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Abstract

In recent years, surrogate models have been successfully used in likelihood-free
inference to decrease the number of simulator evaluations. The most data-efficient
solution for this task has been achieved by Bayesian Optimization with Gaus-
sian Processes (GPs). While this combination works well for unimodal target
distributions, it appears restrictive in more irregular cases. On the other hand,
neural network approaches are extremely adaptable given sufficient data, which are
rarely available when working with computationally expensive simulators. In this
extended abstract, we address a trade-off between data-efficiency and flexibility
by proposing a Deep Gaussian Process (DGP) surrogate model that can handle
more irregularly behaved target distributions with few simulator evaluations. Our
experiments show how DGPs can outperform GPs on objective functions with mul-
timodal distributions, maintaining a comparable performance in unimodal cases.
At the same time, DGPs in general require much fewer data to achieve the same
performance as Mixture Density Networks and Masked Autoregressive Flows. This
confirms that DGPs as surrogate models for Bayesian Optimization provide a good
tradeoff between data-efficiency and flexibility for likelihood-free inference with
computationally intensive simulators.

1 Introduction

In likelihood-free inference (LFI) we aim to infer the generative parameters θ of an observed dataset
xobs, whose likelihood p(xobs|θ) is intractable which prevents conventional statistical parameter
estimation [4]. Instead, we assume we can simulate new data xθ ∼ p(x|θ) from arbitrary parameter
values, and we relate the probability of a parameter to how similar its simulated dataset is to the
observed one [10], measured via a discrepancy function. This simulator-based LFI has been proposed
under the names of approximate Bayesian computation (ABC) [2], indirect inference [7] and synthetic
likelihood [20] in domains ranging from genetics to economics and ecology [7].
∗Helsinki Institute for Information Technology, Department of Computer Science, Aalto University, Finland
†Department of Biostatistics, University of Oslo, Norway
‡Department of Computer Science, University of Manchester, UK

NeurIPS 2020 Workshop on Deep Learning and Inverse Problems, virtual.



(a) True ∆θ (b) Vanilla GP fit (c) DGP fit

Figure 1: (a) An example of a multimodal target distribution: the discrepancy ∆θ is bimodal for each
value of the parameter θ. (b) Vanilla GP as a surrogate distribution is unable to fit the target (red:
observed data; line and shading: GP prediction with uncertainty). (c) Deep GP surrogate is able to
model the bimodal target distribution accurately.

One approach to LFI is to find a data-efficient surrogate to the discrepancy function, which can be
used to derive a proxy for the unknown likelihood. When the simulator call-time is long, the number
of simulator queries has to be limited for computational reasons. Previous research by Gutmann and
Corander [9] addressed this issue by using Gaussian Processes (GPs) as the discrepancy surrogates
and applying Bayesian Optimization (BO) as an efficient search strategy. This approach drastically
reduced the number of simulations required for accurate inference.

However, inferring simulator-based statistical models often requires approximating distributions
which may exhibit too complex behavior to be adequately represented by GPs, especially in the
high-dimensional case. In particular, multimodal distributions represent a serious problem for the
current LFI methods (Figure 1). Sequential neural density estimation methods, based on Masked
Autoregressive Flows (MAFs) and Mixture Density Networks (MDNs) [17, 16], use powerful deep
network models to address this issue. However, to our knowledge, no current method is flexible
enough to handle multimodal target distributions with only few hundreds of samples. Our research
hypothesis is that by using highly flexible Deep Gaussian Processes (DGPs) as surrogates in BO, we
can simultaneously model both uni- and multimodal target distributions with non-stationarity and
heteroscedasticity.

2 Likelihood-free inference with deep Gaussian processes

After observing Xobs, traditionally the likelihood-free inference of the parameter θ is based on the
metric distance d(·, ·) between the summarized observed and synthetic datasets

∆θ = d
(
s(Xobs), s(Xθ)

)
∈ R+, (1)

where s(·) is a vector of summarising functions with lower dimension than the datasets. This is used
in a kernel function φ(·), such as RBF or uniform, to approximate the likelihood

p(sobs|θ) ≈ Ep(Xθ|θ)[φ(∆θ)]. (2)

Bayesian Optimization. The task of finding θ that minimizes the discrepancy ∆θ is in general a
non-convex search problem. To minimize the number of generated datasets Xθ we turn to BO with
DGP surrogates that are capable of handling multimodal and non-stationary discrepancy distributions.
Here, we describe a single-layer LV-GP architecture of the LV-DGP surrogate [18], which consists of
a LV layer followed by a GP prior (Equation 3) and with the Gaussian likelihoods (Equation 4)

f([θ, w]) ∼ GP(m([θ, w]), k([θ, w], [θ′, w′])) (3)

p(∆θ|f, w) = N (∆θ|f([θ, w]), σ2), (4)

The acquisition functionAt(θ) for the DGP surrogate should also allow exploration of objectives with
multimodal uncertainties. Since we do not make any assumptions about the form of the discrepancy
marginals, we propose a simple quantile-based modification of the lower confidence bound selection
criterion (LCBSC) [3] for selecting a new parameter point θt+1 = argminθ {At(θ)}:
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At(θ) = µq(θ)−
√
η2t · νq(θ) (5)

µq(θ) = E[{f(θi) : f(θi) ≤ Q(εq)}Ni=1] (6)

νq(θ) = var[{f(θi) : f(θi) ≤ Q(εq)}Ni=1], (7)

where η2t is a user-defined tuning parameter, N is the number of samples, µq and νq are the mean
and the variance of DGP posterior samples below a quantile threshold εq, and Q(·) is the quantile
function.

Likelihood approximation. Finally, we replace the expectation in the likelihood approximation
from Equation 2 with an estimated probabilistic model of ∆θ. The quantile threshold conditioning
on the posterior mean and the variance allows to focus on the representation of lower discrepancy
regions in multimodal distributions

p(sobs|θ) ∝ F

(
ε− µq(θ)√
νq(θ) + σ2

)
, (8)

where F (·) is the cumulative distribution function of Gaussian with the mean 0 and variance 1.
In summary, we introduced a way how DGP surrogates can handle irregularly behaved marginal
distributions in the context of BO for the LFI problem, by proposing a quantile-based likelihood
approximation and an acquisition rule.

3 Experiments

We study the merits of DGP surrogates in BO, compared to vanilla GPs, masked autoregressive flows
(MAFs) [17] and mixture density networks (MDNs) [16], first in illustrative demonstrations and then
in two case studies. One-dimensional toy examples (TE) represent three types of objective functions:
non-stationary (TE1), multimodal (TE2) and heteroscedastic (TE3). Birth-death model (BDM)
describes tuberculosis transmission in San Francisco bay area, as formulated in [12]. Navigation
World (NW) model [1] describes an inverse-reinforcement learning problem, where the goal is to
approximate the multidimensional distribution over the parameters of the Q-learning agent’s [14]
reward function operating on the NW map. We report empirical scaled Wassertein distance between
surrogate posteriors and the ground truth posterior across 1000 runs with different random seeds. The
ground truth is estimated numerically by rejection sampling ABC with 108 simulations, retaining
0.1% samples with the lowest discrepancy. More details on the simulators and experimental setups
can be found in the supplementary material.

3.1 Results

In all studies, LV-GP architecture of DGPs is either better or on the same level than vanilla GP in
approximating the posterior, as shown in Figure 2. The clearest advantage is shown on the TE2
and NW cases, where DGPs handle multimodality, while vanilla GP cannot. The results of TE1
indicate that even though the DGP model can provide a better approximation of the whole function, it
is sufficient to accurately represent the function at global minima. In TE3 the difference between
posteriors is negligible due to a significant and complex noise component of the example, with
DGPs having a higher variance. Such performance of both models on TE3 was expected, and
demonstrates that DGPs, as a more flexible model, have greater flexibility than traditional GPs. The
BDM performance of DGP is comparable to GPs, but offers no clear advantage over GPs because
of higher variance. In summary, DGPs unlike GPs can work with both multimodal and unimodal
uncertainties, making them especially suitable for cases when no prior information about the form of
the uncertainty is available.

The results in Table 1 show that both DGPs and GPs produced better approximations of the posterior
than MDNs and MAFs (even with the increased simulation budget). Only in the BDM case, MDNs
outperformed DGP (but not GP), and in TE2 MAF outperformed GPs (but not DGPs). MAFs and
MDNs are trying to model the likelihood directly in contrast to DGPs that model the discrepancy. The
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(a) TE1 (b) TE2 (c) TE3 (d) BDM (e) NW

Figure 2: Scaled Wasserstein distance between the surrogate models (GP and LV-GP, an instance
of DGP) posteriors and the true posterior of θ; the smaller the distance the better is the quality of
approximations. The DGP approximations of the true posterior are better on multimodal TE2 (b) and
NW (c) examples, maintaining comparable performance on the rest of the cases. The white dot on
the violin plot is the median, the black bar is the interquartile range, and lines stretched from the bar
show lower/upper adjacent values.

Table 1: LV-DGP models showed the best results in four out of five test cases (columns) across all
alternative models (rows). The performance was measured with 95% confidence interval (CI) of the
scaled Wasserstein distance between the surrogate model posterior and the true posterior of θ, across
1000 runs. The best results in each column are highlighted in bold. * denotes models that used 1000
total observations instead of 200 for the sample-efficiency comparison.

Model TE1 TE2 TE3 BDM NW
GP (1.89, 1.95) (2.65, 2.68) (1.2, 1.21) (1.23, 1.25) (1.67, 1.7)
1GP (1.84, 1.9) (2.1, 2.22) (1.19, 1.2) (1.51, 1.59) (1.33, 1.35)
3GP (1.86, 1.92) (2.03, 2.06) (1.18, 1.19) (1.49, 1.57) (1.31, 1.33)

LV-GP (1.83, 1.89) (1.6, 1.64) (1.23, 1.26) (1.51, 1.61) (1.24, 1.29)
LV-2GP (1.82, 1.88) (1.68, 1.72) (1.23, 1.25) (1.47, 1.55) (1.25, 1.29)
LV-3GP (1.85, 1.9) (1.7, 1.74) (1.22, 1.24) (1.5, 1.6) (1.26, 1.29)

MAF (10.44, 14.47) (1.99, 2.02) (62.71, 84.58) (2.03, 2.16) (2.37, 2.5)
MAF* (13.66, 18.45) (2.02, 2.04) (59.13, 79.92) (1.79, 1.88) (2.29, 2.42)
MDNs (8.66, 11.7) (15.63, 18.16) (14.5, 22.28) (1.38, 1.4) (1.8, 1.83)

MDNs* (12.95, 17.62) (29.37, 34.6) (36.35, 51.16) (1.38, 1.4) (1.8, 1.84)

former is a more general and harder problem, that requires much more observations with the benefit
of not having to retrain the model if the observed data is changed. In summary, both considered
alternatives have the necessary flexibility to show good performance on the considered cases, however,
they require significantly more data than DGPs, making them unsuitable for modelling irregularly
behaved distributions in a small data setting. Therefore, DGPs is the preferable candidate for doing
LFI with computationally expensive simulators.

4 Discussion

We introduced a novel method for statistical inference when the likelihood is not available, but
drawing samples from a simulator is possible although computationally intensive. The introduced
method is an extension of BOLFI [9] where we have used DGP surrogates instead of GP surrogates
to model the relationship of the parameters and the stochastic discrepancy between observed data
and simulated data. The proposed extension retains the active learning property of BOLFI so that
the posterior distribution is sought out with as few samples as possible. The flexibility of the DGPs
improved the resulting posterior approximations in cases where flexibility was required and otherwise
the observed performance was similar in both cases. Especially good improvements were observed in
cases where the distribution of the discrepancy was multimodal, i.e. in cases where GP is known to
perform poorly as an estimator.

The improvements from using DGP surrogates come with increased computational cost, which is
negligible for computationally heavy simulators. DGPs also had a higher variance in a unimodal
higher dimensional example. Even though data-efficiency experiments indicated that the DGP
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variance improves with more observations, a major contribution to this high variance is likely related
to the ability to model multimodality. Comparison methods, that showed this ability as well, had
similar variance in the unimodal case. The best neural density alternatives were outperformed by
DGPs in a grand majority of cases, providing better approximations with fewer available data. We
recommend using DGPs in cases with complicated target distributions, where their more expressive
surrogates are needed and work better than vanilla GPs.
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A Details of simulators

Demonstrations: non-stationarity, multimodality and heteroscedasticity. The discrepancy func-
tion of the first case TE1 is non-stationary with the ground truth θtrue = 50. The simulator function
gTE1(θ) generates data from the sum of three Gaussian density functions with different means and
variances,

gTE1(θ) = N(θ|30, 15) +N(θ|60, 5) +N(θ|100, 4) + ε, (9)

where ε ∼ N(0, 0.005).

The second toy example, TE2, has a multimodal discrepancy function with the ground truth θtrue = 20.
The simulator function gTE2 randomly ‘chooses’ one of the two logistic functions, and generates the
observation according to

gTE2(θ′) =

{
θ′

1+θ′ + ε1, if ε2 ≥ 0
1

1+θ′ + ε1, if ε2 < 0.
(10)

where θ′ = exp(−0.1(θ − 50)), ε1 ∼ N(0, 0.01) and ε2 ∼ N(0, 1). The simulator function creates
several modes in the observation space, that later transfer to the discrepancy function.

Finally, the discrepancy function of the third case TE3 is heteroscedastic. The output of the simulator
is generated as a sum of samples from two different beta distributions, that are defined through the
input parameter θ:

gTE3(θ) = Beta(θ + 1, 5) + Beta(5, θ + 1). (11)

The ground truth of this case is θtrue = 20. Uniform prior on the interval (0, 100) is used, as in the
first two cases.

Birth-Death model. Our goal in inferring the BDM parameters is to approximate the posterior
distribution P (R1, R2, β, t1|xobs), where xobs was generated with the vector of ground-truth pa-
rameters (5.88, 0.09, 192, 6.74). These parameter values were inferred by Lintusaari et al. [12]
from the summaries of real data [19]. The weighted Euclidean distance was used as the discrepancy
measure. The summaries and the corresponding distance weights are shown in Table 2. For detailed
interpretation of simulator parameters and summaries, see [12]. The time cost of a simulation is
about 5 seconds. We used the same hierarchical priors as Lintusaari et al:

θburden ∼ N(200, 30) (12)
θR1
∼ Unif(1.01, 20) (13)

θR2
|θR1

∼ Unif(1.01, (1− 0.05 · θR1
)/0.95) (14)

θt1 ∼ Unif(0.01, 30). (15)

Navigation World. Grid world is a simplified planning environment, and we show how multimodality
naturally arises in this kind of setting. Figure 3a shows a simple NW environment. In the NW map,
there is an agent that needs to reach the blue goal cell. The map is discrete, and the agent can take
four actions that correspond to the directions the agent can go to: up, down, left and right (blue
arrows in Figure 3a). Each tile of the map corresponds to a colour that indicates the reward the agent
receives from visiting the cell (e.g. +100 for reaching the goal, -500 for the black cell).

The agent always starts at a fixed position. It is first trained on the map, and after a certain number of
training episodes we ask it to sample a trajectory. There is no step cost, so the agent is encouraged
to explore. The green trajectory on Figure 3a shows one of the optimal paths the agent can learn.
However, when we sample the trajectory the environment is stochastic, meaning that the agent can by
accident slip into an adjacent cell (red trajectory in Figure 3a). Visiting black cells has a strong fixed
negative reward. Since the environment is stochastic and we cannot be sure that the agent will never
visit a black tile, this results in a multimodal reward.
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Table 2: The summary statistics for the BDM case, their weights in the discrepancy function [12]

Summary Weight
Number of observations 1
Number of clusters 1
Relative number of singleton clusters 100/0.60
Relative number of clusters of size 2 100/0.4
Size of the largest cluster 2
Mean of the successive differences in size among
the four largest clusters

10

Number of months from the first observation to the
last in the largest cluster

10

The number of months in which at least one obser-
vation was made from the largest cluster

10

(a) NW demonstration (b) NW experiment environ-
ment

Figure 3: (a) In the NW environment the agent (blue circle) starts at a fixed location and can perform
four actions: going up, down, left and right. Since the environment is stochastic, the agent may deviate
from the optimal green trajectory and end up in a black cell that heavily penalizes the reward. The
episode ends once the agent reaches the goal. (b) The NW map that we used in the experiments, with
an example observed trajectory shown. Our model needs to infer the reward cell colour parameters,
given the summary statistics of the trajectory: in this case 9 turns, 24 steps, and 51 reward.

The experiments were conducted on a more complex map, with tiles of five different colours
corresponding to different rewards, shown in Figure 3b. The simulator starts by setting the reward
parameters for each colour (five-dimensional vector), and then training the Q-agent for 8,000 episodes
in a completely deterministic environment. Once the agent is trained, we sample 5 trajectories and
learn their individual summaries: number of turns, number of steps and the reward. The Euclidean
distance between the summaries of the sampled and observed trajectories is then used to fit the
surrogate model. A trajectory with summaries (9, 24, 51) is illustrated in Figure 3b. Independent
uniform priors on the interval (-20, 0) were used for the simulator parameters, whereas true parameter
values were (0.0, -1.0, -1.0, -5.0, -10.0). The simulator requires around 40 seconds to sample one
observation.

B Experimental setup

In each simulation experiment, we select true parameter values, and use them to produce the observed
data set with the simulator. Each experiment is repeated 1,000 times, the runs differing in the
choice of random seeds that affect the observations used as initial evidence. We limit the number of
total simulator calls to 200 with 100 initial evidence points drawn from the prior before the active
learning procedure starts; when targeting computationally heavy simulators this is already plenty.
We study how the performance of the surrogate changes with fewer observations, where a half of all
observations comes from initial evidence points.

When evaluating goodness of the posterior approximations of θ, we estimate the ground truth posterior
numerically by Rejection ABC with 108 simulations, and then select 0.1% samples with the lowest
discrepancy to represent the posterior distribution. Closeness of the estimated posterior psur(θ|sobs) to
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this ground truth reference posterior pref(θ|sobs) is measured with the empirical Wasserstein distance
[5]. We report the scaled (divided by the smallest value) Wasserstein distance W ∗D.

For each simulator we report marginal distributions and corresponding approximations for every
parameter, showing how accurately the surrogate posterior matches the true marginal posterior.
Additionally, we plot the discrepancy function for one-dimensional cases.

We use a squared-exponential kernel in both GP and DGP. The GP model had kernel lengthscale,
variance and added bias component as hyperparameters. Gamma priors were used for all three of
them, initialized by the expected value and variance chosen based on initial standardized data. In the
DGP model, the lengthscale was set to the square root of the dimension, and the variance to 1. Only
the kernel parameters and the likelihood variance (initialized with 0.01) were optimized from their
initial values: the final layer using natural gradients (initial step size of 0.01) and the inner layers with
the Adam optimizer (initial step size of 0.005) [11]. Scaled conjugate gradient optimization with the
maximum number of function evaluations of 50 was used for the GP. All models were implemented
in Python with the GPFlow [15] and the GPy [8] packages for DGP and vanilla GP respectively.
Engine for Likelihood-Free Inference (ELFI) [13] was used as the platform for the implementations,
and the proposed model is available in ELFI for application and further development (elfi.ai).

B.1 Tested models

Additional LV-DGPs architectures. Additional experiments were conducted with multiple architec-
tures of the LV-DGP model, mentioned in the main body of the paper. We used a naming convention
where the name of the architecture specifies the exact sequence of layers, e.g. ‘LV-3GP’ describes
the DGP with a LV layer, followed by three GP layers. Importance-weighted variational inference
(IWVI) by Salimbeni et al. [18] was used. In all experiments with LV-DGP models, we used 50
inducing points, 5 importance-weighted samples and 20 samples for predictions and gradients. The
quantile threshold εq for the acquisition function and the surrogate likelihood was set to 0.3. Similarly
as in the main text, we compare the proposed solution against GPs with the LCBSC acquisition as a
baseline (here, denoted simply as ‘GP’). We report results for 200 total observations.

Masked autoregressive flows (MAF) [16]. MAF is an implementation of normalizing flow that
uses Masked Autoencoder for Distribution Estimation (MADE)[6] as building blocks, where each
conditional probability is modelled by a single Gaussian component. In the experiments, we used
the architecture with 5 stacked MADEs in the flow and 2 hidden layers, containing 50 hidden units
(sequential strategy for assigning degrees to hidden nodes was used) with hyperbolic tangent as an
activation function. The model was trained with Adam [11] optimization, using a minibatch size of
100, and a learning rate of 1e−4. L-2 regularization with coefficient 1e−6 was added. The training
was performed with 300 epochs in 5 batches, with the number of populations equal to the total
number of observations divided by the number of batches. We report results for 200 and 1000 total
observations.

Mixture density networks (MDN) [17]. MDN is a feedforward neural network that takes the
observation sθ as an input and outputs the parameters of a Gaussian mixture over θ. We use an
ensemble of 5 MDNs in our experiments with the same architecture: 2 hidden layers with 30 hidden
units in each with the hyperbolic tangent activation function. The parameters for optimization
and training procedures were the same as for the MAF. We report results for 200 and 1000 total
observations.

B.2 Evaluation

Wasserstein distance for assessing the quality of the posterior. Similarity of the estimated surro-
gate posterior to the ground truth is measured with the empirical Wasserstein distance [5], defined
as

Wε(µ, ν) =

∫
X
u(x)dµ(x) +

∫
Y
v(y)dν(y)− ιεUc(u, v) (16)

where µ ∈ M1
+(X ) and ν ∈ M1

+(Y) are two measures, defined on metric spaces X and Y ,
(u, v) ∈ C(X )× C(Y) of “ground cost” space and ιεUc(u, v) is an indicator function. In our case, µ
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is the posterior of the surrogate model psur(θ|sobs), and ν the ground truth posterior pref(θ|sobs). We
report the scaled (divided by the smallest value) Wasserstein distance W ∗D. See [5] for further details.
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