
In-Context Learning for Latency Estimation

Timur M. Carstensen1* Thomas Elsken3† Martin Rapp2

1
University of Freiburg, Germany

2
Bosch Center for Artificial Intelligence (BCAI), Renningen, Germany

3
Recogni Inc., Munich, Germany

Abstract Neural architectures must be computationally efficient for edge device deployment to per-

form well under hardware constraints. Current Hardware-Aware NAS (HW-NAS) methods

use surrogate models to predict hardware metrics (e.g., latency) during architecture search.

These surrogate models typically require large amounts of data to train or finetune and

rely on search-space specific encodings and meta-learning. We propose an In-Context

Learning-based method for hardware latency estimation that generalises to unseen hard-

ware in a single forward pass with a few labelled samples. Our surrogate is trained on real

architecture-latency pairs with data augmentation to improve sample efficiency. Our method

surpasses the state-of-the-art in Spearman’s 𝜌 and is up to 72% to 92% more sample efficient.

1 Introduction

Hardware-aware neural architecture search (HW-NAS) (Benmeziane et al., 2021) tackles the

problem of automatically designing neural architectures that both achieve a high task performance

(e.g., high accuracy) and run efficiently on the hardware (e.g., low latency). HW-NAS is typically

formulated as an iterative optimization procedure (e.g., using evolutionary search) that may evaluate

more than 10, 000 neural architectures (Real et al., 2017; Pham et al., 2018). Profiling such a large

number of neural architectures on real hardware to obtain latency measurements represents a

major bottleneck to HW-NAS (Benmeziane et al., 2021; Cai et al., 2018). This is because it may take

minutes to compile and deploy a single neural architecture, and it is difficult to parallelize due to

limited number of physical hardware boards and license restrictions in the required deployment

tools.

Surrogate models allow to predict the latency of a certain neural architecture instead of profiling

it on real hardware. For instance, Cai et al. (2019) fit a small neural network to predict the latency

given a vectorized representation of the neural architecture. Such models are specific to a certain

hardware target and NAS search space. Zhang et al. (2021) fit detailed models that predict the

latency of individual neural building blocks such as layers. This allows to predict the latency

of a large variety of neural architectures, but still is specific to a single hardware target. Both

works require substantial amounts of training data that needs to be obtained first whenever a

new hardware target is observed. Lee et al. (2021) and Akhauri and Abdelfattah (2023) aim at

generalizing across different hardware targets by formulating the problem as a few-shot regression

problem with meta-learning, where the prediction model is finetuned on few data samples for the

specific hardware target at hand. However, still substantial amounts of training data are required

for pre-training the regression model.

We introduce a novel hardware surrogate model to predict the latency of new neural archi-

tectures on new hardware targets that requires a) less training data for training and b) fewer

*This work was done as part of a master’s thesis at the Bosch Center for Artificial Intelligence (BCAI).

†Work done while at the Bosch Center for Artificial Intelligence (BCAI).

AutoML 2024 Workshop Track © 2024 the authors, released under CC BY 4.0

mailto:carstent@cs.uni-freiburg.de
mailto:thomas.elsken@recogni.com
mailto:martin.rapp@de.bosch.com
https://creativecommons.org/licenses/by/4.0/

latency samples on a new hardware target. This is achieved by 1) formulating the problem as an

in-context learning problem and 2) pre-training the predictor model on synthetic hardware targets

that augment the real measurement data.

2 Method

2.1 Problem formulation

We aim at predicting the latency of a given neural architecture 𝐴 ∈ A (query) on a hardware

device ℎ ∈ H. Additionally, a set of 𝑛 support examples D is provided, where each example

comprises a neural architecture and its latency on hardware ℎ: D = {(𝐴𝑖 , 𝑦𝑖) : 𝑖∈{1, . . . , 𝑛}}. We

formulate this problem as an in-context learning problem, and fit a regression model 𝑓 (𝐴,D;𝜃),
parameterized by 𝜃 , once, and do not require any fine-tuning to a specific hardware afterwards.

2.2 Neural architecture encoding

Following Akhauri and Abdelfattah (2023), we use Zero-Cost Proxies (ZCPs) to encode neural

architectures. Since ZCPs have been introduced as predictors of model performance in terms of final

validation accuracy, it is not directly obvious why they should inform us about an architecture’s

hardware-latency. Empirically, we can show that some proxies such as l2_norm, FLOPs, # params,

and synflow (Tanaka et al., 2020) have consistently high rank correlation with hardware-latencies

across devices (see Appendix B). Contrary to the final model presented in Akhauri and Abdelfattah

(2023) and Lee et al. (2021), we do not additionally use search-space specific representations as

an architecture encoding (White et al., 2023). The main benefit of this approach is that the input

dimension to our model stays the same when moving to a new search space, given that one

uses the same ZCPs. The ZCPs for the search spaces we consider are a subset of those covered

in Krishnakumar et al. (2022). See Appendix C for a complete list.

More concretely, we represent each architecture 𝐴 in a search-space A as a vector of ZCP

measurements:

𝒙𝐴 = {𝑧𝑐𝑝1(𝐴), 𝑧𝑐𝑝2(𝐴), . . . , 𝑧𝑐𝑝𝑘 (𝐴)} (1)

2.3 Surrogate model architecture

The architecture of the surrogate model is a Transformer with masked attention that only allows

attention between the query architecture 𝐴 to support examples in D, similar to the architecture

used by Prior-data Fitted Networks (PFN) (Müller et al., 2022). Finally, we formulate latency

prediction as a classification problem, where we divide the latency range for the current hardware

into 𝑏 buckets whose borders are chosen such that they contain an equal number of samples under

the prior data.

2.4 Synthetic data priors

The priors are used to generate synthetic samples to train our model more effectively with limited

amounts of latency measurements on real hardware (HW). Here, a sample refers to a set of

architecture-latency pairs (datapoints) on some device 𝑗 which is divided into a support and query

set of size 𝑛 and𝑚, respectively. To construct a batch, we repeatedly sample from the respective

prior until we reach our desired batch size.

The priors employed in our method use real latency data and can thus be seen as a form of data

augmentation (Jaitly and Hinton, 2013), deviating from the fully synthetic priors in the original

PFN (Müller et al., 2022). Our priors differ in the choice of the augmentation method that acts on

the sampled architectures 𝐴, corresponding latencies L across the set of devices 𝐷 and ZCPs:

1. Latency scaling: this prior scales the latency values by a random factor 𝑥 ∼ U (0, 1).

2

2. Synthetic HW: this prior creates a synthetic hardware target. Latency values are computed by a

weighted average between several random hardware targets.

3. Synthetic HW + ZCPs: this prior extends the synthetic hardware prior by a random linear

combination of ZCPs. This is motivated by the fact that some ZCPs are cheap to obtain and have

been shown to correlate with hardware-latency and could thus be good predictors thereof. This

prior is shown in Algorithm 1.

Algorithm 1 Linear combination in latencies and ZCPs (Synthetic HW + ZCP)

Require: architecture representation X, function 𝐿(𝑎, 𝑑), function 𝑍 (𝑎), set of devices H, set of

architectures 𝐴

1: sample 𝛼 ∼ U (0, 1)
2: sample 𝐻 ∈ H with |𝐻 | ∼ U (1, |H|)
3: sample 𝐾 ∈ 𝑍𝐶𝑃 with |𝐾 | ∼ U (1, #𝑍𝐶𝑃𝑠)
4: sample w ∼ U (0, 1) |𝐻 |+|𝐾 |
5: w← Softmax(w) ⊲ ensure that

∑ |𝐻 |
𝑖=1

𝑤𝑖 = 1

6: 𝑦 ← []

7: for each architecture 𝑎 in 𝐴 do
8: 𝑦 = 𝛼 ∗∑ |𝐻 |

𝑖=1
𝑤𝑖 ∗ 𝐿(𝑎, 𝐻𝑖) +

∑ |𝐻 |+|𝐾 |
𝑗= |𝐻 |+1𝑤 𝑗 ∗ 𝑍 (𝑎)𝐾𝑗

9: append 𝑦 to 𝑦

10: end for
11: return {X, ŷ}

3 Experiments

To evaluate the efficacy of our method, we use the same latency datatsets as HELP (Lee et al., 2021):

421, 875/135, 000 latency measurements across 27 hardware devices from four classes (GPU, CPU,

mobile, and embedded) for the NAS-Bench-201 and FBNet search spaces (see Appendix A for a

complete list of hardware devices). We also follow the same data splits as HELP, using 900 and 4, 000
architectures in our training set for NB201 and FBNet, respectively, and 14, 725 and 1, 000 for the

validation and test sets. While we had access to latency measurements for all 15, 625 architectures

for NAS-Bench-201, we only had measurements for 5, 000 out of all 1021 architectures in the FBNet

search space. We use the same hardware device split as HELP (see Appendix A). To make our

results comparable to that of HELP, we use 20 support and 1 query datapoint to match the number

of latency samples used for hardware encoding (10) and few shot adaptation (10). We evaluate the

performance of our method using Spearman’s 𝜌 which quantifies the rank correlation between

predicted and ground truth latencies. Rank correlation is particularly relevant when deploying

this method in hardware-aware NAS, where the goal is to find the optimal architecture. For each

reported result we report the mean and standard deviation across 5 random seeds.

3.1 Latency estimation

We trained the model for 50, 000 iterations and evaluated it on the test set for each prior. The results

for NB201 can be seen in Table 1. Our model trained on the Synthetic HW + ZCP was able to

outperform all previous relevant works on HW-latency surrogate models in terms of Spearman’s 𝜌

for the test device and architecture set for the NB201 search space when taking the mean across

test devices. In particular we achieved a 2.2% improvement in mean Spearman’s 𝜌 over HELP,
going from 0.932 to 0.953. The greatest per-device performance uplift was achieved for the Pixel2,

going from a Spearman’s 𝜌 of 0.802 to 0.898 (model trained with scaling-prior), which constitutes

a 11.97% increase in performance. On a per-device level, we are able to outperform HELP on all

3

Table 1: Comparison of the latency estimators on unseen devices for NAS-Bench-201 in terms of

Spearman’s 𝜌 . Values for FLOPS, Layer-wise Predictor, BRP-NAS, and HELP obtained from

Table 3 in Lee et al. (2021). Mean ± (standard deviation) over 5 random seeds

Method Transfer Sample

Unseen Device

GPU CPU Pixel2

FLOPS - - 0.950 0.826 0.765

Layer-wise Predictor - - 0.667 0.866 -

BRP-NAS (Dudziak et al., 2020) - 900 0.814 0.796 0.666

BRP-NAS(+extra samples) - 3200 0.822 0.805 0.693

HELP (Lee et al., 2021) ✓ 20 0.987 0.989 0.802

PFN (no prior) ✓ 20 0.909 ± (0.01) 0.931 ± (0.009) 0.828 ± (0.02)

PFN (latency scaling) ✓ 20 0.978 ± (0.005) 0.979 ± (0.003) 0.898 ± (0.002)

PFN (Synthetic HW) ✓ 20 0.985 ± (0.002) 0.983 ± (0.001) 0.895 ± (0.002)

PFN (Synthetic HW + ZCP) ✓ 20 0.991 ± (0.002) 0.983 ± (0.001) 0.885 ± (0.003)

Method

Unseen Device Mean

Raspi4 Eyeriss FPGA

FLOPS 0.846 0.437 0.900 0.787

Layer-wise Predictor - - - 0.767

BRP-NAS (Dudziak et al., 2020) 0.847 0.811 0.801 0.789

BRP-NAS(+extra samples) 0.853 0.830 0.828 0.805

HELP (Lee et al., 2021) 0.890 0.940 0.985 0.932

PFN (no prior) 0.867 ± (0.01) 0.655 ± (0.04) 0.925 ± (0.01) 0.8529 ± (0.009)

PFN (latency scaling) 0.918 ± (0.006) 0.721 ± (0.07) 0.982 ± (0.003) 0.912 ± (0.01)

PFN (Synthetic HW) 0.918 ± (0.005) 0.895 ± (0.02) 0.992 ± (0.003) 0.945 ± (0.005)

PFN (Synthetic HW + ZCP) 0.918 ± (0.001) 0.947 ± (0.01) 0.994 ± (0.002) 0.953 ± (0.004)

devices except for the CPU. Here, we achieved a Spearman’s 𝜌 of 0.983, which is a 0.6% drop in

performance to HELP’s 0.989.
FBNet performance We ran the same experiments as above for the FBNet search space, the results

of which are summarised in Table 5 (see Appendix D). Just as we observed for the NB201 search

space, our model improved consistently as we increase the complexity of our priors. Moreover,

the performance uplift over HELP was even more pronounced across all three test devices as we

improved by 4.5% (0.951 vs. 0.91). In this case, our model with the Synthetic HW + ZCP was better

than HELP across all test devices.

3.2 Sample efficiency

Since acquiring latency samples is expensive, we also evaluate the sample efficiency of our method

by varying the number of training samples. For this, we consider two settings: (1) varying the total

number of training samples and (2) additionally varying the number of hardware devices in the

training set. For the latter, we argue that hardware device efficiency is much more beneficial since

adding a new device to one’s data collection pipeline is generally much more time intensive and

expensive than acquiring more latency samples.

For the first scenario, the results are shown in Figure 1. We observe that our model trained on

the Synthetic HW prior outperforms HELP with only 22% of the samples. For FBNet we outperform

HELP for all tested number of samples which equates to a 92% improvement in sample efficiency in

the best case.

4

(a) NB201: sample efficiency (b) FBNet: sample efficiency (c) NB201: device efficiency

Figure 1: Model performance as a function of the number of samples and devices used during training

when using the Synthetic HW prior. (a) Nine devices on NB201 with training samples ranging

from 450 to 8, 100 in 450 sample increments. (b) Nine devices on FBNet with training samples

ranging from 2, 250 to 36, 000 in 2, 250 sample increments. (c) NB201 with varying number of

training devices (1 to 9) and samples per device (100 to 900).

In the second scenario, we observe that training with either six or nine devices results in near

identical performance (Figure 1c). However, there is quite a drastic drop in performance for any

fewer devices used. Though, our model outperforms HELP when using only six devices and 300

training samples per device which equates to a 77.8% improvement in sample efficiency.

4 Conclusion

We propose a latency surrogate based on in-context learning that is trained on real data points

with data augmentation. We show that our method is effective, outperforming the current state of

the art w.r.t. prediction quality and sample efficiency.

5 Limitation

The main limitation of our method is that one needs to retrain the entire model when moving to

a different search space. Future work may improve upon our method by investigating the use of

different neural architecture encodings that may facilitate such a transfer.

6 Broader Impact Statement

Our method helps at making HW-NAS more efficient, and hence, more accessible, pushing towards

democratization of AI, which is the overarching goal of AutoML. This makes it easier to automati-

cally design hardware-efficient deep learning models and, hence, potentially amplifies the societal

impacts – both positive and negative – of deep learning.

Acknowledgements. Robert Bosch GmbH is acknowledged for financial support.

5

References

Abdelfattah, M. S., Mehrotra, A., Dudziak, L., and Lane, N. D. (2021). Zero-cost proxies for

lightweight NAS. In International Conference on Learning Representations (ICLR).

Akhauri, Y. and Abdelfattah, M. S. (2023). Multi-predict: Few shot predictors for efficient neural

architecture search. In AutoML Conference 2023.

Benmeziane, H., El Maghraoui, K., Ouarnoughi, H., Niar, S., Wistuba, M., and Wang, N. (2021).

Hardware-aware neural architecture search: Survey and taxonomy. In IJCAI, pages 4322–4329.

Cai, H., Gan, C., Wang, T., Zhang, Z., and Han, S. (2019). Once-for-all: Train one network and

specialize it for efficient deployment. arXiv preprint arXiv:1908.09791.

Cai, H., Zhu, L., and Han, S. (2018). ProxylessNAS: Direct neural architecture search on target task

and hardware. In International Conference on Learning Representations (ICLR).

Dudziak, L., Chau, T., Abdelfattah, M., Lee, R., Kim, H., and Lane, N. (2020). Brp-nas: Prediction-

based NAS using GCNs. In Advances in Neural Information Processing Systems (NeurIPS), vol-
ume 33, pages 10480–10490.

Jaitly, N. and Hinton, G. E. (2013). Vocal tract length perturbation (vtlp) improves speech recognition.

In Proc. ICML Workshop on Deep Learning for Audio, Speech and Language, volume 117, page 21.

Krishnakumar, A., White, C., Zela, A., Tu, R., Safari, M., and Hutter, F. (2022). Nas-bench-suite-zero:

Accelerating research on zero cost proxies. In Advances in Neural Information Processing Systems
(NeurIPS), volume 35, pages 28037–28051.

Lee, H., Lee, S., Chong, S., and Hwang, S. J. (2021). Hardware-adaptive efficient latency prediction

for NAS via meta-learning. In Advances in Neural Information Processing Systems (NeurIPS).

Lin, M., Wang, P., Sun, Z., Chen, H., Sun, X., Qian, Q., Li, H., and Jin, R. (2021). Zen-nas: A zero-shot

NAS for high-performance image recognition. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pages 347–356.

Lopes, V., Alirezazadeh, S., and Alexandre, L. A. (2021). Epe-nas: Efficient performance estimation

without training for neural architecture search. In International conference on artificial neural
networks, pages 552–563. Springer.

Mellor, J., Turner, J., Storkey, A., and Crowley, E. J. (2021). Neural architecture search without

training. In International Conference on Machine Learning (ICML), pages 7588–7598. PMLR.

Müller, S., Hollmann, N., Arango, S. P., Grabocka, J., and Hutter, F. (2022). Transformers can do

bayesian inference. In International Conference on Learning Representations (ICLR).

Ning, X., Tang, C., Li, W., Zhou, Z., Liang, S., Yang, H., and Wang, Y. (2021). Evaluating efficient

performance estimators of neural architectures. In Advances in Neural Information Processing
Systems (NeurIPS), volume 34, pages 12265–12277.

Pham, H., Guan, M., Zoph, B., Le, Q., and Dean, J. (2018). Efficient neural architecture search via

parameters sharing. In Proceedings of the 35th International Conference on Machine Learning
(ICLR), volume 80 of Proceedings of Machine Learning Research, pages 4095–4104. PMLR.

Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y. L., Tan, J., Le, Q. V., and Kurakin, A. (2017).

Large-scale evolution of image classifiers. In International Conference on Machine Learning
(ICML), pages 2902–2911. PMLR.

6

Tanaka, H., Kunin, D., Yamins, D. L., and Ganguli, S. (2020). Pruning neural networks without

any data by iteratively conserving synaptic flow. In Advances in Neural Information Processing
Systems (NeurIPS), volume 33, pages 6377–6389.

Turner, J., Crowley, E. J., O’Boyle, M., Storkey, A., and Gray, G. (2020). Blockswap: Fisher-guided

block substitution for network compression on a budget. In International Conference on Learning
Representations (ICLR).

Wang, C., Zhang, G., and Grosse, R. (2020). Picking winning tickets before training by preserving

gradient flow. In International Conference on Learning Representations (ICLR).

White, C., Safari, M., Sukthanker, R., Ru, B., Elsken, T., Zela, A., Dey, D., and Hutter, F. (2023).

Neural Architecture Search: Insights from 1000 Papers. arXiv:2301.08727 [cs, stat].

Zhang, L. L., Han, S., Wei, J., Zheng, N., Cao, T., Yang, Y., and Liu, Y. (2021). nn-meter: Towards

accurate latency prediction of deep-learning model inference on diverse edge devices. In Pro-
ceedings of the 19th Annual International Conference on Mobile Systems, Applications, and Services,
page 81–93, New York, NY, USA. ACM.

7

Submission Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] [See Experiments sectiom]

(b) Did you describe the limitations of your work? [Yes] [See Limitations]

(c) Did you discuss any potential negative societal impacts of your work? [Yes] [See Broader

Impact Statement]

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them?

https://2022.automl.cc/ethics-accessibility/ [Yes]

2. If you ran experiments. . .

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same

benchmarks, data (sub)sets, available resources)? [Yes] [We compared all methods using

the same evaluation protocol and data]

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing,

search spaces, hyperparameter tuning)? [No] [space constraints]

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account

for the impact of randomness in your methods or data? [Yes] [Across 5 different seeds]

(d) Did you report the uncertainty of your results (e.g., the variance across random seeds or

splits)? [Yes] [We report mean and standard deviation across seeds]

(e) Did you report the statistical significance of your results? [No]

(f) Did you use tabular or surrogate benchmarks for in-depth evaluations? [Yes] [We used the

ZCP measurements from NAS-Bench-Suite-Zero.]

(g) Did you compare performance over time and describe how you selected the maximum

duration? [N/A]

(h) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [N/A]

(i) Did you run ablation studies to assess the impact of different components of your approach?

[Yes] [We ran an ablation on sample efficiency]

3. With respect to the code used to obtain your results. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results, including all requirements (e.g., requirements.txt with explicit versions), random

seeds, an instructive README with installation, and execution commands (either in the

supplemental material or as a url)? [No]

(b) Did you include a minimal example to replicate results on a small subset of the experiments

or on toy data? [N/A]

(c) Did you ensure sufficient code quality and documentation so that someone else can execute

and understand your code? [N/A]

(d) Did you include the raw results of running your experiments with the given code, data, and

instructions? [N/A]

8

https://2022.automl.cc/ethics-accessibility/

(e) Did you include the code, additional data, and instructions needed to generate the figures

and tables in your paper based on the raw results? [N/A]

4. If you used existing assets (e.g., code, data, models). . .

(a) Did you cite the creators of used assets? [Yes]

(b) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating if the license requires it? [N/A]

(c) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]

5. If you created/released new assets (e.g., code, data, models). . .

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [N/A]

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g.,

GitHub or Hugging Face)? [N/A]

6. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A]

7. If you included theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A]

(b) Did you include complete proofs of all theoretical results? [N/A]

9

A Latency Data

Table 2: Hardware devices with batch sizes, device type and search space. We use the same hardware

devices as in HELP (Lee et al., 2021). The search spaces for which we have latency data are

also the same as in HELP (Lee et al., 2021).

Device (batch size) Type NAS-Bench-201 FBNet

1080ti (1) GPU ✓ ✓
1080ti (32) GPU ✓ ✓
1080ti (64) GPU ✗ ✓
1080ti (256) GPU ✓ ✗
2080ti (1) GPU ✓ ✓
2080ti (32) GPU ✓ ✓
2080ti (64) GPU ✗ ✓
2080ti (256) GPU ✓ ✗
Titan RTX (1) GPU ✓ ✓
Titan RTX (32) GPU ✓ ✓
Titan RTX (64) GPU ✗ ✓
Titan RTX (256) GPU ✓ ✗
Titan X (1) GPU ✓ ✓
Titan X (32) GPU ✓ ✓
Titan X (64) GPU ✗ ✓
Titan X (256) GPU ✓ ✗
Titan XP (1) GPU ✓ ✓
Titan XP (32) GPU ✓ ✓
Titan XP (64) GPU ✗ ✓
Titan XP (256) GPU ✓ ✗

Intel Xeon Gold 6266 (1) CPU ✓ ✓
Intel Xeon Gold 6240 (1) CPU ✓ ✓
Intel Xeon Silver 4114 (1) CPU ✓ ✓
Intel Xeon Silver 4210r (1) CPU ✓ ✓
essential phone 1 (1) Mobile ✓ ✓
Pixel 2 (1) Mobile ✓ ✓
Pixel 3 (1) Mobile ✓ ✓
Samsung A50 (1) Mobile ✓ ✓
Samsung S7 (1) Mobile ✓ ✓
eyeriss (1) ASIC ✓ ✓
fpga (1) FPGA ✓ ✓
Raspi 4 (1) Embedded ✓ ✓

Table 3: Hardware-device data splits (batch sizes, if more than 1 is available and used) following

HELP (Lee et al., 2021)

Split NAS-Bench-201 FBNet
Training 1080ti (1, 32, 256), Silver 4144, Sil-

ver 4210r, Samsung A50, Pixel 3,

Essential Phone 1, Samsung S7

1080ti (1, 32, 64), Silver 4114, Sil-

ver 4210r, Samsung A50, Pixel 3,

Essential Phone 1, Samsung S7

Validation Titan X (1, 32, 256), Gold 6240 Titan X (1, 32, 64), Gold 6240

Test Titan RTX (256), Gold 6226,

FPGA, Pixel 2, Raspi 4, Eyeriss

FPGA, Raspi 4, Eyeriss

10

B Neural Architecture Encoding

Figure 2: Spearman’s 𝜌 of hardware-latencies of all architectures in NAS-Bench-201 for the training

hardware-platforms used in HELP (Lee et al., 2021) and ZCPs used in Multi-Predict (Akhauri

and Abdelfattah, 2023).

C Zero Cost Proxies

Table 4: Zero Cost Proxies used to represent the architectures in the NAS-Bench-201 and FBNet search

spaces. We primarily use the same ZCPs as in Akhauri and Abdelfattah (2023) except for

zen-score.

ZCPs Type NAS-Bench-201 FBNet
fisher (Turner et al., 2020) Pruning-at-init ✓ ✓
grad-norm (Abdelfattah et al., 2021) Pruning-at-init ✓ ✓
grasp (Wang et al., 2020) Pruning-at-init ✓ ✓
snip (Abdelfattah et al., 2021) Pruning-at-init ✓ ✓
synflow (Tanaka et al., 2020) Pruning-at-init ✓ ✓
synflow-bn (Tanaka et al., 2020) Pruning-at-init ✗ ✓
FLOPs (Ning et al., 2021) Baseline ✓ ✗
Params (Ning et al., 2021) Baseline ✓ ✓
MACs (Lee et al., 2021) Baseline ✗ ✓
plain (Abdelfattah et al., 2021) Baseline ✓ ✓
l2-norm (Ning et al., 2021) Baseline ✓ ✓
jacov (Mellor et al., 2021) Jacobian ✓ ✓
nwot (Mellor et al., 2021) Jacobian ✓ ✓
epe-nas (Lopes et al., 2021) Jacobian ✗ ✓
zen-score (Lin et al., 2021) Piecewise Linear ✓ ✗

D FBNet results

11

Table 5: Spearman’s 𝜌 for predicted vs. actual latencies on the FBNet search space with 20 support

datapoints.

Method

Unseen Device Mean

Raspi4 Eyeriss FPGA

HELP (Lee et al., 2021) 0.885 0.942 0.889 0.91

PFN (Ours)

no-prior 0.805 ± (0.09) 0.854 ± (0.09) 0.798 ± (0.06) 0.819 ± (0.08)

+ latency scaling 0.877 ± (0.02) 0.953 ± (0.02) 0.902 ± (0.01) 0.911 ± (0.01)

+ lin. comb. (Synthetic HW) 0.920 ± (0.01) 0.957 ± (0.006) 0.935 ± (0.01) 0.937 ± (0.01)

+ lin. comb. (ZCP) 0.926 ± (0.01) 0.971 ± (0.002) 0.955 ± (0.004) 0.951 ± (0.004)

12

	Introduction
	Method
	Problem formulation
	Neural architecture encoding
	Surrogate model architecture
	Synthetic data priors

	Experiments
	Latency estimation
	Sample efficiency

	Conclusion
	Limitation
	Broader Impact Statement
	Latency Data
	Neural Architecture Encoding
	Zero Cost Proxies
	FBNet results

