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ABSTRACT

Although model-based reinforcement learning (RL) approaches are considered
more sample efficient, existing algorithms are usually relying on sophisticated
planning algorithm to couple tightly with the model-learning procedure. Hence
the learned models may lack the ability of being re-used with more specialized
planners. In this paper we address this issue and provide approaches to learn an
RL model efficiently without the guidance of a reward signal. In particular, we
take a plug-in solver approach, where we focus on learning a model in the explo-
ration phase and demand that any planning algorithm on the learned model can
give a near-optimal policy. specifically, we focus on the linear mixture MDP set-
ting, where the probability transition matrix is a (unknown) convex combination
of a set of existing models. We show that, by establishing a novel exploration algo-
rithm, the plug-in approach learns a model by taking O(d?H? /€2) episodes with
the environment and any e-optimal planner on the model gives an O(e)-optimal
policy on the original model. This sample complexity matches our lower bound
for non-plug-in approaches and is statistically optimal. We achieve this result
by leveraging a careful maximum total-variance bound using Bernstein inequality
and properties specified to linear mixture MDPs.

1 INTRODUCTION

In reinforcement learning, an agent repeatedly interacts with the unknown environment in order to
maximize the cumulative reward. To achieve this goal, an RL algorithm must be equipped with
effective exploration mechanisms to learn the unknown environment and find a near-optimal policy.
Efficient exploration is critical to the success of reinforcement learning algorithms, which has been
widely investigated from both the empirical and the theoretical perspectives (e.g.|Stadie et al.[(2015));
Pathak et al.| (2017); |Azar et al.[(2017); Jin et al.| (2018)). Model-based RL is one of the important
approaches to solve for the RL environment. In model-based RL, the agent learns the model of
the environment and then performs planning in the estimated model. It has been widely applied in
many RL scenarios, including both online setting (Kaiser et al.,|2019; |Luo et al.| 2019; |Azar et al.,
2017) and offline setting (Yu et al. 2020; Kidambi et al., [2020). It is also believed that model-
based RL is significantly more sample-efficient than model-free RL, which has been justified by
many recent empirical results (e.g. Kaiser et al.[(2019);|Wang et al.|(2019)). Though the theoretical
model-based learning in small scale problems has been studied extensively (Azar et al.,[2017; Zhou
et al.,|2020a} Jin et al.} 2020a), it is still far from complete, especially with the presence of a function
approximator.
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As an important implication of model-based approaches, the power of plug-in approach have been
studied in several works (Cui & Yang| [2020; |Agarwal et al., 2020). The idea of plug-in approach
is rather simple: We construct an empirical Markov Decision Process (MDP) using maximum like-
lihood estimate, then return the (approximate) optimal policy with efficient planning algorithm in
this empirical model. The significance of plug-in approaches is two-folded. For one thing, it pre-
serves an empirical model that keeps the value of the policies, which is of independent interests. For
another, the empirical model can be used for any down-stream tasks, which makes the application
much more flexible. It is shown that the plug-in approach achieves the minimax sample complexity
to compute the e-optimal policies with a generative model in the tabular (Agarwal et al., 2020) and
linear settings (Cui & Yang),2020)).

In this paper, we aim to understand the power of plug-in approach in the reward-free exploration with
linear function approximation. We study the linear mixture MDPs, where the transition probability
kernel is a linear mixture of a number of basis kernels (Ayoub et al.,|2020; Zhou et al., [2020afb). We
first build an empirical model with an estimation of the transition dynamics in the exploration phase,
and then find a near-optimal policy by planning with the empirical model via arbitrary plug-in solver
in the planning phase. Our setting is different from the reward-free exploration with linear function
approximation without plug-in model (Wang et al., |2020; |[Zanette et al.l 2020b), in which the agent
can directly observe all history samples and design specialized model-free algorithm in the planning
phase.

Our results show that the plug-in approach can achieve near-optimal sample complexity in the
reward-free setting. In particular, we proposed a statistically efficient algorithm for reward-free
exploration. Our algorithm samples O(dQH 4 /€2) trajectories during the exploration phase, which
suffices to obtain O(e)-optimal policies for an arbitrary reward function with an e-optimal pluging
solver in the planning phase. Here d is the feature dimension, and H is the planning horizon. Fur-
thermore, with a more refined trajectory-wise uncertainty estimation, we further improve the sample
complexity bound to O (dQH 3/ 62) in the regime where d > H and ¢ < H/+/d. This matches
our lower bound Q(d?H? /€?) for reward-free exploration in linear mixture MDPs, which indicates
that our upper bound is near-optimal except for logarithmic factors. To the best of our knowledge,
this is the first work that obtains minimax sample complexity bounds for the plug-in approach in
reward-free exploration with linear function approximation.

2 RELATED WORK

RL with Linear Function Approximation Reinforcement learning with linear function approxi-
mation has been widely studied in the recent few years (e.g.Jiang et al.|(2017);|Yang & Wang|(2019;
2020);Jin et al.|(2020b)); Modi et al.|(2020);|/Du et al.|(2019)); |[Zanette et al.|(2020al);|Cai et al.| (2020);
Ayoub et al.| (2020); |Weisz et al.| (2021); |[Zhou et al.[ (2020aib)). The linear mixture MDPs model
studied in our work assumes the transition probability function is parameterized as a linear func-
tion of a given feature mapping over state-action-next-state triple (Ayoub et al.| |2020; [Zhou et al.,
2020bza). Based on the Bernstein inequality for vector-valued martingales, Zhou et al.| (2020a)) pro-
posed an efficient algorithm that obtains minimax regret in the regime where d > H. Besides linear
mixture MDPs, linear MDPs is another category of RL with linear function approximation, which
assumes both the transition probability function and reward function are parameterized as a linear
function of a given feature mapping over state-action pairs. The algorithms with best regret bounds
were proposed by [Jin et al.| (2020b)) and |[Yang & Wang| (2020), which studied model-free algorithm
and model-based algorithm respectively. The minimax regret bound for linear MDPs is still unclear.

Reward-Free Reinforcement Learning In contrast to the standard RL setting, reward-free re-
inforcement learning separates the exploration problem and the planning problem, which allows
one to handle them in a theoretically principled way. For tabular setting, reward-free reinforcement
learning has been well-exploited in many previous results (Jin et al.} [ 2020a; [Kaufmann et al., 2021}
Me¢énard et al., 2020} [Zhang et al., [2020; 202 1b; |Wu et al.| 2021a} Bai & Jin} [2020; [Liu et al.l [2021),
where the minimax rate is obtained by Ménard et al.| (2020). For reward-free exploration with lin-
ear function approximation, Wang et al.| (2020) proposed the first efficient algorithm that obtains
O(d®H® /e?) sample complexity for linear MDPs. However, their algorithm is model-free in nature
and cannot guarantee good performance with any plug-in solver. Further, |Qiu et al.|(2021]) proposed
the first provably efficient reward-free algorithm with kernel and neural function approximation.
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We also noticed that there is a concurrent work which also studied reward-free exploration for linear
mixture MDPs (Zhang et al., 2021a). Compared with their results, we focus on the setting of the
reward-free exploration with plug-in solver, which covers the standard reward-free setting studied in
the previous results. Furthermore, our sample complexity bounds are tighter than theirs by a factor
of H? [ﬂ The above two differences introduce new challenges in both the algorithmic design and the
complexity analysis in this work, which makes our algorithms much more complicated than theirs.
Besides, our lower bound is tighter than theirs in the dependence on d.

Plug-in Approach The plug-in approach has been studied in tabular/linear case in restrictive set-
tings. E.g., |/Agarwal et al.| (2020) and |Cui & Yang| (2020) studied the standard plug-in approach
with a generative model, where the algorithm is allowed to query the outcome of any state action
pair from an oracle. They showed the plug-in approach also achieved the minimax optimal sample
complexity to find an e-optimal policy in both tabular MDPs and linear MDPs. The reward-free al-
gorithms proposed by Jin et al.|(2020a)) are model-based in nature, thus can be regarded as a solution
in the plug-in solver setting. However, their algorithms are restricted to the tabular case and cannot
be applied to the setting with linear function approximation.

3 PRELIMINARIES

3.1 Episobic MDPs

We consider the setting of episodic Markov decision processes (MDPs), which can be denoted by
a six-tuple (S, A, P, R, H,v), where S is the set of states, A is the action set, P is the transition
probability matrix so that Py, (-|s, a) gives the distribution over states if action a is taken on state s at
step h, Ry (s, a) is the deterministic reward function of taking action « on state s with support [0, 1]
in step h, H is the number of steps in each episode, and v is the distribution of the initial state.

In episode k, the agent starts from an initial state s ; sampled from the distribution v. At each
step h € [H], the agent observes the current state s; ;, € S, takes action ag, ;, € A, receives reward
Ry (S, hy a1 ), and transits to state sy 11 with probability Py, (sk p+1|Sk,h, ak.n ). The episode ends
when sg 4 is reached.

A deterministic policy 7 is a collection of H policy functions {7, : & — A}pcim). We
use II to denote the set of all deterministic policies. For a specific reward function R, we
use V7 : § x R — R to denote the value function at step h under policy m wr.t. re-
ward R, which gives the expected sum of the remaining rewards received under policy
starting from s, = s, ie. V] (s,R) = E [Zg:hR(sh/,wh, (sn)) | sp = s,P} . Accord-
ingly, we define Q7 (s,a, R) as the expected Q-value function at step h: Q7F(s,a,R) =

E R(sh,ah) —‘ng:hJﬂR(Sh/ﬂTh/ (Shl)) | Sp = 8,ap = a,P} .

We use 77, to denote the optimal policy w.r.t. reward R, and we use V;*(-, R) and Qj.(-,-, R) to
denote the optimal value and Q-function under optimal policy 7%, at step h. We say a policy 7 is

e-optimal w.r.t. reward R if E [Zthl Ry, (sh,ap) | W} >E {Z}I«Ll Ry, (sh,ap) | ﬂ}*%} — €.

For the convenience of explanation, we assume the agent always starts from the same state s; in
each episode. It is straightforward to extend to the case with stochastic initialization, by adding a
initial state s with no rewards and only one action ag, and the transition probability of (s, ag) is
the initial distribution ;.. We use P,V (s, a, R) as a shorthand of 3, P (s'[s,a)V (s', R).

3.2 LINEAR MIXTURE MDPs

We study a special class of MDPs called linear mixture MDPs, where the transition probability
kernel is a linear mixture of a number of basis kernels (Ayoub et al., [2020; Zhou et al., 2020bja)).
This model is defined as follows in the previous literature.

"When transformed to the time-homogeneous MDPs setting studied in[Zhang et al.|(2021a), our algorithms
can achieve sample complexity bounds O(d>H? /e?) and O((d®>H? + dH?)/¢?), respectively.
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Definition 1. (Ayoub et al} 2020) Let ¢(s,a,s') : S x Ax S — R? be a feature mapping satisfying
that for any bounded function V : S — [0,1] and any tuple (s,a) € S x A, we have ||pv (s,a), <
L, where ¢y (s,a) = Y cs @ (s,a,8)V (s'). An MDP is called a linear mixture MDP if there
exists a parameter vector 0, € R% with ||04||2 < B for a constant B and a feature vector ¢(-, -, -),
such that Py,(s'|s,a) = 0] ¢(s, a,s') for any state-action-next-state triplet (s,a,s') € S x A x S
and step h € [H).

3.3 REWARD-FREE REINFORCEMENT LEARNING

We study the problem of reward-free exploration with plug-in solver. Our setting is different from
the reward-free exploration setting studied in the previous literature. Formally, there are two phases
in this setting: exploration phase and planning phase.

During the exploration phase, the agent interacts with the environment for K episodes. In episode k,
the agent chooses a policy 7, which induces a trajectory. The agent observes the states and actions
Sk,1, Q15" »Sk,H, Ok, g as usual, but does not observe any rewards. After K episodes, the agent
calculates the estimated model {]Sh = Q,Tgb}he[ 1] Which will be used in the planning phase to
calculate the optimal policy.

During the planning phase, the agent is no longer allowed to interact with the MDP. Also, it cannot
directly observe the history samples obtained in the exploration phase. Instead, the agent is given a
set of reward function { Ry, },e[s), Where Ry, : S x A — [0, 1] is the deterministic reward in step h.
For notation convenience, we occasionally use R as a shorthand of { R}, },c|q) during the analysis.

We define Vhﬂ’ﬁ(s, R) as the value function of transition P and reward R, i.e. f/}f P (s,R) =
]E Zg:h Rh (sh’;ﬂ—h’ (Sh/)) ‘ Sp = s7p:| .

In the planning phase, the agent calculates the optimal policy 7 g with respect to the reward function
R in the estimated model P using any €,p¢-optimal model-based solver. That is, the returned policy

7 satisfies: V;°F (s1, R) — V™ (51, R) < €opt-

The agent’s goal is to output an accurate model estimation P after the exploration phase, so that
the policy 7 calculated in planning phase can be € + €,p¢-optimal w.r.t. any reward function R.
Compared with the reward-free setting studied in the previous literature (Jin et al., |2020a; Wang
et al.| 2020; Ménard et al|2020; [Kaufmann et al., [2021), the main difference is that we require that
the algorithm maintains a model estimation instead of all the history samples after the exploration
phase, and can use any model-based solver to calculate the near-optimal policy in the planning
phase.

4 REWARD-FREE RL WITH PLUG-IN SOLVER

4.1 ALGORITHM

The exploration phase of the algorithm is presented in Algorithm [[] Recall that for a given value
function Vi, 41, we have Py Vi pi1(Skn, ak,n) = Q;Lrgzﬁvk h+1(5k’h7 a.p) for any k, h. Therefore,

Vk,h_i'_l (Sk,h+1) and ¢Vk.h+1 (Sk,h» ak,p) can be regarded as the stochastic reward and the linear fea-
ture of a linear bandits problem with linear parameter 6,. We employ the standard least-square

regression to learn the underlying parameter . In each episode, we first update the estimation 0y
based on history samples till episode £k — 1. We define the auxiliary rewards Ry to guide explo-

ration. We calculate the optimistic Q-function using the parameter estimation 6y, and then execute
the greedy policy with respect to the updated Q-function to collect new samples.

The main problem is how to define the exploration-driven reward Ry, 1 (s, a), which measures the
uncertainty for state-action pair (s, a) at the current step. In the setting of linear mixture MDPs,
the linear feature ¢y (s, a) is a function of both state-action pair (s, a) and the next-step value func-
tion V. This is not a big deal in the standard exploration setting (Ayoub et al., 2020; Zhou et al.,
2020a). However, in the reward-free setting, since the reward function is not given beforehand, we
need to upper bound the estimation error of value functions for any possible rewards. To tackle
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Algorithm 1 Reward-free Exploration: Exploration Phase
Input: Failure probability 6 > 0 and target accuracy € > 0
A B72, B+ Hy\/dlog(4H3KA=15-1) + VAB,V + {V : S — [0, H]}
for episode k =1,2,--- , K do
Qr,a1() =0, Vemy() =0
5: forsteph=H,H—1,--- ,1do
{\k,h — 25711 ¢t h(st n aen) e n(Sen, asn)’ + AL
Ok,n < (M)~ Zt 1 L ben(Sem aen)Vinit.sa(Senit)
Vi, ht1,5,0 ¢ argmaxy ¢y, HZS P(s,a,8" )V (s )” (Apn)—1 Vs, a
¢k,h(5a a) — Zs/ ¢(57 a, S/>Vk7h+1,sﬁa(5/), Vs, a

10: uk p(s,a) 5\/¢k?h(s, a)T (Ak,h)fl Grn(s,a),Vs,a
Define the exploration-driven reward function Ry, ; (s, a) = ug p(s,a), Vs, a

Qk.n(s,a) < min {é,;rh O o(s,a,8 )WV nt1(s") + Ri,n(s, a) + up n(s,a), H}

Vin(s) ¢ maxae 4 Qi,n(s,a), mp p(s) = argmax,c 4 Qr,n(s, a)
end for
15: forsteph =1,2,--- ,H do
Take action Ak.p = Wk,h(sk,h) and observe Sk,h+1 ™~ Ph(sk,h, akvh)
end for
end for

Find P, such that the transition P, (-|,-) = 6, ¢(-, -, ) is well-defined and Héh - éK’hHA <

Koo
B for h € [H]
20: Output: {P,}HL |

this problem, we use maxy ¢y || ov (s, a)”AZi = maxycy ﬂ\/qbv(s, a)T (Akyh)_l ov(s,a)asa
measure of the maximum uncertainty for the state-action pair (s, a), where V = {V : S — [0, H]}
is the set of all possible value functions, and Ay is the summation of all the history sam-
ples {s¢ n,atn, st h+1}t 11 with feature ¢y p(S¢,n, ar,n) = argmax,, Bllov (s, a)||A L In each
episode, we define Ry, 5,(s,a) = ug n(s,a) = maxyey B¢y (s, a)||A 1, where Ry, h(s a) is the
exploration-driven reward used to guide exploratlon and ug 5 (s,a) is the additional bonus term
which helps to guarantee that Q) »(s,a) is an optimistic estimation. Finally, the algorithm re-
turns the model estimation { P}, that is well defined (ie. S, Py(s'|s,a) = 1, Py(s'|s,a) >

0, Vs, a, s"), and satisfy the constraints Hﬁh — GK’hH < B.
Ak.n

4.2 IMPLEMENTATION DETAILS

Algorithm [I] involves two optimization problems in line 8 and line 19. These problems can be
formulated as the standard convex optimization problem with a slight modification. Specifically, the
optimization problem in line 8 of Algorithm [I]can be formulated in the following way:

Z(b(s,a,s')V(s’)

st. 0<V(s)<HVseS (D

max
14

(Ag,n)~t

In general, solving this optimization problem is hard. For the case of finite state space (S < 00),
a recent work of [Zhang et al.|(2021a)) relaxed the problem to the following linear programming
problem:

mfaxHE;i/Q@(s,a)le st |fllee < H, (2)

T .
where ®(s,a) = (P (s,a,51), ¢ (s,a,5s))) and £ = (f(S1), -+, f(S)s))) - As dis-
cussed in|Zhang et al.[(2021a)), the sample complexity will be worse by a factor of d if we solve the
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linear programming problem as an approximation. For the case where the state apace is infinite, we
can use state aggregation methods (Ren & Krogh) 2002} Singh et al., [1995) to reduce the infinite
state space to finite state space and apply the approximation approaches to solve it.

The optimization problem in line 19 of Algorithm|l|is to find parameter 0y, satisfying several con-
straints. For the case where the state space is finite, we can solve this problem in the following
way:

- R 2
i s

0, Ar.n

s.t. ZéTqﬁ(s,a,s’) =1,0"¢(s,a,8) >0,Vs,ae S x A
The above problem can be regarded as a quadratic programming problem and can be solved ef-
ficiently by the standard optimization methods. By Lemma [ we know that the true parameter

0y, satisfies ||0 1, — O] Ax., < B with high probability. Therefore, the solution 0y, satisfies the

constraint Héh -0 K.h ‘ < B with high probability.
h

K,
For the case where the state space is infinite, we can also solve the above problem using state ag-
gregation methods. In particular, if the linear mixture MDP model can be regarded as a linear com-
bination of several base MDP models (i.c. ¢(s,a,s') = (Pi(s'|s,a), Pa(s|s,a),- - - , Pa(s|s,a)) "
where P;(s’|s,a) is the transition probability of certain MDP model), then we can formulate the
optimization problem in the following way:

min st. 0'1=1,0+0,
On

’9h —Ok.n

2
Ak.n

which can also be solved efficiently in the case of infinite state space.

4.3 REGRET

Theorem 1. With probability at least 1 — 0, after collecting K = o} (di’;’ 4) trajectories , Algo-

rithm |1 returns a transition model P, then for any given reward in the planning phase, a policy
returned by any €qp-optimal plug-in solver on (S, A, P, R, H,v) is O(€e+ €qpt)-optimal for the true
MDP, (S,A,P,R,H,v).

We also propose a lower bound for reward-free exploration in Appendix [C] Our lower bound indi-
cates that Q(d? H3 /€?) episodes are necessary to find an e-optimal policy with constant probability.
This lower bound is achieved by connecting the sample complexity lower bound with the regret
lower bound of certain constructed learning algorithms in the standard online exploration setting.
Compared with this bound, our result matches the lower bound w.r.t. the dimension d and the preci-
sion e except for logarithmic factors.

There is also a recent paper of |Wang et al.| (2020) studying reward-free exploration in the setting
of linear MDPs. Their sample complexity is O(d3H 6 /€2), thus our bound is better than theirs by a
factor of H?2. Though the setting is different, we find that our parameter choice and the more refined
analysis is applicable to their setting, which can help to further improve their bound by a factor of
H?. Please see Appendix @] for the detailed discussion.

5 IMPROVING THE DEPENDENCE ON H

In this section, we close the gap on H with a maximum total-variance bound using Bernstein in-
equality. In the previous results studying regert minimization in online RL setting (Azar et al.,
20175 Zhou et al., 2020a; /Wu et al., 2021b)), one commonly-used approach to obtain the minimax
rate is to upper bound the regret using the total variance of the value function by the Bernstein’s
concentration inequalities, and finally bound the summation of the one-step transition variance by
the law of total variance (Lattimore & Hutter, [2012; |Azar et al.l 2013} [2017). However, the situa-
tion becomes much more complicated in the reward-free setting with linear function approximation.
Recall that Vk,},‘_i,_l,s’a(s/ ) defined in Line 9 of Algorithm is the next-step value function that max-
imizes the uncertainty ||y (s, a)|| AL for state-action pair (s, a). One naive approach is to still use
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maxy |[¢v(s,a)|| AL @S the uncertainty measure for (s, a) and upper bound the error rate by the

summation of the one-step transition variance of Vk,h-ﬁ-l, se.m.ann (87). However, we can not upper
bound the variance summation of Vi n+41.s, .0, () in H steps by O(H?) similarly by the law of
total variance, since {Vk s, ,.ax., fhe[H] 18 NOt the value functions induced from the same policy
and transition dynamics. To tackle the above problem, we need to define the exploration-driven
reward and the confidence bonus for each state-action pair in a more refined way. Our basic idea is
to carefully measure the expected total uncertainty along the whole trajectories w.r.t. each MDPs in
the confidence set. We will explain the detail in the following subsections.

5.1 ALGORITHM

Algorithm 2 Reward-free Exploration: Exploration Phase
Input: Failure probability 6 > 0 and target accuracy € > 0
A+ B72, B+ 16+/dlog(1 + KH?/(d\)) log(32K2H/5) + VAB
3+ 16d+/log(1 + K H?/(d\)) log(32K2H/8) + VB
B« 16H?\/dlog(1 + K H*/(d)\)) log(32K2H/5) + VB
5: Set Ajgp < M, 0; 45 < Ofork=1,he [H],i=1,2,3,4,5
Set U p, to be the set containing all the 6, that makes P}, well-defined, h € [H].
for episode k =1,2,--- , K do
Calculate 7, éh Rj, = argmax
forsteph =1,2,--- ,H do
10: Take action according to the policy 7, 5, and observe sg p+1 ~ Py (*|Sk hy Qi)
end for
forsteph =1,2,-

Update {AZ k1, h}7 1 usmg Eqnn . . ﬂand 77,

Update the model estimation {6; 51, }>_, using Eqn n n H and n
15: Add the constraints (Ean]) to the confidence set U}, 5, and obtain Uy 1 5,

end for
end for

Output: {15K7h(-\-, ) = 0% 4o, .)}

O U R V,gf’l~ (s1, R), where V is defined in Eqn

H

h=1'

Our algorithm is described in Algorithm[2] At a high level, Algorithm[2]maintains a high-confidence
set Uy, ;, for the real parameter 6}, in each episode &, and calculates an optimistic value function

V,:’lp(sl, R) for any reward function R and transition P, = 0, ¢ with 6}, € Uy . Roughly speak-
ing, the value function V,:’lp(sl, R) measures the expected uncertainty along the whole trajectory

induced by policy 7 in the MDP with transition P and reward R. To collect more “informative”
samples and minimize the worst-case uncertainty over all possible transition dynamics and reward

function, we calculate m, = argmax, maxg o, = g V,:’lp(sl, R), and execute the policy 7y, to
collect more data in episode k. To ensure that the model estimation ékH, n, 18 close to the true model
0y, w.r.t. features ¢y (s, a) of different value functions V', we use the samples collected so far to cal-
culate five model estimation {él k.n 121 and the corresponding constraints at the end of the episode

k. Each constraint is an ellipsoid in the parameter space centered at the parameter estimation 6; j, ,
with covariance matrix A; ;5 and radius /3;, i.e.

Ao < Bi 3

10n — 03k,
We update Ufj 11, by adding these constraints to the the confidence set U}, .

The remaining problems are how to define the value function Vk 1 (51, R) that represents the ex-

pected uncertainty for policy , transition P and reward R, and how to update the model estimation
0;.x,» and the confidence set Uy p,.
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Uncertainty Measure Instead of using maxy ||¢v (s, a)]| a1 to measure the maximum uncer-

tainty for the state-action pair (s, a) in Algorithm l we separately define the uncertalnty along the
trajectories induced by dlfferent policy 7, reward function R and transition dynamics P, = 9T¢5.

Spec1ﬁcally, Recall that Vh (s R) is the value function of policy 7 in the MDP model with transi-

tion P and reward R. We define the following exploration-driven reward for transition P, reward R
and policy 7:

u;r,f (s,a,R) = Z¢sa5 h+1(8 R) 4)

(A1)t

Suppose ‘7,:}5 41(8,R) = 0,Vs € S, we define the corresponding value function recursively from
step H + 1 to step 1. That is,

7 (s, B) = min {ul3] (s, mu(s), B) + PaVTio (s, ma(s), R), H Vs €S, ()

Vk”f(s R) can be regarded as the expected uncertainty along the trajectories induced by policy 7
for the value function Vh (5 R). In each episode k, we wish to collect samples by executing the
policy 7 that maximizes the uncertainty measure max; Uy 1, f/k”’lp (s, R). However, the definition
of Vk I (s R) explicitly depends on the real transition dynamics P, Wthh is unknown to the agent.
To solve this problem, we construct an optimistic estimation of V' (s, R). We define V,:;LP(S, R)
from step H + 1 to step 1 recursively. Suppose V,;}fﬂ (s, R) = 0. We calculate
uy’ ,f (s,a, R) , (6)
(A2 g,n)t
rr,I:’ _ . 71'.,15 ﬂ,ﬁ’ D ﬂ,ﬁ
Viii (s, R) = min {ul}hh(s,wh(s),R) +uy’y n (8, Th(s), R) + PV (s, mh(s), R), H} ,
)

Zq’) s, a, S)Vk,’lﬂ(s R)

where ugf , is the confidence bonus which ensures that the optimism V,:;Lﬁ(s, R) > V,;;Lﬁ(s, R)
holds with high probability. After calculating VkT;LP(s, R), we take maximization over all 8, € Uj, ,

. w, P
and reward function R, and calculate 7, = arg max, maxg <, p Vi1 (s1, R). We execute 7y,
to collect more samples in episode k.

Weigl}ted Ridge Regression and Confidence Set In Algorithm[2] we maintain five model estima-
tion {ei,k,h}?:1 and add five constraints to the confidence set U}, 5, in each episode. These constraints
can be roughly classified into three categories. The first and the third constraints are applied to en-
sure that P, thﬂ‘P(s a, R) is an accurate estimation of P, hf/}f P(s a, R) for any reward function
R and Pk h = Hk X0 satlsfylng Gk h € Ug,n, while the second and the forth constraints are used

to guarantee that P hV,Zr 1 (s,a, R) is an accurate estimation of Pth”JrIf(s a, R) for any reward

function R and 15k7h = 9,67 L@ satisfying ék, n € U, The last constraint is applied due to technical
issue and will be explained in Appendix In this subsection, we introduce the basic idea behind
the construction of the first and the third constraints. The second and the forth constraints follow

the same idea but consider the different value function Vh”jrl (s,a R) The formal definition of the

parameters {9z k.1 +_, and the constraints are deferred to Appendix

For notation convenience, we use Vj, 5 (s) as a shorthand of V,:;“L’P’”‘ (s, Ry) in this part. The con-

struction of our confidence sets is inspired by a recent algorithm called UCRL-VTR™T proposed
by Zhou et al.|(2020a). Recall that we use (s, @k ;) to denote the state-action pair that the agent
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encounters at step h in episode k. We use the following ridge regression estimator to calculate the
corresponding 6 j, 5, in episode k:

k—1
A . _ 2
O =argmin NO]15+ 3 [070v, /o1 (56 000) = Vinsa(senin R)/Gren] s ®)
0ER =1

where 57 ;. , = max {H?/d, Vi, Vihs1)(Sk,hs aron) + En g } is an optimistic estimation of the
one-step transition variance:

ViV ha1(Sk,hs @n) = Egro by (sinann) [(Vk7h+1(8') — PrVi i (k. ak,h))ﬂ .

In the definition of (_Tik’h, thVk’hH(sk,h,ak,h) is an empirical estimation for the variance
VuVieh+1(Sk,h, ak,n). and Eq g p is a bonus term defined in Eqn. which ensures that &y p, is
an optimistic estimation of V;, Vi 41 (Sk 1, ak,»). One technical issue here is how to estimate the
variance V, Vi p41(Sk,h, ax,n). Recall that by definition,

Vi Vi ht1(Sk,hy Qk,h) :thjih+1(5k,ha ar.n) = [PuVihs1(Sk.ny apn))? )
:9}1—¢Vk2’h+1<5k,h7ak,h) — [0 v nss (Skps ar )] (10)

~ - 2
We use Glhqbvkziﬂ(sk#h,ak’h) - 9;Ih¢vk,h+1(8k,h7ak,h)} as our variance estimator

Vk,th,hH(sk,h, ar.pn), where 0y, € Uy is the parameter which maximizes the value
P ) . - . . .
V,:i (s1, R) in episode k. To ensure that Vi, , Vi, 141 (Sk 1, Gk,5) 1S an accurate estimator, we main-
tain another parameter estimation 63 j, 5, using history samples w.r.t. the feature d)vka - (Skhs Q1)

k—1
~ 2
Oy = axgmin X013 + 3 [076vz, ., (st a2) = Vg (seas)| (11)
[4S

t,h+1
t=1

After calculating éLk’h and 937;67;1, we add the first and the third constraints (Eqn. to the
confidence set Uy, p, where Aj;p, and Az is the corresponding covariance matrix of all

. . k—1 -—2

history samples, i.e. Aign = D71 011 4 OVinss (500 aen)v, ,, (Stnsaen) and Agpn =
k—1

D1 ¢v5h+1 (8t,hs at’h)d);tzhﬂ (8t,hy at,n)-

5.2 REGRET

We present the regret upper bound of Algorithm [2]in Theorem 2] In the regime where d > H and
e < H/+/d, we can obtain O(d?>H?® /€?) sample complexity upper bound, which matches the sample
complexity lower bound except logarithmic factors.

Theorem 2. With probability at least 1 — 0, after collecting K = O (dzHi;"del + dz'st"'dzHS)

€

trajectories, Algorithm returns a transition model Py, then Jfor any given reward in the planning
phase, a policy returned by any eqpi-optimal plug-in solver on (S, A, Px, R, H,v) is O(€ + €opt)-
optimal for the true MDP, (S, A, P, R, H,v).

6 CONCLUSION

This paper studies the sample complexity of plug-in solver approach for reward-free reinforcement
learning. We propose a statistically efficient algorithm with sample complexity o} (d2H 4/ 62).
We further refine the complexity by providing an another algorithm with sample complexity
o} (d2H 3/ 62) in certain parameter regimes. To the best of our knowledge, this is the first mini-
max sample complexity bound for reward-free exploration with linear function approximation. As
a side note, our approaches provide an efficient learning method for the RL model representation,
which preserves values and policies for any other down-stream tasks (specified by different rewards).

Our sample complexity bound matches the lower bound only when d > H and € < H/+/d. Itis
unclear whether minimax rate could be obtained in a more broader parameter regimes. We plan to
address this issue in the future work.
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A OMITTED DETAILS IN SECTION [4]

A.1 NOTATIONS

In this subsection, we summarize the notations used in Section [A]

Symbol Explanation

& The high-probability event for Theorem

Sk.hs Ok The state and action that the agent encounters in episode k and step h

Vihil.sa The value function with maximum uncertainty: arg maxy ¢y, [|>_,, ¢(s,a, s’ )V (s)|| (Aps)-1
orn(s,a) Yog 0(5,a,8 ) Vi ng1,6,a(s")

ék’h The estimation of 8}, in episode k: (Ak’h)f1 Zf;ll &t 1 (St hs at’h)f/t’hﬂ,s’a(st’hﬂ)
Agp The covariance matrix in (k, h): Zf:_ll Gen(Sths aen)ben(Sehsaen)’ + A
ug.h(s,a) The uncertainty measure: 51/ dx n(s,a)T (Agn) ™" drn(s, a)

Ry 1 (s,a) The exploration-driven reward which equals uy 5 (s, a)

Qrn(s,a) The Q function defined in line 12 of Algorithm

Vi,n(8) The value function defined in line 13 of Algorit m

Vir(s, R) The value function defined in Eqn

Q5 (s, R) The Q value similarly defined as V;*(s, R)

Vi (s, R) The value function of policy 7 similarly defined as V;*(s, R)

65, The parameter estimation returned at the end of the exploration phase
Py n(s'|s,a) é;h¢(s,a, ')

Py(s's,a) 0] é(s,a,s)

A.2 PROOF OVERVIEW

Now we briefly explain the main idea in the proof. Firstly, we introduce the value function f/,:‘ (s, R),
which is recursively defined from step H + 1 to step 1:

Viiii(s,R)=0,Vs €8 (12)
Vit (s, R) :mea%{min{Rh(s,a) + P;LV,:‘H(S,a, R),H}} ,Vs € S, h € [H] (13)

Compared with the definition of V;*(s, R), the main difference is that we take minimization over
the value and H at each step. We state the following lemma, which gives an upper bound on the
sub-optimality gap of 7 in the planning phase.

Lemma 1. With probability at least 1 — 6, the sub-optimality gap of the policy 7t for any reward
function R in the planning phase satisfies Vi (s1, R) — V"% (s1, R) < 4V;*(s1, Ri) + €opt, Where
Ry is the exploration-driven reward used for episode K in the exploration phase.

This lemma connects the sub-optimality gap with the value function of the auxiliary reward in
episode K. So the remaining problem is how to upper bound V;*(s1, Rk ). Since the exploration-
driven reward Ry is non-increasing w.r.t. k, it is not hard to prove that K'V{*(s1, Rg) <
Zszl Vi*(s1, Ri). We use the following two lemmas to upper bound Zszl Vi*(s1, Ri).
Lemma 2. With probability at least 1 — 8, V;* (s, Ry,) < Vi, n(s) holds for any (s,a) € S x A, h €
[H] and k € [K].
Lemma 3. With probability at least 1 — 9,

K

> Via(s1) < 6H?d\/K log(4H3K B?/5)log(1 + K H2B?/d).

k=1

With the help of the optimistic bonus term uy, ;,, we can prove that the estimation value V}, 5, is always
optimistic w.r.t V;*, which is illustrated in Lemma [2| Therefore, we have Zszl Vi (s1, R) <

Zszl Vk.1(s1). By adapting the regret analysis in the standard RL setting to the reward-free setting,
we can upper bound the summation of V4, 1(s1) in Lemma Combining the above two lemmas, we

derive the upper bound of Vf‘ (s1, Rk ), then we bound the sub-optimality gap of & by Lemma

13
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A.3 HIGH-PROBABILITY EVENTS

We firstly state the following high-probability events.
Lemma 4. With probability at least 1—§ /2, the following inequality holds forany k € [K|, h € [H]:

10,1 — Onlla,., < B- (14)

Proof. For some step h € [H], the agent selects an action with feature zy, ,, = ¢, (Sk.h, @k,5). The
noise Ni.n = Vi,h,synoann (57) — (‘);gbk,h(sk,h, ayp) satisfies H-sub-Gaussian. By Lemma the
following inequality holds with probability 1 — %:

5 4H3K
106 = Onllan, < HyJdlog(—5=) + V2B, (15)

By taking union bound over all A € [H], we can prove the lemma.

Lemma 5. With probability at least 1 — §/2, we have

K H
Z Z (PrVieht1(Sk,ho @ie,n) — Vieh1 (Skyn41)) < V2H3K log(4/6). (16)

k=1h=1
Proof. This lemma follows directly by Azuma’s inequality. O

During the following analysis, we denote the high-probability events defined in Lemma 4| and
LemmafSas &;.

A.4 PROOF OF LEMMAI]

Lemma 6. (Restatement of Lemmall) Under event &1, the sub-optimality gap of the policy 7g for
any reward function R in the planning phase can be bounded by

Vi (s1, R) — V™R (s1, R) < 4V*(s1, Ri) + €opt. (17)
Proof.
Vi'(s1, R) = Vi"(s1, R) (18)
= (Vi Gsr B = VT (s, R) ) + (W (50, R) = ViR (1, B) ) + (V70 (51, B) = 17 (51, R) )
(19)
< (Vl*(sl,R) - Vf;"p(sl,R)) + (W‘R”S(sl,R) - foR(sl,R)) + €opt- (20)

The inequality is because that the policy 7 is the €,p¢-optimal policy in the estimated MDP M,ie.
V7" (51, R) < V7P (51, R) + o -

For the notation convenience, for a certain sequence { Ry}, we define the function W, ({R})
recursively from step H +1 to step 1. Firstly, we define W1 ({Rp}) = 0. Wj,({Rp}) is calculated
recursively from Wy,1 ({Rp}):

Wh({Rh}) = min {H, Ry, + Wh,_;,_l({Rh})} . 21

Similarly with the definition of V;* (s, R), we introduce the value function V;™ (s, R), which is recur-
sively defined from step H + 1 to step 1:

VEi(s,R)=0,Vs €S (22)
Vi (s, B) = {min { R (s, w(5)) + PuVira (5, m(s), R), H } } Vs € S,he [H. ©3)

14
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We use traj ~ (m, P) to indicate that the trajectory {s,ap}+_, is sampled from transition P with
policy 7. For any policy 7, we have

Es (V;“P(sl, R) — Vf(sl))‘ (24)
~ > Tr,PK
= [Buasmiry 1 ({(B = POV (s an, B) )| 25)
n INYST, P,y
= |Egajm(r, Py Wi <{(9h —6h) Z B(snyan, s)Vi (s 7R)}> ‘ (26)
Eurajuir Wi | 4 00 = 0] (sns s 8V (5, R) &)
K,h (AK,}L)71
<Erajm(n,p) Wi an, ")V (s, R) (28)
(Ar,n)7t
<2Eajm(n,p) W1 ({UK,h(Sha an)}) (29)
2V (51, Ric) (30)
<2V} (s1, Ric)- (31)

The second inequality is due to lemma and the definition of 6. Plugging this inequality back to
Inq. [I8] we can prove the lemma.

A.5 PROOF OF LEMMA

Lemma 7. (Restatement ofLemmaEI) Under event &1, V;*(s, Ry) < Vi.n(s) holds for any (s,a) €
Sx Ahe[Hlandk € [K]..

Proof. We prove the lemma by induction. Suppose f/; 108 Re) < Vinga(s),
Qh(s,a, Ri) = Qru(s, a) (32)
A T , , -
< — ug,n(s;,a) + (9k,h - 9k,h) D 6(s,a,8)WVin(s') + Pu(Viir = Vin1)(s,0) - (33)

T
< —ugn(s,a) + (9k,h - 9k,h) : Z(b(& a,s" ) Vin(s) (34)
< —ugp(s,a)+ Hek,h - ék,h’ R () (35)
n (An)~t
< —uy -9,
< —ugp(s,a) + Hek’h Hk,h’ s {I/lél{)}( Zd) s,a,8)YV(s) (36)
(Ak,n)~t
< _ / /
< —upn(s,a) + Br&lg}c Zqﬁ(& a,s )V (s") (37)
s’ (Ak,h)_l
=0. (33)

The first inequality is due to induction condition V}* 1(8, Ri) < Vi nyi(s). The last inequality

is due to Lemma Since Qj(s,a) < Q.n(s,a, Ry) for any a € A, we have V;*(s, R) <
Vk,h(s). [

A.6 PROOF OF LEMMA 3]

Lemma 8. (Restatement of Lemma EI) Under event &, ZkK:l Vien(sk.1) <
6H2d\/K log(4H3K B2/5)log(1 + K H2B2/d).

15
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Proof.
Qr,n(Sk,hy ak,n) (39)
min {H Ri (81> k) + Wien (S0 @kn) + PronViens1 (Skns ar, h)} (40)
{H 28 || bw,n (Sk,h» ak h)HA L+ P Vi hs1 (Skhs ak h)} 41)
<min {Ha 25 || pw,n (Sk,h, ak,h)HAglh} + min {H7 (Pk,h - Ph) Vi h+1(Sk 1, ak,h)} 42)
+ (PoVig 1 (Skohs @i ,n) — Viehs1 (Ske,h41)) + Vie b1 (Sk,hg1) (43)
<38 min {1, lok.h (S hs ak,h)”/\;lh} + (P Vi,ht1(Skhs @n) — Vieht1 (Skeht1)) + Vi nt1(Sk,ht1)-
44)
The last inequality is from
(pk,h — Ph) Vieh+1(8k,1s Gl 1) :(ék h = O0n) Vi nir (Sk,hs Qi,h) (45)
<H9kh*9hH | DVi s Sk Qe ||A— (46)
<B H¢Vk,h+1(8k,h,ak,h HAZIh 47)
<p ||¢k,h(5k,h7ak,h)”/\;i . (48)
From Inq[39] we have
K K H
Z Via(s1) = Z Z 3 min {17 | Pr,h(Sk,hs k1) ”Ailh} (49)
k=1 k=1h=1 '
K H
)Y  (PuVensa(skm arn) = Vi (sknt) - (50)
k=1h=1

For the first term, by Lemma we have for any h € [H],

K K
> min {17 ||¢k,h(8k,h7ak,h)||,\;;} <, K> min {17 ||</>k,h(5k,h>ak,h)||i;;} (51)
k=1 o k=1 '

<\/2dK log(1 + KH?/(d))). (52)

Since A = B2, we have

K H

36 min {1, I be.n(sk.m, “’“vh)”A;_;} < 3H%d\/2K log(4H3K B2/5) log(1 + K H2B2/d).

(53)
For the second term, by Lemma|§|,
Z Z (PrVieht1(Sk,hs aren) — Vieh1 (Skyn41)) < V2H3K log(4/6). (54)
k=1 h=1
Therefore, we have
K
Z Vien(sp1) < 6H2d\/K log(4H3K B2/6)log(1 + KH2B?/d). (55)
k=1
O

Lemma 9. Under event &1, ‘N/l* (s1, Ri) < 6H2d\/log(4H3KBz/5)}?g(1+KHQBZ/d).
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Proof. Since Vl*(shh Ry) < Vi1(sk,1) by lemma we have

K K
> Vi (s1,Re) <) Via(s1) < 6H%dy/K log(4H3K B?/8)log(1 + KH?B?/d).  (56)
k=1 k=1

By the definition of Ry, we know that Ry (s, a) is non-increasing w.r.t k. Therefore,

K K
SOV (1, Rie) < 30 Vi (51, i) < 6H2dy/ K log(UP K B2/8) log(1 + KHPB2/d). (5T)
k=1 k=1

The lemma is proved by dividing both sides by K. O

A.7 PROOF OF THEOREMIII

Combining the results in Lemma[9]and Lemma|6] we know that for any reward function R,

log(A4H3K B?/5) log(1 + K H2B?/d)
K

Vi*(s1,R) — V{"®(s1, R) < 24H2d\/ + €opt- (58)

Choosing K = C1H*d? 1og(4H3K322/5) log(1+ K H? B2 /d)

that V;*(s1, R) — V"% (51, R) < € + €opt.-

for some constant C'; suffices to guarantee

B OMITTED DETAILS IN SECTION[3]

B.1 NOTATIONS

In this subsection, we summarize the notations used in Section [B]

Symbol Explanation

& The high-probability event for Theorem

Skhy Qb The state and action that the agent encounters in episode %k and step h

dv(s,a,R) Yo o(s,a, s )V™F(s', R) for certain value function V

Vh”’{)(s, R) The value function of policy 7 in the MDP model with transition P and reward R

‘7,:;1 (s,R) The expected uncertainty along the trajectories induced by policy 7 for Vhﬂ’P (s, R) (Defined in Eqn )
Vi (s, R) The optimistic estimation of V;";” (s, R) (Defined in Eqn

u?f n(s,a, R)  The exploration-driven reward for transition P, reward R and policy 7 (Defined in Eqn |
ug}fh s,a,R) The confidence bonus ensuring the optimism V,:,’LP (s,R) > V;;LP (s, R) (Defined in Eqn El
ViV (s, a) The one-step transition variance w.r.t. certain value function V'

Vikn (s,a) The empirical variance estimation w.r.t. the value V,Z”“Jf’“ (s, Ry) (Defined in Eqn l

\72, kn (8,a) The empirical variance estimation w.r.t. the value th ko P (s, Ry) (Defined in Eqn @j

E41 kb, Eokn The confidence bonus for the variance estimation V4 i 5, (s,a) and Vg i 1, (s, a), respectively

— 2 —_ 2 . . . . . . T 7 .
Tk O,k The optimistic variance estimation for Vq j 5, (s, a) and Vo 1, j, (s, a), respectively

0i.kc.h The parameter estimation w.r.t. certain value function (Defined in Section

A kon The empirical covariance matrix w.r.t. certain value function (Defined in Section
Ui.n The confidence set containing ), with high probability

Tk, Ok, R argmax, g <, g Vkﬂ:’lp(sl,R)

)7;@, n(s) The “value function” for the MDP with transition P}, and reward Vl, kb

T log(32K2H/5) log®(1 + K H*B?)

B.2 OMITTED DETAILS OF ALGORITHM 2]

In algorithm we maintain five different parameter estimation 01y p,02 k1,03 k0, 0481
and 605, and the corresponding covariance matrix Ay pn, A2 kn, Asin, Aok n and As g op.

17



Published as a conference paper at ICLR 2022

01 k,h, 02,1, are the parameter estimation using history samples w.r.t the features of variance-

: . STy Pl /= P /- . A A
normalized value function V,:,’;;f/m,k,h and V,;Z;Ll" /T2.k b, respectively. 03 5,04, are the

B2 5
parameter estimation using samples w.r.t the features of value function (V;Zﬂ“) and (Vkﬂ’};fl’“) .

é5,k,h is somewhat technical and will be explained later. for any ¢ € [5] and h € [H], éi,l,h are
initialized as 0, and A; ; ,, are initialized as AI in Algorithm U, 1, is the set containing all the 6},
that makes P, well-defined, i.e. Y, 0, ¢(s'|s,a) = 1 and 6] ¢(s'|s,a) > 0,Vs, a.

After observing {si p, akﬁh}thl in episode k, we calculate Vl,k,h (s,a) and QQ?kyh (s,a) as the
corresponding variance in the empirical MDP with transition dynamics Pj.

- =22
Vosn(s.a) =0 3 os.a.) (VERPH R)) — |61, Y 6.0 (. ) |
’ - (59
- 192
Vo r.n(s,a) zé,j’h Z o(s,a,s) (VkWfo (s, Rk)) ‘o ékTh Z o(s,a, 3/)Vk7,”;1ff (s', Rg)
’ - " (60)

To guarantee the variance estimation is optimistic, we calculate the confidence bonus Fy i ; and
Es ., for variance estimation V1  j, (Skn, ak,n) and Va i (Sk.n, Gkn):

El,k,h =min H274HB]€ Z¢(Sk,h7ak,h7s/)‘7]§;ff (SlaRk) (61)
s’ (A1, g,n)"t
- N ~ 2
+ min H2,25k Z(b(sk’h,ak,ms/) (ka]];ﬂc (S/,Rk)) 5 (62)
s’ (As,,n)~ "
Es . p =min { H? 4Hp;, Z¢(3k,h7ak,h7 S/)ka'flff(sla Ry) (63)
s’ (A2, g,n) "t
- ~ 2
+min{ 2,26, |3 ¢(sins ann, ) (Vk’j;ﬁ(s’,Rk)) (64)
s (Ag,n)~ 1

We add the bonuses to V1 x 1,(Sk 1, @k.n) and Va i 4 (Sk.h, ax, ) and maintain the optimistic variance
estimation 6%, , and 53 , ,:

&7 g = max {H?/d, V1 n(sk,n, akn) + E1pn s (65)
6%,1@,}1 = max {H2/d7 Vg}k’h(skymak’h) =+ Egﬁk’h}. (66)

We use 7; 1, to normalize the value obtained in each step. By setting A = B~2 and solving the
ridge regression defined in Eqn. |8 we know that 6; ;1 5 and A; ;11 5, are updated in the following
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way:

s/

(67)

/

_ _ A,P Yy
Aggyrn = A g + (Fann) > (Z D(Sk,hy s 8" )V 1 (8 ) (Z O(Sk.hy s 8" )V (5

S

(68)

k
-1 , e, Py
01 ks1n = (ALrr1n) Z T1,0.n)" <Z¢ St,hy At ks S V b t(S Rt)) Vit (st Re),
=1

(69)

k
1 e, Pyt e, P,
Oakr1.n = (Aogrin) E (G2,4,n) < E D(8t.n, ae,n, 8" )V (s 7Rt)> Vit (8thv1, Re).
=1

(70)

2 2
Similarly, we update the estimation w.r.t (V,:,’fbff (s, Rk)> and (Vkﬁ,’fbff (¢, Rk)) :

.
A kyin = Aign + (@ren) > (Z O (ks akny 8 )V Z’Jrf s', Ry, ) <Z¢ Skhy Ok s S )V;Zﬂ“(S/,RkO :

-
( /7Rk)> )

.
As pv1,n = Az pn + <Z DSk by Qk,hsy S7) (Vkﬂ'ﬁf{“ s', Ry) ) ) <Z¢ (Sk,hs Qk,hy S7) (Vkﬂﬁ’f{“ (S/,Rk)>2> ,

s’

(71)

.
Agpr1n = Napp + (Z A (Sk,hs Ak yhs S') (Vkﬂ};ff ) > <Z¢ Skyhs Ak s S) (Vk”’,;ff (5/7Rk))2> ,

s/

(72)
. .= 2 2
O3 1+1.n = Az 1) " Z (Z A(St.nyarn, s (Vf,ﬁf{ (Slth)> ) (Vtﬂfb;l (s, h+1»Rt)> ,
t=1 s’
(73)
—1 & s P~' / 2 s 15 2
Oskr1.n = (Aajrin) Z Z¢ St,hy G, hy S (Vt,ﬁ;f(s 7Rt)> (‘/tﬁ;f(st,hH,Rt)) -
t=1
(74)
We define ffk 1, to be the “value function” with transition Pk and reward Vl, kb
Yirs1(s) =0, (75)
Ven(s) = Vign(s,m(8)) + PrpYins1(s, mi(s)). (76)

957;6,;Z is the parameter estimation using samples w.r.t. f’k,h(s):

.
Askt1,n = Askh+<z¢ Sk @k 8 ) Venia (s ><Z¢ Sk, @k hy 8 ) Vi g (s )) ;

’ (77)

k
Os k1n = (Msprrn) > (Z(Zﬁ Sty @iy 8 ) Vi nt (s )) Yint1(Sk,nt1)- (78)
=1
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We update the high-confidence set U}, ;, by adding following five constraints:

165 = Okl as e < By (79)
165 — éz,k,hHAQ,k,h < B, (80)
165 — é3,k,h||A3,k,h < B, (81)
10n = O knllng,, < B (82)
16 = 05k lls i < B (83)

Note that we add new constraints to this confidence set U}, ;, in each episode, instead of updating U4}, ,
as the intersection of the new constraints. This operation is designed to ensure that the cardinality

of the confidence set U, 5, is non-increasing w.r.t. the episode k, so that V,:’lp (s1, R) is always
non-increasing w.r.t. k.

During the proof, we use ¢y~ (s, a, R) as a shorthand of Y _, ¢(s,a, s')V™F (s, R).
B.3 HIGH-PROBABILITY EVENTS

For notation convenience, we use V1 j (s,a) and Vo (s, a) to denote the one-step transition
: : -, Pl T, P s
variance with regard to V, 3" 7 and V} 3" 7, i.e.

3 7'l';c,P7C / 3 Trk.P;c 2
Vign(5,0) = Bap, (o) |(VRTE (S Ri) = PaVT ™ (5,0, i) | (84)
Trk,Pk / Tl'k7Pk 2
Vg’k’h(& (l) = Es’wph(-|s,a) (Vk,h+1 (S 7Rk) - Pth,h (8, a, Rk)> . (85)
(86)
Lemma 10. With probability at least 1 — 6, the following event holds for any h € [H|, k € [K]:
Hék.h —0h < 28, (87)
’ A1 kon
|rn—on] <28, (88)
2,k,h
‘Vl,hh(sk,ha ar,n) — Vi n(Skn, alc,h)‘ < Eik.hs (89)
WQ,k,h(Sk,h, ar.h) — Vo i n(Sk hs ak,h)| < B> ks (90)
|k =00 <28, )
As k.

Proof. We firstly prove the first and the third inequality, the second and the fourth inequality can be
proved following the same idea. By the definition of V1 j, 5 (sk 1, ar,n) and Vi g (Sk n, ak n):

(Vi gen (S, @) — Vi n(Skons arn)| (92)

} 93)
(A1, k,n) 0t

} . 94)
(As,ke,n) "t

< min {HZ,QH Hék’h — Qh‘

Gomi P (Skohs Aoy Ric)

Al,k,h k,h+1

O — 9h‘

‘/)(prk)z (Sk,h> Qko,h, Ri)

A3 k., h koh+1

. 2
+ min {H ,
Let zj, = (61.k,h)71¢f/7"kvpk (Sk,h» @k,p), and the noise
: k,h+1

Ny = (51,k,h)_1‘7k7f';§ff (Skhe1, Ri) — (Grpn) <¢ka¢flk (Sk,h» Qko,h, Ri) 79h> .
Jh

Since 71 ., > \/H?/d, we have |||z < Vd, E [ni | gk} <d. By Lemma we have with prob
atleast 1 — §/(8H), forall k < K,

Heh - él,m‘ . <16dy/log(1+ KH?/(dN) log(82K7H/3) + VAB = 3. (95)

1,k,
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Similarly, we can prove that

Hah - é&k,h’ < 16H2\/dlog(1 + KH*/(d\) log(32K2H/3) + VAB = 5. (96)

3,k,h

< 23. Similarly,

At kn

Since Hekih — Hl,kyh

N < B < BbyIng , we have Hﬂh — ék,h‘
1,k,h

< /3’ by Inq we have HO;L — 9~k,h
A3 k.n A

inequalities back to Inq. |§_7L we have

Wi,k,h(sk,h, ak.h) — V1.i,1(Sk hs ak,h)| < Ei kb 7)

< 2. Plugging the above

since Hﬁk,h — 93,k7h

3,k,h

The above inequality indicates that 015 > Vigp, which is an optimistic estimation.

As a result, the variance of the single-step noise 7, = (G1,kn)" V,~C Z+f (Sk,ht1, Ri) —

(G1,0,n) " <¢V,§";ﬁ"' (Sk.hy Q.hy Ri:) ,9h> satisfies E [n? | G| < 1. By Lemma we can prove

a tighter confidence guarantee for 0y 1, p:

Heh - el,k,h‘
A

< 16+/dlog(1 + KH?/(d\))1og(32K2H/8) +VAB = 3. (98)

1,k,h

Combining with Hélkh — él,k,h‘ < Bby Inq , we have Hﬂh — él,k,h‘ < 23.
' At k,h At k,h
Now we prove the last inequality in this lemma. Recall that we define
Vi r41(s) =0, (99)
Ven(s) = Vign(s,m()) + PrpYins1(s, mi(s)). (100)

Note that f/k, n(s) < H? by the law of total variance (Lattimore & Hutter, 2012} |Azar et al., 2013).
Therefore, the variance on the single-step noise in at most H*. By Lemma we have

|0 = Osn| < B. (101)

5,k,h

< Bby Inq we have Heh - 9~5,k,h‘
As.k,n A
Lemma 11. With probability at least 1 — 0/2, we have

< 28. O

5,k,h

Combining with Héh — é5,k,h’

K H i i
Z Z (Pthfof(Sk,m ap,h, Ri) — Vg;f{“(sk,h+17 ks, bt 15 Rk)) < V2H3Klog(8/6), (102)
k=1 h=1

K H
Z (PhYk,thi(Sk,h,ak,mRk) ~ Yiht1 (Skht1, Ghept 1 Rk)) < V2H5K log(8/6). (103)

k=1h=1

Proof. This lemma follows directly by Azuma’s inequality for martingale difference sequence and
union bound. 0

During the following analysis, we denote the high-probability events defined in Lemma [I0] and
Lemma/[TT]as &;.

B.4 PROOF OF THEOREM [2]

Lemma 12. Under event £3, we have

ZV’”’H (s1, Ry,) (104)

<0 (\/ (dH* + d?H3)K log(K H/§)log?(K H4B?)) + (d*°H? + d*H?)log(K H/§) 1og2(KH4B2))
(105)
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This lemma can be proved with the technique for regret analysis. We will explain it in Appendix[B.3]

Lemma 13. (Optimism) Under event &, for any h € [H|,k € [K],s € S, m € I, R and P
satisfying P, = Gh o, we have

kar (s R)>V (S,R). (106)

Proof. This lemma is proved by induction. Suppose ka;fil(s, R) > N,:’il(s, R), we have

Vil (s,R) = Vil (s, R) (107)
Zu;}fh(& W(S), R) + (P’%h Ph)Vk }z+1(8 7'('( ) R) + Ph (szwhil Vkﬁhil) (Sa 77(5)7 R)

(108)

>ugn (5,7(s), R) + (Po — Po)Vii1 1 (s, m(s), R) (109)

=3l (5, m(s) B) = [0 = 0] IS 6ls 7 (), VIR R) (110)

2.k,h 7 (Asn)-1
>0. (111)
This indicates that V,:;LIB (s,R) >V ,:;Lp(s, R) holds for step h. O

K lv”’c k(s1,Rk)

Lemma 14. under event £, we have Vgﬁ’PK (s1,Rk) < 7

Proof. Firstly, we prove that Vk”’lﬁ(s, R) is non-increasing w.r.t k for any fixed 7, P, s and R. This

can be proved by induction. Suppose for any k; < ko, Vk’;’lzﬂ(s, R) > V,;TZ’IZH (s, R) for any s.
Recall that

VkT’f}»lP(s, R) = min {u’lr,’,fh(s, 7h(s), R) + ug,’,fh(s, mh(s), R) + ]ShVII;Lil(s, 7h(s), R), H}
(112)

. P ., P
Since A1 gy .n < A1y hs Aoy h < A2k, and Vkl,h+1(87 R) > Vi, ni1(s, R) for any s, we can
prove that

ul (s, mn(s), R) > uly (s, ma(s), R), (113)
ug”,i’h(s,ﬂh(s),R) > ug,’,i’h(s,ﬂh(s),R) (114)
PV 1 (s.mn(s), R) > PV h+1(s mh(s), R). (115)

Therefore, Vlg”l;(s, R) > V,g;”],:(& R) holds for step h and any s.

Since the cardinality of the transition set {{j, ;, is non- increasing (We add more constraints in each
episode), we know that 9k2 h € Uy, n. By the optimality of 7y, , 9k1 and Ry, in episode k1, we have

B B
Vit M (s1, Ry, ) > Vi3 2 (s1, Ry, ).

Combining the above two inequalities, we have
Tiy P Thy P Ty P
Vi " (51, Rien) = Vi 17" (51, Riy) > Vi 57" (51, Riy).- (116)

This indicates that the value V,:’l“’P’“' (s1, Rx) is non-increasing w.r.t. k. Therefore,

) K )
KV (s1,Ri) < Y Vi (s1, Re). (117)
k=1
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Lemma 15. Under event E,, the sub-optimality gap of the policy Tt returned in the planning phase
for any reward function R can be bounded by

Vi (s1, R) — Vi (s1, R) < AV T (s1, Ric) + €opt.- (118)

Proof. Recall that we use V}f to denote the value function of policy 7 on the estimated model Or.

Vi (s1,R) — V"% (s1, R) (119)
= (W (1, B) = V7T 51, ) ) + (VTP (51, ) = Vi (s0) ) + (W7 (51, B) = V7P (31, R))

(120)

<Vi(s1, R) — V[P (s1, R) + Vfﬁ*ﬁK(sl, R) — Vi (51, R) + €opt- 121)

The inequality is because that the policy 7 is the €,p-optimal policy in the estimated MDP M.

For notation convenience, we use traj ~ (m, P) to denote that the trajectory ({sp,an}1 ;) is
sampled with transition P and policy 7. For a certain sequence { Ry} |, we define the function
W ({Rp}) recursively from step H + 1 to step 1. Firstly, we define W1 ({Rn}) = 0. Wi(R) is
calculated from Wj, 11 (R):

Wh({Rh}> = min {H, Ry, + Wh+1({Rh})} . (122)

With the above notation, we can prove that for any policy 7 € II,

VP (s1, R) — Vfr(sl)‘ (123)
" >y 7(‘,151(
< [Buaimir.py Wi ({ (P = POV (s ans R) )| (124)
= |Etrajo(r, Py W1 ({(él(,h —6n) Zcb(é‘h, ap, 8')‘7;21113}((5/, R)}) ’ (125)
Eurajuir. Wi | § [0 = 0n] Osns an s )T (', ) (126)
B (A1, r,n) 7t
<Etrajo(r,p) W1 {23 Z &(sn,an, 8/)‘7;313}((8'7 R) (127)
s’ (A1, rn) "t
=2Erajn(r, YW1 ({U?’Ilzﬁ(sh,ah,R)}) (128)
2V P% (51, R) (129)
<2VEPR (51, R) (130)
<oV7K PR (51, Ric). (131)

The second inequality is due to lemma [T0]. The third inequality is due to Lemma [I3] The last
inequality is due to the optimality of 7, and Ry . Plugging this inequality back to Inq.[I119] we can
prove the lemma. O

Proof. (Proof of Theorem [2) Combining Lemma Lemma and Lemma we know that
K — Co(d2H3+dH*) log(dH/(8¢€)) log? (K HB/(5¢€)) + Co(d?®H?+d° H?) log(dH/(6€)) log® (K H B/ (8€)) for

. €
some constant C suffices to guarantee that V;*(s1, R) — V" (s1, R) < € + €opt. O
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B.5 PROOF OF LEMMA[12]

Proof. From the standard value decomposition technique (Azar et al.,[2017; Jin et al., 2013), we can
decompose V,:’f’P’“ (s1, Ry) into following terms:

73
el

17" (s1, Re) (132)

H i H i
< Z min {H, uf’“ki’“ (Sk.hs Qke,hy Rk)} + Z min {H, ug’“ki’“ (Sk,h» ke, Rk)} (133)

h=1 h=1
H ~ -
+ Zm {H, (Pk,h — Ph)VkTZ’Jik (Skﬁ,ak,h,Rk)} (134)
h=1
H N -
+ Z (PhV,;fof(Sk,h, ag,n, Ri) — V,:’;;ﬁ“ (Sk,ht15 Ok,ht 1, Rk)) (135)
h=1
H
SZ {H uphy! k<3k hy O h,Rk)} (136)
h=1
H -
+2Y min {H ugfk’i’“(sk7h,ak7h,Rk)} (137)
h=1
H ~ -
+ Z (PthT’fP’“(Sk,h, ap,n, Ri) — VkT?P’“(Sk,thh Ak ht 1,5 Rk)) ; (138)
h=1

where the second inequality is derived from

(Pen — Ph)kaZ’ff (8k.hs @y Rie) =(Orn — O1) Z O (Sk > Gk, SI)VkTZ’ff (s', Ry) (139)
SHék,h —Gh‘ Z¢ Skyhy Ok ks S )V;:Zﬂ“(sl,Rk)
2 k,h
A2 i h
(140)
<ub* (sk,ns ak,n, Ree)- (141)

Eqn is a martingale difference sequence. By Lemma the summation over all k£ € [K] is at

most y/2H3K log(4/5). We mainly focus on Eqn and Eqn

Upper bound of Eqn(136| Firstly, we bound the summation of min {H , u;”fkik (Sk.h» Gl s Rk)}
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K H
Zme{H up'ly "(sk hs Gk, h,Rk)} (142)
k=1h=1
K H R
=>") min H,3 Qppy )Vk”;;ff(s’,Rk) (143)
k=1 h=1 A;}ch
SRR VI (s R
<> BorknminS 1|1 d(skn, ann, s) (144)
k=1h=1 s T1,k,h A
1,k,h
5 2
ARRICN
< Zﬁfkhzmm 1, Z¢3kh7akh7 )—’”‘“( ) (145)
k,h T1,k,h AL
1,k,h
SB\/ 53 4 - 2dH log(1+ KH/). (146)
k,h

The first inequality is due to Cauchy-Schwarz inequality. The second inequality is due to Lemma[21]

By the definition of &7, ,,, we have
a1 pn < H?Jd+ Evpn 4 Vign(Skhs ain)- (147)

Now we bound ), , F1 xpand ), , V151 (8K n, @k p) respectively. For > kn E1k,h, we have

ZElkh<sz1n H? AHp Z¢ Sk,hs Qlehs S )Vkﬂz-ﬁ(lka) (143)
=1k=1 (A1k,n) ™t
H K 9
+3 ) ming H?, 23 Z¢ Skhs Ak by ') (V,Z’fo( /,Rk))
h=1k=1 (Az n)~t
(149)
For the first part,
H K
> ming H? 4Hp BLCRRL W Te(s', R (150)
h=1k=1 (Arg,n) ™t
H K .
<AH YN Borpnmin 1| é(skn arn, YWV (s Ri) /51 (151)
h=1k=1 s’ (A1,g,n) "t
k Pk( ) 2
VTr ’ /7Rk:
<4HB Za thln 1 Z¢> (Sk.hs Qs S )““— (152)
i h 01,k,h .
Al,k,h
<4HB > 63, - 2dHlog(1+ KH/\), (153)
k,h
where the last inequality is due to Lemma[21] Similarly, for the second part, by Lemma 21} we have
H K L 5
Zme H? 2p Z(;S (Sk,hy Qlo,hy S7) (V,;f,’fbff(s’,Rk)) (154)
h=1k=1 (Azk,n) "1
<26+/2dH?K log(1 + KH/\). (155)
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Note that VLk’h(sk,h,ak,h) is the empirical variance of Vkﬂz_ﬁ“( '’ Ry) with transition

Pk(s’|s;€’h, ax.»). We bound the summation of V7 j. ,(sk 1, ax ») by the law of total variance (Lat-
timore & Hutter, 2012} |Azar et al.,[2013).

Recall that we define
Vi s1(s) =0, (156)
Yien(s) = Vi gn(8,7(8)) + PrnYins1 (s, mi(s)). (157)

By the law of total variance, we have }7}671(3) < H? holds for any s,a and k. We now bound the
difference between 31, Vi1 (sp.1) and Sor S5V 44 (skon, ann)-

H
Yir(sk1) = Y Vikn(skns arn) (158)
h=1
H
=Py1Yio(sk1,an,1) Z Lk,h (Sk,hy k) (159)
he=
< min{ (Pk 1 P1) 2(sk,1, ak,l)} + (P137k,2(8k,1,ak,1) - f/k:,z(sk,z)> (160)

(YkQ Sk,2) Zvlkh Sk, Ok h)) . (161)

h=2

Therefore, we have

K K H
> Yia(ska) ZZV 1,k,h (Sk,h, Gk h) (162)

k=1 k=1h
K H ) )
< Z Z min {HQ, (Pk,h - Ph) Yi n+1(Sk.n, ak,h)} (163)
k=1 h—=1
H K ) )
+ Z Z (Phyk,thl(Sk,ha ag.p) — Yk,h+1(5k,h+1)) . (164)
h=1k=1

For Eqn [@, this term can be regarded as a martingale difference sequence, thus can be bounded by
H?\/KH by Lemma. For Eqn|16 E we can bound this term in the following way:

K H
j{:j{:lnhl{ff27(I%Jz—'f%) Ykﬁ#&(shhyahh)} (165)
k=1 h=1
K H

Szzmin{ On 165 (511 @ )llAgk,} (166)
k=1h=1 As,kn '

K H
<A Y min {1, 16 sk arn By, } (167)
k=1h=1 w

H K
SBZ$szin{l,||¢y(sk’h,ak,h7R)||is)iyh} (168)

k=1

<B\/2dH?K log(1 + KH/X). (169)

The second inequality is due to Lemma([I0] The third inequality is due to Cauchy-Schwarz inequal-
ity. The last inequality is due to Lemma 21]

From the above analysis, we have

> Vikn(Skns arn) < HK + By/2dH*K log(1 + KH/X). (170)
k,h
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Therefore, the summation of 5% , , can be bounded as

Y Gtk 71)
k,h
SHUK/d+)  Erwn+ ) Vikn (172)
k,h k.h

<H’K/d+4HB |y 6%, , - 2dHlog(1+ KH/X) + 33\/dH?K log(1 + KH/X) + H’K.

k,h
(173)
We define 7 = log(32K2H/§)log?(1 + K H*B2). Solving for Dk 6%),9,,1, we have
N 634 <ar (HSK/d + HK + H3dT + \/H2d3KT) (174)
k,h
<2c; (H°K/d+ H?K + H*d’7) (175)

where ¢; denote a certain constant. The last inequality is due to 2v/ab < a+b for a,b > 0. Plugging
the above inequality back to Inq[T42] we have for a constant ¢y,

K H .
Z u}r"ki" (Sk,hs @k by Ri) < 02\/(dH4 + d2H3) KT + cod*® H?7. (176)
k=1h=1
Upper bound of Eqn Now we focus on the summation of u;’“k}z" (Sk,hs @k, b, Ri). The proof

follows almost the same arguments as the summation of u’lT’"ki’“ (Sk,hs @k, b, Ri), though the upper

bound of Zle Zthl Vo k.h(Skn,ar p) is derived in a different way. Following the same proof
idea, we can show that

K H )
SN T ugi i (ks ann Re) < B D53, ,2dH log(1+ KH/N), (177)
k=1 h=1 koh

75 o < H?/d+ Ezpn + Voo n(Skohs arn), (178)

] =
M=

Eypn < 4HB\/Z 53 .5 - 24Hlog(1 + KH/X) + 28+/2dH?K log(1 + KH/X).

k=1h=1 k,h
(179)
Combining Inqand Inq and solving for ) k.h 63’ ke We have
> 53 n (180)
k,h
<2H3K/d +16dH? 3% log(1 + KH/\) + 48+/dH?K log(1 + KH/)) 4 2 Z Vo ken(Skohy ki)
k,h
(181)
<6H°K/d + 16dH*3*log(1 + KH/X) + 43°d* /Hlog(1 + KH/A) + 2> Vo n(Skn: axn)
k,h
(182)
Plugging this inequality back to Inq we have
K H B
DO Ui (skons s Re) (183)

k=1 h=1
<BV6H*K log(1 + KH/\) 4 468dH? log(1 + K H/\) + 286d%? log(1 + KH/)\)  (184)

+ \/32d2H log(32K2H/6)log®(1 + KH*B2) Y " Vs o n(Sk.h: ak.1)- (185)
k,h

27



Published as a conference paper at ICLR 2022

We now bound the last term in the above equation. Define 7 = log(32K2H/4)log?(1 + K H*B?),
we have:

32d2HTt ZVQ,k,h(Sk,}u ag,h) (186)
k,h
<\|324*HT Z Z ]ES/Nﬁk,h(‘lsk‘hwak,h,) [(Vkﬂzf{c) (sl’ Rk)} (187)
k=1 h=1
K H
<\ B2BH S S B b ViR (5 R (188)
k=1h=1 ' '
K H
<AN2ed2H3r + L Z Z wrm By n (55t ) {Vkﬂzf{c (s, Rk:):| (189)
e
~ Tk, P
=4\ 2e3d* H3 T + 5 Z Z Vit (Sk,nt1, Ri) (190)
k=1h=1
| KA 5
Tk, Pr Tk
+ o kz::l hE::l (Pth}H_f (8k,ny Ak, hy Ri) — Vk Z+f (Sk,ht1 Rk)) (191
K H s
5 T, P

=~
Il

1h

Il
_

where ¢ > 1 is a constant to be defined later. The last inequality is due to 2vVab <
a + b for any a,b > 0. Note that by Lemma [I0, Eqn [192] is upper bounded by

Py . . .
ﬁ D kn Yok (Sk,hsy @kn, Ri). Eqn is a martingale difference sequence, and can be bounded

by /HK log(1/4) with high probability. Plugging the above inequality back to Inq and solving
for ZkKﬂ ZhH—1 ngk’ hk (Sk,hs @k, 1y Ri), we have

Zu ik (Sk,h» ak,n, Ri) (193)
k=1h=1
K H
(,/dH4 T4 d2 5H2+d2H3) 3H Vkﬂ;cz’-l-f Sk thl)Rk?)) (194)
k=1h=1

where c3 > 1 is a constant here. We set ¢3 = c3, then we have

H ~
ZU ’5{“ Sk,h» Qk,hy Bk (195)
1h=1

K H
<es (VAHTRT + (d*2H? + d*H)7 ) + Z Z ol (senen Be)y (196)
k: h=1

M=

e
I

Bounding the summation of V’”"P’“ (s1,Ry) In the above analysis, we derive the upper bound

of Eqnand Eqn (Inq|176/and Inq|19 | Now we can finally bound Zk Vi ’P" (Sk.1, Ri).

For a constant ¢4,
K ~
> VI (ska, Re) (197)
k=1

K H
1
<ca/(dH* + 2H3) K1) + cy(d*°H? + d*H®)r E > th+f (Skni1, Ri).  (198)
k:lh:l
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Following the same analysis, the above inequality actually also holds for any step h € [H]:

ZV”’P'“ (Sk,n, Ri) (199)
K H
<ea/(dH* + 2 H3)KT) + cu(d*°H? + i H?)r Z Z khﬁfl Skht1, Ri). (200)
k: 1=h
Define G = o (\/(dH4 T EEN)KT) + (P H? + d2H3)T) and  a, =
Z b1 ,:;L P (Sk,h, Ri). The above inequality can be simplified into the following form:
1Mz
an <Gt D an, (201)
hi=h

and we have a1 = 0. From the elementary calculation, we can prove that a; < (1—|—%)H G < eG.
Therefore, we have

K ~
D VI (s, Ry) (202)
k=1

<cs (\/ (dH4 + d?H3)K log(K H/8)log?(K H*B2?)) + (d*°H? + d*H?) log(K H/§) logQ(KH4BQ)>
(203)

for a constant c5 = ecy. O

C THE LOWER BOUND FOR REWARD-FREE EXPLORATION

In this section, we prove that even in the setting of non-plug-in reward-free exploration, the sample

complexity in the exploration phase to obtain an e-optimal policy is at least Q(dig ’ ). We say an
algorithm can (e, 0)-learns the linear mixture MDP M if this algorithm returns an e-optimal policy
for M with probability at least 1 — ¢ in the planning phase after receiving samples for K episodes
in the exploration phase. Our theorem is stated as follows.

Theorem 3. Suppose ¢ < min (Cl VH,Cov dH4B) ,B>1,H > 4,d > 3 for certain positive

constants Cy and Cs. Then for any algorithm ALG there exists an linear mixture MDP instance
M = (8, A, PR, H,v) such that if ALG (€, d)-learns the problem M, ALG needs to collect at
least K = C'd?>H? /e? episodes during the exploration phase, where C'is an absolute constant, and
0 < § < 1is a positive constant that has no dependence on €, H,d, K.

Compared with the lower bound proposed by [Zhang et al.[(2021a)), we further improve their result
by a factor of d. This lower bound also indicates that our sample complexity bound in Theorem 2]is
statistically optimal. We prove Theorem [3|in Appendix[C.1]

C.1 PROOF OF THEOREM[3]

Our basic idea to prove Theorem 3]is to connect the sample complexity lower bound with the regret
lower bound of another constructed learning algorithm in the standard online exploration setting.

To start with, we notice that the reward-free exploration is strictly harder than the standard non-
reward-free online exploration setting (e.g. Jin et al.| (2018)); Zhou et al.| (2021} 2020a)), where the
reward function is deterministic and known during the exploration. Therefore, if we can prove the
sample complexity lower bound in the standard online exploration setting, this bound can also be
applied to the reward-free setting.

For readers who are not familiar with the formulation of online exploration setting studied in this
section, we firstly introduce the preliminaries. Compared with the reward-free exploration, the only
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difference is that the reward R(s, a) is fixed and known to the agent. In each episode, the agent starts
from an initial state s 1 sampled from the distribution v. At each step h € [H], the agent observes
the current state si , € S, takes action ay, ;, € A, receives the deterministic reward Ry, (Sk,m ahh),
and transits to state s 41 with probability P, (Sk.n+1|Sk.h, ak,n). The episode ends when sgy1
is reached. The agent’s goal is to find a e-optimal policy 7 after K episodes. We say a policy 7 is

e-optimal if
H H
Z Rh (Sh7 ah) ‘ W] 2 E Z Rh (Sh, Clh) | 7T*‘| — €,
h=1 h=1

where 7* is the optimal policy for the MDP (S, A, P, R, H, v).

E

Theorem 4. Suppose ¢ < min (Clx/ﬁ, Cg\/dH4B) ,B > 1,H > 4,d > 3. Then for any

algorithm ALG; solving the non-reward-free online exploration problem, there exists an linear
mixture MDP M = (S, A, P, R, H,v) such that ALG1 needs to collect at least K = Cd*H? />
episodes to output an e-optimal policy for the linear mixture MDP M with probability at least 1 — 9,
where C' is an absolute constant, and 0 < § < 1 is a positive constant that has no dependence on
e, H d K.

From the above discussion, Theorem 3]|can be directly proved by reduction if Theorem [{]is true.

Proof. (Proof of Theorem [3) The theorem can be proved by contradiction. Suppose there is an algo-
rithm ALG which can (e, d)-learns any linear mixture MDP instance M with only K’ < Cd?> H? /2
episodes. Then we can use this algorithm to solve the online exploration problem by simply ignor-
ing the information about the reward function and directly calling the exploration algorithm of ALG
during the exploration phase. Then in the planning phase, we use the planning algorithm of ALG to
output a policy based on the reward function as well as samples collected in the exploration phase.
Therefore, this indicates that ALG can output an e-optimal policy for the non-reward-free online
exploration problem with probability at least 1 — ¢ after only K’ < Cd?H?/e? episodes. This
contradicts the sample complexity lower bound in Theorem {4

Now we discuss on how to prove Theorem {4

Proof. (Proof of Theorem E]) Set K1 = cK for a positive constant ¢ > 2. We construct another
algorithm ALG, for any possible ALG; in the following way: In ALGs, the agent firstly runs
ALG, for K;/c = K episodes. After K episodes, suppose ALG; outputs a policy 7 according
to certain policy distribution v,. ALG, executes the policy 7 in the following %K 1 episodes.
The interaction ends after K episodes. ALG> can be regarded as an algorithm which firstly runs
the online exploration algorithm ALG; for K episodes, and then evaluates the performance of the
policy 7 in the following episodes. We study the total regret of A4LG- from episode K +1 to episode
K.

Recently, Zhou et al.| (2020a) proposed the following regret lower bound for linear mixture MDPs.
In order to avoid confusion, we use the notation K5 instead of K to denote the number of total
episodes of the regret minimization problem.

Lemma 16. (Theorem 5.6 in |Zhou et al.| (2020a)) Let B > 1 and suppose Ko >
max {(d — 1)2H/2,(d —1)/(32H(B — 1))}, d > 4, H > 3. Then for any algorithm there ex-
ists an episodic, B-bounded linear mixture MDP parameterized by © = (01, - - , 05 ) such that the
expected regret is at least Q(dH/HK>).

To prove the above regret lower bound, Zhou et al.| (2020a) construct a class of hard instances
which is an extension of the hard instance class for linear bandits (cf. Theorem 24.1 in |Latti-
more & Szepesvari| (2020)). They show that for any algorithm, there exists a hard instance in
the instance class such that the regret is at least Q(dH+/HK;). By Theorem and setting
Ky = K, we know that for any possible algorithm ALG5, there exists a hard instance M such
that Z,If:ll E(V*(s1) — V7™ (s1)) > cadH+/HK; for a positive constant cp, where 7, denotes
the policy used in episode k for algorithm ALGs. The expectation is over all randomness of the
algorithm and the environment.
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Note that in the hard instance constructed in [Zhou et al.| (2020a), the per-step regret is at most

E(V*(s1) = V™ (s1)) < ff},/ for any episode k¥ < K. By choosing ¢ = max{zf 2}
we know that for the instance M,
asl 1 c
> EWVi(s1) - V™(s1)) > (c2 - ) dH\/HK, > 2dH\/HK;. (204)
k=K 4V/2¢ 2
= 1/C+1
By the definition of ALGs, we have 7, = 7 if & > K /c. Therefore, we have
(¢ = )KEamp, sron (VF(s1) = V(1)) > %dH\/HKl = %dH\/HK. (205)
Dividing both sides by (¢ — 1)K, we have
* T C2C
Eimpir sy (V(51) = VT (51)) > ﬁdH H/K. (206)

The above inequality indicates that, for any algorithm ALG, there exists an instance M such that
the expected sub-optimality gap of the policy returned by ALG, is at least 2(i#_cl)clH VH/K after
collecting samples for K episodes.

Suppose ALG returns an e-optimal policy 7 with probability at least 1 — §. Recall that the per-step

sub-optimality gap is at most E (V*(s1) — V™ (s1)) < | SH 5\ /2L in the constructed hard instance.
We have

di [H i
(1=0)-e+5 5 /ﬁ > Bapn g (V¥ (1) = VA(s1)) > %dH\/H/K. (207)

2fc

We set 0 to be a constant satisfying 0 < § < min { c2 } Solving the above inequality, we

have K > CdTH for a positive constant C'. ]

D IMPROVED BOUND FOR REWARD-FREE EXPLORATION IN LINEAR MDPS

In this section, we explain how our choice of the exploration-driven reward can be used to improve
the sample complexity bound for reward-free exploration in linear MDPs (Wang et al., 2020). We
study the same reward-free setting as that in [Wang et al.| (2020)), which is briefly explained in Ap-
pendix We describe our algorithm and bound in Appendix and prove our theorem in

Appendix
D.1 PRELIMINARIES

For the completeness of explanation, we briefly restate the reward-free setting studied in[Wang et al.
(2020). Compared with the setting in this work, the main differences are twofold: Firstly, they
study the linear MDPs setting instead of linear mixture MDPs in this work. Secondly, they study the
standard reward-free exploration setting without the constraints of the plug-in solver.

The linear MDP assumption, which was first introduced in |Yang & Wang|(2019); Jin et al.| (2020Db),
states that the model of the MDP can be represented by linear functions of given features.

Assumption 1. (Linear MDP) an MDP M = (S, A, P, R, H,v) is said to be a linear MDP if the
following hold:

* There are d unknown signed measures [ = (u%”wf% e ,uzd)) such that for any

(s,a,8') €S XAXS, Pr(s']s,a)={un(s),d(s, a)).

s There exists H unknown vectors 11,7z, -+ ,ng € R such that for any (s,a) € S x A,

Rh(57 CL) = <¢(57 U,), T]h>'
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We assume for all (s,a) € S x Aand h € [H], ||¢(s,a)|| <1, ||un(s)||ly < Vd and |||, < V.

For the reward-free exploration studied in|Wang et al.|(2020), the agent can collects a dataset of vis-
ited state-action pairs D = { (s}, af)} (ke (k) x a2 Which will be used in the planning phase. Then

during the planning phase, the agent can follow a certain designed learning algorithm to calculate
an e-optimal policy w.r.t. the reward function R using the dataset D.

D.2 ALGORITHM AND THEOREM

Our algorithm can be divided into two parts. The exploration phase of the algorithm is presented in
Algorithm 3] and the planning phase is presented in Algorithm [}

Algorithm 3 Reward-free Exploration for Linear MDPs: Exploration Phase

Input: Failure probability 6 > 0 and target accuracy € > 0
B < cp-dH+/log (dHé~1e~1) for some cg > 0
K «+ cx - d*H*log (dH§*e™!) /? for some cx > 0
for episode k =1,2,--- , K do
5: Qr,a+1(5) < 0, Vi gy1() <0
forsteph=H,H—1,--- ,1do
A = 52 0(sens arn)d(sensann) +1
Up,p(e ) ﬁ\/¢('a )T (M) 60, )
Define the exploration-driven reward function Ry, 5 (-, ) = ug p(,-)
10: Wy, p (Ak,h)71 25;11 &(St,ns @t 1) Vi1 (St,h41)
Q) = min {] 6, ) + R () + wen (), H |
Vie,n(8) <= maxae a4 Qr,n (s, a), pn(s) = argmax,c 4 Qr,n(s,a)

end for
forsteph =1,2,--- ,H do
15: Take action ay,j, = W/g?h(shh) and observe sy j41 ~ Ph(slc,h, a;.c7h)
end for
end for

Output: D {(SkJ“akah)}(k,h)e[K]x[H]'

Algorithm 4 Reward-free Exploration for Linear MDPs: Planning Phase

Input: Dataset D <— {(sk,n, akvh)}(k:,h)e[K}x[H]’ reward functions R = { Rp, } he[a)
Qr,+1(5) =0, Ve (r) =0
forsteph=H,H—1,--- ,1do
Ay — Zfil (St.1y ar,n)O(Senyaen) T +1
5: Uh(',') <_rnln{ﬁ\/(b(7)—r (Ak,h)71 ¢(7)7H}
Wy, (Ap) 7 Zf; &(St,h a0 ) Vi1 (St,ht1)
Qh('a ) < min {UA);LFQZS(» ) + Rh('a ) + uh('v ')7 H}
Vi(s) < maxaea Qn(s,a), mp(s) = argmax,c 4 Qn(s,a)

end for
10: Output: 7 = {7p }phe[m

Compared with the algorithm in|Wang et al.|(2020), the main difference is that we set Ry, ;, = ugp,
in the exploration phase, instead of Ry », = uy,,/H. The following theorem states the complexity
bound of our algorithms.

Theorem 5. With probability at least 1 — 6, after collecting O(d®> H* log(dH e~ 1) /€?) trajecto-
ries during the exploration phase, our algorithm outputs an e-optimal policy for any given reward
during the planning phase.
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D.3 PROOF OF THEOREM[3]

The proof of Theorem E]follows the proof framework in Wang et al.| (2020) with a slight modifica-
tion. Therefore, we only sketch the proof and mainly focus on explaining the differences. Firstly,
we introduce the value function V}* (s, R), which is recursively defined from step H + 1 to step 1:

Viiii(s,R)=0,¥s €S (208)
Vi (s, R) = max {min {Rh(s, a) + P,V (5,0, R), H}} Vs €S, he|H (209)
a

Compared with the definition of V;*(s, R), the main difference is that we take minimization over the
value and H at each step. We can similarly define Q7 (s, a, R), V;7 (s, R) and Q7 (s, a, R).
Lemma 17. With probability 1 — 0/2, for all k € [K],

Vi (816, R) < Viea (s1.4) (210)

and

K
> Via(ska) < e/d*HAK log(dK H/6) (211)
k=1

for some constant ¢ > 0 where V}, 1 is as defined in Algorithm

This lemrr}a corresponds to Lemma 3.1 in/Wang et al. (2020).~The main difference is that we replace
Vi* with V7*. Note that V,*(s, R) < H by the definition of V}*(s, R). Lemma|l7|can be similarly
proved following the proof of Lemma 3.1 in|Wang et al.| (2020) and replacing V" by V;* during the
proof.

Lemma 18. With probability 1 — 6 /4, for the function uy, (-, -) defined in Line 5 in Algorithm we
have

E,-, [Vf‘ (s,uh)} < J\/BHT log(dKH]8)/K 212)

Compared with Lemma 3.2 in [Wang et al| (2020), we replace the term Vi* (s,up/H) with
Vi* (s,up). Note that with our choice of exploration-driven reward in the exploration phase (i.e.
Ry n = ug,p), we replace the term up, / H with uy, in the expectation. This lemma can be proved by
following the proof of Lemma 3.2 in [Wang et al.|(2020).

Lemma 19. With probability 1 — 6/2, for any reward function satisfying Assumption |I| and all
h € [H], we have

QTL(7 ‘77”) < Qh('7 ) < Rh(’? ) + th (5/ | *y ) Vh+1 (5,) + 2uh('a ) (213)

Since our algorithm in the planning phase is exactly the same with that of [Wang et al.| (2020), this
lemma shares the same idea of Lemma 3.3 in|Wang et al.| (2020).

Now we can prove Theorem 5| with the help of Lemma[I8 and Lemma|[I9]
Proof. (Proof of Theorem [5) We condition on the events defined in Lemma [I8] and Lemma [T9]
which hold with probability at least 1 — §. By Lemma[I9] we have for any s € S,
Vi(s) = max Q1(s,a) > max Qi (s,a,R) =V (s, R), (214)
which implies
Es o V" (51, R) = VI™ (51,7)] < By [Vi (1) = VI (51, R)]. (215)

Note that 0 < V4 (s) < H and 0 < V[7(s,R) < H since 0 < R(s,a) < 1. Therefore, we always
have V,(s) — V;7 (s, R) < H. For any s;,, we have

Vi(sn) = Vi (sn, R) (216)
< min {H, Pth+1(8h, Wh(sh)) + Quh(sh, wh(sh)) - PthTr+1(Sh+1, R)} 217)
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By recursively decomposing V},(s5) — V," (sp, R) from step H to 1, we have

By Vi (52) = V7" (50,7)] < By [V (5,0 @18)

By definition of V;*(s, u), we have E,,, [\71”(5, u)} <2E,., [171*(5, u)} . By Lemma ,

Eov, [f/l*(s,u)} < /B Tog(dKH/5) /K. (219)

By taking K = cxd®H*log(dHG& e~ 1) /e? for a sufficiently large constant cx > 0, we have

By [V (51, R) — VI (51,7)] < ¢/ /d3H* - log(dKH/8) /K < e. (220)
O

E AUXILIARY LEMMAS

Lemma 20. (Self-Normalized Bound for Vector-Valued Martingales, Theorem 1 and 2 in Abbasi-
Yadkori et al|(2011) Let {F;}52, be a filtration. Let {n;}?2, be a real-valued stochatic process
such that n; is Fy-measurable and 0, is conditionally R-sub-Gaussian for some R > 0, i.e.

N2 R?
VA € R,E[e?M*|F;_1] < exp < 5 > (221)

Let {X:}$2, be an R%-valued stochastic process such that X, is F,_1-measurable. Assume that V
is a d x d positive definite matrix. For any t > 0, define

t t
Vi=V+ ) X.X],8 =) nX. (222)
s=1

s=1

Then, for any § > 0, with probability at least 1 — 9, for all t > 0,

i\ /2 —~1/2
det (V; det(V
ISeI5— < 2R210g< et (V1) 56 W) ) . (223)
Further, let V.= IX, A > 0. Define Y; = (Xi,0.) + n: and assume that ||0.]2 < S, || X¢ll, <
L,Yt > 1. Then for any 6 > O,with probability at least 1 — ¢, for all t > 0, 0, satisfies
. 1+tL2/\
bo-o.| < R\/dlog (+5/> + A2, (224)

where 0, is the 12-regularized least-squares estimation of 0, with regularization parameter X\ > 0
based on history samples till step t.

Lemma 21. (Lemma 11 in|Abbasi-Yadkori et al|(2011)) Let {X;}52, be a sequence in R?, V a
d x d positive definite matrix and define V; = V + Zi:l XX/ . Then, we have that

det (V;,) " 9
1 — < Xello-1 - 225
o8 ( det (V) > < DXl 225
Further, if || X¢||, < L for all t, then

Zmin {17 ||Xt||%—,t:11} < 2 (logdet (V;,) —logdet V) < 2 (dlog ((trace(V) + nL?) /d) — logdet V) ,
t=1

(226)
and finally, if Amin (V) > max(1, L?), then
zn: 1213 < 21 det (V) (227)
t=1 Hvcy =708 det(V) -
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Lemma 22. (Bernstein inequality for vector-valued martingales, Theorem 4.1 in |Zhou et al.
(2020a)) Let {G},o, be a filtration, {x;,m:}¢+>1 a stochastic process so that z, € R® is G-
measurable and n; € R is G, i-measurable. Fix R,L,o,\ > 0,u* € R% Fort > 1, let
ye = (u*, x) + n and suppose that 0, xy also satisfy

el <R Ene | Ge] =0,E [n7 | Ge] < 0, ||z, < L. (228)
Then, for any 0 < § < 1, with probability at least 1 — §, we have

t
Z X7

i=1

vt >0, < Bellie = 17l < B+ VA Iy s (229)

-1
2t

where fort > 1, uy = Zt_lbt, Zy =M + Zle zix] by = 25:1 yix; and

B = 80+/dlog (1 +tL2/(d\)) log (4t2/8) + 4R 1log (4t*/6) . (230)
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