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Abstract

The co-adaptation of robots has been a long-standing research endeavour with
the goal of adapting both body and behaviour of a system for a given task, in-
spired by the natural evolution of animals. Co-adaptation has the potential to elim-
inate costly manual hardware engineering as well as improve the performance of
systems. The standard approach to co-adaptation is to use a reward function for
optimizing behaviour and morphology. However, defining and constructing such
reward functions is notoriously difficult and often a significant engineering ef-
fort. This paper introduces a new viewpoint on the co-adaptation problem, which
we call co-imitation: finding a morphology and a policy that allow an imitator
to closely match the behaviour of a demonstrator. To this end we propose a co-
imitation methodology1 for adapting behaviour and morphology by matching state
distributions of the demonstrator. Specifically, we focus on the challenging sce-
nario with mismatched state- and action-spaces between both agents. We find that
co-imitation increases behaviour similarity across a variety of tasks and settings,
and demonstrate co-imitation by transferring human walking, jogging and kicking
skills onto a simulated humanoid.

1 Introduction

Figure 1: The proposed co-imitation algorithm
(centre) is able to faithfully match the gait of hu-
man motion capture demonstrations (left) by op-
timizing both the morphology and behaviour of
a simulated humanoid. This is opposed to a pure
behavioural imitation learner (right) that fails to
mimic the human motion accurately.

Animals undergo two primary adaptation pro-
cesses: behavioural and morphological adap-
tation. An animal species adapts, over gener-
ations, its morphology to thrive in its envi-
ronment. On the other hand, animals continu-
ously adapt their behaviour during their life-
time due to environmental changes, predators
or when learning a new behaviour is advanta-
geous. While the processes operate on different
time scales, they are closely interconnected and
crucial elements leading to the development of
well-performing and highly adapted organisms
on earth.
While research in robot learning has largely
been focused on the aspects of behavioural
learning processes, a growing number of works
have sought to combine behaviour learning and
morphology adaptation for robotics applica-
tions via co-adaptation [24, 22, 32, 15]. Earlier works focused primarily on the use of evolutionary
optimization techniques [34, 30], but with the advent of deep learning, new opportunities arose for

1Additional material can be found at https://sites.google.com/view/co-imitation
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the efficient combination of deep reinforcement learning and evolutionary adaptation [32, 24]. In
contrast to fixed behaviour primitives or simple parameterized controllers used earlier, deep neural
networks allow a much greater range of behaviours given a morphology.
Existing works in co-adaptation, however, focus on a setting where a reward function is assumed to
be known, even though engineering a reward function is a notoriously difficult and error-prone task
[35]. Reward functions tend to be task-specific, and even minor changes to the learner dynamics can
cause the agent to perform undesired behaviour. For example, in the case of robotics, changing the
mass of a robot may affect the value of an action penalty. This means that the reward needs to be
re-engineered every time these properties change.
To overcome these challenges, we propose to reformulate co-adaptation by combining morphology
adaptation and imitation learning into a common framework, which we name co-imitation. This
approach eliminates the need for engineering reward functions by leveraging imitation learning for
co-adaptation, hence, allowing the matching of both the behaviour and the morphology of a demon-
strator.
Imitation learning uses demonstration data to learn a policy that behaves like the demonstrator.
However, in the case where the two agents’ morphologies are different, we face the following chal-
lenges: (1) state spaces of demonstrating and imitating agents may differ, even having mismatched
dimensionalities; (2) actions of the demonstrator may be unobservable; (3) transition functions and
dynamics are inherently disparate due to mismatching morphologies.
To address these issues we propose a co-imitation method which combines deep imitation learning
through state distribution matching with morphology optimization. Summarized, the contributions
of this paper are:

• Formalization of the problem of co-imitation: matching both the behaviour and morphology
of a demonstrator.

• The introduction of Co-Imitation Learning (CoIL), a new co-imitation method, which
adapts the behaviour and morphology of an agent by state distribution matching consid-
ering incompatible state spaces.

• A comparison of morphology optimization using learned non-stationary reward functions
with our proposed approach of using a state distribution matching objective.

• A demonstration of CoIL by learning behaviour and morphology of a simulated humanoid
given real-world demonstrations recorded from human subjects in tasks ranging from walk-
ing, jogging to kicking (see Fig. 1).

2 Related work

Deep Co-Adaptation of Behaviour and Design While co-adaptation as a field has seen interest
since at least as early as the 90s [28, 34], in this section we look at previous work in the field es-
pecially in the context of deep reinforcement learning. Recent work by Gupta et al. [14] proposes
a mixed evolutionary- and deep reinforcement learning-based approach (DERL) for co-optimizing
agents’ behaviour and morphology. Through mass parallelization, DERL maintains a population
of 576 agents, which simultaneously optimize their behaviour using Proximal Policy Optimization
(PPO) [33]. Based on their final task performance (i.e. episodic return), DERL optimizes the mor-
phological structure of agents using an evolutionary tournament-style optimization process.
Schaff et al. [32] use deep reinforcement learning (RL) for the joint optimization of morphology
and behaviour by learning a single policy with PPO. Again, the final episodic return of a design is
used to optimize the parameters of a design distribution with gradient descent, from which the sub-
sequent designs are sampled. Similarly, Ha [15] proposes to use REINFORCE to optimize policy
parameters and design parameters of a population of agents in a joint manner. The co-adaptation
method presented by Luck et al. [24] improves data-efficiency compared to return-based algorithms
by utilizing the critic learned by Soft Actor Critic (SAC) [16] to query for the expected episodic
return of unseen designs during design optimization. While the method we present is closest to the
former approach, all discussed co-adaptation methods require access to a reward function, and are
thus not capable of co-adapting the behaviour and design of an agent without requiring an engineer
to formulate a reward function.

Imitation Learning with Morphology Mismatch Imitation learning approaches learn a policy
for a given task from demonstrator data. In many cases this data can only be produced by an agent
(or human) that has different dynamics from the imitator. We will give a brief overview on previous
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Figure 2: Top: A demonstrator of jogging from the CMU MoCap Dataset [4]. Middle: The co-
imitation Humanoid produces a more natural looking jogging motion whereas the pure imitation
learner (bottom) learns to run with a poor gait.

work where a policy is learned in presence of such transfer.
The work by Desai et al. [6] discusses the imitation transfer problem between different domains
and presents an action transformation method for the state-only imitation setting. Hudson et al. [20]
on the other hand learn an affine transform to compensate for differences in the skeletons of the
demonstrator and the imitator. These methods are based on transforming either actions or states to a
comparable representation.
To perform state-only imitation learning without learning a reward function, Dadashi et al. [5] intro-
duced Primal Wasserstein Imitation Learning (PWIL), where a reward function is computed based
directly on the primal Wasserstein formulation. While PWIL does not consider the case where the
state space and the morphology are different between the demonstrator and the imitator, it was ex-
tended into the mismatched setting by Fickinger et al. [8]. They replace the Wasserstein distance
with the Gromov-Wasserstein distance, which allows the state distribution distance to be computed
in mismatched state spaces. In contrast, our method addresses the state space mismatch by trans-
forming the state spaces to a common feature representation, allowing for more control over how
the demonstrator’s behaviour is imitated. Additionally, in contrast to these works, we optimize the
morphology of the imitator to allow for more faithful behaviour replication.
Peng et al. [29] propose an imitation learning pipeline allowing a quadrupedal robot to imitate the
movement behaviour of a dog. Similarly, Xu and Karamouzas [38] use an adversarial approach to
learn movements from human motion capture. Similar to us, these papers match markers between
motion capture representations and robots. However, in the first, a highly engineered pipeline relies
on a) the ability to compute the inverse kinematics of the target platform, and b) a hand-engineered
reward function. In the latter, imitation learning is used for learning behaviour, but neither method
optimizes for morphology.

3 Preliminaries

Imitation Learning as distribution-matching For a given expert state-action trajectory ⌧E =
(s0,a0, s1,a1, . . . , sn,an), the imitation learning task is to learn a policy ⇡I(a|s) such that the re-
sulting behaviour best matches the demonstrated behaviour. This problem setting can be understood
as minimizing a divergence, or alternative measures, D(q(⌧E), p(⌧ I |⇡I)) between the demonstrator
trajectory distribution q(⌧E) and the trajectory distribution of the imitator p(⌧ I |⇡I) induced by its
policy ⇡I (see e.g. [27] for further discussion).
While there are multiple paradigms of imitation learning, a recently popular method is adversarial
imitation learning, where a discriminator is trained to distinguish between policy states (or state-
action pairs) and demonstrator states [19, 26]. The discriminator is then used for providing rewards
to an RL algorithm which maximizes them via interaction. In the remainder of the paper we will be
focusing on two adversarial methods with a divergence-minimization interpretation which we will
now discuss in more detail.
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Generative Adversarial Imitation Learning (GAIL)

GAIL trains a standard classifier using a logistic loss which outputs the probability that a given state
comes from the demonstration trajectories [19]. The reward function is chosen to be a function of the
classifier output. Many options are given in literature for the choice of reward, evaluated extensively
by Orsini et al. [26]. Different choices of rewards correspond to different distance measures in terms
of the optimization problem. Here, we consider the reward introduced by Fu et al. [11]:

r(st, st+1) = log( (st))� log(1�  (st)), (1)

where  is a classifier trained to distinguish expert data from the imitator. Maximizing this reward
corresponds to minimizing the Kullback-Leibler divergence between the demonstrator and policy
state-action marginals [12].

State-Alignment Imitation Learning (SAIL)

In contrast to GAIL, SAIL [23] uses a Wasserstein-GAN-style [1] critic instead of the standard
logistic regression-style discriminator. Maximizing the SAIL reward corresponds to minimizing the
Wasserstein distance [37] between demonstrator and policy state-marginals (see Liu et al. [23] for
details).

4 A General Framework for Co-Imitation

We formalize the problem of co-imitation as follows. Consider an expert MDP described by
(SE , AE , pE , pE0 ), with state space SE , action space AE , initial state distribution pE0 (s

E
0 ), and

the transition probability pE(sEt+1|s
E
t ,a

E
t ). Furthermore, assume that the generally unknown expert

policy is defined as ⇡E(aEt |s
E
t ). In addition, an imitator MDP is defined by (SI , AI , pI , pI0,⇡

I , ⇠),
where the initial state distribution pI(sI0|⇠) and transition probability pI(sIt+1|s

I
t ,a

I
t , ⇠) are parame-

terized by a morphology-parameter ⇠. The trajectory distribution of the expert is given by

q(⌧E) = pE(s
E
0 )

T�1Y

t=0

pE(s
E
t+1|s

E
t ,a

E
t )⇡

E(aEt |s
E
t ), (2)

while the imitator trajectory distribution is dependent on the imitator policy ⇡I(a|s, ⇠) and chosen
morphology ⇠

p(⌧ I |⇡I , ⇠) = pI(s
I
0|⇠)

T�1Y

t=0

pI(s
I
t+1|s

I
t ,a

I
t , ⇠)⇡

I(aIt |s
I
t , ⇠). (3)

It follows that the objective of the co-imitation problem is to find an imitator policy ⇡I⇤ and the
imitator morphology ⇠⇤ such that a chosen probability-distance divergence measure or function
D(·, ·) is minimized, i.e.

⇠⇤,⇡I⇤ = argmin
⇠,⇡I

D(q(⌧E), p(⌧ I |⇡I , ⇠)). (4)

For an overview of potential candidate distance measures and divergences see e.g. Ghasemipour
et al. [12]. For the special case that state-spaces of expert and imitator do not match, a simple
extension of this framework is to assume two transformation functions �(·) : SE

! SS , and
�⇠(·) : SI

! SS where SS is a shared feature space. For simplicity we overload the notation and
use �(·) for both the demonstrator and imitator state-space mapping.

5 Co-Imitation by State Distribution Matching

We consider in this paper the special case of co-imitation by state distribution matching and present
two imitation learning methods adapted for the learning of behaviour and design. The co-imitation
objective from Eq. (4) is then reformulated as

D(q(⌧E), p(⌧ I |⇡I , ⇠))
def
== D(q(�(sE)), p(�(sI)|⇡I , ⇠)). (5)
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Similar to Lee et al. [21] we define the marginal feature-space state distribution of the imitator as

p(�(sI)|⇡I , ⇠)
def
== E sI

0⇠pI(sI
0|⇠)

aI
t⇠⇡I(aI

t |s
I
t ,⇠)

sI
t+1⇠pI(sI

t+1|s
I
t ,a

I
t ,⇠)

"
1

T

TX

t=0

(�(sIt ) = �(sI))

#
,

while the feature-space state distribution of the demonstrator is defined by

q(�(sE))
def
== E sE

0 ⇠pE(sE
0 )

aE
t ⇠⇡E(aE

t |sE
t )

sE
t+1⇠pE(sE

t+1|s
E
t ,aE

t )

"
1

T

TX

t=0

(�(sEt ) = �(sE))

#
.

Intuitively, this formulation corresponds to matching the visitation frequency of each state in the
expert samples in the shared feature space. In principle any transformation that maps to a shared
space can be used. For details of our specific choice see Section 6.1. Importantly, this formulation
allows us to frame the problem using any state marginal matching imitation learning algorithms for
policy learning. See Ni et al. [25] for a review of different algorithms.
An overview of CoIL is provided in Algorithm 1. We consider a set of given demonstrator trajecto-
ries TE , and initialize the imitator policy as well as an initial morphology ⇠0. Each algorithm itera-
tion begins with the robot training the imitator policy for the current morphology ⇠ for N⇠ iterations,
as discussed in Section 5.1. The set of collected imitator trajectories TI

⇠ and morphology are added
to the dataset ⌅. Then, the morphology is optimized by computing the distribution distance mea-
sure following Algorithm 2. The procedure is followed until convergence, finding the morphology
and policy that best imitate the demonstrator. We follow an alternating approach between behaviour
optimization and morphology optimization as proposed by prior work such as Luck et al. [24].

5.1 Behaviour Adaptation

Algorithm 1 Co-Imitation Learning (CoIL)

Input: Set of demonstration trajectories TE = {⌧E
0 , ...}

1: Initialize ⇡I , ⇠ = ⇠0, TI = ?, ⌅ = ?, and RL replay RRL
2: while not converged do
3: Initialize agent with morphology ⇠
4: for n = 1, . . . , N⇠ episodes do
5: With current policy ⇡I sample state-action trajectory

(sI
0,a

I
0, . . . , s

I
t ,a

I
t , s

I
t+1, . . . )

6: Add tuples (sI
t ,a

I
t , s

I
t+1, ⇠) to replay RRL

7: Add state-trajectory ⌧ I
n,⇠ = (sI

0, s
I
1, ...) to TI

8: Compute rewards r(�(sI
t ),�(s

I
t+1)) using IL strategy

9: Add rewards r(�(sI
t ),�(s

I
t+1)) to RRL

10: Update policy ⇡I(aI
t |sIt , ⇠) using RL and RRL

11: end for
12: Add (⇠,TI

⇠) to ⌅ with TI
⇠ = {⌧ I

0⇠,⇠
, ..., ⌧ I

N⇠,⇠
}

13: ⇠ = Morpho-Opt(TE ,⌅) . Adapt Morphology (Alg. 2)
14: end while

Given the current morphology ⇠ of
an imitating agent, the first task is to
optimize the imitator policy ⇡I with
⇡I

next = argmin⇡I

D(q(�(sE)), p(�(sI)|⇡I , ⇠)).

The goal is to find an improved
imitator policy ⇡I

next which exhibits
behaviour similar to the given set
of demonstration trajectories TE .
This policy improvement step is per-
formed in lines 4–11 in Algorithm
1. We experiment with two algo-
rithms: GAIL and SAIL, which learn
discriminators as reward functions
r(st, st+1). Following [26] we use
SAC, a sample-efficient off-policy
model-free algorithm as the rein-
forcement learning backbone for both
imitation learning algorithms (line 10
in Alg. 1). To ensure that the policy transfers well to new morphologies, we train a single policy ⇡I

conditioned both on sIt and on ⇠. Data from previous morphologies is retained in the SAC replay
buffer. Further details about the changes made to the these algorithms for behaviour adaptation in
the co-imitation setting are stated in the Appendix.

5.2 Morphology Adaptation

Adapting the morphology of an agent requires a certain exploration-exploitation trade-off: new mor-
phologies need to be considered, but changing it too radically or too often will hinder learning. In
general, co-imitation is challenging because a given morphology can perform poorly due to either it
being inherently poor for the task, or because the policy has not converged to a good behaviour.
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Previous approaches have focused on using either returns averaged over multiple episodes, (e.g
[15]) or the Q-function of a learned policy [24] to evaluate the fitness of given morphology param-
eters. They then perform general-purpose black-box optimization along with exploration heuristics
to find the next suitable candidate to evaluate. Since both approaches rely on rewards, in the imi-
tation learning setting they correspond to maximizing the critic’s approximation of the distribution
distance. This is because the rewards are outputs of a neural network that is continuously trained
and, hence, inherently non-stationary. Instead, we propose to minimize in the co-imitation setting
the true quantity of interest, i.e. the distribution distance for the given trajectories.
Given the current imitator policy ⇡I(aI

t |s
I
t , ⇠) our aim is to find a candidate morphology minimizing

the objective

⇠next = argmin
⇠

D(q(�(sE)), p(�(sI)|⇡I , ⇠)). (6)

Algorithm 2 Bayesian Morphology Optimization
Output: ⇠next, next candidate morphology

1: procedure MORPHO-OPT(TE ,⌅)
2: Define observations X = {⇠n}, 8⇠n 2 ⌅
3: Compute Y = {yn}, 8(⇠n,TI

n) 2 ⌅ . Using Eq. (9)
4: Fit GP g(⇠) using X and Y
5: µg(⇠̃),�g(⇠̃) = p(g(⇠̃)|X,Y ) . Compute posterior
6: ↵(⇠̃) = µg(⇠̃) + � �g(⇠̃) . Compute UCB
7: ⇠next = argmin⇠̃ ↵(⇠̃) . Provide next candidate
8: end procedure

Bayesian
Morphology Optimization

In order to find the optimal mor-
phology parameters we perform
Bayesian Optimization (BO), which
is a sample-efficient optimization
method that learns a probabilistic
surrogate model [10]. Here, we use a
Gaussian Process (GP) [31] as surro-
gate to learn the relationship between
the parameters ⇠ and the distance
D(q(�(sE)), p(�(sI)|⇡I , ⇠)). This
relationship is modeled by the GP
prior

g(⇠) = GP(µ(⇠), k(⇠, ⇠0)), (7)

where µ(·) defines the mean function, and k(·, ·) the kernel (or covariance) function. We show that
adapting the morphology in CoIL via this approach increases performance over the co-adaptation
and imitation baselines in Section 6.
Modelling the relationship between the parameters ⇠ and the distance D(·, ·) is surprisingly challeng-
ing because the policy evolves over time. This means that morphologies evaluated early in training
are by default worse than those evaluated later, and thus should be trusted less. The BO algorithm
alleviates this problem by re-fitting the GP at each iteration using only the most recent episodes. By
learning the surrogate GP model g(⇠) we can explore the space of morphologies and estimate their
performance without gathering new data. The optimization problem can be defined as

⇠next = argmin
⇠

g(⇠), (8)

where ⇠next is the next proposed morphology to evaluate. The GP model is trained using as obser-
vations the set of morphologies used in behaviour adaptation X = {⇠n}, 8⇠n 2 ⌅, and as targets
Y = {y0, · · · , yN} the mean distribution distance for each morphology, that is

yn =
1

N⇠

N⇠X

k=0

D
�
q(⌧E), p(⌧ Ik,⇠|⇡

I , ⇠)
�
. (9)

The predictive posterior distribution is given by p(g(⇠̃)|X,Y ) = N (⇠̃|µg(⇠̃),�g(⇠̃)), where ⇠̃ is
the set of test morphologies and µg(⇠̃) and �g(⇠̃) are the predicted mean and variance. In order
to trade-off between exploration and exploitation we use the Upper Confidence Bound (UCB) as
acquisition function ↵(⇠̃) = µ(⇠̃)+��(⇠̃), where � is a parameter that controls the exploration. The
morphology optimization procedure is depicted in Algorithm 2. The GP is optimized by minimizing
the negative marginal log-likelihood (MLL). Then, the posterior distribution is computed for the set
of test morphologies ⇠̃. The values of ⇠̃ for each task are described in the Appendix. Finally, the
acquisition function is computed and used to obtain the next proposed morphology. We provide in
the Appendix a study of the morphology optimization routine comparing the proposed BO approach
to Random Search (RS) [2], and covariance matrix adaptation evolutionary strategy (CMA-ES) [18].
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6 Experiments

Figure 3: Left: Markers used for matching
the MuJoCo Humanoid to motion capture data.
Right: Markers used for the Cheetah tasks. Green
markers are used as data, while blue markers serve
as reference points for green markers (more de-
tails in Section 6.1).

Our experimental evaluation aims at answering
the following research questions:
(Q1) Does imitation learning benefit from co-
adapting the imitator’s morphology?
(Q2) How does the choice of the imitation
learning algorithm used with CoIL impact the
imitator’s morphology?
(Q3) Is morphology adaptation with CoIL able
to compensate for major morphology differ-
ences, such as a missing joint or the transfer
from a real to a simulated agent?
To answer these questions, we devised a set of
experiments across a range of setups and imita-
tion learning methods.

6.1 Experimental Setup

In all our experiments, we use the MuJoCo physics engine [36] for simulating the dynamics of
agents. As discussed in Algorithm 1, the policies are trained using the same morphology for N⇠ = 20
episodes. The BO algorithm details as well as more detailed technical information can be found in
the Appendix.

Joint feature space: As discussed in Section 4 our method assumes that demonstrator and imitator
states are in different state-spaces. To address this mismatch, the proposed method maps the raw
state observations from the demonstrator and the imitator to a common feature space. The selection
of the feature space can be used to influence which parts of the behaviour are to be imitated. In our
setups, we manually selected the relevant features by placing markers along each of the limbs in
both experimental setups, as shown in Figure 3). The feature space is then composed of velocities
and positions of these points relative to the base of their corresponding limb (marked in blue in the
figure).

Evaluation Metric: Evaluating the accuracy of imitation in a quantitative manner is not straightfor-
ward, because—in general—there does not exist an explicit reward function that we can compare
performance on. While most imitation learning works use task-specific rewards to evaluate imita-
tion performance, it is not a great proxy for e.g. learning similar gaits. Recently, previous work in
state-marginal matching has used forward and reverse KL divergence as a performance metric [25].
However, rather than evaluating the KL divergence, we opted for using the Wasserstein distance [37]
as the evaluation metric. The main motivation behind this choice was that this metric corresponds
to the objective optimized by SAIL and PWIL, two state-of-the-art imitation learning algorithms.
Additionally, it constitutes a more intuitive quantity for comparing 3D positions of markers than KL
divergence—the Wasserstein distance between the expert and imitator feature distributions corre-
sponds to the average distance by which markers of the imitator need to be moved in order for the
two distributions to be aligned. Therefore, for both morphology optimization and evaluation we use
the exact Wasserstein distance between marker position samples from the demonstrator q(�(sE))
and imitator p(�(sI)|⇡I , ⇠) state marginal distributions. This also allows us to avoid an additional
scaling hyperparameter when optimizing for morphologies, since velocities and positions have dif-
ferent scales. The Wasserstein distances are computed using the pot package [9]. For all runs we
show the mean and standard deviation of 3 seeds represented as the shaded area.

6.2 Co-Imitation from Simulated Agents

We adapt the HalfCheetah setup from OpenAI Gym [3] by creating a version with two leg-segments
instead of three (see Fig. 3). We then collect the demonstration datasets by generating expert
trajectories from a policy trained by SAC using the standard running reward for both variants of
the environment. We refer to these tasks as 3to2 and 2to3 corresponding to imitating a 3-segment
demonstrator using a 2-segment imitator and vice versa. For both experiments we used 10 episodes
of 1000 steps as demonstration data. Further details can be found in the Appendix.
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(a) Imitation of 2-joint Cheetah using 3-joint Cheetah.
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(b) Imitation of 3-joint Cheetah using 2-joint Cheetah.

Figure 4: Wasserstein distance for 3 seeds between demonstrator and imitator for both HalfCheetah
tasks. While co-imitation via CoIL (blue) outperforms SAIL (green) in 2to3 (a), all methods show
the same performance in 3to2 (b).
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Figure 5: Wasserstein distance for three seeds between demonstrator and imitator trajectories on the
3to2 Cheetah task on co-imitation (CoIL) and pure imitation learning algorithms (SAIL, GAIL).

First, we answer RQ1 by investigating whether co-adapting the imitator’s morphology is at all ben-
eficial for their ability to replicate the demonstrator’s behaviour, and—if so—how different state
marginal matching imitation learning algorithms perform at this task (RQ2). To this end, we analyze
the performance of two imitation learning algorithms, GAIL and SAIL on the HalfCheetah setup,
with and without co-adaptation. We use BO as the morphology optimizer, as it consistently pro-
duced good results in preliminary experiments (see Appendix). The performance for both imitation
algorithms on the 3to2 task is shown in Figure 5. We observe that SAIL outperforms GAIL both
with and without morphology adaptation. Our results indicate that this task does not benefit from
morphology optimization as SAIL and CoIL achieve similar performance. However, it is encour-
aging to note that CoIL does not decrease performance even when the task does not benefit from
co-adaptation. Based on these results we select SAIL as the main imitation learning algorithm due
to its higher performance over GAIL.
Figure 4 shows the results in the two HalfCheetah morphology transfer scenarios. To address RQ3,
we compare CoIL to two other co-imitation approaches: using the cheetah without morphology
adaptation, as well as to using the Q-function method adapted from Luck et al. [24]. Since this
method is designed for the standard reinforcement learning setting, we adapt it to the imitation
learning scenario by using SAIL to imitate the expert trajectories, and iteratively optimizing the
morphology using the Q-function. See the Appendix for further details of this baseline. In the 3to2
domain transfer scenario (Figure 4b), where the gait of a more complex agent is to be reproduced on
a simpler setup, the results are even across the board. All methods are able to imitate the demonstra-
tor well, which indicates that this task is rather easy, and that co-adaptation does not provide much of
a benefit. On the other hand, in the 2to3 scenario shown in Figure 4a, after co-adaptation with CoIL,
the more complex Cheetah robot is able to reproduce the gait of the simpler, two-segment robot very
closely. A closer look at the results reveals that the morphology adaptation algorithm achieves this
by setting the length of the missing link in each leg to a very small, nearly zero value (see Appendix).
Thus, at the end of training, CoIL can recover the true morphology of the demonstrator.
While the Q-function optimization procedure from [24] also optimizes for the Wasserstein distance
metric via the reward signal, the final performance is somewhat worse. We hypothesize that with
more interaction time the Q-function version would reach the performance of CoIL on this simple
task.
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(c) Walking

Figure 6: The average Wasserstein distances (of 10 test episodes, 3 seeds) for the three CMU motion-
capture to MuJoCo Humanoid tasks. The baseline ”Demonstrations” refers to the mean distance
between the individual demonstration trajectories. We can see that CoIL (blue) consistently performs
better than the compared methods, even reaching the mean distance between the demonstration
trajectories (black) in the soccer task.

6.3 Co-Imitation from Human Behaviour

Next, we address RQ3 by evaluating CoIL in a more challenging, high-dimensional setup, where
the goal is to co-imitate demonstration data collected from a real-world human using a simplified
simulated agent. Here, we use a Humanoid robot adapted from OpenAI Gym [3] together with the
CMU motion capture data [4] as our demonstrations. This setup uses a similar marker layout to
HalfCheetah’s, with markers placed at each joint of each limb, with additional marker in the head
(see Figure 3 for a visualization). We follow the same relative position matching as in the Cheetah
setup. We also include the absolute velocity of the torso in the feature space to allow modelling
forward motion.
The performance of the Humanoid agent on imitating three tasks from CMU motion capture dataset:
walking, jogging, and soccer kick, is shown in Figure 6. We observe that, in all three tasks, CoIL
reproduces the demonstrator behaviour most faithfully. A comparison of the morphology and be-
haviour learned by CoIL vs standard imitation learning (here SAIL) in the jogging task is shown
in Figure 2. In the soccer kick task, CoIL’s performance matches the distance between individual
demonstrations, while for the two locomotion tasks—jogging and walking—there is still a notice-
able performance gap between CoIL and the individual expert demonstrations (with p = 0.0076,
Wilcoxon signed rank test).
We also observe that, in all three setups, not performing co-adaptation at all (and using the default
link length values for the OpenAI Gym Humanoid instead) outperforms co-adaptation with the Q-
function objective. We hypothesize that this counter-intuitive result might stem from the increased
complexity of the task—learning a sensible Q-function in the higher-dimensional morphology- and
state feature-space of Humanoid is likely to require a much larger amount of data, and thus a longer
interaction time. In contrast, optimizing the morphologies using the Wasserstein distance directly
makes the optimization procedure easier, since it does not rely on the Q-function ”catching up” with
changes both to policy and to the adversarial reward models used in GAIL and SAIL.

7 Conclusion

In this paper we presented Co-Imitation Learning (CoIL): a methodology for co-adapting both the
behaviour of a robot and its morphology to best reproduce the behaviour of a demonstrator. This
is, to the best of our knowledge, the first deep learning method to co-imitate both morphology and
behaviour using only demonstration data with no pre-defined reward function. We discussed and
presented a version of CoIL using state distribution matching at its core for co-imitating a demon-
strator in the special case of mismatching state and action spaces. The capability of CoIL to better
co-imitate behaviour and morphology was demonstrated in a difficult task where a simulated hu-
manoid agent has to imitate real-world motion capturing data of a human.
Although we were able to show that CoIL outperforms non-morphology-adapting imitation learn-
ing techniques in the presented experiment using real-world data, we did not consider or further
investigate the inherent mismatch between physical parameters (such as friction, contact-forces,
elasticity, etc.) of simulation and real world or the use of automatic feature-extraction mechanisms.
We think that these challenges present interesting avenues for future research and that the presented
co-imitation methodology opens up a new exciting research space in the area of co-adaptation of
agents.
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