
Under review as a conference paper at ICLR 2023

DADAO: DECOUPLED ACCELERATED

DECENTRALIZED ASYNCHRONOUS OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

DADAO is a novel decentralized asynchronous stochastic first order algorithm to
minimize a sum of L-smooth and µ-strongly convex functions distributed over a
time-varying connectivity network of size n. We model the local gradient updates
and gossip communication procedures with separate independent Poisson Point
Processes, decoupling the computation and communication steps in addition to
making the whole approach completely asynchronous. Our method employs pri-
mal gradients and does not use a multi-consensus inner loop nor other ad-hoc
mechanisms such as Error Feedback, Gradient Tracking, or a Proximal operator.
By relating the inverse of the smallest positive eigenvalue χ∗

1 and the effective
resistance χ∗

2 of our graph to a necessary minimal communication rate between

nodes of the network, we show that our algorithm requires O(n
√

L
µ log(

1
ǫ)) local

gradients and only O(n
√

χ∗
1χ

∗
2

√
L
µ log(

1
ǫ)) communications to reach a precision

ǫ. If SGD with uniform noise σ2 is used, we reach a precision ǫ with same speed,

up to a bias term in O(σ2
√
µL

). This improves upon the bounds obtained with

current state-of-the-art approaches, our simulations validating the strength of our
relatively unconstrained method.

1 INTRODUCTION

With the rise of highly-parallelizable and connected hardware, distributed optimization for machine
learning is a topic of significant interest holding many promises. In a typical distributed training
framework, the goal is to minimize a sum of functions (fi)i≤n split across n nodes of a computer
network. A corresponding optimization procedure involves alternating local computation and com-
munication rounds between the nodes. Also, spreading the compute load is done to ideally obtain
a linear speedup in the number of nodes. In the decentralized setting, there is no central machine
aggregating the information sent by the workers: nodes are only allowed to communicate with their
neighbors in the network. In this setup, optimal methods (Scaman et al., 2017; Kovalev et al., 2021a)
have been derived for synchronous first-order algorithms, whose executions are blocked until a sub-
set (or all) nodes have reached a predefined state: the instructions must be performed in a specific
order (e.g., all nodes must perform a local gradient step before the round of communication begins),
which is one of the locks limiting their efficiency in practice.

This work attempts to simultaneously address multiple limitations of existing decentralized algo-
rithms while guaranteeing fast convergence rates. To tackle the synchronous lock, we rely on the
continuized framework (Even et al., 2021a), introduced initially to allow asynchrony in a fixed topol-
ogy setting: iterates are labeled with a continuous-time index (in opposition to a global iteration
count) and performed locally with no regards to a specific global ordering of events. This is more
practical while being theoretically grounded and simplifying the analysis. However, in Even et al.
(2021a), gradient and gossip operations are still coupled: each communication along an edge re-
quires the computation of the gradients of the two functions locally stored on the corresponding
nodes and vice-versa. As more communications steps than gradient computations are necessary to
reach an ǫ precision, even in an optimal framework (Kovalev et al., 2021a; Scaman et al., 2017), the
coupling directly implies an overload in terms of gradient steps. Another limitation is the restric-
tion to a fixed topology: in a more practical setting, connections between nodes should be allowed
to disappear or new ones to appear over time. The procedures of Kovalev et al. (2021c); Li & Lin

1

Under review as a conference paper at ICLR 2023

(2021) are the first to obtain an optimal complexity in gradient steps while being robust to topolog-
ical change. Unfortunately, synchrony is mandatory in their frameworks as they either rely on the
Error-Feedback mechanism (Stich & Karimireddy, 2020) or the Gradient Tracking one (Nedic et al.,
2017). Moreover, they both use an inner loop to control the number of gradient steps at the cost of
significantly increasing the number of activated communication edges. To our knowledge, this is the
first work to tackle those locks simultaneously.

In this paper, we propose a novel algorithm (DADAO: Decoupled Accelerated Decentralized Asyn-
chronous Optimization) based on a combination of similar formulations to Kovalev et al. (2021a);
Even et al. (2021b); Hendrikx (2022) in the continuized framework of Even et al. (2021a). We study:

inf
x∈Rd

n∑

i=1

fi(x) , (1)

where each fi : Rd → R is a µ-strongly convex and L-smooth function computed in one of the
n nodes of a network. We derive a first-order optimization algorithm that only uses primal gra-
dients and relies on a time-varying Point-wise Poisson Processes (P.P.P.s (Last & Penrose, 2017))
modeling of the communication and gradient occurrences, leading to accelerated communication
and computation rates. Our framework is based on a simple fixed-point iteration and kept mini-
mal: it only involves primal computations with an additional momentum term and works in both the
Gradient and Stochastic Gradient Descent (SGD) settings. Thus, we do not add other cumbersome
designs such as the Error-Feedback or Forward-Backward used in Kovalev et al. (2021a), which are
intrinsically synchronous. While we do not consider the delays bound to appear in practice (we as-
sume instantaneous communications and gradient computations), we show that the ordering of the
gradient and gossip steps can be variable, removing the coupling lock.

Our contributions are as follows: (1) first, we propose the first primal algorithm with provable
guarantees in the context of asynchronous decentralized learning with time-varying connectivity. (2)
This algorithm reaches accelerated rates of communication and computations while not requiring ad-
hoc mechanisms obtained from an inner loop. (3) Our algorithm also leads to an accelerated rate
with SGD with a minor modification. (4) We propose a simple theoretical framework compared to
concurrent works, and (5) we demonstrate its optimality numerically.

The structure of our paper is as follows: in Sec. 3.1, we describe our work hypothesis and our
model of a decentralized environment, while Sec. 3.2 describes our dynamic. Sec. 3.3 states our
convergence guarantees whose proofs are fully detailed in the Appendix. Then, Sec. 4.1 compares
our work with its competitors, Sec. 4.2 explains our implementation of this algorithm, and finally,
Sec. 4.3 verifies our claims numerically. All our experiments are reproducible, using PyTorch
(Paszke et al., 2019) and our code can be found in Appendix.

2 RELATED WORK

Tab. 1 compares our contribution with other references to highlight the benefits of our method.

Table 1: This table shows the strength of DADAO compared to concurrent works. n is the number
of node, |E| the number of edges, 1

χ1
the smallest positive eigenvalue of a fixed stochastic Gossip

matrix, ρ the eigengap and χ2 ≤ χ1 the effective resistance. Note that under reasonable assumptions√
χ1χ2n = O(|E|√ρ) (Sec. 4.1). Async., Comm., Grad., M.-C. and Prox. stand respectively for

Asynchrony, Communication steps, Gradient steps., Multi-consensus and Proximal operator.

Method Async. Varying Decoupled No Inner Loop Primal Total Total
Topology (M.-C. or Prox.) Oracle # Comm. # Grad.

MSDA (Scaman et al., 2017) ✗ ✗ ✗ ✗ ✗
√
ρ|E|

√

L

µ
n

√

L

µ

AGT (Li & Lin, 2021) ✗ ✓ ✗ ✗ ✓ χ1|E|
√

L

µ
n

√

L

µ

ADOM+ (Kovalev et al., 2021a) ✗ ✓ ✗ ✗ ✓ χ1|E|
√

L

µ
n

√

L

µ

Continuized (Even et al., 2021a) ✓ ✗ ✗ ✓ ✗
√
χ1χ2n

√

L

µ

√
χ1χ2n

√

L

µ

ADFS (Hendrikx et al., 2021) ✗ ✗ ✓ ✗ ✗
√
ρ|E|

√

L

µ
n

√

L

µ

TVR (Hendrikx, 2022) ✓ ✗ ✓ ✓ ✓ ρ|E|L
µ

nL

µ

DADAO (ours) ✓ ✓ ✓ ✓ ✓
√
χ1χ2n

√

L

µ
n

√

L

µ

2

Under review as a conference paper at ICLR 2023

Continuized and asynchronous algorithms. We highly rely on the elegant continuized frame-
work (Even et al., 2021a), which allows obtaining simpler proofs and brings the flexibility of asyn-
chronous algorithms. However, in our work, we significantly reduce the necessary amount of gra-
dient steps compared to Even et al. (2021a) while maintaining the same amount of activated edges.
Another type of asynchronous algorithm can also be found in Latz (2021), yet it fails to obtain
Nesterov’s accelerated rates for lack of momentum. We note that Leblond et al. (2018) studies
the robustness to delays yet requires a shared memory and thus applies to a different context than
decentralized optimization. Hendrikx (2022) is a promising approach for modeling random commu-
nication on graphs yet fails to obtain acceleration in a neat framework that does not use inner-loops.

Decentralized algorithms with fixed topology. Scaman et al. (2017) is the first work to derive
an accelerated algorithm for decentralized optimization, and it links the convergence speed to the
Laplacian eigengap. The corresponding algorithm uses a dual formulation and a Chebychev accel-
eration (synchronous and for a fixed topology). Yet, as stated in Tab. 2, it still requires many edges
to be activated. Furthermore, under a relatively flexible condition on the intensity of our P.P.P.s, we
show that our work improves over bounds that depend on the spectral gap. An emerging line of work
following this formulation employs the continuized framework (Even et al., 2020; 2021a;b), but is
unfortunately not amenable to incorporating a time-varying topology by essence, as they rely on a
coordinate descent scheme in the dual (Nesterov & Stich, 2017). Finally, we note that Even et al.
(2021b) incorporates delays in their model, using the same technique as our work, yet transferring
this robustness to another setting remains unclear. Reducing the number of communication has been
studied in Mishchenko et al. (2022), only in the context of constant topology and without obtaining
accelerated rates. Hendrikx et al. (2021) allows for fast communication and gossip rates yet requires
a proximal step and synchrony between nodes to apply a momentum variable.

Decentralized algorithms with varying topology. We highlight that Kovalev et al. (2021a);
Li & Lin (2021); Koloskova et al. (2020) are some of the first works to propose a framework for
decentralized learning in the context of varying topology. However, they rely on inner-loops prop-
agating variables multiple times through a network, which imposes complete synchrony and com-
munication overheads. In addition, as noted empirically in Lin et al. (2015), inner-loops lead to
a plateau effect. Furthermore, we note that Kovalev et al. (2021b); Salim et al. (2021) employ a
formulation derived from Salim et al. (2020); Condat et al. (2022), casting decentralized learning
as a monotonous inclusion, obtaining a linear rate thanks to a preconditioning step of a Forward-
Backward like algorithm. However, being sequential by nature, these types of algorithms are not
amenable to a continuized framework.

Error feedback/Gradient tracking. A major lock for asynchrony is the use of Gradi-
ent Tracking (Koloskova et al., 2021; Nedic et al., 2017; Li & Lin, 2021) or Error Feed-
back (Stich & Karimireddy, 2020; Kovalev et al., 2021b). Indeed, gradient operations are locally
tracked by a running-mean variable which is updated at each gradient update. This is incompati-
ble with an asynchronous framework as it requires communication between nodes. Furthermore, a
multi-consensus inner-loop seems mandatory to obtain accelerated rates, again not desirable.

Decoupling procedures Decoupling subsequent steps of an optimization procedures traditionally
leads to speed-ups (Hendrikx et al., 2021; Hendrikx, 2022; Belilovsky et al., 2020; 2021). This
contrasts with methods which couple gradient and gossip updates, such that they happen in a
predefined order, i.e. simultaneously (Even et al., 2021a) or sequentially (Kovalev et al., 2021a;
Koloskova et al., 2020). In decoupled optimization procedures, inner-loops are not desirable because
they require an external procedure that can be potentially slow and need a block-barrier instruction
during the algorithm’s execution (e.g., Hendrikx et al. (2021; 2019)).

3 FAST ASYNCHRONOUS ALGORITHM FOR TIME-VARYING NETWORKS

3.1 GOSSIP FRAMEWORK

We consider the problem defined by Eq. 1 in a distributed environment constituted by n nodes whose
dynamic is indexed by a continuous time index t ∈ R

+. Each node has a local memory and can
compute a local gradient ∇fi, as well as elementary operations, in an instantaneous manner. As

3

Under review as a conference paper at ICLR 2023

said above, having no delay is less realistic, yet adding them also leads to significantly more difficult
proofs whose adaptation to our framework remains largely unclear. Next, we will assume that our
computations and gossip result from independent in-homogeneous piecewise constant P.P.P. with no
delay. For the sake of simplicity, we assume that all nodes can compute a gradient at the same rate:

Assumption 3.1 (Homogeneous gradient computations). The gradient computations are re-
normalized to fire independently at a rate of 1 computation per time unit. For the i-th worker, we
write Ni(t) the corresponding P.P.P. of rate 1, as well as N(t) = (Ni(t))i≤n.

Next, we model the bandwidth of each machine. For an edge (i, j) ∈ E(t), we write Mij(t) the P.P.P.
with rate λij(t) ≥ 0. When this P.P.P. fires, both nodes can potentially share their local memories.
The rate λij(t) is adjustable locally by machine i, which can decide to speed or slow down its local
communication. While λij(t) and λji(t) may refer to different quantities, we highlight that this

communication process is symmetric, and we denote by Ē(t) the corresponding undirected graph.
Given our notations, we note that if (i, j) 6∈ E(t), then the connexion between (i, j) can be thought
as a P.P.P. with intensity 0. We now introduce the instantaneous expected gossip matrix of our graph:

Λ(t) ,
∑

(i,j)∈E(t)
λij(t)(ei − ej)(ei − ej)

T .

We also write Λ(t) ,
∑

(i,j)∈E(t) λij(t)(ei − ej)(ei − ej)
T its tensorized counter-part that will be

useful for our proofs and defining our Lyapunov potential, and Λ+(t) its pseudo inverse. Following
Scaman et al. (2017), we will further compare this quantity to the centralized gossip matrix:

π , I− 1

n
11

T =
1

2n

∑

i,j

(ei − ej)(ei − ej)
T .

We introduce the instantaneous connectivity of Λ(t), as in Kovalev et al. (2021a):

1

χ1(t)
, inf

x⊥1,‖x‖=1
xTΛ(t)x .

We might also write χ1[Λ(t)] to avoid confusion, depending on the context. Next, we introduce the
maximal effective resistance of the network, as in Even et al. (2021a); Ellens et al. (2011):

χ2(t) ,
1

2
sup

(i,j)∈E(t)
(ei − ej)

TΛ+(t)(ei − ej) .

We remind the following Lemma (proof in Appendix D.2), which will be useful to control
χ1(t), χ2(t) and compare our bounds with the ones making use of the spectral gap of a graph:

Lemma 3.1 (Bound on the connectivity constants). The spectrum of Λ(t) is non-negative. Further-
more, we have χ1(t) = +∞ iff Ē(t) is not a connected graph. Also, if the graph is connected, then
n−1

TrΛ(t) ≤ min(χ1(t), χ2(t)) . Furthermore, we also have 2χ2(t) inf(i,j)∈E(t) λij(t) ≤ 1 .

The last part of this Lemma allows to bound χ2(t) when no degenerated behavior on the graph’s
connectivity happens: we assume the networks do not contain arbitrarily slow communication edges.
The following assumption is necessary to avoid oscillatory effects due to the variations of Λ(t):

Assumption 3.2 (Slowly varying graphs). Assume that Λ(t) is piece-wise constant on time intervals.

In particular, it implies that each λij(t) is piece-wise constant. Next, following Kovalev et al.
(2021a), we bound uniformly the connectivity to avoid degenerated effects:

Assumption 3.3 (Strongly connected topology). Assume that there is χ∗
1 > 0 such that χ1(t) ≤ χ∗

1.

We might write this quantity χ∗
1[Λ] to stress the dependency in Λ(t). From supra, it’s clear that

χ2(t) ≤ χ1(t) so that under 3.3, χ2(t) is upper bounded by 0 < χ∗
2 ≤ χ∗

1.

4

Under review as a conference paper at ICLR 2023

3.2 DYNAMIC TO OPTIMUM

Next, we follow a standard approach (Kovalev et al., 2021c;a; Salim et al., 2022; Hendrikx, 2022)
for solving Eq. 1 (see Appendix B for details), leading to, for 0 < ν < µ:

inf
x∈Rd

n∑

i=1

fi(x) = inf
x∈Rn×d

sup
y,z∈Rn×d

n∑

i=1

fi(xi)−
ν

2
‖x‖2 − 〈x, y〉 − 1

2ν
‖πz + y‖2 .

For F (x) =
∑n

i=1 fi(xi)− ν
2‖x‖2, the saddle points (x∗, y∗, z∗) of this Lagrangian, are given by:







∇F (x∗)− y∗ = 0
y∗+πz∗

ν + x∗ = 0
πz∗ + πy∗ = 0 .

(2)

Contrary to Kovalev et al. (2021a), we do not employ a Forward-Backward algorithm, which re-
quires both an extra-inversion step and additional regularity on the considered proximal operator.
Not only does this condition not hold in this particular case, but this is not desirable in a continuized
framework where iterates are not ordered in a predefined sequence and require a local descent at
each instant. Another major difference is that no Error-feedback is required by our approach, which
allows to unlock asynchrony while simplifying the proofs and decreasing the required number of
communications. Instead, we show it is enough to incorporate a standard fixed point algorithm,
without any specific preconditioning (see Condat et al. (2019)). We consider the following dynamic:







dxt = η(x̃t − xt)dt− γ(∇F (xt)− ỹt) dN(t)

dx̃t = η̃(xt − x̃t)dt− γ̃(∇F (xt)− ỹt) dN(t)

dỹt = −θ(yt + zt + νx̃t)dt+ (δ + δ̃)(∇F (xt)− ỹt)dN(t)

dyt = α(ỹt − yt)dt

dzt = α(z̃t − zt)dt− β
∑

(i,j)∈E(t)(ei − ej)(ei − ej)
T(yt + zt)dMij(t)

dz̃t = α̃(zt − z̃t)dt− β̃
∑

(i,j)∈E(t)(ei − ej)(ei − ej)
T(yt + zt)dMij(t) ,

(3)

where ν, η̃, η, γ, α, α̃, θ, δ, δ̃, β, β̃ are undetermined parameters yet. As in Nesterov (2003), variables
are paired to obtain a Nesterov acceleration. The variables (x, y) allow decoupling the gossip steps
from the gradient steps using independent P.P.P.s. Furthermore, the Lebesgue integrable path of ỹt
does not correspond to a standard momentum, as in a continuized framework (Even et al., 2021a);
however, it turns out to be a crucial component of our method. Compared to Kovalev et al. (2021a),
no extra multi-consensus step needs to be integrated. Our formulation of an asynchronous gossip
step is similar to Even et al. (2021a) which introduces a stochastic variable on edges; however, con-
trary to this work, our gossip and gradient computations are decoupled. In fact, we can also consider
SGD (Bottou, 2010), by replacing ∇F (x) by an estimate ∇F (x, ξ), for ξ ∈ Ξ, some measurable
space. We will need the following assumption on the bias and variance of the gradient:

Assumption 3.4 (Unbiased gradient with uniform additive noise). We assume that:

Eξ∇F (x, ξ) = ∇F (x) ,

and that its quadratic error is uniformly bounded by σ > 0:

Eξ‖∇F (x, ξ)−∇F (x)‖2 ≤ σ2 .

Next, for SGD use, we modify the three first lines of Eq. 3, replacing the stochastic terms (∇F (xt)−
ỹt) dN(t) by

∫

Ξ
(∇F (xt, ξ) − ỹt) dN(t, ξ), see Appendix C for the complete dynamic. Simulating

those SDEs (Arnold, 1974) can be efficiently done, as explained in Sec. 4.2 and Appendix H.

3.3 THEORETICAL GUARANTEES

We follow the approach introduced in Even et al. (2021a) for studying the convergence of the dy-

namic 3. To do so, we introduce X , (x, x̃, ỹ), Y , (y, z, z̃) and the following Lyapunov potential:

Φ(t,X, Y) , AtdF (x, x
∗) + Ãt‖x̃− x∗‖2 +Bt‖y − y∗‖2 + B̃t‖ỹ − y∗‖2

+ Ct‖z + y − z∗ − y∗‖2 + C̃t‖z̃ − z∗‖2
Λ(t)+ ,

5

Under review as a conference paper at ICLR 2023

where At, Ãt, Bt, B̃t, Ct, C̃t, Dt are non-negative functions to be defined. We will use this potential

to control the trajectories of Xt , (xt, x̃t, ỹt), Yt , (yt, zt, z̃t), leading to the equivalent dynamic:
{

dXt = a1(Xt, Yt)dt+ b1(Xt)dN(t)

dYt = a2(Xt, Yt)dt+
∑

(i,j)∈E(t) b
ij
2 (Yt)dMij(t) ,

where a1, a2, b1 = (bi1)i, (b
ij
2)ij are smooth functions. We prove the following in Appendix D.3.

Theorem 3.2 (Gradient Descent). Assume each fi is µ-strongly convex and L-smooth. For any
Λ(t), assume 3.1-3.3, and that χ∗

1[Λ]χ
∗
2[Λ] ≤ 1

2 . Then there exists some parameters for the dynamic

Eq. 3 (given in App. H.2), such that for any initialization x0 ∈ R
d, and x̃0 = x0, y0 = ỹ0 =

∇f(x0), z0 = z̃0 = −π∇f(x0), we get for t ∈ R
+ and f(x) =

∑n
i=1 fi(xi):

E[f(xt)]− f(x∗) ≤
(
2(f(x0)− f(x∗)) +

µ

8
‖x0 − x∗‖2

)
e
− t

8
√

2

√
µ
L .

Also, the expected number of gradients is nt and the expected number of edges activated is:

E[

∫ t

0

∑

(i,j)∈E(u)
λij(u) du] =

1

2

∫ t

0

E[TrΛ(u)] du . (4)

We can obtain the following corollary with a minor modification of our current proof:

Corollary 3.2.1 (SGD with additive noise). Under the same assumption as Thm. 3.2 as well as 3.4,
for the SGD-dynamic Eq. 8, the same parameters as Thm. 3.2 allows to obtain for t ∈ R

+:

E[f(xt)]− f(x∗) ≤
(
2(f(x0)− f(x∗)) +

µ

8
‖x0 − x∗‖2

)
e
− t

8
√

2

√
µ
L +

5σ2

√
µL

.

Following Even et al. (2021a), L allows to adjust the trace-off bias-variance of our descent.

4 PRACTICAL IMPLEMENTATION

4.1 EXPECTED COMPUTATIONAL COMPLEXITY

For a given graph E(t), multiple choices of Λ(t) are possible and would still lead to accelerated
and linear rates as long as the condition 2χ∗

1[Λ]χ
∗
2[Λ] ≤ 1 is verified. Thus, we discuss how to

choose our instantaneous expected gossip matrix to compare to concurrent work. To get a precision

ǫ, T = O(
√

L
µ log(

1
ǫ)) local gradient computations is required per machine. More details can be

found in Appendix F on our methodology for comparing with other methods, and particularly the
way to recover the order of magnitudes we mention. In the following, each algorithm to which we
compare ourselves is parameterized by a Laplacian matrix with various properties. Systematically,
for an update frequency f and a family of Laplacians {Lq}q (which can be potentially reduced to a
single element) given by concurrent work, we will set:

Λ(t) =
√

2χ∗
1[L]χ∗

2[L]L⌊tf⌋ , λ∗L⌊tf⌋ , (5)

where λ∗ can be understood as a lower bound on the instantaneous expected communication rate. In
this case, Λ(t) satisfies the conditions of Theorem 3.2 or Corollary 3.2.1. From a physical point of
view, it allows us to relate the spatial quantities of our graphs to a necessary minimal communication
rate between nodes of the network; see Appendix E for a discussion on this topic.

Comparison with ADOM+. In ADOM+ (Kovalev et al., 2021a), one picks χ∗
1[L] ≥ 1 and f =

χ∗
1[L]. Then, the number of gossip steps of our algorithm is at most:

√

χ∗
1[L]χ∗

2[L] sup
q

Tr(Lq)

√

L

µ
log(

1

ǫ
) = O(

√

χ∗
1[L]χ∗

2[L]n
√

L

µ
log(

1

ǫ
))

Then, the expected communication of ADOM+ is potentially substantially higher than ours (see
Appendix F.1):

T∑

t=1

χ∗
1[L]|E(t)| ≥ O(

√

χ∗
1[L]χ∗

2[L]n
√

L

µ
log(

1

ǫ
)) .

6

Under review as a conference paper at ICLR 2023

Comparison with standard Continuized. If L is a Laplacian picked such that TrL =
2 (thus f = 0), as in Even et al. (2021a), then Even et al. (2021a) claims that at least

O(
√

L
µ log(

1
ǫ)
√

χ∗
1[L]χ∗

2[L]) gradient and gossip iterations are needed. The number of gossip it-

erations is the same as ours, yet, thanks to Lemma 3.1, the number of gradient iterations can be

substantially higher without any additional assumptions, as n− 1 ≤ 2
√

χ∗
1[L]χ∗

2[L] (see Appendix
F.2). Furthermore, the computations of Even et al. (2021a) still use the dual gradients and are for a
fixed topology.

Comparison with methods that depend on the spectral gap. For instance, MSDA relies on a
Tchebychev acceleration of the number of gossip steps (possible because Scaman et al. (2017) uses a

fixed gossip matrix) which allows getting the number of edges activated of about
√
ρ∗|E|

√
L
µ log(

1
ǫ) ,

where ρ∗ is the spectral gap. For our algorithm, the number of gossip writes (with f = 0):
√

L

µ
log(

1

ǫ
)
√

χ∗
1[L]χ∗

2[L]TrL ≤ O(
√
ρ∗|E|

√

L

µ
log(

1

ǫ
)) ,

where the details of this bound can be found in Appendix F.3 and relies solely on an assumption on
the ratio between the maximal and minimal weights in the Laplacian. We highlight that Scaman et al.
(2017); Kovalev et al. (2021a) claimed that their respective algorithms are optimal because they
study the number of computations and synchronized gossips on a worst-case graph; our claim is,
by nature different, as we are interested in the number of edges fired rather than the number of
synchronized gossip rounds. Tab. 2 predicts the behavior of our algorithm for various classes of
graphs encoded via the Laplacian of a stochastic matrix. It shows that systematically, our algorithm
leads to the best speed1. We note that the graph class depicted in the Tab. 2 were used as worst-
case examples of Scaman et al. (2017); Kovalev et al. (2021a). The next section implements and
validates our ideas.

Table 2: Complexity for various graphs using a stochastic matrix. We have, respectively for a star /
line or cyclic / complete graph and the d-dimensional grid: χ∗

1 = O(1), ρ∗ = O(n) / χ∗
1 = O(n2),

ρ∗ = O(n2), χ∗
2 = O(1) / χ∗

1 = O(1), ρ∗ = O(1) / χ∗
1 = O(n2/d), ρ∗ = O(n2/d), χ∗

2 = O(1).

Method # edges activated # total gradient iterations

Graph Star Line Complete d-grid Star Line Complete d-grid

(Kovalev et al., 2021a) ADOM+ n n3 n2 n1+2/d n n n n

(Scaman et al., 2017) MSDA n3/2 n2 n2 n1+1/d n n n n

(Even et al., 2021a) Continuized n n2 n n1+1/d n n2 n n1+1/d

Centralized n - - - n - - -

DADAO (ours) n n2 n n1+1/d n n n n

4.2 ALGORITHM

We now describe the algorithm used to implement the dynamics of Eq. 3 and, in particular, our

simulator of P.P.P.. Let us write T
(i)
1 < T

(i)
2 < ... < T

(i)
k < ... the time of the k-th event on the

i-th node, which is either an edge activation, either a gradient update. We remind that the spiking
times of a specific event correspond to random variables with independent exponential increments
and can thus be generated at the beginning of our simulation. They can also be generated on the

fly and locally to stress the locality and asynchronicity of our algorithm. Let’s write Xt = (X
(i)
t)i

and Yt = (Y
(i)
t)i, then on the i-th node and at the k-th iteration, we integrate the linear Ordinary

Differential Equation (ODE) on [T
(i)
k ;T

(i)
k+1], given by

{
dXt = a1(Xt, Yt)dt

dYt = a2(Xt, Yt)dt
, to define the values

right before the spike, for A the corresponding constant matrix, we thus have:




X
(i)

T
(i)−
k+1

Y
(i)

T
(i)−
k+1



 = exp
(

(T
(i)
k+1 − T

(i)
k)A

)





X
(i)

T
(i)
k

Y
(i)

T
(i)
k



 . (6)

1For the case 2-grid, the logarithmic term should appear, yet we decided to neglect them.

7

Under review as a conference paper at ICLR 2023

Next, if one has a gradient update, then:

X
(i)

T
(i)
k+1

= X
(i)

T
(i)−
k+1

+ b1

(

X
(i)

T
(i)−
k+1

)

.

Otherwise, if the edge (i, j) or (j, i) is activated, a communication bridge is created between both
nodes i and j. In this case, the local update on i writes:

Y
(i)

T
(i)
k+1

= Y
(i)

T
(i)−
k+1

+ b2

(

Y
(i)

T
(i)−
k+1

, Y
(j)

T
(i)−
k+1

)

.

Note that, even if this event takes place along an edge (i, j), we can write it separately for nodes i

and j by making sure they both have the events T
(i)
ki

= T
(j)
kj

, for some ki, kj ∈ N, corresponding to

this communication. As advocated, all those operations are local, and we summarize in the Alg. 1
the algorithmic block which corresponds to our implementation. See Appendix H for more details.

Algorithm 1: This algorithm block describes our implementation on each local machine. The
ODE routine is described by Eq. 6 and Ping is an instantaneous routine.

Input: On each machine i ∈ {1, ..., n}, gradient oracle ∇fi, parameters µ,L, χ∗
1, tmax.

1 Initialize on each machine i ∈ {1, ..., n}:
2 Set X(i), Y (i), T (i) to 0 and set A via Eq. 105;
3 Synchronize the clocks of all machines ;
4 In parallel on workers i ∈ {1, ..., n}, while t < tmax, continuously do:
5 t← clock() ;
6 Ping surrounding machines and adjust λij(t) ;
7 if there is an event at time t then

8 (X(i), Y (i))← ODE(A, t− T (i), (X(i), Y (i))) ;
9 if the event is to take a gradient step then

10 X(i) ← X(i) + b1(X
(i)) ;

11 else if the event is to communicate with j then

12 Y (i) ← Y (i) + b2(Y
(i), Y (j)) ; // Happens at j simultaneously.

13 T (i) ← t ;

14 return (x
(i)
tmax

)1≤i≤n, the estimate of x∗ on each worker i.

4.3 NUMERICAL RESULTS

In this section, we study the behavior of our method and compare it to several settings inspired
by Kovalev et al. (2021a); Even et al. (2021a). In our experiments, we perform the empirical risk
minimization for both the decentralized linear and logistic regression tasks given either by:

fi(x) =
1

m

m∑

j=1

log(1 + exp(−bija⊤ijx)) +
µ

2
‖x‖2 or fi(x) =

1

m

m∑

j=1

‖a⊤ijx− cij‖2, (7)

where aij ∈ R
d, bij ∈ {−1, 1} and cij ∈ R correspond to m local data points stored at node

i. For both varying and fixed topology settings, we follow a protocol similar to Kovalev et al.
(2021a): we generate n independent synthetic datasets with the make_classification and
make_regression functions of scikit-learn (Pedregosa et al., 2011), each worker storing m =
100 data points. We recall that the metrics of interest are the total number of local gradient steps
and the total number of individual messages exchanged (i.e., number of edges that fired) to reach an
ǫ-precision. We systematically used the proposed hyper-parameters of each reference paper for our
implementation without any specific fine-tuning.

Comparison in the time-varying setting. We compare our method to ADOM+ (Kovalev et al.,
2021a) on a sequence of 50 random geometric graphs of size n = 20 in Fig. 1. To construct the
graphs, we sample n points uniformly in [0, 1]2 ⊂ R

2 and connect each of them to all at a distance
less than some user-specified radius, which allows controlling the constant χ∗

1 (we consider values in

8

Under review as a conference paper at ICLR 2023

{3, 33, 180, 233}). We ensure the connectedness of the graphs by adding a minimal number of edges,
exactly as done in Kovalev et al. (2021b). We then use the instantaneous gossip matrix introduced
in Eq. 5 with f = χ∗

1. We compare ourselves to both versions of ADOM+: with and without
the Multi-Consensus (M.-C.). Thanks to its M.-C. procedure, ADOM+ can significantly reduce the
number of necessary gradient steps. However, consistently with our analysis in Sec. 4.1, our method
is systematically better in all settings in terms of communications.

� ����� �����
�� ����!�������������

��
#��

��
#

��
#�

��
#�

1 n

n ∑ i=
1‖
x i
−

x
‖ ‖

2

�"��������� ����� ���� �

�
���������
�
���

�
��

��� ��� ���
�� ����!��������������	

��
#��

��
#

��
#�

��
#�

�"��������� ����� ���� �

� ����� �����
	��
��������������

�

��
���

��
��

��
�

��
�

1 n

n ∑ i=
1‖
x i
−

x
‖ ‖

2

����
���
���
�����������

��� ��� ���
	��
�������������������

��
���

��
��

��
�

��
�

����
���
���
�����������

Figure 1: Comparison between ADOM+ (Kovalev et al., 2021a) and DADAO, using the same data
from left to right: binary classification, linear regression) and the same sequence of random con-
nected graphs with χ∗

1 = 180 linking n = 20 workers.

Comparison with accelerated methods in the fixed topology setting. Now, we fix the Laplacian
matrix via Eq. 5 to compare simultaneously to the continuized framework (Even et al., 2021a) and
MSDA (Scaman et al., 2017). We reports in Fig. 2 results corresponding to the complete graph
with n = 250 nodes and the line graph of size n = 150. While sharing the same asymptotic
rate, we note that the Continuized framework (Even et al., 2021a) and MSDA (Scaman et al., 2017)
have better absolute constants than DADAO, giving them an advantage both in terms of the number
of communication and gradient steps. However, in the continuized framework, the gradient and
communication steps being coupled, the number of gradient computations can potentially be orders
of magnitude worse than our algorithm, which is reflected by Fig. 2 for the line graph. As for MSDA
and ADOM+, Tab. 2 showed they do not have the best communication rates on certain classes of
graphs, as confirmed to the right in Fig. 2 for MSDA and the communication plots for ADOM+.

� ������ ������
�� ����!�������������

��
$�

��
$�

��
�

��
�

1 n

n ∑ i=
1‖
x i
−

x
‖ ‖

2

"��������� ����� ���� �

��� ��� ���
�� ����!��������������	

��
$�

��
$�

��
�

��
�
"��������� ����� ���� �

��
��
����

��
�
��� ��!�#��

��

�
�
�

� ������ ������

��������������������

��
��

��
��

��
��

��
�

��
�

1 n

n ∑ i=
1‖
x i
−

x
‖ ‖

2

	�������������
���������

��� ��� ���

���������������
������

��
��

��
��

��
��

��
�

��
�

	�������������
���������

Figure 2: Comparison between ADOM+ (Kovalev et al., 2021a), the continuized framework
(Even et al., 2021a), MSDA (Scaman et al., 2017) and DADAO, using the same data for the linear
regression task, and the same graphs (from left to right: line with n = 150, complete with n = 250).

In conclusion, while several methods can share similar convergence rates, ours is the only one to
perform at least as well as its competitors in every setting for different graph’s topology and two
distinct tasks, as predicted by Tab. 1.

5 CONCLUSION

In this work, we have proposed a novel stochastic algorithm for the decentralized optimization of a
sum of smooth and strongly convex functions. We have demonstrated, theoretically and empirically,
that this algorithm leads systematically to a substantial acceleration compared to state-of-the-art
works. Furthermore, our algorithm is asynchronous, decoupled, primal, and does not rely on an
extra inner-loop while being amenable to varying topology settings: each of these properties makes
it suitable for real applications. In future work, we would like to explore the robustness of such
algorithms to more challenging variabilities occurring in real-life applications.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Ludwig Arnold. Stochastic differential equations. New York, 1974.

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Decoupled greedy learning of CNNs.
In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 736–745.
PMLR, 13–18 Jul 2020.

Eugene Belilovsky, Louis Leconte, Lucas Caccia, Michael Eickenberg, and Edouard Oyallon. De-
coupled greedy learning of cnns for synchronous and asynchronous distributed learning. arXiv
preprint arXiv:2106.06401, 2021.

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of
COMPSTAT’2010, pp. 177–186. Springer, 2010.

S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized gossip algorithms. IEEE Transactions
on Information Theory, 52(6):2508–2530, 2006. doi: 10.1109/TIT.2006.874516.

Laurent Condat, Daichi Kitahara, Andrés Contreras, and Akira Hirabayashi. Proximal splitting
algorithms for convex optimization: A tour of recent advances, with new twists, 2019.

Laurent Condat, Grigory Malinovsky, and Peter Richtárik. Distributed proximal splitting algorithms
with rates and acceleration. Frontiers in Signal Processing, pp. 12, 2022.

Wendy Ellens, Floske M Spieksma, Piet Van Mieghem, Almerima Jamakovic, and Robert E Kooij.
Effective graph resistance. Linear algebra and its applications, 435(10):2491–2506, 2011.

Mathieu Even, Hadrien Hendrikx, and Laurent Massoulié. Asynchrony and acceleration in gossip
algorithms, 2020.

Mathieu Even, Raphaël Berthier, Francis Bach, Nicolas Flammarion, Hadrien Hendrikx, Pierre Gail-
lard, Laurent Massoulié, and Adrien Taylor. A continuized view on nesterov acceleration for
stochastic gradient descent and randomized gossip. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021a.

Mathieu Even, Hadrien Hendrikx, and Laurent Massoulie. Decentralized optimization with hetero-
geneous delays: a continuous-time approach. arXiv preprint arXiv:2106.03585, 2021b.

Hadrien Hendrikx. A principled framework for the design and analysis of token algorithms, 2022.

Hadrien Hendrikx, Francis Bach, and Laurent Massoulié. An accelerated decentralized stochastic
proximal algorithm for finite sums. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

Hadrien Hendrikx, Francis Bach, and Laurent Massoulié. An optimal algorithm for decentralized
finite-sum optimization. SIAM Journal on Optimization, 31(4):2753–2783, 2021. doi: 10.1137/
20M134842X.

Douglas Klein and Milan Randic. Resistance distance. Journal of Mathematical Chemistry, 12:
81–95, 12 1993. doi: 10.1007/BF01164627.

Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian Stich. A unified
theory of decentralized sgd with changing topology and local updates. In International Confer-
ence on Machine Learning, pp. 5381–5393. PMLR, 2020.

Anastasiia Koloskova, Tao Lin, and Sebastian U Stich. An improved analysis of gradient tracking
for decentralized machine learning. Advances in Neural Information Processing Systems, 34:
11422–11435, 2021.

Dmitry Kovalev, Elnur Gasanov, Alexander Gasnikov, and Peter Richtárik. Lower bounds and op-
timal algorithms for smooth and strongly convex decentralized optimization over time-varying
networks. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in
Neural Information Processing Systems, 2021a.

10

Under review as a conference paper at ICLR 2023

Dmitry Kovalev, Alexander Gasnikov, and Peter Richtárik. Accelerated primal-dual gradient method
for smooth and convex-concave saddle-point problems with bilinear coupling. arXiv preprint
arXiv:2112.15199, 2021b.

Dmitry Kovalev, Egor Shulgin, Peter Richtárik, Alexander V Rogozin, and Alexander Gasnikov.
Adom: accelerated decentralized optimization method for time-varying networks. In Interna-
tional Conference on Machine Learning, pp. 5784–5793. PMLR, 2021c.

Günter Last and Mathew Penrose. Lectures on the Poisson process, volume 7. Cambridge University
Press, 2017.

Jonas Latz. Analysis of stochastic gradient descent in continuous time. Statistics and Computing,
31(4):1–25, 2021.

Rémi Leblond, Fabian Pedregosa, and Simon Lacoste-Julien. Improved asynchronous parallel opti-
mization analysis for stochastic incremental methods. arXiv preprint arXiv:1801.03749, 2018.

Huan Li and Zhouchen Lin. Accelerated gradient tracking over time-varying graphs for decentral-
ized optimization. arXiv preprint arXiv:2104.02596, 2021.

Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. A universal catalyst for first-order optimization.
Advances in neural information processing systems, 28, 2015.

Konstantin Mishchenko, Grigory Malinovsky, Sebastian Stich, and Peter Richtárik. Proxskip: Yes!
local gradient steps provably lead to communication acceleration! finally! arXiv preprint
arXiv:2202.09357, 2022.

Angelia Nedic, Alex Olshevsky, and Wei Shi. Achieving geometric convergence for distributed
optimization over time-varying graphs. SIAM Journal on Optimization, 27(4):2597–2633, 2017.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2003.

Yurii Nesterov and Sebastian U Stich. Efficiency of the accelerated coordinate descent method on
structured optimization problems. SIAM Journal on Optimization, 27(1):110–123, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Adil Salim, Laurent Condat, Konstantin Mishchenko, and Peter Richtárik. Dualize, split, randomize:
Fast nonsmooth optimization algorithms. arXiv preprint arXiv:2004.02635, 2020.

Adil Salim, Laurent Condat, Dmitry Kovalev, and Peter Richtárik. An optimal algorithm for strongly
convex minimization under affine constraints. arXiv preprint arXiv:2102.11079, 2021.

Adil Salim, Laurent Condat, Dmitry Kovalev, and Peter Richtárik. An optimal algorithm for strongly
convex minimization under affine constraints. In International Conference on Artificial Intelli-
gence and Statistics, pp. 4482–4498. PMLR, 2022.

Kevin Scaman, Francis Bach, Sébastien Bubeck, Yin Tat Lee, and Laurent Massoulié. Optimal
algorithms for smooth and strongly convex distributed optimization in networks. In Doina Precup
and Yee Whye Teh (eds.), Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pp. 3027–3036. PMLR, 06–11 Aug
2017.

11

Under review as a conference paper at ICLR 2023

Sebastian U. Stich and Sai Praneeth Karimireddy. The error-feedback framework: Sgd with delayed
gradients. Journal of Machine Learning Research, 21(237):1–36, 2020.

12

Under review as a conference paper at ICLR 2023

A NOTATIONS

For a positive semi-definite matrix A, ‖x‖A , xTAx, f = O(g) means there is a constant C > 0
such that |f | ≤ C|g|, {ei}i≤d is the canonical basis of Rd, d ∈ N, 1 is the vector of 1, I the identity,
A+ is the pseudo-inverse of A and for a smooth convex function F ,

dF (x, y) , F (x)− F (y)− 〈∇F (y), x− y〉

is its Bregman divergence. We further write ei , ei ⊗ I.

B SADDLE POINT REFORMULATION

With 0 < ν < µ and introducing an extra dual variable x̂, we get:

inf
x∈Rd

n∑

i=1

fi(x) = inf
x,x̂∈R

n×d

x=x̂,πx̂=0

n∑

i=1

fi(xi)−
ν

2
‖x‖2 + ν

2
‖x̂‖2

= inf
x,x̂∈Rn×d

sup
y,z∈Rn×d

n∑

i=1

fi(xi)−
ν

2
‖x‖2 + ν

2
‖x̂‖2 + 〈y, x̂− x〉+ 〈z, πx̂〉

= inf
x∈Rn×d

sup
y,z∈Rn×d

inf
x̂∈Rn×d

n∑

i=1

fi(xi)−
ν

2
‖x‖2 + ν

2
‖x̂‖2 + 〈y, x̂− x〉+ 〈z, πx̂〉

= inf
x∈Rn×d

sup
y,z∈Rn×d

n∑

i=1

fi(xi)−
ν

2
‖x‖2 − 〈x, y〉 − 1

2ν
‖πz + y‖2 .

C SGD DYNAMIC

The dynamic considered when using stochastic gradients is given by:







dxt = η(x̃t − xt)dt− γ
∫

Ξ
(∇F (xt, ξ)− ỹt) dN(t, ξ)

dx̃t = η̃(xt − x̃t)dt− γ̃
∫

Ξ
(∇F (xt, ξ)− ỹt) dN(t, ξ)

dỹt = −θ(yt + zt + νx̃t)dt+ (δ + δ̃)
∫

Ξ
(∇F (xt, ξ)− ỹt)dN(t, ξ)

dyt = α(ỹt − yt)dt

dzt = α(z̃t − zt)dt− β
∑

(i,j)∈E(t)(ei − ej)(ei − ej)
T(yt + zt)dMij(t)

dz̃t = α̃(zt − z̃t)dt− β̃
∑

(i,j)∈E(t)(ei − ej)(ei − ej)
T(yt + zt)dMij(t)

(8)

D PROOF OF THE THEOREM

D.1 PROPERTIES AND ASSUMPTIONS

The following properties will be used all along the proofs of the Lemmas and Theorems and are
related to the communication of our nodes.

Lemma D.1. Under the assumptions of Theorem 3.2, if z0, z̃0 ∈ span(π), then zt, z̃t ∈ span(π)
almost surely.

Proof. It’s clear that for any i, j, we get:

π(ei − ej)(ei − ej)
T = (ei − ej)(ei − ej)

T .

Thus, the variations of (zt, z̃t) belong to span(π), and so is the trajectory.

We derive the following Lemma, similar to a result from Boyd et al. (2006):

13

Under review as a conference paper at ICLR 2023

Lemma D.2 (Spiking contraction). Under the assumptions of Theorem 3.2, we have:

∑

(i,j)∈E(t)
λij(t)

[
‖(ei − ej)(ei − ej)

Tx− πx‖2 − ‖πx‖2
]
= −xT

Λ(t)x ≤ − 1

χ∗
1

‖πx‖2 .

Proof. If i = j, then λii = 0. For a given (i, j), we get if i 6= j:

‖(ei − ej)(ei − ej)
Tx− πx‖2 = ‖πx‖2 + ‖xi − xj‖2 (9)

− 2〈π(x), (ei − ej)(ei − ej)
Tx〉

= ‖π(x)‖2 − 〈x, (ei − ej)(ei − ej)
Tx〉 . (10)

And this allows conclusion by sum.

Lemma D.3 (Effective resistance contraction). For i, j and any x ∈ R
d, we have:

‖(ei − ej)(ei − ej)
Tx‖2

Λ(t)+ ≤ χ∗
2‖(ei − ej)(ei − ej)

Tx‖ .

Proof. Indeed, we note that:

‖(ei − ej)(ei − ej)
Tx‖2

Λ(t)+ = xT(ei − ej)(ei − ej)
T
Λ(t)+(ei − ej)(ei − ej)

Tx (11)

≤ 2χ∗
2x

T(ei − ej)(ei − ej)
Tx (12)

= χ∗
2‖(ei − ej)(ei − ej)

Tx‖2 (13)

Lemma D.4 (Min and max voltage values, see, e.g., Klein & Randic (1993).). For any i, j, k,
eTi Λ(t)

+(ei − ej) ≥ eTkΛ(t)
+(ei − ej).

Proof. Let us call v , Λ(t)+(ei − ej), and for a vertex k, N(k) the set its neighbors in E(t). Note

that k 6∈ N(k). We want to prove that vi , eTi v is greater than vk. In fact, we will prove that
∀k, vi ≥ vk ≥ vj . Recall that Λ(t)Λ(t)+ = I−π, meaning that Λ(t)v = ei−ej . Thus, ∀k 6∈ {i, j},
we have (Λ(t)v)k = 0, leading to:

0 = vk
∑

k′∈N(k)

(λkk′(t) + λk′k(t))−
∑

k′∈N(k)

(λkk′(t) + λk′k(t))vk′ .

This allows us to write:

vk =

∑

k′∈N(k)(λkk′(t) + λk′k(t))vk′
∑

k′∈N(k) λkk′(t) + λk′k(t)
,

meaning that vk is a convex combination of the values of v of its neighbors. As such, for any
k 6∈ {i, j}, the value vk is inside the convex hull of the {vk′ , k′ ∈ N(k)} and cannot be strictly
superior to the maximal nor strictly inferior to the minimal value of v among its neighbors. The
only case where vk is maximal or minimal is when the {vk′ , k′ ∈ N(k)} are all equal. This means
that the only two coordinates of v that are allowed to be strictly maximal or minimal among their
neighbors are i and j. Thus, the graph being connected, there is a path beginning at any k and
leading to i or j made by iterating argmaxk′∈N(k) vk′ or argmink′∈N(k) vk′ steps, hence maxk vk
and mink vk are in {vi, vj}. But, we have vi − vj = (ei − ej)

TΛ(t)+(ei − ej) ≥ 0 and vi ≥ vj .
Thus, maxk vk = vi and mink vk = vj .

Lemma D.5 (Bound effective resistance). For any i, j, we have λij(t)(ei−ej)
TΛ(t)+(ei−ej) ≤ 1.

Proof. As Λ(t)Λ(t)+ = I− π, for any i, j, we write:

2 = (ei − ej)
TΛ(t)Λ(t)+(ei − ej) (14)

=
∑

(k,l)∈E(t)
λkl(t)(ei − ej)

T(ek − el)(ek − el)
TΛ(t)+(ei − ej) . (15)

14

Under review as a conference paper at ICLR 2023

As we have, for any i, j, k, l:

(ei − ej)
T(ek − el) =







1 if k = i and l 6= j

1 if k 6= i and l = j

−1 if k = j and l 6= i

−1 if k 6= j and l = i

2 if k = i and l = j

−2 if k = j and l = i

0 otherwise

, (16)

and applying the fact that λkl(t) = 0 if (k, l) 6∈ E(t), we can expand Eq. 15 as:

2 =
∑

l 6=j

λil(t)
(
eTi Λ(t)

+(ei − ej)− eTl Λ(t)
+(ei − ej)

)

+
∑

k 6=i

λkj(t)
(
eTkΛ(t)

+(ei − ej)− eTj Λ(t)
+(ei − ej)

)

−
∑

l 6=i

λjl(t)
(
eTj Λ(t)

+(ei − ej)− eTl Λ(t)
+(ei − ej)

)
(17)

−
∑

k 6=j

λki(t)
(
eTkΛ(t)

+(ei − ej)− eTi Λ(t)
+(ei − ej)

)

+ 2λij(t)(ei − ej)
TΛ(t)+(ei − ej)

− 2λji(t)(ej − ei)
TΛ(t)+(ei − ej) .

Using Lemma D.4, the facts that λji(t) ≥ 0 and Λ(t)+ is positive semi-definite, all the terms in Eq.
17 are positive, giving:

2λij(t)(ei − ej)
TΛ(t)+(ei − ej) ≤ 2 (18)

Next, we set ν = µ
2 such that:

1

2L
‖∇F (x)−∇F (y)‖2 ≤ dF (x, y) ≤

L

2
‖x− y‖2 ,

and
ν

2
‖x− y‖2 ≤ dF (x, y) ≤

1

2ν
‖∇F (x)−∇F (y)‖2 ,

and we remind that:
EξdF (.,ξ)(x, y) = dEξF (.,ξ)(x, y) . (19)

D.2 PROOF OF THE LEMMA 3.1

Proof of Lemma 3.1. First, we note that Λ(t) is symmetric and has a non-negative spectrum, as:

xTΛ(t)x =
∑

(ij)∈E(t)
λij(t)‖xi − xj‖2 .

From this, we also clearly see that χ1(t) = +∞ iff the graph is disconnected. Next, assuming that
the graph is connected, 0 is an eigenvalue of Λ(t) with multiplicity 1 and by definition of χ1(t), we
have TrΛ(t) ≥ n−1

χ1(t)
. As we also have:

∑

(i,j)∈E(t)
λij(t)(ei − ej)

TΛ+(t)(ei − ej) = Tr(Λ+(t)Λ(t)) = n− 1 ,

we can write:
n− 1 ≤ 2χ2(t)

∑

(i,j)∈E(t)
λij(t) = χ2(t)TrΛ(t)

15

Under review as a conference paper at ICLR 2023

and get n−1
TrΛ(t) ≤ min(χ1(t), χ2(t)). Finally, for any (i, j) ∈ E(t), using Lemma D.5, we get that:

λij(t)(ei − ej)
TΛ+(t)(ei − ej) ≤ 1 .

Thus, (

inf
(i,j)∈E(t)

λij(t)

)

(ei − ej)
TΛ+(t)(ei − ej) ≤ 1 ,

leading to:

2χ2(t) ≤
1

inf(i,j)∈E(t) λij(t)

.

D.3 PROOF OF THEOREM 3.2 AND COROLLARY 3.2.1

Proof of Theorem 3.2. Because Φ is smooth and E(t) is constant on intervals, we get via Ito’s for-
mula (Last & Penrose, 2017) applied to the semi-martingale (Xt, Yt), gluing intervals where E(t) is
constant (as well as the weights λij(t)), that:

Φ(t,Xt, Yt) = Φ(0, X0, Y0) +

∫ T

0

〈∇Φ(t,Xt, Yt),

(
1

a1(Xt, Yt)
a2(Xt, Yt)

)

〉dt

+
n∑

i=1

∫ T

0

(
Φ(t,Xt + bi1(Xt), Yt)− Φ(t,Xt, Yt)

)
dt

+
∑

(i,j)∈E(t)

∫ T

0

(
Φ(t,Xt, Yt + b

ij
2 (Yt))− Φ(t,Xt, Yt)

)
λij(t)dt+ΘT ,

where:

ΘT ,

n∑

i=1

∫ T

0

(
Φ(t,Xt− , Yt− + bi1(Xt−))− Φ(u,Xt− , Yt−)

)
(dNi(t)− dt)

+
∑

(i,j)∈E(t)

∫ T

0

(
Φ(t,Xt− + b

ij
2 (Xt−), Yt−)− Φ(t,Xt− , Yt−)

)
(dMij(t)− λij(t)dt) .

We will use the following technical Lemma, which is also difficult to prove and whose proof is
deferred to Appendix D.4:

Lemma D.6. There exists some parameters ν, η̃, η, γ, γ̃, α, α̃, θ, δ, δ̃, β, β̃ and c > 0 such that:

〈∇Φ(t,Xt, Yt),

(
1

a1(Xt, Yt)
a2(Xt, Yt)

)

〉+
(
Φ(t,Xt + b1(Xt), Yt)− Φ(t,Xt, Yt)

)

+
∑

(i,j)∈E(t)
λij(t)

(
Φ(t,Xt, Yt + b

ij
2 (Yt))− Φ(t,Xt, Yt)

)
≤ 0 a.s. ,

with A′
t = c

√
µ
LAt, with A0 = 1.

Following the lemma above, we get that:

0 ≤ E[Φ(t,Xt, Yt)] ≤ E[Φ(0, X0, Y0)] .

We thus know that At = ec
√

µ
L , which implies that:

E[AtdF (xt, x
∗)] ≤ E[Φ(0, X0, Y0)] ,

and we will obtain the conclusion of our theorem by expliciting all the constants in the following.
We note that the expected number of activated edges between [0, T] is by use of the Poisson Process
∫ T

0
Tr(Λ(t) dt, and given the gradient fire at rate 1, the expected number of gradients computed is

nT .

16

Under review as a conference paper at ICLR 2023

Proof of Corollary 3.2.1. We remind the SGD version of our Lemma:

Lemma D.7. There exists some parameters ν, η̃, η, γ, γ̃, α, α̃, θ, δ, δ̃, β, β̃ and c > 0, C > 0 such
that:

〈∇Φ(t,Xt, Yt),

(
1

a1(Xt, Yt)
a2(Xt, Yt)

)

〉+
(
Φ(t,Xt + b1(Xt), Yt)− Φ(t,Xt, Yt)

)

+
∑

(i,j)∈E(t)
λij(t)

(
Φ(t,Xt, Yt + b

ij
2 (Yt))− Φ(t,Xt, Yt)

)
≤ CAt

1

L
a.s. , (20)

with A′
t = c

√
µ
LAt, with A0 = 1.

The proof follows the same path, except that we have an extra term that writes for any T > 0:

∫ T

0

At

L
≤ 1

c
√
µL

(21)

which leads to the conclusion following an identical path. The constants will be explicited in the
next Lemma.

D.4 PROOF OF THE LEMMA D.6 AND LEMMA D.7

We first state a couple of inequalities that we will combine to obtain a bound on our Lyapunov
function.

Proposition D.8. First:

φA , At(dF (x
+, x∗)− dF (x, x

∗)) + Ãt(‖x̃+ − x∗‖2 − ‖x̃− x∗‖2)
+ ηAt〈x̃− x,∇F (x)−∇F (x∗)〉+ 2η̃Ãt〈x− x̃, x̃− x∗〉 (22)

≤ ‖∇F (x)− ỹ‖2
(

At
Lγ2

2
−Atγ + Ãtγ̃

2

)

+Atγ〈∇F (x)− ỹ, y∗ − ỹ〉+ 2γ̃Ãt〈ỹ − y∗, x̃− x∗〉 (23)

− 2γ̃Ãt (dF (x̃, x
∗) + dF (x

∗, x)− dF (x̃, x))

− ηAt(dF (x̃, x) + dF (x, x
∗)− dF (x̃, x

∗))− Ãtη̃‖x̃− x∗‖2 + Ãtη̃‖x− x∗‖2

Proof. First, we have to use optimality conditions and smoothness:

dF (x
+, x∗)− dF (x, x

∗) = dF (x
+, x)− 〈x+ − x,∇F (x∗)−∇F (x)〉 (24)

≤ L

2
‖x+ − x‖2 − 〈x+ − x,∇F (x∗)−∇F (x)〉 (25)

=
Lγ2

2
‖ỹ −∇F (x)‖2 − γ‖∇F (x)− ỹ‖2

+ γ〈∇F (x)− ỹ, y∗ − ỹ〉 (26)

Next, we note that, again using optimality conditions:

‖x̃+ − x∗‖2 − ‖x̃+ − x∗‖2 = 2〈x̃+ − x̃, x̃− x∗〉+ ‖x̃+ − x̃‖2 (27)

= −2γ̃〈∇F (x)− ỹ, x̃− x∗〉+ γ̃2‖∇F (x)− ỹ‖2 (28)

= −2γ̃〈∇F (x)−∇F (x∗), x̃− x∗〉
+ 2γ̃〈ỹ − y∗, x̃− x∗〉+ γ̃2‖∇F (x)− ỹ‖2 (29)

= −2γ̃(dF (x̃, x∗) + dF (x
∗, x)− dF (x̃, x))

+ 2γ̃〈ỹ − y∗, x̃− x∗〉+ γ̃2‖∇F (x)− ỹ‖2 (30)

Momentum in x associated with the term dF (x, x
∗) gives:

η〈x̃− x,∇F (x)−∇F (x∗)〉 = −η(dF (x̃, x) + dF (x, x
∗)− dF (x̃, x

∗)) (31)

17

Under review as a conference paper at ICLR 2023

and momentum in x̃ associated with ‖x̃− x∗‖2 leads to:

2η̃〈x− x̃, x̃− x∗〉 = −2η̃‖x̃− x∗‖2 + 2η̃〈x− x∗, x̃− x∗〉 ≤ −η̃‖x̃− x∗‖2 + η̃‖x− x∗‖2 (32)

Corollary D.8.1. Under Assumption 3.4, we have:

φ̃A , Eξ[At(dF (x
+, x∗)− dF (x, x

∗)) + Ãt(‖x̃+ − x∗‖2 − ‖x̃− x∗‖2)
+ ηAt〈x̃− x,∇F (x)−∇F (x∗)〉+ 2η̃Ãt〈x− x̃, x̃− x∗〉] (33)

≤ φA + σ2(At
Lγ2

2
−Atγ + Ãtγ̃) (34)

Proof. Using the same computations and the Eq. 36, we next note that:

Eξ[‖∇F (x, ξ)− y‖2] = Eξ[‖∇F (x, ξ)‖2 − 2〈∇F (x, ξ), y〉+ ‖y‖2] (35)

≤ ‖∇F (x)− y‖2 + σ2 (36)

Proposition D.9. Next, we show that if αBt =
δ
2 B̃t:

φB , Bt(‖y+ − y∗‖2 − ‖y − y∗‖2) + B̃t(‖ỹ+ − y∗‖2 − ‖ỹ − y∗‖2)
+ 2αBt〈y − y∗, ỹ − y〉 − 2θB̃t〈y + z + νx̃, ỹ − y∗〉
+ 2αCt〈ỹ − y, z + y − y∗ − z∗〉 (37)

≤ −δ

2
B̃t‖ỹ − y∗‖2 − δ

2
B̃t‖y − y∗‖2 − 2δ̃B̃t〈∇F (x)− ỹ, y∗ − ỹ〉

+ δB̃t‖∇F (x)−∇F (x∗)‖2 +
(

(δ + δ̃)2 − δ
)

B̃t‖∇F (x)− y‖2

− 2θB̃t〈y + z − y∗ − z∗, ỹ − y∗〉 − 2θνB̃t〈x̃− x∗, ỹ − y∗〉
+ 2αCt〈ỹ − y, z + y − y∗ − z∗〉 (38)

Proof. Using optimality conditions:

‖ỹ+ − y∗‖2 − ‖ỹ − y∗‖2 = 2〈ỹ − y∗, ỹ+ − ỹ〉+ ‖ỹ+ − ỹ‖2 (39)

= 2δ〈∇F (x)− ỹ, ỹ − y∗〉+ 2δ̃〈∇F (x)− ỹ, ỹ − y∗〉
(δ + δ̃)2‖∇F (x)− ỹ‖2 (40)

= −2δ̃〈∇F (x)− ỹ, y∗ − ỹ〉
+ δ‖∇F (x)−∇F (x∗)‖2 − δ‖ỹ − y∗‖2
(

(δ + δ̃)2 − δ
)

‖∇F (x)− ỹ‖2 (41)

The momentum in ỹ associated with the term ‖ỹ − y∗‖2 gives:

−2θB̃t〈y + z + νx̃, ỹ − y∗〉 =− 2θB̃t〈y + z − y∗ − z∗, ỹ − y∗〉
− 2θνB̃t〈x̃− x∗, ỹ − y∗〉 (42)

The momentum in y associated with the term ‖y − y∗‖2 gives:

2αBt〈ỹ − y, y − y∗〉 = −αBt‖y − y∗‖2 − αBt‖ỹ − y‖2 + αBt‖ỹ − y∗‖2 (43)

and the one associated with ‖y + z − y∗ − z∗‖2:

2αCt〈ỹ − y, z + y − y∗ − z∗〉 (44)

18

Under review as a conference paper at ICLR 2023

Corollary D.9.1. Under Assumption 3.4, we have:

φ̃B , Eξ[B̃t(‖y+ − y∗‖2 − ‖y − y∗‖2) + B̃t(‖ỹ+ − y∗‖2 − ‖ỹ − y∗‖2)
+ 2αBt〈y − y∗, ỹ − y〉 − 2θB̃t〈y + z + νx̃, ỹ − y∗〉] (45)

≤ φB + σ2((δ2 + (δ + δ̃)2)B̃t) (46)

Proof. Exactly as above.

Proposition D.10. Finally, assuming θB̃t = β̃C̃t = αCt, letting 1 ≥ τ̃ > 0,

z+ij = β(ei − ej)(ei − ej)
T(y + z) and z̃+ij = β̃(ei − ej)(ei − ej)

T(y + z), then:

φC+φD − 2θB̃t〈y + z − y∗ − z∗, ỹ − y∗〉 ,
∑

ij

λij(t)Ct

(

‖y + z+ij − y∗ − z∗‖2 − ‖y + z − y∗ − z∗‖2
)

+
∑

ij

λij(t)C̃t

(

‖z̃+ij − z∗‖2 − ‖z̃ − z∗‖2
)

+ 2α̃C̃t〈z − z̃, z̃ − z∗〉Λ(t)+ (47)

+ 2αCt〈z̃ + ỹ − z∗ − y∗, z + y − y∗ − z∗〉 − 2θB̃t〈y + z − y∗ − z∗, ỹ − y∗〉
≤ −2β̃C̃t〈z̃ − z∗, π(y + z)〉+ β̃2χ∗

2C̃t

∑

(i,j)∈E(t)
λij(t)‖(ei − ej)(ei − ej)

T(y + z)‖2

− β

χ∗
1

Ct‖π(y + z)‖2 + β(β − 1)Ct

∑

(i,j)∈E(t)
λij(t)‖(ei − ej)(ei − ej)

T(y + z)‖2

− αCt‖y + z − y∗ − z∗‖2 + α̃χ∗
1C̃t‖z − z∗‖2 − α̃C̃t‖z̃ − z∗‖2

Λ(t)+

− τ̃
1

2
β̃
ν

L
C̃t‖z − z∗‖2 + τ̃

ν

L

2αθ

δ
Bt‖y − y∗‖2 (48)

Proof. Having in mind that π(y∗ + z∗) = 0 and Λ(t)+Λ(t) = π, we get, using Lemma D.1 and
Lemma D.3 on the inequality 52:

∆z̃ ,
∑

(i,j)∈E(t)
λij(t)

(
‖z̃+ij − z∗‖2

Λ(t)+ − ‖z̃ − z∗‖2
Λ(t)+

)
(49)

=
∑

(i,j)∈E(t)
λij(t)2〈z̃ − z∗, z̃+ij − z̃〉Λ(t)+ + ‖z̃+ij − z̃‖2

Λ(t)+ (50)

= −2β̃
∑

(i,j)∈E(t)
λij(t)〈z̃ − z∗, (ei − ej)(ei − ej)

T(y + z − y∗ − z∗)〉Λ(t)+

+
∑

(i,j)∈E(t)
λij(t)β̃

2‖(ei − ej)(ei − ej)
T(y + z)‖2

Λ(t)+ (51)

≤ −2β̃〈z̃ − z∗,Λ(t)+Λ(t)(y + z)〉
+ χ∗

2β̃
2

∑

(i,j)∈E(t)
λij(t)‖(ei − ej)(ei − ej)

T(y + z)‖2 (52)

= −2β̃〈z̃ − z∗, π(y + z)〉+ χ∗
2β̃

2
∑

(i,j)∈E(t)
λij(t)‖(ei − ej)(ei − ej)

T(y + z)‖2 (53)

19

Under review as a conference paper at ICLR 2023

We also have, as y+ = y and using Lemma D.2:

∆z ,
∑

(i,j)∈E(t)
λij(t)(‖y+ + z+ij − y∗ − z∗‖2 − ‖y + z − y∗ − z∗‖2) (54)

= 2
∑

(i,j)∈E(t)
λij(t)〈y + z+ij − y − z, y + z − y∗ − z∗〉

+
∑

(i,j)∈E(t)
λij(t)‖y + z+ij − y − z‖2 (55)

= −2
∑

(i,j)∈E(t)
βλij(t)〈(ei − ej)(ei − ej)

T(y + z), y + z − y∗ − z∗〉

+
∑

(i,j)∈E(t)
β2λij(t)‖(ei − ej)(ei − ej)

T(y + z)‖2 (56)

=
∑

(i,j)∈E(t)
λij(t)

(

− β‖(ei − ej)(ei − ej)
T(y + z)‖2 − β‖π(y + z)‖2

+ β‖(ei − ej)(ei − ej)
T(y + z)− π(y + z)‖2

+ β2‖(ei − ej)(ei − ej)
T(y + z)‖2

)

(57)

≤ − β

χ∗
1

‖π(y + z)‖2 + β(β − 1)
∑

(i,j)∈E(t)
λij(t)‖(ei − ej)(ei − ej)

T(y + z)‖2 (58)

The momentum in z̃ associated with ‖z̃ − z∗‖2
Λ(t)+ gives:

2α̃C̃t〈z − z̃, z̃ − z∗〉Λ(t)+ ≤ α̃χ∗
1C̃t‖z − z∗‖2 − α̃C̃t‖z̃ − z∗‖2

Λ(t)+ (59)

And the one in z associated with ‖y + z − y∗ − z∗‖2 gives:

2αCt〈z̃ − z, z + y − y∗ − z∗〉 (60)

Then, assuming that θB̃t = β̃C̃t = αCt, we have:

2αCt〈ỹ − y, z + y − y∗ − z∗〉 − 2β̃C̃t〈z̃ − z∗, y + z − y∗ − z∗〉
− 2θB̃t〈y + z − y∗ − z∗, ỹ − y∗〉+ 2αCt〈z̃ − z, z + y − y∗ − z∗〉 (61)

= −2αCt‖y + z − y∗ − z∗‖2 (62)

At this stage, we split the negative term 62 in two halves, upper-bounding one of the halves by
remembering that ν

L ≤ 1 and introducing 1 ≥ τ̃ > 0:

−αCt‖y + z − y∗ − z∗‖2 ≤− τ̃
ν

L
αCt‖y + z − y∗ − z∗‖2 (63)

= −τ̃ β̃ ν

L
C̃t‖y + z − y∗ − z∗‖2 (64)

≤ −τ̃ 1
2
β̃
ν

L
C̃t‖z − z∗‖2 + τ̃ β̃

ν

L
C̃t‖y − y∗‖2 (65)

= −τ̃ 1
2
β̃
ν

L
C̃t‖z − z∗‖2 + τ̃

ν

L

2αθ

δ
Bt‖y − y∗‖2 (66)

Keeping in mind that θB̃t = β̃C̃t = αCt and δ
2 B̃t = αBt, we put everything together. Defining

Ψ = φA + φB + φC + φD, we have:

20

Under review as a conference paper at ICLR 2023

Ψ ≤ ‖∇F (x)− ỹ‖2
(

At
Lγ2

2
−Atγ + Ãtγ̃

2 +
(

(δ + δ̃)2 − δ
)

B̃t

)

(67)

+ ‖z̃ − z∗‖2
Λ(t)+

(

−α̃C̃t + C̃ ′
t

)

(68)

+ ‖ỹ − y∗‖2(B̃′
t −

δ

2
B̃t) (69)

+ ‖x− x∗‖2(Ãtη̃ − Ãt
νγ̃

2
) (70)

+ ‖x̃− x∗‖2(Ã′
t − Ãtη̃) (71)

+ ‖∇F (x)−∇F (x∗)‖2(δB̃t −
γ̃

2L
Ãt) (72)

+ ‖π(y + z)− π(y∗ + z∗)‖2(− β

χ∗
1

Ct) (73)

+
∑

(i,j)∈E(t)
λij(t)‖(ei − ej)(ei − ej)

T(y + z)‖2
(

χ∗
2β̃

2C̃t + β(β − 1)Ct

)

(74)

+ ‖z − z∗‖2(χ∗
1α̃− τ̃

1

2
β̃
ν

L
)C̃t (75)

+ ‖y − y∗‖(B′
t − (1− τ̃

ν

L

2θ

δ
)αBt) (76)

+ ‖y + z − y∗ − z∗‖2(C ′
t − αCt) (77)

+ dF (x, x
∗)(A′

t − ηAt) (78)

+ dF (x̃, x)(−Atη + 2γ̃Ãt) (79)

+ dF (x̃, x
∗)(Atη − 2γ̃Ãt) (80)

+ 〈∇F (x)− ỹ, y∗ − ỹ〉(−2δ̃B̃t + γAt) (81)

+ 〈ỹ − y∗, x̃− x∗〉
(

2γ̃Ãt − 2θνB̃t

)

(82)

Resolution GD

Proof of Lemma D.6. Our goal is to put to zero all of the terms appearing next to scalar products
and make the factors of positive quantities (norms or divergences) less or equal to zero. Given our
relations, we guess that each exponential has the same rate. Thus, with τ > 0, we fix δ

2 = η̃ = η =

α̃ = τ
√

ν
L , which leads to γ̃ = 2τ√

νL
using Eq. 70. Also, from Eq. 80:

4Ãt = νAt.

Next, from Eq. 72 and Eq. 82, it’s necessary that:

2Lδ = θν ,

thus θ = 4τ
√

L
ν . From Eq. 82, we get:

Ãt = 2LνB̃t.

21

Under review as a conference paper at ICLR 2023

Combining this previous equation with Eq. 81, as 4Ãt = νAt, we have δ̃ = 4Lγ. Next, Eq. 67
gives, with the equations above:

At(
Lγ2

2
− γ) + Ãtγ̃

2 +
(

(δ + δ̃)2 − δ
)

B̃t = At
Lγ2

2
−Atγ +

ν

4
γ̃2At

+
(

δ2 + δ̃2 + δ
) At

8L

= At

(
Lγ2

2
− γ +

ν

4

4τ2

νL

)

+At(2τ

√
ν

L
+ 4τ2

ν

L
+ 16L2γ2)

1

8L

≤ At(γ
2 5

2
L− γ +

5

4

τ2

L
+

√
2

8

τ

L
)

We thus pick γ = 1
4L and τ = 1

8 , so that δ̃ = 1. Via Eq. 76, we fix τ̃ = 1
8 < 1. With Eq. 75, we

then get:

β̃ = 2χ∗
1

√

L

ν

We also put α = 2τ
√

ν
L and only one last equation, Eq. 74, needs to be satisfied, for which we pick

β = 1
2 :

χ∗
2β̃

2C̃t + β(β − 1)Ct = (χ∗
2β̃α−

1

4
)Ct

This implies that χ∗
2χ

∗
1 ≤ 1

2 . Finally, it’s clear that all the equations are satisfied if we consider

At, Ãt, Bt, B̃t, Ct, C̃t as exponentials proportional to eτ
√

ν
L . Let’s pick A0 = 1.

Now, we remark that:

Φ(0, X0, Y0) = A0dF (x0, x
∗)+Ã0‖x̃0−x∗‖2+B0‖y0−y∗‖2+B̃0‖ỹ0−y∗‖2+C0‖z0+y0−z∗−y∗‖2+C̃0‖z̃0−z∗‖Λ(t)+

If x̃0 = x0, y0 = ỹ0 = ∇f(x0) and z0 = z̃0 = −π∇f(x0), then, given the linear relation between

At, Ãt, Bt, B̃t, Ct, C̃t, the L smoothness and the fact π is an orthogonal projection, we get:

Φ(0, X0, Y0) ≤ dF (x0, x
∗) +

ν

4
‖x0 − x∗‖2 + 1

8
dF (x0, x

∗) +
1

16
dF (x0, x

∗) +
1

4
dF (x0, x

∗)

(83)

+
1

32

χ1(0)

χ∗
1

ν

L
dF (x0, x

∗) . (84)

Now, we use that ν = µ
2 ≤ L and as χ1(0) ≤ χ∗

1, we get:

Φ(0, X0, Y0) ≤ 2dF (x0, x
∗) +

µ

8
‖x0 − x∗‖2 .

Given that dF (x, x
∗) = f(x)− f(x∗), this implies in particular that:

E[f(xt)]− f(x∗) ≤
(
2dF (x0, x

∗) +
µ

8
‖x0 − x∗‖2

)
e−

t
8

√
ν
L

Resolution SGD

22

Under review as a conference paper at ICLR 2023

Proof of Lemma D.7. All the previous computations hold, except that the term in front of σ2 is given
by:

(δ2 + (δ + δ̃)2)B̃t + (At
Lγ2

2
−Atγ + Ãtγ̃) = (δ2 + (δ + δ̃)2)

At

8L

+ (At
Lγ2

2
−Atγ + ν

At

4
γ̃) (85)

≤ 5

8L
At (86)

Thus, we obtain, by integration of the potential that:

Φ(t,Xt, Yt) ≤ Φ(0, X0, Y0) + σ2

∫ t

0

5

8L
Au du (87)

Now with At, Ãt, Bt, B̃t, Ct, C̃t as above and all the constants as above, we get the result, since:
∫ t

0
5
8LAu du ≤ 5√

Lµ
.

E PHYSICAL INTERPRETATION

To gain more insight on the condition 2χ∗
1[Λ]χ

∗
2[Λ] ≤ 1, we can write Λ(t) as the product of two

more interpretable quantities:

Λ(t) =
∑

(ij)∈E(t)
λij(t)

︸ ︷︷ ︸

,λ(t)

2Λ(t)

Tr Λ(t)
︸ ︷︷ ︸

,Λ̃(t)

. (88)

In this setting, λ(t) is the instantaneous expected rate of communication over the whole graph at

time t, while Λ̃(t) can be interpreted as the Laplacian of E(t) with each edge weighted with its
probability of having spiked at this instant given an edge fired at time t.

Being normalized, Λ̃(t) only contains the information about the graph’s connectivity at time t while
λ(t) is the global rate of communication. We have:

χ1[Λ(t)] =
χ1[Λ̃(t)]

λ(t)
; χ2[Λ(t)] =

χ2[Λ̃(t)]

λ(t)
. (89)

If we make the following assumptions,

Assumption E.1. There is a λ∗ > 0 such that, at all time t, λ(t) ≥ λ∗.

Assumption E.2. There are χ̃∗
1 > 0, χ̃∗

2 > 0 such that, for all t, χ1[Λ̃(t)] ≤ χ̃∗
1 and χ2[Λ̃(t)] ≤ χ̃∗

2.

meaning we assume bounds on the worst rate of communication and on the worst graph connectivity,

we immediately have χ1[Λ(t)] ≤ χ̃∗
1

λ∗ and χ2[Λ(t)] ≤ χ̃∗
2

λ∗ , leading to χ∗
1 ≤

χ̃∗
1

λ∗ and χ∗
2 ≤

χ̃∗
2

λ∗ . Then,
if the following condition on the worst rate of communication is met

√

2χ̃∗
1χ̃

∗
2 ≤ λ∗, (90)

meaning that the instantaneous global communication rate is always larger than some spectral quan-
tity quantifying the graph’s connectivity, it directly implies 2χ∗

1[Λ]χ
∗
2[Λ] ≤ 1 and the convergence

of our method.

F COMPARISON WITH OTHER WORKS

We now explain the results of Sec. 4.1.

23

Under review as a conference paper at ICLR 2023

F.1 COMPARISON WITH ADOM+

Using the notations of Kovalev et al. (2021a), we know that gossip matrices satisfy, for q ∈ N:

‖W (q)x− x‖2 ≤ (1− 1

χ
)‖x‖2 ,

for some χ ≥ 1. It implies that:

sp(W (q)) ⊂ [1−
√

1− 1

χ
, 2] ,

and for χ large enough, 1 −
√

1− 1
χ ≈ 1

2χ . Consequently, up to a renormalization factor, we have

χ∗
1[W] ≈ 2χ and:

Tr(W (q)) ≤ 2n .

F.2 ACCELERATION OF THE CONTINUIZED FRAMEWORK

Under the notation of Even et al. (2021a), we note that, an additional simplification holds: θ′ARG =
θARG. We remind that L = AAT and that Aevw =

√
Pvw(ev−ew). Next, we note that by definition:

Rvw

Pvw
,

eTvwA
+Aevw

Pvw
(91)

=
eTvwA

+(ev − ew)√
Pvw

(92)

=
(A+Tevw)

T(ev − ew)√
Pvw

(93)

=
((AAT)+TAevw)

T(ev − ew)√
Pvw

(94)

= (ev − ew)
TL+(ev − ew) , (95)

so we can directly relate their bounds to ours. Next, as LL+ = I− π, we observe that:

n− 1 = Tr(LL+) (96)

=
∑

(ij)∈E
Pij(ei − ej)

TL+(ei − ej) (97)

≤ 2χ2[L]
∑

(ij)∈E
Pij (98)

= χ2[L]TrL , (99)

which, together with the fact that χ1[L] ≥ n−1
TrL (see Lemma 3.1), leads to:

n− 1 ≤ 2
√

χ∗
1[L]χ∗

2[L]

in the setting of Even et al. (2021a) where Tr L = 2.

F.3 COMPARISON WITH METHODS THAT USE THE SPECTRAL GAP

We note that:
√
ρ∗|E(t)| = √χ1

√

‖Λ(t)‖|E(t)|. Further, we assume
sup(i,j)∈E(t) λij(t)

inf(i,j)∈E(t) λij(t)
= O(1) as n

grows. This condition can be understood as a way to prevent degenerated behaviors in the network’s
connectivity: the worst case communication rate should always be greater than some fraction of the
largest rate, with a fraction value not growing with the network’s size. This condition is always met
if we assume there are both a lower and upper bound on the communication rate of the channels
linking the nodes, which seems reasonable in a physical setting. Then, using Lemma 3.1, recalling

24

Under review as a conference paper at ICLR 2023

that Tr(Λ(t)) = 2
∑

(ij)∈E(t) λij(t) ≤ 2|E(t)| sup(i,j)∈E(t) λij(t) and Tr(Λ(t)) ≤ (n − 1)‖Λ(t)‖,
we obtain:

√
χ2Tr(Λ(t)) ≤ 1

√
2 inf(i,j)∈E(t) λij(t)

√

TrΛ(t)
√

TrΛ(t) (100)

√
χ2Tr(Λ(t)) ≤ 1

√
2 inf(i,j)∈E(t) λij(t)

√

2|E(t)| sup
(i,j)∈E(t)

λij(t)
√

TrΛ(t) (101)

≤
√

sup(i,j)∈E(t) λij(t)

inf(i,j)∈E(t) λij(t)

√

|E(t)|
√

(n− 1)‖Λ(t)‖ (102)

≤
√

sup(i,j)∈E(t) λij(t)

inf(i,j)∈E(t) λij(t)
|E(t)|

√

‖Λ(t)‖ (103)

G FURTHER EXPERIMENTS

In this section, we present additional numerical results comparing our method DADAO to ADOM+
(Kovalev et al., 2021a) in the time-varying setting and report our results using SGD.

G.1 TIME-VARYING SETTING

In this section, we study the effect of the parameter χ∗
1 on the convergence speed of ADOM+

(Kovalev et al., 2021a) and DADAO by varying it between χ∗
1 ∈ {3, 33, 180, 233} for random geo-

metric graphs of size n = 20 on the decentralized linear regression task with time-varying topology.
To visualize the difference in connectivity these changes in χ∗

1 represent, we plot four graphs of the
said types with varying values of χ∗

1 in Fig. 3. In Fig. 4, we show the different convergence speeds
it entails.

Figure 3: Examples of random geometric graphs of size n = 20 with χ∗
1 taking values in, from left

to right, χ∗
1 ∈ {3, 33, 180, 233}.

As expected, we observe in Fig. 4 that varying χ∗
1 does not affect the number of gradient computa-

tions of both ADOM+ M.-C and DADAO, but the smaller the χ∗
1, the better the slope for ADOM+

in terms of gradient steps. We also confirm for all three methods that the smaller χ∗
1, the less com-

munication is needed to reach an ǫ-precision.

G.2 STOCHASTIC GRADIENT DESCENT WITH DADAO

In the SGD setting, we randomly sample a mini-batch of size B data points on each worker and
compute the losses and stochastic gradients ∇fi(xi, ξ) w.r.t. these samples. To study the effect of
the quadratic error σ2 of our gradients on the resulting biases of our parameters, we fix both the data
(for linear regression) and the communication network (graph star of size n = 20) and try different
values of B. To monitor our results, we plot the mean distance to x∗ of the running average over
time of our local parameters. Then, taking the notations introduced in Sec. 4.2, we can write:

1

n

n∑

i=1

∥
∥
∥
∥
∥
∥

1

ki

ki∑

j=1

x
(i)
j − x∗

∥
∥
∥
∥
∥
∥

2

,

where ki designates a local event counter. We report our results in Fig. 5.

25

Under review as a conference paper at ICLR 2023

� ���� ���� ���� ���� ����� �����

������������������������

��
���

��
��

��
��

��
��

��
�

��
�

1 n

n ∑ i=
1‖
x i
−

x
‖ ‖

2

	�������������
������������������

� ���� ���� ���� ���� ����� �����

������������������������

��
���

��
��

��
��

��
��

��
�

��
�

1 n

n ∑ i=
1‖
x i
−

x
‖ ‖

2

	�������������
������������������

� ���� ���� ���� ���� ����� �����

������������������������

��
���

��
��

��
��

��
��

��
�

��
�

1 n

n ∑ i=
1‖
x i
−

x
‖ ‖

2

	�������������
������������������

� ���� ���� ���� ���� ����� �����

������������������������

��
���

��
��

��
��

��
��

��
�

��
�

1 n

n ∑ i=
1‖
x i
−

x
‖ ‖

2

	�������������
������������������

���� ���� ���� ��
� ���� ����
�� ����!������������!���� ���� ��	

��
#��

��
#

��
#�

��
#�

��
�

��
�

1 n

n ∑ i=
1‖
x i
−

x
‖ ‖

2

�"��������� ����� ���� �����"��!�

�
���������
�
���
�!��

���� ���� ���� ���� ���� ����

���������������
������
������ ���

��
���

��
��

��
��

��
��

��
�

��
�

1 n

n ∑ i=
1‖
x i
−

x
‖ ‖

2

	�������������
������������������

���� ���� ���� ���� ���� ����

���������������
������
������ ���

��
���

��
��

��
��

��
��

��
�

��
�

1 n

n ∑ i=
1‖
x i
−

x
‖ ‖

2

	�������������
������������������

���� ���� ���� ���� ���� ����

���������������
������
������ ���

��
���

��
��

��
��

��
��

��
�

��
�

1 n

n ∑ i=
1‖
x i
−

x
‖ ‖

2

	�������������
������������������

� ����� ����� ����� ����� �����
	��
��������������������
�����

��
���

��
��

��
��

��
��

��
�

��
�

1 n

n ∑ i=
1‖
x i
−

x
‖ ‖

2

����
���
���
������������
���
���

� ����� ����� ����� ����� �����
	��
��������������������
�����

��
���

��
��

��
��

��
��

��
�

��
�

1 n

n ∑ i=
1‖
x i
−

x
‖ ‖

2
����
���
���
������������
���
���

� ����� ����� ����� ����� �����
	��
��������������������
�����

��
���

��
��

��
��

��
��

��
�

��
�

1 n

n ∑ i=
1‖
x i
−

x
‖ ‖

2

����
���
���
������������
���
���

� ����� ����� ����� ����� �����
	��
��������������������
�����

��
���

��
��

��
��

��
��

��
�

��
�

1 n

n ∑ i=
1‖
x i
−

x
‖ ‖

2

����
���
���
������������
���
���

Figure 4: Comparison between ADOM+ (Kovalev et al., 2021a) and DADAO, using the same data
for linear regression on n = 20 workers and the same sequence of random connected graphs with
varying topology and χ∗

1 taking values in, from the left to the right column, χ∗
1 ∈ {3, 33, 180, 233}.

� ����� ������ ������ ������

������������������
�����
����������

��
��

��
�

��
�

	
��
��
�

��
��
�x

*

��������������
������������������

�����
������
������

Figure 5: Effect of the batch size B on the convergence of our method DADAO. Recall that the full
batch size m equals 100.

We confirm that the less variance on our stochastic gradients, the less our estimates 1
ki

∑ki

j=1 x
(i)
j

are biased.

G.3 COMPARISON BETWEEN DADAO AND MSDA ON THE STAR GRAPH

For star graphs of size n ∈ {10, 20, 70, 200, 300, 1000, 2000}, we ran DADAO and MSDA on the
task of distributed linear regression. We considered the evolution of the average distance to the
optimal with the number of gradient steps and commmunication steps in log scale for each run, and
computed the slope of each line. For each graph size, we report in Fig. 6 the rate between the slope
for MSDA and the slope for DADAO. We remark that the rate between the gradient complexities

26

Under review as a conference paper at ICLR 2023

0 500 1000 1500 2000
size n of the tar graph.

0

5

10

15

20
Computation rate

mea ure
14

0 500 1000 1500 2000
 ize n of the tar graph.

0

1

2

3

4

5
Communication rate

mea ure
14n−1/2

Rate between the lope of MSDA and DADAO in log cale for tar graph of ize n.

Figure 6: Rate between the slopes of MSDA and DADAO for star graphs of size n ∈
{10, 20, 70, 200, 300, 1000, 2000}.

of DADAO and MSDA is indeed a O(1) (with a constant value of ≃ 14) while MSDA is indeed
O(√n) worse than DADAO for communications on the star graph, as stated in Tab. 2.

H PRACTICAL IMPLEMENTATION

In this section, we describe in more detail the implementation of our algorithm. As we did not
physically execute our method on a compute network but carried it out on a single machine, all the
asynchronous computations and communications had to be simulated. Thus, we will first discuss the
method we followed to simulate our asynchronous framework before detailing the practical steps of
our algorithm through a pseudo-code.

H.1 SIMULATING THE POISSON POINT PROCESSES

To emulate the asynchronous setting, before running our algorithm, we generate 2 independent
sequences of jump times at the graph’s scale: one for the computations and one for the communi-
cations. As we considered independent P.P.Ps, the time increments follow a Poisson distribution.
At the graph’s scale, each node spiking at a rate of 1, the Poisson parameter for the gradient steps
process is n. Following the experimental setting of the Continuized framework (Even et al., 2021a),
we considered that all edges in E(t) had the same probability of spiking between t and t + dt.
Thus, given the sequence of graphs E(t) and L(t) their corresponding Laplacians, we computed the
parameter λ∗ of the communication process as such:

λ∗ =

√

2 sup
t

χ1

[L(t)
|E(t)|

]

sup
t

χ2

[L(t)
|E(t)|

]

. (104)

Having generated the 2 sequences of spiking times at the graph’s scale, we run our algorithm
playing the events in order of appearance, attributing the location of the events by sampling
uniformly one node if the event is a gradient step or sampling uniformly an edge in E(t) if it is a
communication.

H.2 PSEUDO CODE

We keep the notations introduced in Eq. 3 and recall the following constant values specified in
Appendix D.4:

η = 1
8

√
ν
L γ = 1

4L δ = 1
4

√
ν
L α = 1

4

√
ν
L β = 1

2 θ = 1
2

√
L
ν

η̃ = 1
8

√
ν
L γ̃ = 1

4
√
νL

δ̃ = 1 α̃ = 1
8

√
ν
L β̃ = 2χ∗

1[Λ]
√

L
ν ν = µ

2

27

Under review as a conference paper at ICLR 2023

For the sake of completeness, we also specify the matrix A describing the linear ODE 6:

A =










−η η 0 0 0 0
η̃ −η̃ 0 0 0 0
0 0 −α α 0 0
0 −θν −θ 0 −θ 0
0 0 0 0 −α α
0 0 0 0 α̃ −α̃










(105)

As described in Appendix H.1, we call PPPspikes the process mentioned above, returning the
ordered sequence of events and time of spikes of the two P.P.Ps. Then, we can write the pseudo-
code of our implementation of the DADAO optimizer in Algorithm 2.

Algorithm 2: Pseudo-code of our implementation of DADAO on a single machine.

Input: On each machine i ∈ {1, ..., n}, an oracle able to evaluate ∇fi, Parameters
µ,L, χ∗

1, tmax, n, λ
∗.

The sequence of time-varying graphs E(t).
1 Initialize on each machine i ∈ {1, ..., n}:
2 Set X(i) = (xi, x̃i, ỹi) and Y (i) = (yi, zi, z̃i) to 0 ;

3 Set constants ν, η̃, η, γ, α, α̃, θ, δ, δ̃, β, β̃ using µ,L, χ∗
1;

4 Set A;

5 T (i) ← 0 ;

6 ListEvents, ListTimes← PPPspikes(n, λ∗, tmax) ;
7 nevents ← |ListEvents| ;
8 for k ∈ [[1, nevents]] do
9 if ListEvents[k] is to take a gradient step then

10 i ∼ U([[1, n]]) ;

11

(
X(i)

Y (i)

)

← exp
(
(ListTimes[k]− T (i))A

)
(
X(i)

Y (i)

)

;

12 xi ← xi − γ (∇fi(xi)− νxi − ỹi);
13 x̃i ← x̃i − γ̃ (∇fi(xi)− νxi − ỹi);

14 ỹi ← ỹi + (δ + δ̃) (∇fi(xi)− νxi − ỹi);

15 T (i) ← ListTimes[k] ;

16 else if ListEvents[k] is to take a communication step then
17 (i, j) ∼ U(E(ListTimes[k])) ;

18

(
X(i)

Y (i)

)

← exp
(
(ListTimes[k]− T (i))A

)
(
X(i)

Y (i)

)

;

19

(
X(j)

Y (j)

)

← exp
(
(ListTimes[k]− T (j))A

)
(
X(j)

Y (j)

)

;

20 mij ← (yi + zi − yj − zj); // Message exchanged.

21 zi ← zi − βmij ;

22 z̃i ← z̃i − β̃mij ;
23 zj ← zj + βmij ;

24 z̃j ← z̃j + β̃mij ;

25 T (i) ← ListTimes[k];

26 T (j) ← ListTimes[k];
27 return (xi)1≤i≤n, the estimate of x∗ on each worker i.

28

	Introduction
	Related Work
	Fast Asynchronous Algorithm for Time-Varying Networks
	Gossip Framework
	Dynamic to optimum
	Theoretical guarantees

	Practical implementation
	Expected computational complexity
	Algorithm
	Numerical results

	Conclusion
	Notations
	Saddle Point Reformulation
	SGD dynamic
	Proof of the theorem
	Properties and assumptions
	 Proof of the Lemma 3.1
	Proof of Theorem 3.2 and Corollary 3.2.1
	Proof of the Lemma D.6 and Lemma D.7

	Physical interpretation
	Comparison with other works
	Comparison with ADOM+
	Acceleration of the continuized framework
	Comparison with methods that use the spectral gap

	Further experiments
	Time-Varying setting
	Stochastic Gradient Descent with DADAO
	Comparison between DADAO and MSDA on the star graph

	Practical Implementation
	Simulating the Poisson Point Processes
	Pseudo Code

