that features are linearly accessi-83
ble from hidden vectorized activations, which may overlook more complex, nonlinear relationships84
(Shen & Younes, 2024; White et al., 2021). Our work is the first to study the learning of vectorized85
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environment states during RL training from image observations using linear probing in Section 4.1,86
and we prove the effectiveness of linear probing by retraining the agents from different initializations87
in Section 4.2.88

Visual Reinforcement Learning. There are many powerful algorithms to train RL agents that89
receive image observations including CURL (Laskin et al., 2020), DrQ (Yarats et al., 2021b), DrQ-90
v2 (Yarats et al., 2021a), TACO (Zheng et al., 2023), and DrM (Xu et al., 2023). Our studies focus91
on DrQ-v2 because of its better performance compared with CURL and DrQ and its simpler design92
compared with TACO and DrM, making it the best place for us to study representations learned by93
the agents. Xu et al. (2023) observe the consequences of action collapse when they remark that94
agents take repeated identical actions. They prevent agents from getting stuck by proposing a metric95
called dormant ratio thatmeasures the fraction of inactive neurons, and they tune the exploration in96
refenence to that metric. We provide a more precise analysis of the action collapse phenomena. We97
discuss further differences in Supplementary Materials A.98

3 Preliminaries99

Markov Decision Problem. We consider a Markov Decision Process (MDP) (Puterman, 2014)100
defined by ⟨O,S,A,R, P, β, γ⟩, where O is the observation space (a three-stack of images), S is the101
vectorized environment state space, A is the action space, R : S × A → R is the reward function,102
P : S ×A → ∆S is the transition function, β ∈ ∆S is the initial state distribution, and γ ∈ [0, 1] is103
the discount factor. In VRL, the agent only observes O, but S is used to compute the reward, and we104
assume that S can be inferred from O. At timestep t, we denote the observation as ot, the state as105
st, the action as at, and the reward as rt = R(st,at). The objective is to find a policy π : O → ∆A106
that maximizes the expected discounted return, i.e., π∗ ∈ argmaxπ Eπ[

∑∞
t=0 γ

tR(st,at)].107

Orthogonal Matching Pursuit. Orthogonal Matching Pursuit (OMP) (Pati et al., 1993) is an al-108
gorithm that reconstructs signals by iteratively selecting the feature most correlated with the cur-109
rent residual and then updating the residual to remove its influence. By enforcing a sparsity con-110
straint, OMP effectively eliminates irrelevant dimensions, reducing overfitting when handling high-111
dimensional inputs, where it typically outperforms unconstrained linear probing by maintaining112
more robust and interpretable results.113

DrQ-v2. DrQ-v2 uses a convolutional encoder to transform augmented image observations into a114
low-dimensional latent space that feeds both an actor network and two critic networks. Its training115
follows an off-policy DDPG-based scheme. We analyze activations from the hidden layers, specif-116
ically the four CNN layers in the encoder and the three MLP layers in the actor, in addition to117
considering the raw image inputs.118

4 Representation Studies119

In this section, we study if the VRL model learns the representations of vectorized environment120
states using linear probing and validate the observations obtained from linear probing through con-121
trolled experiments. In Section 4.1, by probing vectorized environment states with hidden layer122
activations, we find high agent performance correlates with better representations in MLP while123
CNNs are very similar between well-performing and poorly performing agents. In Section 4.2, we124
retrain agents starting from different initializations and show that better representations, as measured125
by linear probing, lead to better performance after retraining.126

4.1 Study 1: do VRL agents learn the linear representations of vectorized environment127
states and where are they learned?128

Main Question. In VRL environments, the reward function is usually defined in reference to the129
vectorized environment state. Therefore, it is natural to think that an agent trained with image ob-130
servations should learn to represent the vectorized environment state components in order to learn131
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a good policy that achieves high rewards. Furthermore, we hypothesized that these representations132
are mainly learned in the CNN layers, and MLP is responsible for transforming the learned repre-133
sentations into actions in the actor, which has been a thoroughly studied question in the domain of134
classification problems (Zeiler & Fergus, 2014; Bau et al., 2017). Because learning good representa-135
tions is important, we hypothesized that agents’ differing performances are reflected in their ability136
to linearly represent the vectorized environment state.137

Setup. We use DeepMind Control Suite (DMC) (Tassa et al., 2018) that provides the environ-138
ments with image observations. Among the benchmark methods working with DMC, we select139
DrQ-v2 (Yarats et al., 2021a) because of its high performance and simple designs discussed in Sec-140
tion 2 so this work focuses on analyzing the behaviors of DrQ-v2 in DMC. In this section, we study141
walker_walk as an instance, which is to train a bipedal agent to walk forward fast and stably. We142
choose this task because its reward is clearly defined regarding some components of vectorized en-143
vironment states, which makes it easy for us to target the most critical state components. Trained144
agents can be classified into three classes referring to their performance: most of them are either145
well-performing agents achieving more than 900 rewards or poorly performing agents achieving146
less than 30 rewards, and only a few are middle agents between them. However, we note that all147
agents were trained under the exact same conditions, except for randomness in initialization and148
exploration.149

Conv2d MLP ReLU

cnn1 mlp0
DrQ
-v2

OMP
n samples

cnn0

Vectorize
Stack

ReLU

Figure 1: We apply OMP to probe the vectorized environment states using the hidden layer ac-
tivations. In the top half, the input to DrQ-v2 is three consecutive frames, followed by four 2D
convolution layers and three MLP layers. OMP tries to fit w(k,ℓ) to linearly probe a vectorized
environment state component s(k) using a given layer’s activations as input, subject to a sparsity
constraint

Method. As we discussed in Section 2, linear probing is a widely used tool for studying rep-150
resentations. In our case, we use the ℓ-th layer activations, denoted by h(ℓ) ∈ Rd, to probe151
each vectorized environment state s(k) where k refers to the k-th component. Following the lin-152
ear representation hypothesis (Elhage et al., 2022), where features are represented by direction153
in the activation space if the vectorized environment states s(k) are learned in the ℓ-th layer, we154
may assume h(ℓ) ≈

∑
k s

(k)w(k,ℓ) + e, where w(k,ℓ) ∈ Rd represents the direction for s(k) and155
e ∈ Rd denotes the residual containing other features. Further assuming that the features are rep-156
resented as orthogonal directions gives s(k) ≈ w(k,ℓ)⊤h(ℓ). In practice, without knowing w(k,ℓ),157
we first estimate it from training samples. Specifically, given n training samples, we collect all158

the ℓ-th layer activation vectors H(ℓ) =
[
h
(ℓ)
1 · · · h(ℓ)

n

]
∈ Rd×n, the corresponding k-th state159

s(k) =
[
s
(k)
1 · · · s

(k)
n

]⊤
, and then learn w(k,ℓ) by solving the minimizing the following mean160

squared error (MSE)161

ŵ(k,ℓ) = arg min
w(k,ℓ)∈Rd

∥s(k) −H(ℓ)⊤w(k,ℓ)∥22, ∥w(k,ℓ)∥0 ≤ r, (1)
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where we have included a sparsity constraint to avoid overfitting since d is often very large. We162
use orthogonal matching pursuit (OMP) (Pati et al., 1993; Tropp & Gilbert, 2007) to solve the163
above problem, with its pipeline shown in Figure 1, and use the validation approach to select the164
best sparsity τ for each layer and state component. We then evaluate the probing MSE (s′(k) −165
ŵ(k,ℓ)⊤h′(ℓ))2 over testing samples to measure how well the learned activation vector h′(ℓ) in the ℓ-166
th layer for reconstructing the k-th state component s′(k). All the samples in three sets are collected167
from well-performing agents.168

In Figure 2, we plot the probing MSE for three environment state components: torso velocity, joint169
orientation, and torso height. We choose these three components because all of them are the input170
to the reward function. We let cnnℓ refer to the layer activations after the ℓ-th CNN layer (with171
cnn0 being the raw image input), and mlpℓ refer to the layer activations after the ℓ-th MLP layer.172
We compute the average MSE for well-performing agents (first row) and poorly performing agents173
(second row). In all figures, the probing MSE using raw images (cnn0) serves as a baseline to174
measure the relative difficulty of probing that state component. The total number of training frames175
is 1.1e6 and there is an evaluation every 1e4 frames, resulting in x ∈ [0, 109] on the x-axes for all176
the figures regarding VRL training.177

Torso HeightJoint Orientation

Training Progress Training Progress Training Progress

M
SE

Torso Velocity

M
SE

Figure 2: The MSE of probing different vectorized state components in different layers in evaluation.
The first row is the 13/20 well-performing agents that achieve more than 900 episode reward. The
second row is the 6/20 poorly performing agents achieving less than 30 episode reward.

Observation 1: Well-performing agents gradually learn the vectorized environment states dur-178
ing training. If we study the overall trend of MSE of well-performing agents (first row in Figure 2),179
we see that the MSE in all layers decreases over training. This indicates that well-performing agents180
are learning to linearly represent the vectorized environment states over training.181

Observation 2: The last CNN layer (cnn4) learns vectorized environment states the best. If we182
focus on the order of MSE among different layers of well-performing agents (first row in Figure 2),183
there is a decrease from the earlier CNN layers to the later CNN layers. Deeper CNN layers are184
more expressive and represent more complex features. The MSE differences among CNN layers are185
very small when probing the torso height (third column), which seems to be because this component186
is easy to linearly extract, even from the raw image. Joint orientation is harder to extract and velocity187
is the hardest.188

The MSE in later MLP layers is higher than the one in cnn4. Our interpretation to this phenomenon189
is that the responsibility of MLP layers is to generate actions compared with the previous layers190
because they are deeper in the actor. Therefore, the features in later MLP layers have experienced191
non-linear transformation from the representations learned in the previous layers to generate actions192
so we cannot probe the vectorized environment states as well as cnn4.193
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Observation 3: The MSE in MLP of poorly performing agents does not appear to decrease194
during training, but the MSE in the CNNs resembles that of well-performing agents. Compar-195
ing the first and second rows, we see a clear difference in the probing results, but that difference196
primarily exists in MLP, which is surprising. The only exception is the cnn4 for torso velocity—197
perhaps the most difficult features are harder to learn with a poor agent.198

The results are consistent with our hypotheses in Observations 1 and 2, but Observation 3 is unex-199
pected. It appears that the CNN of poorly performing agents learns about the environment, but the200
representations fail to transfer to MLP. We conduct an additional study to understand this better.201

4.2 Study 2: Is the representation quality measured by OMP is predictive of agent202
performance after retraining?203

Main Question. Using linear probing to understand learned representations assumes features can be204
linearly extracted from them. If linear probing MSE really tells us the representation quality, then205
we might conjecture that a model trained from initialized CNN/MLP with a smaller MSE should206
perform better than one with a larger MSE because better representation quality of the initialized207
model should lead to better agent performance after retraining. From Study 1, we hypothesize208
that the initialized MLP has more influence than the initialized CNN on performance after retraining209
because of the larger difference in the MSE in MLP between well-performing and poorly performing210
agents.211

Setup. We extract the CNN and MLP from two random well-performing agents, which we regard as212
“good” CNN and MLP. We also extract “bad” CNN and MLP from two poorly performing agents.213
Adding blank CNN and MLP, we arrive at nine combinations of CNN × MLP ({blank, good, bad}214
CNN × {blank, good, bad} MLP) for initialization. For each combination, we show the number of215
successful agents (out of 20 runs) and their evaluation curves in each setting in Figure 3.216

(a) (b)

Figure 3: (a) The number of successful (rewards >= 900) agents out of 20 runs trained from {blank,
good, bad} CNN × {blank, good, bad} MLP; (b) The evaluation performance of the successful
agents in each setting during the training.

Observation 1: The initialized MLP, no matter if it is good or bad, has a much stronger in-217
fluence on the performance after retraining than the initialized CNN. According to Figure 3(a),218
it is striking that no matter what the initialized CNN is, no agents starting from bad MLP (third219
column) succeed. Also, the agents initialized with good MLP (second column) achieve a high suc-220
cessful ratio. In comparison, the influence of the initialized CNN is less although we can still tell221
an advantage of good CNN (second row) over blank CNN (first row). This observation not only222
confirms that the MSE of OMP in Study 1 is a meaningful metric that indicates the representation223
quality but validates the issue of poorly performing agents is indeed in their MLP.224

Observation 2: The training speed of successful agents aligns with the fraction of successful225
agents. In line with Figure 3(a), the settings resulting in large successful ratios (e.g., good CNN ×226
good MLP) also lead to a high convergence speed in Figure 3(b). This observation further strength-227
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ens the conclusions we make at the end of Observation 1 from the perspective of the convergence228
speed.229

In this study, we prove the usefulness of OMP in studying representations in RL and confirm the230
problem of poorly performing agents originates in their MLP. However, why the bad MLP is not231
recoverable (third column in Figure 3(a)) and why the MLP of poorly performing agents loses the232
ability to probe the vectorized environment states we observe in Section 4.1 are unanswered. In the233
next section, we study these questions and propose a resolution to prevent these training failures.234

5 Action Collapse Analysis235

We visually inspected the videos of poorly performing agents, whose frames are in Supplementary236
Materials C. They appear to take the same action no matter what the image observations, which we237
verify by checking the actions generated by the actor. We call this phenomenon action collapse.238
To further understand it, we check various metrics of MLP that might explain the same action gen-239
eration in Section 5.1. In Section 5.2, we propose a simple rule based on our analysis, improving240
performance by helping agents escape action collapse.241

5.1 What happens in MLP242

Hypotheses. Action collapse appears similar to the neuron collapse encountered in supervised clas-243
sification problems, where the representations in the last MLP layer collapse to a single point for244
the samples of the same class (Zhu et al., 2021; Papyan et al., 2020; Mixon et al., 2022; Lu &245
Steinerberger, 2022; Ji et al., 2021). Although the contexts differ, same class labels in classification246
correspond to the same actions in RL. Therefore, it is reasonable to hypothesize the issue in the MLP247
of poorly performing agents is the collapsed representations. To validate that hypothesis, we com-248
pute various potentially related metrics of MLP layers, which are followed by the micro-hypothesis249
for each metric below.250

• Numerical Rank. To measure the dimensionality of the hidden-layer representations, we compute251
the numerical rank (Zhou et al., 2022) of the matrix of MLP activiations H(ℓ), as defined in252

Figure 1, using r̃ank(H(ℓ)) =
(
∑

i σi)
2∑

i σ
2
i

, where {σi} denote the singular values of H(ℓ). This253
numerical rank benefits from discounting small singular values when the matrix is close to low-254
rank but has small singular values, serving as a stable measure for the rank of a matrix. We expect255
to see low numerical ranks in MLP layers of a poorly performing agent.256

• Correlation & Zeros. Other two metrics that can reflect the similarity of MLP activations are257
the average correlation among every two non-zero activations and the number of zero activations,258
also called dead neurons (Lu et al., 2019). As DrQ-v2 uses ReLU (Nair & Hinton, 2010) as the259
activation function, we consider the possible contribution of dead neurons to similar features.1 We260
hypothesize that they are both high for a poorly performing agent.261

• Gradient Norm. As the poorly performing agent suffers from action collapse continuously, we262
think the model might not get updated, so we check the gradient norm of MLP layers. It is263
expected that the gradient norm is always around zero when an agent gets stuck in action collapse.264

We check the metrics studied in Figure 4 in other environments in Supplementary Materials D. Note265
that the dimension of mlp0 is 50, which is not on the same scale as mlp1 and mlp2 with 1024266
dimensions. For clarity, we only visualize the metrics of mlp1 and mlp2 in Figure 4 although the267
trend of those metrics of mlp0 is similar to the ones of mlp1 and mlp2.268

Observation 1: All the metrics of a poorly performing agent (third row) agree with our hy-269
potheses, and the metrics are correlated with each other. The features learned in the MLP of270
poorly performing agents also collapse to a single point and their MLP does not update as we dis-271

1We tried substituting all the ReLU with Leaky-ReLU (Maas et al., 2013) where the neurons cannot die, but it did not
resolve action collapse.
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Figure 4: The metrics of three agents, where the x-axis represents the training progress. The first
row is a randomly picked well-performing agent achieving larger than 900 rewards. The second
row is a middle agent between goodness and badness. The third row is a randomly picked poorly
performing agent achieving lower than 30 rewards.

cuss above. We also tell the correlations among those metrics in the first and second rows because272
they experience abrupt changes at the same time (x = 13 and x = 51 respectively), which can be273
used as the signal determines the model has escaped action collapse in the next part.274

Observation 2: Even a well-performing agent (first row) initially experiences action collapse.275
Surprisingly, the metrics of a well-performing agent (first row) are almost the same as a poorly276
performing one before x = 13. It appears that all agents must experience this period in this setup.277
What distinguishes a well-performing agent from a poorly performing one is that it escapes from278
action collapse successfully.279

Observation 3: It is rare to encounter a middle agent (second row) and middle agents are280
those that escape action collapse slowly. The middle agent is the only one between well- and281
poorly performing agents among 20 runs. When action collapse hits, exploration is the only factor282
that can bring valuable samples with gradients to the actor update. DrQ-v2 uses an exploration283
noise that decreases with training steps, which becomes the smallest (but not zero) when x = 20.284
We observe that it is rare to escape action collapse after this exploration period has ended, which285
informs our escape rule in the next section.286

5.2 A Simple Rule for Escaping Action Collapse287

There are two insights we gain from Section 5.1 inspiring the design of our proposed rule. First,288
according to Observation 1, several metrics (second to fifth columns in Figure 4) can be used to tell289
if an agent escapes action collapse or not. Second, it is almost impossible for a poorly performing290
agent to recover from action collapse after x = 20 (2e5 frames) in the light of Observation 3.291

Inspired by the two insights above, we choose to use the gradient norm of mlp1 to determine whether292
an agent suffers from action collapse and we would reset the training from scratch every 2e5 frames293
if an agent is continuously stuck in action collapse. To develop our simple rule for preventing the294
agent from sticking in action collapse by combining the two choices together, if we do not see a295
gradient norm larger than 0.001 of consecutive five computations every 2e5 frames, the training296
would be reset; once we see that, the training continues until the end (1.1e6 frames). Based on the297
rule we describe above, we formulate the following Proposition 1 to illustrate the effectiveness of298
our proposed rule, which is intuitive.299
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Proposition 1 Supposing the number of training frames is n ·m (m is the frames where the explo-300
ration decreases to the smallest) and the probability of getting stuck in action collapse is p, then the301
probability of escaping action collapse when applying our proposed rule is 1− pn.302

As we mention in Observation 3 in Section 5.1, DrQ-v2 sets the exploration noise for each task. In303
a task whose n ·m equals 1.1e6, m is set to 2e5. Therefore, in such environments, the probability304
that an agent escapes action collapse is larger than 1 − p5. Referring to Figure 3, we determine305
what needs to be reset to escape action collapse. Whenever a reset is needed, we treat the current306
model as a bad CNN × bad MLP. Thus, there are four possible CNN × MLP combinations available307
to us: {blank, bad}CNN × {blank, bad}MLP. To have any chance of escaping action collapse, we308
must reset the bad MLP (third column in Figure 3) to a blank one (first column). By comparing the309
successful rates of blank CNN (first row) and bad CNN (third row) in the first column, we see that310
the bad CNN should also be reset to a blank one. We show the results of experiments in different311
environments in the next paragraph.312

Figure 5: The performance comparison of 40 runs between DrQ-v2 and DrQ-v2 plus our rule in
different environment_task. Shaded areas represent the gap between the 5th percentile and the 95th
percentile.

Results. To cover broad tasks to validate the wide existence of action collapse and the effectiveness313
of our rule, we randomly select three kinds of tasks including locomotion (walker_walk), living314
(hopper_stand), and manipulation (finger_spin) tasks. In Figure 5, we can see a clear performance315
improvement while applying the rule. The rule does not hurt the performance in the 95th percentile,316
but boosts it in the 5th percentile significantly according to the shaded areas in Figure 5. Moreover,317
the average standard deviation over the last ten evaluations drops a lot, from 418.2 to 38.2, from318
359.5 to 93.8, and from 362.7 to 116.2 for the three tasks, respectively. In addition, we count319
the number of runs stuck in action collapse continuously. There are 13, 8, and 7 runs out of 40320
respectively for DrQ-v2. In comparison, all 40 runs of ours escape action collapse, showing the321
success of the simple rule.322

6 Conclusion323

In this work, we investigated how VRL agents learn the vectorized environment states, a unique324
advantage of VRL environments that has not been utilized in prior work. Using the linear probing325
technique, we identify that a problem occurs in the MLP layers of poorly performing agents, which326
can not be inferred from agent performance alone. This highlights the potential of studying learned327
representations to diagnose failure modes in RL. A separate stream of evidence based on retraining328
agents using supports the linear representation hypothesis in the context of VRL. After localizing329
the failure mode to the MLP, we show that it is due to collapsed representations and relate it to330
the parallel phenomenon of neural collapse that has been observed in supervised classification tasks.331
Moreover, we show that action collapse can be detected during training, and we develop a simple rule332
to prevent it, which works well despite its simplicity. That provides strong evidence that studying333
representations can offer insights for improving agent performance.334
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Supplementary Materials455

The following content was not necessarily subject to peer review.456
457

A Two key insights identified in this work458

There are mainly two key messages learned by us but are not known to DrM (Xu et al., 2023).459

First, by analyzing representations learned by RL models, we find the issue of the agents stuck in460
action collapse exists in their MLP in Section 4.1. In Section 5.1, we further realize the representa-461
tions learned in MLP also collapse based on relevant metrics. Without representation studies, DrM462
does not uncover what is behind inactive neurons.463

Second, DrM proposes the dormant ratio to measure inactive neurons and rely on that metric to tune464
exploration and exploitation, but that metric might not work as expected. In our representation study465
specific to MLP in Section 5.1, we learn that even active neurons in a stuck agent collapse to a single466
point (third column in Figure 4). If inactive neurons become active but the average correlation stays467
high, the dormant ratio increases, yet the agent remains stuck. This suggests proposing a method468
based only on phenomena, without further analysis of the underlying causes, might not be unreliable.469

B Detailed analysis of probing MSE orders of MLP layers when probing470

vectorized environment states using OMP471

When we analyze the orders of MLP layers in Figure 2, we observe several patterns between two472
consecutive layers:473

• From cnn4 to mlp0, MSE increases. The number of activations decreases from 39200 to 50474
from cnn4 to mlp0. This design likely aims to concatenate low-dimensional activations with low-475
dimensional actions. However, this reduction makes the activations in mlp0 more abstract, making476
it harder to linearly probe vectorized environment states from them.477

• From mlp0 to mlp1, MSE decreases. The number of activations expands from 50 to 1024. We478
suspect that this increase improves interpretability, making the activations more suitable for linear479
probing.480

• From mlp1 to mlp2, MSE increases again. Mlp2 is the last MLP layer before action generation.481
We hypothesize that its activations become more complex as the model non-linearly transforms the482
representations (e.g., velocity) interpretable to humans into a form suitable for action prediction.483
This transformation may be necessary for the actor to produce actions using only a final linear484
layer on top of mlp2.485

C Video frames of well-performing agents and poorly performing agents486

sticking in action collapse487

The second and third rows in Figure 6 show that the poorly performing agent repeatedly takes the488
same action, regardless of the image observations. Similarly, in Figure 7, the poorly performing489
agent (the finger on the left) quickly gets stuck after the environment resets.490
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Figure 6: The video frames from 0 to 300 frames collected from a well-performing agent (first
row) and a bad one (second and third rows with different environment initialization after reset) in
walker_walk.

Figure 7: The video frames from 0 to 300 frames collected from a well-performing agent (first row)
and a bad one (second row) in finger_spin.

D The metrics discussed in the main paper in other environments491

Figures 8 and 9 analyze the same metrics as in Section 5.1 for two other tasks, hopper_stand and492
finger_spin. These results, along with Figure 4, support our hypotheses from Section 5.1.493
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Figure 8: The metrics of three agents in hopper_stand, where the x-axis represents the training
progress. The first row is a randomly picked well-performing agent achieving larger than 900 re-
wards. The second row is a middle agent between goodness and badness. The third row is a ran-
domly picked poorly performing agent achieving lower than 30 rewards.

Figure 9: The metrics of three agents in finger_spin, where the x-axis represents the training
progress. The first row is a randomly picked well-performing agent achieving larger than 900
rewards. The second row is a middle agent between goodness and badness. The third row is a
randomly picked poorly performing agent achieving lower than 30 rewards.
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