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ABSTRACT

Differentially private (DP) synthetic data, which closely resembles the original
private data while maintaining strong privacy guarantees, has become a key tool
for unlocking the value of private data without compromising privacy. Recently,
Private Evolution (PE) has emerged as a promising method for generating DP syn-
thetic data. Unlike other training-based approaches, PE only requires access to
inference APIs from foundation models, enabling it to harness the power of state-
of-the-art (SoTA) models. However, a suitable foundation model for a specific
private data domain is not always available. In this paper, we discover that the PE
framework is sufficiently general to allow APIs beyond foundation models. In par-
ticular, we demonstrate that many SoTA data synthesizers that do not rely on neu-
ral networks—such as computer graphics-based image generators, which we refer
to as simulators—can be effectively integrated into PE. This insight significantly
broadens PE’s applicability and unlocks the potential of powerful simulators for
DP data synthesis. We explore this approach, named Sim-PE, for image synthesis.
Across four diverse simulators, Sim-PE performs well, improving the downstream
classification accuracy of PE by up to 3×, reducing FID by up to 80%, and offer-
ing much greater efficiency. We also show that simulators and foundation models
can be easily leveraged together within Sim-PE to achieve further improvements.

1 INTRODUCTION

Leaking sensitive user information is a major concern in data-driven applications. A common so-
lution is to generate differentially private (DP) (Dwork et al., 2006) synthetic data that resembles
the original while ensuring strong privacy guarantees. Such data can substitute the original in tasks
like model fine-tuning, statistical analysis, and data sharing, while preserving user privacy (Bowen
& Snoke, 2019; Lin, 2022; Tao et al., 2021; Hu et al., 2024).

Private Evolution (PE) (Lin et al., 2023; Xie et al., 2024) has recently emerged as a promising method
for DP data synthesis. It begins by probing a foundation model to produce random samples, then
iteratively selects those most similar to private data and uses the model to generate more like them.
Unlike prior state-of-the-art (SoTA) methods that fine-tune open-source models, PE relies solely on
model inference–making it up to 66× faster (Xie et al., 2024). More importantly, this allows PE
to easily leverage cutting-edge foundation models like GPT-4 (OpenAI, 2023) and Stable Diffusion
(Rombach et al., 2022), achieving SoTA performance on multiple image and text benchmarks (Lin
et al., 2023; Xie et al., 2024; Hou et al., 2024; Zou et al., 2025; Hou et al., 2025; Wang et al.,
2025a;b). PE has also been adopted in Microsoft and Apple (Apple, 2025; Afonja et al., 2024).

However, PE relies on foundation models suited to the private data domain, which may not always
be available. When the model’s distribution significantly differs from the private data, PE’s perfor-
mance lags far behind training-based methods (Gong et al., 2025).

To address this question, we note that in the traditional synthetic data field—where private data
is not involved—non-neural-network data synthesizers remain widely used, especially in domains
where foundation models struggle. Examples include computer graphics-based renders for images,
videos, and 3D data (e.g., Blender (Community, 2018) and Unreal (Epic Games)), physics-based
simulators for robotics data (e.g., Genesis (Authors, 2024)), and network simulators for networking
data (e.g., ns (Issariyakul et al., 2009; Riley & Henderson, 2010)). For brevity, we refer to these tools
as simulators. While these simulators have been successful, their applications in DP data synthesis
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remain underexplored. This is understandable, as adapting these simulators to fit private data in a
DP fashion requires non-trivial, case-by-case modifications. Our key insight is that PE only requires
two APIs: RANDOM API that generates random samples and VARIATION API that generates samples
similar to the given one. These APIs do not have to come from foundation models. Thus, we ask:
Can PE use simulators in place of foundation models? If viable, this approach could greatly expand
PE’s capabilities and unlock the potential of a wide range of simulators for DP data synthesis.

Private 
Evolution 

(PE)
Genesis

Simulators

Prior work

Sim-PE  
(this work)

Figure 1: Unlike prior PE work that relies solely
on foundation models, we show that PE is also
compatible with non-neural-network data synthe-
sis tools, which we call simulators. This greatly
broadens PE’s applicability and enables SoTA
simulators for DP data synthesis.

In this paper, we propose Sim-PE (Fig. 1) to ex-
ploit this potential for image generation. We
consider two types of simulator access: (1)
The simulator is accessible. We define RAN-
DOM API as rendering an image with random
simulator parameters, and VARIATION API as
slightly perturbing the simulator parameters of
the given image. (2) The simulator is inac-
cessible—only its generated data is released.
This scenario is quite common (Wood et al.,
2021; Bae et al., 2023), especially when sim-
ulator assets are proprietary (Kar et al., 2019;
Devaranjan et al., 2020). In this case, we define
RANDOM API as randomly selecting an image
from the dataset, and VARIATION API as ran-
domly selecting a nearest neighbor of the given
image. We demonstrate that with suitable sim-
ulators, Sim-PE can outperform PE with foundation models. Our key contributions are:

• Advancing PE. We discover that PE can leverage tools beyond foundation models and propose
Sim-PE—an extension that uses simulators, significantly broadening PE’s applicability. We also
introduce the use of both foundation models and simulators interchangeably during synthesis,
allowing for the benefits of both to be leveraged through PE’s easy and standardized interface.

• Bringing simulators to DP synthetic data. Although simulators are widely used and powerful
(App. I.1), they have been largely absent from DP data generation. Sim-PE is the first framework
to unlock their potential in this space.

• Results. We demonstrate promising results with Sim-PE. For instance, on the MNIST dataset
with ϵ = 1, downstream classification accuracy increases to 89.1%, compared to 27.9% with
the original PE. Furthermore, combining foundation models with weak simulators results in
improved performance compared to using either one alone.

2 PRELIMINARIES AND MOTIVATION

2.1 PRELIMINARIES

Synthetic data refers to “fake” data generated by models or software for various applications, in-
cluding data augmentation, model training, and software testing (Lin, 2022). While neural-network-
based generative models such as GANs (Goodfellow et al., 2020), diffusion models (Sohl-Dickstein
et al., 2015), and auto-regressive models (OpenAI, 2023; Liu et al., 2024a) are widely used, non-
neural-network tools remain SoTA in many applications. For example, ns (Issariyakul et al., 2009;
Riley & Henderson, 2010) can simulate networks and generate network packets based on network
configurations. Blender (Community, 2018), given 3D models and lighting configurations, can ren-
der images and videos, and is extensively used in movie production. In this paper, we refer to
these tools as simulators. See App. I.1 for a discussion on the continued importance of simulators,
even in the era of large foundation models.

DP synthetic data requires the synthetic data to be close to a given private dataset, while having a
strict Differential Privacy (DP) (Dwork et al., 2006) guarantee. Formally, a mechanismM is (ϵ, δ)-
DP if for any two neighboring datasets D and D′ (i.e., D′ has one extra entry compared to D or
vice versa) and for any set S of outputs ofM, we have P (M (D) ∈ S) ≤ eϵP (M (D′) ∈ S) + δ.
Smaller ϵ and δ imply stronger privacy guarantees. Current SoTA DP image and text synthesis
methods typically requires neural network training (Lin et al., 2020a; Beaulieu-Jones et al., 2019;
Dockhorn et al., 2022; Yin et al., 2022; Yu et al., 2021; He et al., 2022; Li et al., 2021; Ghalebikesabi
et al., 2023a; Yue et al., 2022; Jordon et al., 2019; Harder et al., 2023; 2021b; Vinaroz et al., 2022;
Cao et al., 2021; Chen et al., 2022).
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Private Evolution (PE) (Lin et al., 2023; Xie et al., 2024) is a recent training-free framework for DP
data synthesis. PE only requires inference access to the foundation models. Therefore, unlike prior
training-based methods, PE can leverage the SoTA models even if they are behind APIs (e.g., GPT-
4) and is more computationally efficient (Lin et al., 2023; Xie et al., 2024). In more detail, PE has
achieved SoTA performance on several image and text benchmarks (Lin et al., 2023; Xie et al., 2024;
Wang et al., 2025a;b). When using similar open-source pre-trained models, PE attains an image
quality score of FID ≤ 7.9 on CIFAR10 with a privacy cost of ϵ = 0.67, a significant improvement
over the previous SoTA, which required ϵ = 32 (Lin et al., 2023). Furthermore, PE can be up to 66×
more efficient than training-based methods on DP text generation (Xie et al., 2024). By leveraging
SoTA models behind APIs—where training-based methods are not applicable—PE further enhances
performance, outperforming all prior approaches in downstream text classification accuracy on the
OpenReview dataset (Xie et al., 2024). Additionally, PE can be applied in federated learning to shift
model training from devices to central servers in a differentially private and more efficient manner
(Hou et al., 2024; Zou et al., 2025; Hou et al., 2025). Moreover, PE has been adopted by some of
the largest IT companies such as Microsoft and Apple (Apple, 2025; Afonja et al., 2024).

2.2 MOTIVATION

While PE achieves SoTA performance on several image and text benchmarks (Lin et al., 2023;
Xie et al., 2024; Hou et al., 2024), its performance significantly drops when there is a large dis-
tribution shift between the private data and the foundation model’s pre-trained data (Gong et al.,
2025). For instance, when using the MNIST dataset (LeCun, 1998) (handwritten digits) as the pri-
vate data, training a downstream digit classifier (10 classes) on DP synthetic data (with ϵ = 1) from
PE—using a foundation model pre-trained on ImageNet—yields an accuracy of only 27.9%. Since
relevant foundation models may not always be available for every domain, this limitation hinders
PE’s applicability in real-world scenarios. Extending PE to leverage simulators could significantly
expand its potential applications.

More broadly, as discussed in § 2.1 and App. I.1, simulators cannot be substituted by foundation
models in (non-DP) data synthesis across many domains. Unfortunately, current SoTA DP synthetic
data methods are deeply reliant on machine learning models (e.g., requiring model training) and
cannot be applied to simulators. By extending PE to work with simulators, we aim to unlock the
potential of simulators in DP data synthesis.

3 SIM-PE: PRIVATE EVOLUTION (PE) WITH SIMULATORS

In this paper, we focus on DP image generation. A key advantage of the PE framework is that
it decouples the DP mechanism from the data generation backend. Specifically, any backend that
supports (1) RANDOM API, which generates a random sample (e.g., a random bird image), and (2)
VARIATION API, which produces slight variations of a given sample (e.g., a similar bird image),
can be integrated into PE and turned into a DP data synthesis algorithm. Prior work on PE (Lin
et al., 2023; Xie et al., 2024; Hou et al., 2024; Zou et al., 2025; Hou et al., 2025; Swanberg et al.,
2025; Wang et al., 2025a;b) has exclusively used foundation models to implement these APIs. Our
key insight is that these APIs do not need to be powered by foundation models: traditional data
synthesizers that do not rely on neural networks—referred to as simulators—can also be used to
implement RANDOM API and VARIATION API.

In the following sections, we first provide an overview of the Sim-PE algorithm (§ 3.1) and the
design of its APIs (§ 3.2 and 3.3), then discuss how simulators and foundation models can be jointly
used in Sim-PE to leverage the strengths of both (§ 3.4).

3.1 OVERVIEW

Algorithm overview. Except for the APIs, Sim-PE largely follows the same workflow as PE. For
completeness, we briefly describe the workflow here and include the full algorithm in App. A. We
first use RANDOM API to generate an initial set of random samples (Line 4). Then, we iteratively
refine these samples using the private data. In each iteration:

• Each private sample casts a vote for its closest synthetic sample. This yields a histogram (denoted
DP NN HISTOGRAM) reflecting how well each synthetic sample aligns with the private data
(Line 6). To ensure differential privacy, Gaussian noise is added to this histogram.

• We sample synthetic data according to the noisy histogram, giving higher likelihood to those
samples that align more closely with private data (Lines 7 and 8).
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• We apply VARIATION API to the drawn samples to generate additional variants (Line 9). These
samples become the initialization of the next iteration.

The synthetic samples at the final iteration constitute the DP synthetic dataset.

Theoretical analysis. Since we only modify RANDOM API and VARIATION API, the privacy guar-
antee and convergence analysis are exactly the same as PE (Lin et al., 2023) (more details in App. B).

Considered simulators. Existing popular image simulators often provide different levels of ac-
cess. Some simulators are open-sourced. Examples include KUBRIC (Greff et al., 2022), a
Blender-based renderer for multi-object images/videos; 3D TEAPOT (Lin et al., 2020b; Eastwood
& Williams, 2018), an OpenDR-based renderer for teapot images; and PYTHON-AVATAR (Escartı́n,
2021), a rule-based generator for avatars. However, the assets (e.g., 3D models) used in these render-
ers are often proprietary. Therefore, many simulator works choose to release only the generated
datasets without the simulator code. Examples include the FACE SYNTHETICS (Wood et al.,
2021) and the DIGIFACE-1M (Bae et al., 2023) datasets, both generated using Blender-based ren-
derers for human faces. In § 3.2 and 3.3, we discuss the design for simulators with code access and
data access, respectively.

3.2 SIM-PE WITH SIMULATOR ACCESS

While different simulators have very different programming interfaces, most of them can be ab-
stracted in the same way. Given a set of q numerical parameters ϕ1, . . . , ϕq and p categori-
cal parameters ξ1, . . . , ξp where ϕi ∈ Φi and ξi ∈ Ξi, the simulator S generates an image
S (ξ1, . . . , ξp, ϕ1, . . . , ϕq). Here, numerical parameters refer to those with meaningful ordering
(e.g., 1 is closer to 2 than to 3), whether discrete (e.g., ∈ {0, 1, 2}) or continuous (e.g., ∈ [0, 2]). In
contrast, categorical parameters are those without inherent ordering, or where even a small change
in the parameter can cause a large, unrelated change in the output. For example, for face image
renders (Wood et al., 2021; Bae et al., 2023), ϕis could be the angle of the face and the strength of
lighting, and ξis could be the ID of the 3D human face model and the ID of the hairstyle.1

For RANDOM API, we simply draw each parameter randomly from its corresponding feasible set:

RANDOM API = S (ξ1, . . . , ξp, ϕ1, . . . , ϕq) , (1)
where ξi ∼ Uniform (Ξi) and ϕi ∼ Uniform (Φi) .

Here, Uniform (S) denotes drawing a sample uniformly at random from the set S.

For VARIATION API, we generate variations by perturbing the input image parameters. For numer-
ical parameters ϕi, we simply add noise. However, for categorical parameters ξi, where no natural
ordering exists among feasible values in Ξi, adding noise is not applicable. Instead, we re-draw the
parameter from the entire feasible set Ξi with a certain probability. Formally, it is defined as

VARIATION API (S (ξ1, . . . , ξp, ϕ1, . . . , ϕq)) = S
(
ξ′1, . . . , ξ

′
p, ϕ

′
1, . . . , ϕ

′
q

)
, (2)

where ϕ′
i ∼ Uniform ([ϕi − α, ϕi + α] ∩ Φi) and ξ′i =

{
Uniform (Ξi) , with probability β

ξi, with probability 1− β
.

Here, α and β control the degree of variation. At one extreme, when α = ∞ and β = 1, VARI-
ATION API completely discards the information of the input sample and reduces to RANDOM API.
Conversely, when α = β = 0, VARIATION API outputs the input sample unchanged.

3.3 SIM-PE WITH SIMULATOR-GENERATED DATA

We assume a simulator-generated dataset of m samples, Ssim = {z1, . . . , zm}. The goal is to select
Nsyn of them to form the DP synthetic dataset Ssyn. Before introducing our solution, we discuss
why two straightforward approaches fall short.

Baseline 1: Applying DP NN HISTOGRAM on Ssyn. One immediate solution is to apply
DP NN HISTOGRAM in PE (Alg. 2) by treating Ssim as the generated set S. In other words, each
private sample votes for its nearest neighbor in Ssim, and the final histogram, aggregating all votes,

1For well-documented simulators, obtaining the list of parameters is straightforward. For example,
PYTHON-AVATAR, used in § 4.2, lists its parameters in the README. Alternatively, one can use the approach
in § 3.3, which does not require explicit parameter identification.
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is privatized with Gaussian noise. We then draw samples from Ssim according to the privatized
histogram (i.e., Line 8 in Alg. 1) to obtain Ssyn.

However, the size of the simulator-generated dataset (i.e., m) is typically very large (e.g., 1.2 million
in Bae et al. (2023)), and the total amount of added Gaussian noise grows with m. This means that
the resulting histogram suffers from a low signal-to-noise ratio, leading to poor fidelity in Ssyn.

Baseline 2: Applying DP NN HISTOGRAM on cluster centers of Ssyn. To improve the signal-to-
noise ratio of the histogram, one solution is to have private samples vote on the cluster centers of
Ssim instead of the raw samples. Specifically, we first cluster the samples in Ssim into Ncluster clusters
with centers {w1, . . . , wNcluster} and have private samples vote on these centers rather than individual
samples in Ssim.2 Since the number of bins in the histogram decreases from m to Ncluster, the signal-
to-noise ratio improves. Following the approach of the previous baseline, we then draw Nsyn cluster
centers (with replacement) based on the histogram and randomly select a sample from each chosen
cluster to construct the final Ssyn.

However, when the total number of samples m is large, each cluster may contain a diverse set of
samples, including those both close to and far from the private dataset. While DP voting on clusters
improves the accuracy of the DP histogram and helps select better clusters, there remains a risk of
drawing unsuitable samples from the chosen clusters.

Our approach. Our key insight is that the unavoidable trade-off between DP histogram accuracy
and selection precision (clusters vs. individual samples) stems from forcing private samples to
consider all of Ssim—either directly (baseline 1) or via cluster centers (baseline 2). But this is not
necessary: if a sample is far from the private data, its nearest neighbors in Ssim are likely far too (see
App. C for experiments). Thus, we can avoid wasting privacy budget on evaluating such samples.

The iterative selection and refinement process in PE naturally aligns with this idea. For each sample
zi, we define its nearest neighbors in Ssim as qi1, . . . , q

i
m, sorted by closeness, where qi1 = zi is the

closest. We define RANDOM API as drawing a random sample from Ssim:

RANDOM API ∼ Uniform (Ssim) .

Since we draw only Nsyn samples (instead of all m) from RANDOM API, the DP histogram has
a higher signal-to-noise ratio. In the following steps (Lines 6 to 8 in Alg. 1), we discard samples
far from the private data indicated by the DP histogram, and apply VARIATION API only to the
remaining as follows:

VARIATION API (zi) = Uniform
({

qi1, . . . , q
i
γ

})
,

thus avoiding consideration of nearest neighbors of the removed samples (unless they are also nearest
neighbors of retained samples). Similar to α and β in § 3.2, γ controls the degree of variation. At one
extreme, when γ = m, VARIATION API disregards the input sample and reduces to RANDOM API.
At the other extreme, when γ = 1, VARIATION API returns the input sample unchanged.

We verify the effectiveness of our approach over the two baselines in App. F.1.

Broader applications. While our main experiments (§ 4) focus on simulator-generated data, the
proposed algorithm can be applied to any public dataset. We demonstrate this broader use in App. D.

3.4 SIM-PE WITH BOTH SIMULATORS AND FOUNDATION MODELS

As discussed in § 2.1, simulators and foundation models complement each other across different data
domains. Moreover, even within a single domain, they excel in different aspects. For example, com-
puter graphics-based face image generators (Bae et al., 2023; Wood et al., 2021) allow controlled
diversity in race, lighting, and makeup while mitigating potential biases in foundation models. How-
ever, the generated faces may appear less realistic than those produced by SoTA foundation models.
Thus, combining the strengths of both methods for DP data synthesis is highly appealing.

Fortunately, PE naturally supports this integration, as RANDOM API and VARIATION API work the
same for both foundation models and simulators. While there are many ways to combine them,
we explore a simple strategy: using simulators in the early PE iterations to generate diverse seed

2Note that voting in Lin et al. (2023) is conducted in the image embedding space. Here, wis represent
cluster centers in the embedding space, and each private sample uses its image embedding to find the nearest
cluster center.
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samples, then switching to foundation models in later iterations to refine details and enhance realism.
As shown in § 4, this approach outperforms using either simulators or foundation models alone. See
App. I.4 for alternative approaches.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

4.1.1 DATASETS AND SIMULATORS

Datasets. Following prior work (Gong et al., 2025), we use three private datasets: (1) MNIST
(LeCun, 1998), where the image class labels are digits ‘0’-‘9’, (2) CelebA (Liu et al., 2015), where
the image class labels are male and female, and (3) CIFAR10 (Krizhevsky et al., 2009), which
contains 10 classes of natural images. We aim at conditional generation for these datasets (i.e., each
generated image is associated with the class label). Due to space constraints, CIFAR10 experiments
are deferred to App. D.

Simulators. To showcase the broad applicability of Sim-PE, we use four diverse simulators.

(1) Text rendering program. Generating images with readable text using foundation models is
a known challenge (Betker et al., 2023). Simulators can address this gap, as generating images
with text through computer programs is straightforward. To illustrate this, we implement our own
text rendering program, treating MNIST as the private dataset. Specifically, we use the Python PIL
library to render digits as images. There are two categorical and three numerical parameters in total
(details in App. G.1). We set the feasible sets of these parameters to be large enough so that the
random samples differ significantly from MNIST (see Fig. 2b).

(2) Computer graphics-based renderer for face images. Computer graphics-based rendering is
widely used in real-world applications such as game development, cartoons, and movie production.
This experiment aims to assess whether these advanced techniques can be adapted for DP synthetic
image generation via Sim-PE. We use CelebA as the private dataset and a Blender-based face image
renderer from Bae et al. (2023) as the API. Since the source code for their renderer is not publicly
available, we apply our data-based algorithm from § 3.3 on their released dataset of 1.2 million face
images. Note that this renderer may not necessarily represent the SoTA. As visualized in Fig. 3b, the
generated faces exhibit various unnatural artifacts and appear less realistic than images produced by
SoTA generative models (e.g., Rombach et al. (2022)). Therefore, this experiment serves as a pre-
liminary study, and the results could potentially improve with more advanced rendering techniques.

(3) Rule-based avatar generator. We further investigate whether Sim-PE remains effective when
the simulator’s data significantly differs from the private dataset. We use CelebA as the private
dataset and a rule-based avatar generator (Escartı́n, 2021) as the API. This simulator has 16 categor-
ical parameters that control attributes of the avatar, including eyes, noses, background colors, skin
colors, etc (details in App. G.2). As in Fig. 4b, the generated avatars have a cartoon-like appearance
and lack fine-grained details, which contrasts sharply with real human face photos in CelebA.

(4) Public images. To demonstrate that Sim-PE (§ 3.3) generalizes beyond simulator-generated
data, we also evaluate it using ImageNet as Ssim. Owing to space, results are in App. D.

Class label information from simulators. In our main experiments, we assume the simulator does
not provide class label information (denoted as “ClassUnavail”). In App. F.8, we further investigate
a setting where the simulator does provide class labels along with the generated images, and find
that this leads to improved performance. See App. F.8 for details and results.

4.1.2 METRICS AND EVALUATION PIPELINES

We follow the evaluation settings of DPImageBench (Gong et al., 2025), a recent benchmark for
DP image synthesis. Specifically, we use two metrics: (1) FID (Heusel et al., 2017) as a quality
metric and (2) the accuracy of downstream classifiers as a utility metric. Specifically, we use
the conditional version of PE (App. A), so that each generated images are associated with the class
labels (i.e., ‘0’-‘9’ digits in MNIST, male vs. female in CelebA). These class labels are the targets
for training the classifiers. We employ a strict train-validation-test split and account for the privacy
cost of classifier hyperparameter selection. Specifically, we divide the private dataset into disjoint
training and validation sets. We then run Sim-PE on the training set to generate synthetic data. Next,
we train three classifiers—ResNet (He et al., 2016), WideResNet (Zagoruyko & Komodakis, 2016),
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(a) Real (private) images (b) Simulator-generated images (c) Sim-PE images (ϵ = 10)

Figure 2: The real and generated images on MNIST under the “ClassUnavail” setting. Each row
corresponds to one class. The simulator generates images that are very different from the real ones
and are from the incorrect classes. Starting from these bad images, Sim-PE can effectively guide the
generation of the simulator towards high-quality images with correct classes.

Table 1: Accuracy and FID. The best between PE methods is in bold, and the best between all
methods is underlined. “Simulator” refers to samples from the simulator’s RANDOM API. Results
other than Sim-PE and Simulator are taken from Gong et al. (2025).

(a) Accuracy (%) of downstream classifiers.

Algorithm MNIST CelebA
ϵ = 1 ϵ = 10 ϵ = 1 ϵ = 10

DP-MERF 80.3 81.3 81.0 81.2
DP-NTK 50.0 91.3 61.2 64.2
DP-Kernel 94.0 93.6 83.0 83.7
GS-WGAN 72.4 75.3 61.4 61.5
DP-GAN 92.4 92.7 77.9 89.2
DPDM 89.2 97.7 74.5 91.8
PDP-Diffusion 94.5 97.4 89.4 94.0
DP-LDM (SD) 78.8 94.4 84.4 89.1
DP-LDM 44.2 95.5 85.8 92.4
DP-LoRA 82.2 97.1 87.0 92.0
PrivImage 94.0 97.8 90.8 92.0
Simulator 11.6 (ϵ = 0) 61.4 (ϵ = 0)
PE 27.9 32.7 70.5 74.2
Sim-PE (ours) 89.1 93.6 80.0 82.5

(b) FID of synthetic images.

Algorithm MNIST CelebA
ϵ = 1 ϵ = 10 ϵ = 1 ϵ = 10

DP-MERF 113.7 106.3 176.3 147.9
DP-NTK 382.1 69.2 350.4 227.8
DP-Kernel 33.7 38.9 140.3 128.8
GS-WGAN 57.0 47.7 611.8 290.0
DP-GAN 82.3 30.3 112.5 31.7
DPDM 36.1 4.4 153.99 28.8
PDP-Diffusion 8.9 3.8 17.1 8.1
DP-LDM (SD) 31.9 18.7 46.2 24.1
DP-LDM 155.2 99.1 124.1 40.4
DP-LoRA 112.8 95.4 53.3 32.2
PrivImage 7.6 2.3 11.4 11.3
Simulator 86.2 (ϵ = 0) 37.2 (ϵ = 0)
PE 48.8 45.3 23.4 22.0
Sim-PE (ours) 20.7 9.4 24.7 20.8

and ResNeXt (Xie et al., 2017)—on the synthetic data and evaluate their accuracy on the validation
set. Since the validation set is part of the private data, we use the Report Noisy Max algorithm
(Dwork et al., 2014) to select the best classifier checkpoint across all epochs of all three classifiers.
Finally, we report the accuracy of this classifier on the test set. This procedure ensures that the re-
ported accuracy is not inflated due to train-test overlap or DP violations in classifier hyperparameter
tuning. See App. I.2 for further discussion on the rationale behind our choice of metrics.

Following Gong et al. (2025), we set DP parameter δ = 1/(Npriv · logNpriv), where Npriv is the
number of samples in the private dataset, and ϵ = 1 or 10.

4.1.3 BASELINES

We compare Sim-PE with 12 SoTA DP image synthesizers reported in Gong et al. (2025), including
DP-MERF (Harder et al., 2021a), DP-NTK (Yang et al., 2023), DP-Kernel (Jiang et al., 2023),
GS-WGAN (Chen et al., 2020), DP-GAN (Xie et al., 2018), DPDM (Dockhorn et al., 2023), PDP-
Diffusion (Ghalebikesabi et al., 2023b), DP-LDM (Liu et al., 2024b), DP-LoRA (Tsai et al., 2024),
PrivImage (Li et al., 2024), and PE with foundation models (Lin et al., 2023). Except for PE,
all other baselines require model training. When experimenting with simulator-generated data, we
additionally compare Sim-PE against the two baselines introduced in § 3.3.

Note: Different methods rely on different prior knowledge. For instance, many baselines use pre-
trained models or public data from similar distributions (see Tab. 2 of Gong et al. (2025)), whereas
Sim-PE does not. Instead, Sim-PE leverages simulators, which are not used by others. As such, Sim-
PE represents a new evaluation setting, and baseline results serve primarily to contextualize
this new paradigm and inspire future work, rather than an apple-to-apple comparison.

4.2 SIM-PE WITH SIMULATOR ACCESS

In this section, we evaluate Sim-PE with a text rendering program on MNIST dataset. The results
are shown in Tab. 1 and Fig. 2. The key takeaway messages are:
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(a) Real (private) images (b) Simulator-generated images (c) Sim-PE images (ϵ = 10)

Figure 3: The real and generated images on CelebA. The top rows correspond to the “female” class,
and the bottom rows correspond to the “male” class. The simulator generates images with incorrect
classes. However, starting from these misclassified images, Sim-PE effectively selects those that
better match the correct class.

Table 2: Accuracy (%) of classifiers trained on synthetic images and FID of synthetic images on
CelebA. The best results are highlighted in bold. Using a combination of both (weak) simulators
and foundation models outperforms using either one alone.

Algorithm FID ↓ Classification Acc. ↑
ϵ = 1 ϵ = 10 ϵ = 1 ϵ = 10

PE with foundation models 23.4 22.0 70.5 74.2
PE with weak simulators (i.e., Sim-PE) 101.4 99.5 62.6 63.2
PE with both 15.0 11.9 72.7 78.1

Sim-PE effectively guides the simulator to generate high-quality samples. As shown in Fig. 2b,
without any information from the private data or guidance from Sim-PE, the simulator initially pro-
duces poor-quality images with incorrect digit sizes, rotations, and stroke widths. These low-quality
samples serve as the starting point for Sim-PE (via RANDOM API). Through iterative refinement
and private data voting, Sim-PE gradually optimizes the simulator parameters, ultimately generating
high-quality MNIST samples, as illustrated in Fig. 2c.

Quantitative results in Tab. 1 further support this. Without private data guidance, the simulator often
generates digits from incorrect classes, yielding a classifier accuracy of just 11.6%–near random
guess. In contrast, Sim-PE boosts accuracy to around 90%. FID scores also confirm that Sim-PE
produces images more similar to real data.

Sim-PE can improve the performance of PE by a large margin. The PE baseline (Lin et al., 2023)
uses a diffusion model pre-trained on ImageNet, which primarily contains natural object images
(e.g., plants, animals, cars). Since MNIST differs significantly from such data, PE, as a training-
free method, struggles to generate meaningful MNIST-like images. Most PE-generated images lack
recognizable digits (see Gong et al. (2025)), resulting in a classification accuracy of only ∼ 30%
(Tab. 1a). By leveraging a simulator better suited for this domain, Sim-PE achieves much better
results, tripling the classification accuracy and reducing the FID by 80% at ϵ = 10.

Sim-PE achieves competitive results among SoTA methods. When the foundation model or public
data differs significantly from the private data, training-based baselines can still adapt the model to
the private data distribution by updating its weights, whereas PE cannot. This limitation accounts for
the substantial performance gap between PE and other methods. Specifically, PE records the lowest
classification accuracy among all 12 methods (Tab. 1a). By leveraging domain-specific simulators,
Sim-PE substantially narrows this gap, achieving classification accuracy within 5.4% and 4.2% of
the best-performing method for ϵ = 1 and ϵ = 10, respectively.

4.3 SIM-PE WITH SIMULATOR-GENERATED DATA

We evaluate Sim-PE using a generated dataset from a computer graphics-based renderer on the
CelebA dataset. The results, presented in Tab. 1 and Fig. 3, highlight the following key takeaways:

Sim-PE selects samples that better match target classes. Without private data, the simulator
naturally generates images with incorrect labels (Fig. 3b). As a result, a gender classifier trained
on this data achieves at most 61.4% accuracy–the majority class (female) rate. Sim-PE iteratively
refines selection from this noisy pool, ultimately choosing samples more aligned with target classes
(Fig. 3c), boosting accuracy by up to 21.1% (Tab. 1a).

Sim-PE maintains the strong data quality of PE. As shown in Tab. 1b, Sim-PE and PE achieve
similar FID. Unlike in MNIST (§ 4.2) where Sim-PE brought large gains, the modest improvement
on CelebA stems from two factors. First, PE with foundation models already ranks 3rd in FID,
leaving little room to improve. Second, Sim-PE here only selects from a fixed simulator-generated
dataset. As seen in Fig. 3, these images differ from real CelebA (e.g., having larger faces), and it is
impossible for Sim-PE to correct such discrepancies. Having access to simulator code, as in § 4.2,
could help alleviate such errors by allowing parameter adjustments. A hybrid approach combining
foundation models and simulators, as we will explore next, may also offer further gains.
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(a) Real (private) images (b) Simulator-generated images (c) Sim-PE images (ϵ = 10)

Figure 4: The real and generated images on CelebA. The simulator is a weak rule-based avatar
generator (Escartı́n, 2021) significantly different from the real dataset. The top rows correspond to
the “female” class, and the bottom rows correspond to the “male” class. The simulator generates
images with incorrect classes. Sim-PE tends to generate faces with long hair for the female class
and short hair for the male class (correctly), but the generated images have mode collapse issues.

4.4 SIM-PE WITH BOTH SIMULATORS AND FOUNDATION MODELS

In this section, we examine Sim-PE under weak simulators. As in the previous section, we use
CelebA as the private dataset, but replace the simulator with a rule-based cartoon avatar generator
(Escartı́n, 2021). As shown in Fig. 4b, the generated avatars differ significantly from real images.

Sim-PE with weak simulators still learns useful features. From Tab. 2, we observe that down-
stream classifiers trained on Sim-PE with weak simulators achieve poor classification accuracy.
However, two interesting results emerge: (1) Despite the significant difference between avatars and
real face images, Sim-PE still captures certain characteristics of the two classes correctly. Specifi-
cally, Sim-PE tends to generate faces with long hair for the female class and short hair for the male
class (Fig. 4c). (2) Although the FID of Sim-PE is quite poor (Tab. 2), they still outperform many
baselines (Tab. 1b). This can be explained by the fact that, as shown in Gong et al. (2025), high DP
noise makes the training of many baselines unstable. This results in images with noisy patterns, non-
face images, or significant mode collapse, particularly for DP-NTK, DP-Kernel, and GS-WGAN. In
contrast, Sim-PE is training-free, and thus it avoids these issues. See App. E for more analysis.

Next, we explore the feasibility of using PE with both foundation models and the weak avatar sim-
ulator (§ 3.4). The results are shown in Tab. 2.

Sim-PE benefits from utilizing simulators and foundation models together. We observe that
using both simulators and foundation models yields the best results in terms of both FID and classi-
fication accuracy. This result is intuitive: the foundation model, pre-trained on the diverse ImageNet
dataset, has a low probability of generating a face image through RANDOM API. While avatars are
quite different from CelebA, they retain the correct image layout, such as facial boundaries, eyes,
nose, etc. Using these avatars as seed samples for variation allows the foundation model to focus on
images closer to real faces, rather than random, unrelated patterns.

Unlike other SoTA methods that are tied to a specific data synthesizer, this result suggests that PE is
a promising framework that can easily combine the strengths of multiple types of data synthesizers.

4.5 FURTHER ANALYSES

Number of iterations. Like PE, Sim-PE achieves good results in a few (e.g., 6) iterations (Fig. 8).

Computation cost. Since simulators could be much cheaper to run than foundation models, Sim-PE
could be much more efficient than PE. For instance, on MNIST, each PE’s API call takes over 2400
GPU seconds, whereas Sim-PE takes less than 30 CPU seconds–an 80x speedup, not to mention the
lower cost of CPU than GPU. See App. H for detailed results.

Hyperparameter sensitivity. We conduct ablation studies in App. F. Overall, Sim-PE is robust to
simulator parameter ranges, Sim-PE hyperparameters (α, β, γ), and the timing of switching from
simulators to foundation models. We also study the effect of sample size and distribution alignment.

5 LIMITATIONS AND FUTURE WORK
In this paper, we demonstrate the potential of the PE framework for utilizing powerful simulators in
DP image synthesis. While the results are promising, several important questions remain open:
(1) Since Sim-PE (in § 3.3) can be applied to any public dataset (App. D), it could support applica-
tions such as pre-training data selection for private fine-tuning (Yu et al., 2023; Li et al., 2024). (2)
This paper applies Sim-PE on images. In domains like networking and systems, simulators are more
common than foundation models, and Sim-PE could offer even greater potential. (3) Sim-PE for im-
age synthesis is still outperformed by the best baseline. Exploring better ways to combine simulators
and foundation models could further push the limits of the PE framework. (4) It remains an open
question how to effectively apply PE in domains where suitable foundation models, simulators, and
public datasets are all unavailable.
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REPRODUCIBILITY STATEMENT

The hyperparameters are reported in App. G, and the code for reproducing the experiments is pro-
vided in the supplementary materials. The code will be open-sourced.

REFERENCES

Gbola Afonja, Robert Sim, Zinan Lin, Huseyin Atahan Inan, and Sergey Yekhanin.
The crossroads of innovation and privacy: Private synthetic data for gen-
erative ai. https://www.microsoft.com/en-us/research/blog/
the-crossroads-of-innovation-and-privacy-private-synthetic-data-for-generative-ai/,
2024.

Apple. Understanding aggregate trends for apple intelligence using differ-
ential privacy. https://machinelearning.apple.com/research/
differential-privacy-aggregate-trends, 2025.

Genesis Authors. Genesis: A universal and generative physics engine for robotics and beyond,
December 2024. URL https://github.com/Genesis-Embodied-AI/Genesis.
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Erroll Wood, Tadas Baltrušaitis, Charlie Hewitt, Sebastian Dziadzio, Thomas J Cashman, and Jamie
Shotton. Fake it till you make it: face analysis in the wild using synthetic data alone. In Proceed-
ings of the IEEE/CVF international conference on computer vision, pp. 3681–3691, 2021.

Chulin Xie, Zinan Lin, Arturs Backurs, Sivakanth Gopi, Da Yu, Huseyin A Inan, Harsha Nori, Hao-
tian Jiang, Huishuai Zhang, Yin Tat Lee, et al. Differentially private synthetic data via foundation
model apis 2: Text. arXiv preprint arXiv:2403.01749, 2024.

Liyang Xie, Kaixiang Lin, and et al. Differentially private generative adversarial network. CoRR,
abs/1802.06739, 2018. URL http://arxiv.org/abs/1802.06739.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual trans-
formations for deep neural networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 1492–1500, 2017.

Yilin Yang, Kamil Adamczewski, and et al. Differentially private neural tangent kernels for privacy-
preserving data generation. CoRR, abs/2303.01687, 2023.

13

http://arxiv.org/abs/1802.06739


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yucheng Yin, Zinan Lin, Minhao Jin, Giulia Fanti, and Vyas Sekar. Practical gan-based synthetic ip
header trace generation using netshare. In Proceedings of the ACM SIGCOMM 2022 Conference,
pp. 458–472, 2022.

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam Kamath, Janardhan
Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, et al. Differentially private fine-tuning
of language models. arXiv preprint arXiv:2110.06500, 2021.

Da Yu, Sivakanth Gopi, Janardhan Kulkarni, Zinan Lin, Saurabh Naik, Tomasz Lukasz Religa,
Jian Yin, and Huishuai Zhang. Selective pre-training for private fine-tuning. arXiv preprint
arXiv:2305.13865, 2023.

Xiang Yue, Huseyin A Inan, Xuechen Li, Girish Kumar, Julia McAnallen, Huan Sun, David Levitan,
and Robert Sim. Synthetic text generation with differential privacy: A simple and practical recipe.
arXiv preprint arXiv:2210.14348, 2022.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

Tianyuan Zou, Yang Liu, Peng Li, Yufei Xiong, Jianqing Zhang, Jingjing Liu, Xiaozhou Ye,
Ye Ouyang, and Ya-Qin Zhang. Contrastive private data synthesis via weighted multi-plm fu-
sion. arXiv preprint arXiv:2502.00245, 2025.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX CONTENTS

A Private Evolution 16

B Theoretical Analysis 16

C Justifying the Methodological Design of Sim-PE with Simulator-generated Data 17

D Sim-PE with CIFAR10 as the Private Dataset and ImageNet as the Simulator-generated
Dataset 18

E More Analysis on Sim-PE with Weak Simulators 18

F Additional Ablation Studies 19

F.1 Data Selection Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

F.2 Performance across Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

F.3 Sensitivity Analysis of α, β, γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

F.4 When to Switch from the Simulator to the Foundation Model . . . . . . . . . . . . 21

F.5 Range of Simulator Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

F.6 Number of Samples Generated from the Simulator. . . . . . . . . . . . . . . . . . 23

F.7 The Impact of Distribution Alignment . . . . . . . . . . . . . . . . . . . . . . . . 23

F.8 Class Label Information from the Simulators . . . . . . . . . . . . . . . . . . . . 23

G Experimental Details 25

G.1 MNIST with Text Rendering Program . . . . . . . . . . . . . . . . . . . . . . . . 25

G.2 CelebA with Generated Images from Computer Graphics-based Render . . . . . . 25

G.3 CelebA with Rule-based Avatar Generator . . . . . . . . . . . . . . . . . . . . . . 25

H Efficiency Evaluation 26

I Extended Discussions 27

I.1 The Prevalence and Importance of Simulators . . . . . . . . . . . . . . . . . . . . 27

I.2 Discussion on the Chosen Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 28

I.3 Bias in Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

I.4 The Ordering of Applying the Simulator and the Foundation Model . . . . . . . . 28

J The Use of Large Language Models (LLMs) 29

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A PRIVATE EVOLUTION

Alg. 1 presents the Private Evolution (PE) algorithm, reproduced from Lin et al. (2023). This al-
gorithm represents the conditional version of PE, where each generated image is associated with a
class label. It can be interpreted as running the unconditional version of PE separately for each class
(Line 2).

Algorithm 1: Private Evolution (PE)

Input: The set of private classes: C (C = {0} if for unconditional generation)
Private samples: Spriv = {(xi, yi)}

Npriv

i=1 , where xi is a sample and yi ∈ C is its label
Number of iterations: T
Number of generated samples: Nsyn (assuming Nsyn mod |C| = 0)
Noise multiplier for DP Nearest Neighbors Histogram: σ
Threshold for DP Nearest Neighbors Histogram: H

1 Ssyn ← ∅
2 for c ∈ C do
3 private samples← {xi|(xi, yi) ∈ Spriv and yi = c}
4 S0 ← RANDOM API (Nsyn/ |C|)
5 for t← 1, . . . , T do
6 histogramt ← DP NN HISTOGRAM (private samples, St−1, σ,H) // See

Alg. 2
7 Pt ← histogramt/sum(histogramt) // Pt is a distribution on St

8 S′
t ← draw Nsyn/|C| samples with replacement from Pt // S′

t is a multiset
9 St ← VARIATION API (S′

t)

10 Ssyn ← Ssyn ∪ {(x, c)|x ∈ ST }
11 return Ssyn

Algorithm 2: DP Nearest Neighbors Histogram (DP NN HISTOGRAM)

Input : Private samples: Spriv

Generated samples: S = {zi}ni=1
Noise multiplier: σ
Threshold: H
Distance function: d (·, ·)

Output: DP nearest neighbors histogram on S

1 histogram← [0, . . . , 0]
2 for xpriv ∈ Spriv do
3 i = argminj∈[n] d (xpriv, zj)
4 histogram[i]← histogram[i] + 1

5 histogram← histogram+N (0, σIn) // Add noise to ensure DP
6 histogram← max (histogram−H, 0) // ‘max’, ‘-’ are element-wise
7 return histogram

B THEORETICAL ANALYSIS

Convergence analysis. Since Sim-PE only changes PE’s RANDOM API and VARIATION API, the
original convergence analysis (App. E in Lin et al. (2023)) remains valid for Sim-PE. Specifically:

• The analysis assumes that RANDOM API generates samples within a ball of diameter D covering
the private samples. Changing RANDOM API affects D but not the overall analysis procedure.

• The analysis assumes that VARIATION API draws samples from a Gaussian distribution—an es-
sential assumption for any tractable analysis involving complex, unknown foundation models
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and simulators. Under this assumption, modifying VARIATION API does not impact the analysis
procedure.

Privacy analysis. Since Sim-PE does not change the way PE utilizes private data, the privacy
analysis of PE (Lin et al., 2023) applies to Sim-PE. We repeat the privacy analysis in PE below for
completeness.

The only step that directly accesses private data is DP NN HISTOGRAM (Line 6 in Alg. 1, detailed
in Alg. 2). Let us analyze its privacy cost first:

• Each private sample contributes only one vote (Line 5 in Alg. 2).
• Adding or removing a single sample alters the resulting histogram by at most 1 in the l2

norm—so the sensitivity is 1.
• Line 5 adds i.i.d. Gaussian noise with standard deviation σ to each histogram bin. This corre-

sponds to the standard Gaussian mechanism (Dwork et al., 2014) with noise multiplier σ (i.e.,
σ/1).

Now, consider the entire Sim-PE procedure (Alg. 1).

(1) Let’s first consider the procedure for one class c (Line 3-Line 10). All steps other than
DP NN HISTOGRAM do not access private data and simply post-process results from earlier DP
steps. Therefore, Alg. 1 can be interpreted as T adaptive compositions of Gaussian mechanisms.

According to Corollary 3.3 in Dong et al. (2022),3 T compositions of Gaussian mechanisms with
noise multiplier σ can be viewed as a single Gaussian mechanism with effective noise multiplier
σ/
√
T .

Thus, the final privacy cost reduces to computing the ε and δ of a standard Gaussian mechanism
with noise σ/

√
T . We use the tight results from Balle & Wang (2018) for this computation: the

mechanism is (ε, δ)-differentially private if

Φ

(√
T

2σ
− εσ√

T

)
− eε Φ

(
−
√
T

2σ
− εσ√

T

)
≤ δ

where Φ denotes the Gaussian cumulative distribution function (CDF). Given δ and σ, we can use
the above equation to solve for ε.

(2) Now, let’s first consider the full algorithm involving multiple classes. Since the private samples
from different classes are disjoint, due to parallel composition property (McSherry, 2009), the pri-
vacy cost remains the same as above. See Lin et al. (2023) for an alternative analysis that gives the
same conclusion.

C JUSTIFYING THE METHODOLOGICAL DESIGN OF SIM-PE WITH
SIMULATOR-GENERATED DATA

In this section, we provide experimental evidence to support the claim in § 3.3: “If we already know
that a sample zi is far from the private dataset, then its nearest neighbors in Ssim are also likely to be
far from the private dataset.”

Consider Sim-PE’s synthetic dataset St from the t-th iteration. For each private sample xi in the
private dataset Spriv, we find its nearest sample in St as zi. S(selected)t = {zi}

Npriv

i=1 contains
samples close to Spriv (chosen by DP NN HISTOGRAM (Alg. 2) in PE under non-DP settings).
Conversely, the remaining samples, S(unselected)t = St \ S(selected)t are farther from Spriv.

Now, we need to confirm that S(unselected)t’s nearest neighbors in Ssim are farther away from the
private dataset Spriv than S(selected)t. We define:

• z(Y )i as the nearest neighbor of the private sample xi in S(Y )t, for Y ∈ {selected, unselected}
• q(Y )ij as the j − th nearest neighbor of z(Y )i in Ssim

• FID(Y ) as the FID between Spriv and
{
q(Y )ij

}Npriv,γ

i=1,j=1
.

3Please see their arXiv version https://arxiv.org/pdf/1905.02383.
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Fig. 5 shows that FID(selected) is smaller (better) than FID(unselected) across most PE itera-
tions, supporting our claim.

0.0 2.5 5.0
Iteration

41

42

43

FI
D

Selected
Unselected

Figure 5: FID of the nearest neighbors of the selected and unselected samples.

D SIM-PE WITH CIFAR10 AS THE PRIVATE DATASET AND IMAGENET AS
THE SIMULATOR-GENERATED DATASET

In this section, we apply the algorithm in § 3.3 on the setting where CIFAR10 is treated as the private
dataset and ImageNet is treated as the simulator-generated dataset. We conduct this experiment for
the following reasons:

• In § 3.3, we discuss that Sim-PE can apply to any public dataset beyond simulator-generated
data. This experiment provides evidence for that claim.

• The original PE approach on CIFAR10 (Lin et al., 2023) uses a foundation model pretrained on
ImageNet, which aligns with the simulator data in this experiment. Comparing their performance
removes the impact of distribution alignment and highlights the differences in the RANDOM API
and VARIATION API designs of PE and Sim-PE.

Experiment settings. We use ϵ = 10. The downstream task is classifying images into the 10
classes in CIFAR10, following DPImageBench (Gong et al., 2025) and the original PE paper (Lin
et al., 2023).

Results. Sim-PE achieves FID=8.76, and acc=70.06%. In comparison, PE with a foundation model
achieves similarly with FID=9.2 and acc=75.3%. These results suggest that Sim-PE and PE can
be competitive when both suitable simulators and foundation models are available for the private
dataset. In addition, the results are comparable to state-of-the-art training-based methods, demon-
strating that Sim-PE is a promising framework.

E MORE ANALYSIS ON SIM-PE WITH WEAK SIMULATORS

In Fig. 4c, we see that Sim-PE’s generated images have many duplicates. In this section, we conduct
more analysis on this phenomenon.

Fig. 6 shows that FID between generated images and the private dataset decreases (improves) across
iterations, confirming that generated images better align with the private distribution over iterations.
However, the number of unique samples in the generated dataset drops significantly (Fig. 7), leading
to duplicates in Fig. 4c. This may be due to the simulator being too weak, generating most images
far from the private dataset. As a result, Sim-PE converges to a small set of good images.
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Figure 6: Sim-PE (using DIGIFACE-1M)’s FID on CelebA improves over the course of the PE
iterations.
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Figure 7: The number of unique generated samples in each iteration of Sim-PE (using DIGIFACE-
1M) on CelebA.

F ADDITIONAL ABLATION STUDIES

F.1 DATA SELECTION ALGORITHMS

In § 3.3, we discussed two simple alternatives for simulator data selection. The comparison is in
Tab. 3. We see that Sim-PE with iterative data selection outperforms the baselines on most metrics,
validating the intuition outlined in § 3.3. However, the clustering approach used in the second
baseline still has merit, as it results in a better FID for ϵ = 10. This idea is orthogonal to the design
of Sim-PE and could potentially be combined for further improvement. We leave this exploration to
future work.

Table 3: Accuracy (%) of classifiers trained on synthetic images and FID of synthetic images on
CelebA. The best results are highlighted in bold. Sim-PE outperforms the baselines in most metrics.

Algorithm FID ↓ Classification Acc. ↑
ϵ = 1 ϵ = 10 ϵ = 1 ϵ = 10

DP NN HISTOGRAM on Ssyn 36.2 29.3 61.5 71.9
DP NN HISTOGRAM on cluster centers of Ssyn 26.4 18.3 74.7 77.7
Sim-PE 24.7 20.8 80.0 82.5

F.2 PERFORMANCE ACROSS ITERATIONS

Fig. 8 shows that both the FID and the downstream classifier’s accuracy generally improve as PE
progresses. This confirms that PE’s iterative data refinement process is effective when combined
with simulators.
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Figure 8: Sim-PE’s FID and accuracy generally improve over the course of the iterations.

F.3 SENSITIVITY ANALYSIS OF α, β, γ

These hyperparameters (defined in § 3.2 and 3.3) control the variation degree in VARIATION API.
Higher values induce larger variations. These are the only new hyperparameters introduced in
Sim-PE.

Following the PE paper (Lin et al., 2023), we gradually decrease them across iterations. The idea
is that larger variations at the beginning help Sim-PE/PE explore and find good seeds, while smaller
variations are needed later for convergence. In our experiments, most are set to follow an arithmetic
or geometric sequence across iterations (App. G) based on heuristics. In the following, we modify
their values: for each hyperparameter, we either fix it to the largest or smallest value in its base
sequence. Figs. 9 and 10 show that:

• Setting these hyperparameters to a fixed large value is not ideal. For instance, setting a large text
variation throughout greatly hurts FID and accuracy. Conversely, using a fixed small value has a
smaller impact.

• The default parameters do not always yield the best result (e.g., setting γ to a fixed small value
improves FID). This suggests that our main results in the paper could be improved with better
hyperparameters.
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(a) FID (b) Classification accuracy

Figure 9: Accuracy and FID on MNIST with different α, β schedules (ϵ = 10). The “base”
parameter schedule across iterations is: (a) font size’s α = [5, 4, 3, 2], (b) rotation degree’s
α = [9, 7, 5, 3], (c) stroke width’s α = [1, 1, 0, 0], (d) font’s β = [0.8, 0.4, 0.2, 0.0], (e) text’s
β = [0.8, 0.4, 0.2, 0.0]. “Small” (“large”) means fixing α/β to be the smallest (largest) value across
iterations. For example, the unit under “font variation” and “large” indicates the results when we set
font’s β = [0.8, 0.8, 0.8, 0.8].

(a) FID (b) Classification accuracy

Figure 10: Accuracy and FID on CelebA using simulator-generated data with different γ schedules
(ϵ = 10). The “base” parameter schedule across iterations is [1000, 500, 200, 100, 50, 20]. “Small”
(“large”) means fixing γ to be the smallest (largest) value across iterations. For example, the unit
under “large” indicates the results when we set γ = [1000, 1000, 1000, 1000, 1000, 1000].

F.4 WHEN TO SWITCH FROM THE SIMULATOR TO THE FOUNDATION MODEL

In § 4.4, the foundation model was introduced after iteration 1. We vary it to be either earlier (after
iteration 0, using only simulators for the initial samples) or later (after iteration 2). The result is in
Tab. 4. We can see that:

• Our reported main results can be improved with better parameters. For instance, starting the
foundation model after iteration 0 improves accuracy to 74.3% (+1.6%) and reduces FID to 14.2
(-0.8) at ε = 1.

• Nevertheless, the results across different schedules are relatively close. In most cases, they
outperform using either the foundation model or the simulator alone (see Tab. 2), reinforcing the
conclusions in § 4.4.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Diffusion Start FID (ε = 1) Acc (ε = 1) FID (ε = 10) Acc (ε = 10)

After iter 0 14.2 74.3 13.2 73.6
After iter 1 15.0 72.7 11.9 78.1
After iter 2 16.0 73.6 14.2 76.5

Table 4: Comparison of FID and accuracy with different diffusion start iterations for ε = 1 and
ε = 10.

F.5 RANGE OF SIMULATOR PARAMETERS

We vary the range of all numerical parameters in the MNIST experiment ε = 1, including font size,
rotation, and stroke width. Results across all Sim-PE iterations are presented.

• Font size. In our main experiments, we used the range [10, 30). We evaluate two alternatives:
[15, 25) (narrower) and [5, 35) (wider). See Tab. 5 for the results.

• Rotation degree. In our main experiments, we used the range [–30, 30]. We evaluate two
alternatives: [–15, 15] (narrower) and [–60, 60] (wider). See Tab. 6 for the results.

• Stroke width. In our main experiments, we used the range [0, 2]. We evaluate two alternatives:
[0, 1] (narrower) and [0, 3] (wider). See Tab. 7 for the results.

We can see from the above three experiments that:

• For font size and rotation, varying the parameter range has minimal effect on accuracy or FID
across iterations. In contrast, a suboptimal stroke width range ([0, 3]) leads to poor initial samples
(FID 109.1), but Sim-PE gradually improves quality, narrowing the final FID gap to the best
setting to 4.3.

• Regardless of the specific parameter range chosen, the overall trend is consistent: Sim-PE con-
sistently improves the synthetic data over iterations and outperforms standard PE significantly
(see Table 1). These are the core messages of the paper, and they hold even when the parameter
ranges are varied.

Range Metric Iter=0 Iter=1 Iter=2 Iter=3 Iter=4
[15, 25) Accuracy 13.6 71.6 81.4 87.4 84.8

FID 88.1 61.8 45.3 31.1 22.4
[10, 30) Accuracy 16.6 76.7 86.7 89.5 89.1

FID 85.8 57.0 42.4 28.7 20.7
[5, 35) Accuracy 13.3 66.0 82.8 90.6 86.2

FID 87.2 58.2 41.4 28.7 20.2

Table 5: Effect of font size range on accuracy and FID.

Range Metric Iter=0 Iter=1 Iter=2 Iter=3 Iter=4
[–15, 15] Accuracy 14.5 75.7 86.0 88.3 87.7

FID 83.1 56.7 42.3 28.6 19.7
[–30, 30] Accuracy 16.6 76.7 86.7 89.5 89.1

FID 85.8 57.0 42.4 28.7 20.7
[–60, 60] Accuracy 13.3 72.3 83.0 88.5 86.3

FID 86.6 56.0 40.9 27.5 19.4

Table 6: Effect of rotation degree range on accuracy and FID.
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Range Metric Iter=0 Iter=1 Iter=2 Iter=3 Iter=4
[0, 1] Accuracy 12.8 70.0 87.6 91.5 91.3

FID 69.0 48.7 35.3 25.1 18.1
[0, 2] Accuracy 16.6 76.7 86.7 89.5 89.1

FID 85.8 57.0 42.4 28.7 20.7
[0, 3] Accuracy 20.4 71.6 75.4 84.6 85.2

FID 109.1 67.6 47.4 31.3 22.4

Table 7: Effect of stroke width range on accuracy and FID.

F.6 NUMBER OF SAMPLES GENERATED FROM THE SIMULATOR.

We fixed the number of images to 60,000 across all experiments and iterations, following the DPIm-
ageBench evaluation protocol (Gong et al., 2025) for fair and consistent comparison across methods.
Additionally, we run MNIST experiments (ε = 1) with 30,000 and 120,000 samples in Tab. 8.

Consistent with the claims in the original PE paper (Appendix N in Lin et al. (2023)), we see that
more samples don’t always improve results. On one hand, more samples increase the chance of
generating examples close to the private data, potentially improving synthetic data. On the other
hand, a larger sample size flattens the DP Nearest Neighbors Histogram, reducing its signal-to-noise
ratio and possibly degrading quality. The overall effect is nuanced. Following Lin et al. (2023), we
recommend setting the number of generated samples to be close to the number of private samples.

#Samples FID Accuracy

30,000 14.4 87.2
60,000 20.7 89.1
120,000 32.9 85.4

Table 8: Performance comparison with different numbers of samples.

F.7 THE IMPACT OF DISTRIBUTION ALIGNMENT

On CelebA, we show that Sim-PE with a simulator that aligns well with the private data outperforms
standard PE (§ 4.3 and Tab. 1). However, Sim-PE with a simulator less aligned with the private data
performs worse than PE (§ 4.4 and Tab. 2).

To provide a more controlled experiment, we fix the simulator type and only vary the alignment
between the simulator and private data.

Experiment settings. We use the same 1.2M simulator-generated images from a computer graphics
renderer as in § 4.3 and artificially adjust their alignment to CelebA. Specifically, for each image, we
compute its distance to the closest CelebA image in the Inception embedding space, sort all images
by this distance, and divide them into five subsets, D0, ..., D4 (e.g., the closest 0.24M images form
D0). Fig. 11 confirms that the FID between Di and CelebA increases with i, meaning that D0 is the
most aligned and D4 the least. We then apply Sim-PE to each Di independently.

Results. Fig. 12 shows that as alignment decreases, the sample quality generally drops. Specifically,
Sim-PE with D0, ..., D3 yields better classification accuracy than PE, while D4 yields worse results
than PE. This confirms that Sim-PE’s performance is influenced by the degree of alignment. Addi-
tionally, in all cases, Sim-PE’s FID is better than the original simulator data’s FID, demonstrating
Sim-PE’s ability to select useful samples.

F.8 CLASS LABEL INFORMATION FROM THE SIMULATORS

For simulator 1, the target class label (i.e., the digit) is fully controlled by one parameter. For
simulators 2 and 3, the target class label (i.e., the gender) is not directly controlled by any param-
eter, but could potentially be obtained by an external image gender classifier. One benefit of using
domain-specific simulators is that we can potentially use the class label information to enhance
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Figure 11: FID between the 5 constructed subsets of DIGIFACE-1M and CelebA.
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Figure 12: Results of Sim-PE-generated data using the subsets in Fig. 11 (ϵ = 10).

(a) Real (private) images (b) Simulator-generated images (c) Sim-PE images (ϵ = 10)

Figure 13: The real and generated images on MNIST under the “ClassAvail” setting. Each row
corresponds to one class. The simulator generates images that are very different from the real ones.
Starting from these bad images, Sim-PE can effectively guide the generation of the simulator towards
high-quality images that are more similar to real data.

data quality (Wood et al., 2021; Bae et al., 2023). To get a more comprehensive understanding of
Sim-PE, we consider two settings: (1) Class label information is unavailable (abbreviated as
“ClassUnavail”). We artificially make the problem more challenging by assuming that the class
label information is not available. Therefore, Sim-PE has to learn to synthesize images with the
correct class by itself. Our main experiments are based on this setting. (2) Class label information
is available (abbreviated as “ClassAvail”). On MNIST, we further test how Sim-PE can be im-
proved if the class label information is available. In this case, the RANDOM API and VARIATION API
(Eqs. (1) and (2)) are restricted to draw parameters from the corresponding class (i.e., the digit is set
to the target class).

Results: Class label information from the simulators can be helpful. The results are presented
in Tab. 9 and Fig. 13. We observe that with digit information, the simulator-generated data achieves
much higher classification accuracy (92.2%), although the FID remains low due to the generated
digits exhibiting incorrect characteristics (Fig. 13b). The fact that Sim-PE outperforms the simulator
in both FID and classification accuracy across all settings suggests that Sim-PE effectively incorpo-
rates private data information to enhance both data fidelity and utility, even when compared to such
a strong baseline. As expected, Sim-PE under ClassAvail matches or surpasses the results obtained
in ClassUnavail across all settings, suggesting the usefulness of leveraging class label information.
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Table 9: Accuracy (%) of classifiers trained on synthetic images and FID of synthetic images on
MNIST under the “ClassAvail” setting. See Tab. 1 for results under the “ClassUnavail” setting for
reference.

Algorithm FID ↓ Classification Acc. ↑
ϵ = 1 ϵ = 10 ϵ = 1 ϵ = 10

Simulator 86.0 (ϵ = 0) 92.2 (ϵ = 0)
Sim-PE 20.7 8.6 93.9 95.5

G EXPERIMENTAL DETAILS

In this section, we provide more experimental details.

G.1 MNIST WITH TEXT RENDERING PROGRAM

The categorical parameters include: (1) Font. We use Google Fonts (Google, 2022), which
offers 3589 fonts in total. (2) Text. The text consists of digits ‘0’ - ‘9’. The numerical pa-
rameters include: (1) Font size, ranging from 10 to 29. (2) Stroke width, ranging from 0 to 2.
(3) Digit rotation degree, ranging from −30◦ to 30◦.

Tabs. 10 and 11 show their variation degrees. The total number of PE iterations is 4. Following
Gong et al. (2025), we set the number of generated samples to be 60,000.

Table 10: The configurations of the categorical parameters in MNIST with Text Rendering Program
experiments.

Categorical Parameter (ξ) Feasible Set (Ξ) Variation Degrees (β) across PE Iterations

Font 1 - 3589 0.8, 0.4, 0.2, 0.0
Text ‘0’ - ‘9’ 0, 0, 0, 0

Table 11: The configurations of the numerical parameters in MNIST with Text Rendering Program
experiments.

Numerical Parameter (ϕ) Feasible Set (Φ) Variation Degrees (α) across PE Iterations

Font size [10, 30] 5, 4, 3, 2
Font rotation [-30, 30] 9, 7, 5, 3
Stroke width [0, 2] 1, 1, 0, 0

G.2 CELEBA WITH GENERATED IMAGES FROM COMPUTER GRAPHICS-BASED RENDER

The variation degrees γ across PE iterations are [1000, 500, 200, 100, 50, 20]. The total number
of PE iterations is 6. Following Gong et al. (2025), we set the number of generated samples to be
60,000.

G.3 CELEBA WITH RULE-BASED AVATAR GENERATOR

The full list of the categorical parameters are

• Style
• Background color
• Top
• Hat color
• Eyebrows
• Eyes
• Nose
• Mouth
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• Facial hair
• Skin color
• Hair color
• Facial hair color
• Accessory
• Clothing
• Clothing color
• Shirt graphic

These are taken from the input parameters to the library (Escartı́n, 2021). There is no numerical
parameter.

For the experiments with only the simulator, the variation degrees β across PE iterations are [0.8,
0.6, 0.4, 0.2, 0.1, 0.08, 0.06]. The total number of PE iterations is 7. Following Gong et al. (2025),
we set the number of generated samples to be 60,000.

For the experiments with both foundation models and the simulator, we use a total of 5 PE iterations
so as to be consistent with the setting in Gong et al. (2025). For the RANDOM API and the first PE
iteration, we use the simulator (β = 0.8). For the next 4 PE iterations, we use the same foundation
model as in Lin et al. (2023) with variation degrees [96, 94, 92, 90]. Following Gong et al. (2025),
we set the number of generated samples to be 60,000.

H EFFICIENCY EVALUATION

As simulators could be much cheaper to generate samples than the foundation models, we show in
this section that Sim-PE is much more efficient than PE in our experiments.

Note that the only difference between Sim-PE and PE is the RANDOM API and VARIATION API.
Therefore, we focus on comparing the computation time and peak CPU/GPU memory of the APIs.
Tabs. 12 to 14 show that Sim-PE APIs require far less time than PE. For instance, on MNIST, each
PE’s API call takes over 2400 GPU seconds, whereas Sim-PE takes less than 30 CPU seconds–
an 80x speedup, not to mention the lower cost of CPU than GPU. Consequently, each Sim-PE
iteration is much faster than PE (Tab. 15). The only Sim-PE operation requiring GPU is computing
the embedding and nearest neighbors of simulator-generated data (§ 3.3), which is a one-time cost
per dataset. Even this one-time process is significantly faster than one PE API call. Sim-PE with
data access requires more CPU memory to store simulator-generated data, but this can be easily
optimized by loading only the needed data.

Time Peak CPU Memory Peak GPU Memory

PE RANDOM API 3920.30 seconds (GPU) 15292.98 MB 13859.10 MB
VARIATION API 2422.44 seconds (GPU) 15880.25 MB 16203.89 MB

Sim-PE RANDOM API 27.17 seconds (CPU) 758.90 MB 0 MB
VARIATION API 18.51 seconds (CPU) 1083.11 MB 0 MB

Table 12: Efficiency comparison of PE and Sim-PE on the MNIST dataset. Tested on a Linux server
with AMD EPYC 7V12 64-Core Processor and one NVIDIA RTX A6000 GPU.

Time Peak CPU Memory Peak GPU Memory

PE RANDOM API 39272.33 seconds (GPU) 15293.29 MB 13859.10 MB
VARIATION API 31028.24 seconds (GPU) 15879.47 MB 16203.89 MB

Sim-PE RANDOM API 0.04 seconds (CPU) 61416.62 MB 0 MB
VARIATION API 0.03 seconds (CPU) 61427.29 MB 0 MB

Sim-PE Setup 1450.94 seconds (GPU) 61420.69 MB 3728.16 MB

Table 13: Efficiency comparison of PE and Sim-PE (with data access) on the CelebA dataset.
Tested on a Linux server with AMD EPYC 7V12 64-Core Processor and one NVIDIA
RTX A6000 GPU.
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Time Peak Memory Peak GPU Memory

PE RANDOM API 39272.33 seconds (GPU) 15293.29 MB 13859.10 MB
VARIATION API 31028.24 seconds (GPU) 15879.47 MB 16203.89 MB

Sim-PE RANDOM API 46.69 seconds (CPU) 811.72 MB 0 MB
VARIATION API 48.78 seconds (CPU) 1067.93 MB 0 MB

Table 14: Efficiency comparison of PE and Sim-PE (with code access) on the CelebA dataset.
Tested on a Linux server with AMD EPYC 7V12 64-Core Processor and one NVIDIA
RTX A6000 GPU.

MNIST CelebA (Sim-PE with data access) CelebA (Sim-PE with code access)
PE 22243.32 279695.52 279695.52

Sim-PE 607.95 441.63 880.38

Table 15: The runtime (seconds) of one iteration in PE and Sim-PE. Tested on a Linux server with
AMD EPYC 7V12 64-Core Processor and one NVIDIA RTX A6000 GPU.

I EXTENDED DISCUSSIONS

I.1 THE PREVALENCE AND IMPORTANCE OF SIMULATORS

In this paper, we define simulators as any data synthesizers that do not rely on neural networks.
These simulators are widely used across various applications due to their unique advantages over
neural network-based approaches.

The prevalence of simulators. Despite the widespread adoption of foundation models, simulators
remain highly prevalent. Here are a few notable examples:

• Genesis:4 A physics-based simulator used in robotics, embodied AI, and physical AI applica-
tions. Since its release in late 2024, it has received over 24k GitHub stars and 84k downloads as
of April 2024.

• Blender:5 A rendering framework widely used for image and video production, including in
movie-making (see examples at Blender Studio6). One simulator used in our face experiment
(the DIGIFACE-1M dataset) is built on Blender.

• Unreal:7 A widely adopted game engine with image/video rendering capability. It holds a
14.85% market share in the game development industry.8 Note that competing engines also
qualify as “simulators” under our definition.

The importance of simulators. As demonstrated above, simulators continue to play a crucial role
in industry applications. Even synthetic data generation also frequently relies on simulators rather
than foundation models (e.g., META-SIM (Kar et al., 2019), DIGIFACE-1M (Bae et al., 2023)). This
preference stems from several unique advantages of simulators over foundation models:

• Rich annotations: Simulators provide additional structured labels due to explicit control over
the data generation process. For instance, besides face images, FACE SYNTHETICS (Wood et al.,
2021) offers pixel-level segmentation masks (e.g., identifying eyes, noses), which are highly
valuable for downstream tasks such as face parsing.

• Task-specific strengths: Certain generation tasks remain challenging for foundation models.
For example, despite recent advances, foundation models still struggle with generating images
containing text (Rombach et al., 2022), whereas simulators can handle it easily. Our MNIST
experiment was specifically designed to highlight this distinction.

• Domain-specific strengths: In domains like networking, where robust foundation models are
lacking, network simulators such as ns-39 remain a more reliable and scalable solution.

4https://genesis-embodied-ai.github.io/
5https://github.com/blender/blender
6https://studio.blender.org/films/
7https://www.unrealengine.com/en-US
8https://6sense.com/tech/game-development/unreal-engine-market-share
9https://www.nsnam.org/
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• Greater reliability and control: Because simulators model the data generation process, they
mitigate issues such as generating anatomically incorrect images (e.g., faces without noses10).

That said, there are indeed data domains for which no suitable simulators exist. However, the
goal and contribution of this work is not to cover every possible data domain–which is inherently
infeasible–but rather to significantly expand the range of domains where PE can be applied. For
example, we demonstrate its effectiveness on challenging domains for PE such as text rendering and
face generation.

Moreover, the proposed approach is not limited to using simulators. The method in § 3.3 can also
be applied to any public dataset, as demonstrated in App. D. This highlights the broader potential of
our approach that sidesteps the limitation of requiring a suitable simulator.

I.2 DISCUSSION ON THE CHOSEN METRICS

In the main experiments, we use FID and the accuracy of downstream classifiers as the metrics.

Why we pick these metrics. We chose FID and classification accuracy because they are the most
widely used metrics in DP image synthesis. Most of the baselines we compared to utilize only these
two metrics or just one of them (Gong et al., 2025). The only exception is GS-WGAN, which
also uses Inception Score (IS) (Salimans et al., 2016). However, IS is more relevant for natural
images (e.g., ImageNet images) because it evaluates the diversity across ImageNet classes, making
it unsuitable for the datasets we considered in the main paper. Additionally, for the downstream
task (ten-class classification for MNIST and binary classification for CelebA), we also follow prior
works (Gong et al., 2025).

The differences between these metrics. FID measures the “fidelity” of synthetic data by map-
ping both synthetic and private data to an embedding space, approximating each with a Gaussian
distribution, and calculating the Wasserstein distance between the two distributions. Classification
accuracy measures the “utility” of synthetic data by evaluating its performance when used to train
a downstream classifier, simulating real-world use where users expect the synthetic data to support
good classifier performance on real data. FID and classification accuracy are complementary: FID
focuses on distribution-level closeness, while classification accuracy is sensitive to outliers or sam-
ples near the classification boundary. A high score in one does not necessarily correlate with a high
score in the other. This is why we often see cases where the best methods for these metrics differ
(Gong et al., 2025).

I.3 BIAS IN SIMULATORS

Because Sim-PE relies on simulators, biases inherent in the simulator can be transferred to the
synthetic data produced by Sim-PE.

I.4 THE ORDERING OF APPLYING THE SIMULATOR AND THE FOUNDATION MODEL

In § 3.4, we propose to use simulators in early iterations and then switch to foundation models. The
reverse ordering–“foundation model→ simulator”–is also feasible with appropriate modifications.
In this setup, when transitioning from the foundation model to the simulator, one would need to find
the optimal simulator parameters corresponding to each sample generated by the foundation model,
potentially using gradient-free optimization methods.

However, we only explore “simulator→ foundation model” in the paper for two main reasons:

• This ordering keeps the approach simple and avoids the need for special treatments like the one
described above.

• It is also more promising in data quality. Simulators can generate diverse samples that span a
wide range of variations, making them ideal for initialization. However, their image quality is
bad. Foundation models, on the other hand, are better at producing high-fidelity, realistic sam-
ples, which is more desirable in the final stages of the pipeline, which creates the final synthetic
data.

10https://www.reddit.com/r/StableDiffusion/comments/1e7dd62/weird_and_
distorted_images_with_a1111_sd3/
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J THE USE OF LARGE LANGUAGE MODELS (LLMS)

The paper was mostly written by the authors, with LLMs assisting in grammar correction and lan-
guage polishing.
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