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ABSTRACT

Differentially private (DP) synthetic data, which closely resembles the original
private data while maintaining strong privacy guarantees, has become a key tool
for unlocking the value of private data without compromising privacy. Recently,
(PE) has emerged as a promising method for generating DP syn-
thetic data. Unlike other training-based approaches, only requires access to
inference APIs from foundation models, enabling it to harness the power of state-
of-the-art (SoTA) models. However, a suitable foundation model for a specific
private data domain is not always available. In this paper, we discover that the
framework is sufficiently general to allow APIs beyond foundation models. In par-
ticular, we demonstrate that many SoTA data synthesizers that do not rely on neu-
ral networks—such as computer graphics-based image generators, which we refer
to as simulators—can be effectively integrated into PE. This insight significantly
broadens PE’s applicability and unlocks the potential of powerful simulators for
DP data synthesis. We explore this approach, named , for image synthesis.
Across four diverse simulators, performs well, improving the downstream
classification accuracy of PE by up to 3 x, reducing FID by up to 80%, and offer-
ing much greater efficiency. We also show that simulators and foundation models
can be easily leveraged together within to achieve further improvements.

1 INTRODUCTION

Leaking sensitive user information is a major concern in data-driven applications. A common so-
lution is to generate differentially private (DP) ( , ) synthetic data that resembles
the original while ensuring strong privacy guarantees. Such data can substitute the original in tasks
like model fine-tuning, statistical analysis, and data sharing, while preserving user privacy (

, ; Lin, ; , 5 , )-

(PE)( , ; , ) has recently emerged as a promising method
for DP data synthesis. It begins by probing a foundation model to produce random samples, then
iteratively selects those most similar to private data and uses the model to generate more like them.
Unlike prior state-of-the-art (S0TA) methods that fine-tune open-source models, PE relies solely on

model inference—making it up to 66x faster ( ). More importantly, this allows

to easily leverage cutting-edge foundation models like GPT 4 ( , ) and Stable Diffusion

( , ), achlevrng SoTA performance on multiple i 1mage and text benchmarks (
;b). has also been adopted in Mrcrosoft and Apple ( s ; s ).

However, relies on foundation models suited to the private data domain, which may not always

be available. When the model’s distribution significantly differs from the private data, PE’s perfor-

mance lags far behind training-based methods ( , ).

To address this question, we note that in the traditional synthetic data field—where private data
is not involved—non-neural-network data synthesizers remain widely used, especially in domains
where foundation models struggle. Examples include computer graphics-based renders for images,

videos, and 3D data (e.g., Blender ( s ) and Unreal ( )), physics-based
simulators for robotics data (e.g., Genesrs ( , )), and network simulators for networking
data (e.g., ns ( s )). For brevity, we refer to these tools

as simulators. While these s1mulat0r§ have been successful, their applications in DP data synthesis
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remain underexplored. This is understandable, as adapting these simulators to fit private data in a

DP fashion requires non-trivial, case-by-case modifications. Our key insight is that PE only requires

two APIs: RANDOM_API that generates random samples and VARIATION_API that generates samples

similar to the given one. These APIs do not have to come from foundation models. Thus, we ask:

Can PE use simulators in place of foundation models? If viable, this approach could greatly expand
’s capabilities and unlock the potential of a wide range of simulators for DP data synthesis.

In this paper, we propose (Fig. 1) to ex-

ploit this potential for image generation. We Gemini

consider two types of simulator access: (1) @ openal

The simulator is accessible. We define RAN- Private

DOM_API as rendering an image with random Evolution

simulator parameters, and VARIATION_API as ,@UEREAL 1 (PE)

slightly perturbing the simulator parameters of » Genesis | [N @ %

the given image. (2) The simulator is inac- g A9)blender

cessible—only its generated data is released.

ThlS scenario is quite common ( s
, ), especially when sim-

ulator assets are proprietary ( , ;
s ). In this case, we define

RANDOM_API as randomly selecting an image

from the dataset, and VARIATION_API as ran-

domly selecting a nearest neighbor of the given

image. We demonstrate that with suitable sim-

ulators, can outperform PE with foundation models. Our key contributions are:

Simulators ~ Sim-PE
(this work)

Figure 1: Unlike prior PE work that relies solely
on foundation models, we show that is also
compatible with non-neural-network data synthe-
sis tools, which we call simulators. This greatly
broadens ’s applicability and enables SoTA
simulators for DP data synthesis.

e Advancing PE. We discover that PE can leverage tools beyond foundation models and propose

—an extension that uses simulators, significantly broadening PE’s applicability. We also

introduce the use of both foundation models and simulators interchangeably during synthesis,
allowing for the benefits of both to be leveraged through PE’s easy and standardized interface.

¢ Bringing simulators to DP synthetic data. Although simulators are widely used and powerful
(App. I.1), they have been largely absent from DP data generation. is the first framework
to unlock their potential in this space.

e Results. We demonstrate promising results with . For instance, on the MNIST dataset
with € = 1, downstream classification accuracy increases to 89.1%, compared to 27.9% with
the original PE. Furthermore, combining foundation models with weak simulators results in
improved performance compared to using either one alone.

2 PRELIMINARIES AND MOTIVATION

2.1 PRELIMINARIES
Synthetic data refers to “fake” data generated by models or software for various applications, in-

cluding data augmentation, model training, and software testing (Lin, ). While neural-network-
based generative models such as GANSs ( , ), diffusion models (
s ), and auto-regressive models ( , ; s ) are widely used, non-

neural-network tools remain SoTA in many applications. For example, ns (

, ) can simulate networks and generate network packets based on network
configurations. Blender ( , ), given 3D models and lighting configurations, can ren-
der images and videos, and is extensively used in movie production. In this paper, we refer to
these tools as simulators. See App. 1.1 for a discussion on the continued importance of simulators,
even in the era of large foundation models.

DP synthetic data requires the synthetic data to be close to a given private dataset, while having a
strict Differential Privacy (DP) ( , ) guarantee. Formally, a mechanism M is (¢, 0)-
DP if for any two neighboring datasets D and D’ (i.e., D’ has one extra entry compared to D or
vice versa) and for any set S of outputs of M, we have P (M (D) € S) < efP (M (D') € S) + 4.
Smaller € and § imply stronger privacy guarantees. Current SOTA DP image and text synthesis
methods typically requires neural network training ( , ; , ;
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(PE) ( s ; , ) is a recent training-free framework for DP
data synthesis. only requires inference access to the foundation models. Therefore, unlike prior
training-based methods, PE can leverage the SoOTA models even if they are behind APIs (e.g., GPT-
4) and is more computationally efficient ( s ; , ). In more detail, has
achieved SoTA performance on several image and text benchmarks ( , ; , ;

;b). When using similar open-source pre-trained models, attains an image
quality score of FID < 7.9 on CIFARI10 with a privacy cost of € = 0.67, a significant improvement
over the previous SoTA, which required ¢ = 32 ( , ). Furthermore, PE can be up to 66 x
more efficient than training-based methods on DP fext generation ( , ). By leveraging
SoTA models behind APIs—where training-based methods are not applicable—PE further enhances
performance, outperforming all prior approaches in downstream fext classification accuracy on the
OpenReview dataset ( , ). Additionally, can be applied in federated learning to shift
model training from devices to central servers in a differentially private and more efficient manner
( , ). Moreover, has been adopted by some of
the largest IT companles such as Mlcrosoft and Apple ( , ; , ).

2.2 MOTIVATION

While achieves SoTA performance on several image and text benchmarks ( , ;
, ), its performance significantly drops when there is a large dis-

tribution shlft between the private data and the foundation model’s pre-trained data (
). For instance, when using the MNIST dataset ( s ) (handwritten digits) as the pI‘l-
vate data, training a downstream digit classifier (10 classes) on DP synthetic data (with e = 1) from
—using a foundation model pre-trained on ImageNet—yields an accuracy of only 27.9%. Since
relevant foundation models may not always be available for every domain, this limitation hinders
’s applicability in real-world scenarios. Extending PE to leverage simulators could significantly

expand its potential applications.

More broadly, as discussed in § 2.1 and App. 1.1, simulators cannot be substituted by foundation
models in (non-DP) data synthesis across many domains. Unfortunately, current SOTA DP synthetic
data methods are deeply reliant on machine learning models (e.g., requiring model training) and
cannot be applied to simulators. By extending to work with simulators, we aim to unlock the
potential of simulators in DP data synthesis.

3 : PRIVATE EVOLUTION (PE) WITH SIMULATORS

In this paper, we focus on DP image generation. A key advantage of the framework is that
it decouples the DP mechanism from the data generation backend. Specifically, any backend that
supports (1) RANDOM_API, which generates a random sample (e.g., a random bird image), and (2)
VARIATION_API, which produces slight variations of a given sample (e.g., a similar bird image),
can be integrated into and turned into a DP data synthesis algorithm. Prior work on (

, ;b) has excluswely used foundation models to 1mplement these APIs. Our
key 1ns1ght is that these APIs do not need to be powered by foundation models: traditional data
synthesizers that do not rely on neural networks—referred to as simulators—can also be used to
implement RANDOM_API and VARIATION_API.

In the following sections, we first provide an overview of the algorithm (§ 3.1) and the
design of its APIs (§ 3.2 and 3.3), then discuss how simulators and foundation models can be jointly
used in to leverage the strengths of both (§ 3.4).

3.1 OVERVIEW

Algorithm overview. Except for the APISs, largely follows the same workflow as PE. For
completeness, we briefly describe the workflow here and include the full algorithm in App. A. We
first use RANDOM_API to generate an initial set of random samples (Line 4). Then, we iteratively
refine these samples using the private data. In each iteration:

e Each private sample casts a vote for its closest synthetic sample. This yields a histogram (denoted
DP_NN_HISTOGRAM) reflecting how well each synthetic sample aligns with the private data
(Line 6). To ensure differential privacy, Gaussian noise is added to this histogram.

e We sample synthetic data according to the noisy histogram, giving higher likelihood to those
samples that align more closely with private data (Lines 7 and 8).
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e We apply VARIATION_API to the drawn samples to generate additional variants (Line 9). These
samples become the initialization of the next iteration.

The synthetic samples at the final iteration constitute the DP synthetic dataset.

Theoretical analysis. Since we only modify RANDOM_API and VARIATION_API, the privacy guar-
antee and convergence analysis are exactly the same as PE ( . ) (more details in App. B).

Considered simulators. Existing popular image simulators often provide different levels of ac-
cess. Some simulators are open-sourced. Examples include KUBRIC ( , ), a
Blender-based renderer for multi-object images/videos; 3D TEAPOT ( , ;
s ), an OpenDR-based renderer for teapot images; and PYTHON-AVATAR ( s

), arule-based generator for avatars. However, the assets (e.g., 3D models) used in these render-
ers are often proprietary. Therefore, many simulator works choose to release only the generated
datasets without the simulator code. Examples include the FACE SYNTHETICS (

) and the DIGIFACE-1M ( , ) datasets, both generated using Blender-based ren-
derers for human faces. In § 3.2 and 3.3, we discuss the design for simulators with code access and
data access, respectively.

3.2 WITH SIMULATOR ACCESS

While different simulators have very different programming interfaces, most of them can be ab-
stracted in the same way. Given a set of q numerical parameters ¢1,...,¢, and p categori-
cal parameters &1,...,&, where ¢; € ®; and & € ZE;, the simulator S generates an image
S(&,.... &, #1,...,0q). Here, numerical parameters refer to those with meaningful ordering
(e.g., 1 is closer to 2 than to 3), whether discrete (e.g., € {0, 1,2}) or continuous (e.g., € [0, 2]). In
contrast, categorical parameters are those without inherent ordering, or where even a small change
in the parameter can cause a large, unrelated change in the output. For example, for face image
renders ( ), ¢;s could be the angle of the face and the strength of
lighting, and &;s could be the ID of the 3D human face model and the ID of the hairstyle.!

For RANDOM_API, we simply draw each parameter randomly from its corresponding feasible set:

RANDOMAPI =S (&1, .-, &p, @15+, Bg) » (1)
where &; ~ Uniform (Z;) and ¢; ~ Uniform (®;) .

Here, Uniform (S) denotes drawing a sample uniformly at random from the set .S.

For VARIATION_API, we generate variations by perturbing the input image parameters. For numer-
ical parameters ¢;, we simply add noise. However, for categorical parameters &;, where no natural
ordering exists among feasible values in =;, adding noise is not applicable. Instead, we re-draw the
parameter from the entire feasible set Z; with a certain probability. Formally, it is defined as

VARIATION_API (S (&1, ..., &py @1, -+, 0g)) =S (&1, &0y Do -1 0) (2)
Uniform (Z;), with probability

h ! ~ Unif ;— i ; ! = .
where ¢; ~ Uniform ([¢; = o, ¢i + o N @) and & {5 with probability 1 — 3

Here, a and (3 control the degree of variation. At one extreme, when o« = oo and 5 = 1, VARI-
ATION_API completely discards the information of the input sample and reduces to RANDOM_API.
Conversely, when a = 8 = 0, VARIATION_API outputs the input sample unchanged.

3.3 WITH SIMULATOR-GENERATED DATA

We assume a simulator-generated dataset of m samples, Sgim = {21, ..., zm }- The goal is to select
Ngyn of them to form the DP synthetic dataset Sgy,,. Before introducing our solution, we discuss
why two straightforward approaches fall short.

Baseline 1: Applying DP_NN_HISTOGRAM on S.,,. One immediate solution is to apply
DP_NN_HISTOGRAM in (Alg. 2) by treating Ssim as the generated set S. In other words, each
private sample votes for its nearest neighbor in Sy, and the final histogram, aggregating all votes,

'For well-documented simulators, obtaining the list of parameters is straightforward. For example,
PYTHON-AVATAR, used in § 4.2, lists its parameters in the README. Alternatively, one can use the approach
in § 3.3, which does not require explicit parameter identification.
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is privatized with Gaussian noise. We then draw samples from Sgn according to the privatized
histogram (i.e., Line 8 in Alg. 1) to obtain Sgyr,.

However, the size of the simulator-generated dataset (i.e., m) is typically very large (e.g., 1.2 million
in ( )), and the total amount of added Gaussian noise grows with m. This means that
the resulting histogram suffers from a low signal-to-noise ratio, leading to poor fidelity in Seyy.

Baseline 2: Applying DP_NN_HISTOGRAM on cluster centers of Sy,,. To improve the signal-to-
noise ratio of the histogram, one solution is to have private samples vote on the cluster centers of
Sqim instead of the raw samples. Specifically, we first cluster the samples in Sy, into Nejyger clusters
with centers {w1, ..., wn,,,, | and have private samples vote on these centers rather than individual
samples in Sgm.> Since the number of bins in the histogram decreases from m to Nejusier, the signal-
to-noise ratio improves. Following the approach of the previous baseline, we then draw Ny, cluster
centers (with replacement) based on the histogram and randomly select a sample from each chosen
cluster to construct the final Sgy,.

However, when the total number of samples m is large, each cluster may contain a diverse set of
samples, including those both close to and far from the private dataset. While DP voting on clusters
improves the accuracy of the DP histogram and helps select better clusters, there remains a risk of
drawing unsuitable samples from the chosen clusters.

Our approach. Our key insight is that the unavoidable trade-off between DP histogram accuracy
and selection precision (clusters vs. individual samples) stems from forcing private samples to
consider all of Sg,—either directly (baseline 1) or via cluster centers (baseline 2). But this is not
necessary: if a sample is far from the private data, its nearest neighbors in Sy, are likely far too (see
App. C for experiments). Thus, we can avoid wasting privacy budget on evaluating such samples.

The iterative selection and refinement process in PE naturally aligns with this idea. For each sample
2;, we define its nearest neighbors in Sgm as qi, . . ., g, sorted by closeness, where ¢ = z; is the
closest. We define RANDOM_API as drawing a random sample from Sgip,:

RANDOM_API ~ Uniform (Sg) -

Since we draw only Ng,,, samples (instead of all m) from RANDOM_API, the DP histogram has
a higher signal-to-noise ratio. In the following steps (Lines 6 to 8 in Alg. 1), we discard samples
far from the private data indicated by the DP histogram, and apply VARIATION_API only to the
remaining as follows:

VARIATION_API (z;) = Uniform ({q},...,q.}) .

thus avoiding consideration of nearest neighbors of the removed samples (unless they are also nearest
neighbors of retained samples). Similar to « and 3 in § 3.2,  controls the degree of variation. Atone
extreme, when v = m, VARIATION_API disregards the input sample and reduces to RANDOM_API.
At the other extreme, when v = 1, VARIATION_API returns the input sample unchanged.

We verify the effectiveness of our approach over the two baselines in App. F.1.

Broader applications. While our main experiments (§ 4) focus on simulator-generated data, the
proposed algorithm can be applied to any public dataset. We demonstrate this broader use in App. D.

3.4 WITH BOTH SIMULATORS AND FOUNDATION MODELS

As discussed in § 2.1, simulators and foundation models complement each other across different data
domains. Moreover, even within a single domain, they excel in different aspects. For example, com-
puter graphics-based face image generators ( , ) allow controlled
diversity in race, lighting, and makeup while mitigating potentlal biases in foundation models. How-
ever, the generated faces may appear less realistic than those produced by SoTA foundation models.
Thus, combining the strengths of both methods for DP data synthesis is highly appealing.

Fortunately, PE naturally supports this integration, as RANDOM_API and VARIATION_API work the
same for both foundation models and simulators. While there are many ways to combine them,
we explore a simple strategy: using simulators in the early iterations to generate diverse seed

Note that voting in ( ) is conducted in the image embedding space. Here, w;s represent
cluster centers in the embedding space, and each private sample uses its image embedding to find the nearest
cluster center.



Under review as a conference paper at ICLR 2026

samples, then switching to foundation models in later iterations to refine details and enhance realism.
As shown in § 4, this approach outperforms using either simulators or foundation models alone. See
App. 1.4 for alternative approaches.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

4.1.1 DATASETS AND SIMULATORS

Datasets. Following prior work ( , ), we use three private datasets: (1) MNIST
( R ), where the image class labels are digits ‘0’-‘9’, (2) CelebA ( R ), where
the image class labels are male and female, and (3) CIFAR10 ( , ), which

contains 10 classes of natural images. We aim at conditional generation for these datasets (i.e., each
generated image is associated with the class label). Due to space constraints, CIFAR10 experiments
are deferred to App. D.

Simulators. To showcase the broad applicability of , we use four diverse simulators.

(1) Text rendering program. Generating images with readable text using foundation models is
a known challenge ( , ). Simulators can address this gap, as generating images
with text through computer programs is straightforward. To illustrate this, we implement our own
text rendering program, treating MNIST as the private dataset. Specifically, we use the Python PIL
library to render digits as images. There are two categorical and three numerical parameters in total
(details in App. G.1). We set the feasible sets of these parameters to be large enough so that the
random samples differ significantly from MNIST (see Fig. 2b).

(2) Computer graphics-based renderer for face images. Computer graphics-based rendering is
widely used in real-world applications such as game development, cartoons, and movie production.
This experiment aims to assess whether these advanced techniques can be adapted for DP synthetic
image generation via . We use CelebA as the private dataset and a Blender-based face image
renderer from ( ) as the API. Since the source code for their renderer is not publicly
available, we apply our data-based algorithm from § 3.3 on their released dataset of 1.2 million face
images. Note that this renderer may not necessarily represent the SOTA. As visualized in Fig. 3b, the
generated faces exhibit various unnatural artifacts and appear less realistic than images produced by
SoTA generative models (e.g., ( )). Therefore, this experiment serves as a pre-
liminary study, and the results could potentially improve with more advanced rendering techniques.

(3) Rule-based avatar generator. We further investigate whether remains effective when
the simulator’s data significantly differs from the private dataset. We use CelebA as the private
dataset and a rule-based avatar generator ( , ) as the APL This simulator has 16 categor-
ical parameters that control attributes of the avatar, including eyes, noses, background colors, skin
colors, etc (details in App. G.2). As in Fig. 4b, the generated avatars have a cartoon-like appearance
and lack fine-grained details, which contrasts sharply with real human face photos in CelebA.

(4) Public images. To demonstrate that (§ 3.3) generalizes beyond simulator-generated
data, we also evaluate it using ImageNet as Sgi,. Owing to space, results are in App. D.

Class label information from simulators. In our main experiments, we assume the simulator does
not provide class label information (denoted as “ClassUnavail”). In App. F.8, we further investigate
a setting where the simulator does provide class labels along with the generated images, and find
that this leads to improved performance. See App. F.8 for details and results.

4.1.2 METRICS AND EVALUATION PIPELINES

We follow the evaluation settings of DPImageBench ( , ), a recent benchmark for
DP image synthesis. Specifically, we use two metrics: (1) FID ( , ) as a quality
metric and (2) the accuracy of downstream classifiers as a utility metric. Specifically, we use
the conditional version of PE (App. A), so that each generated images are associated with the class
labels (i.e., ‘0’-°9’ digits in MNIST, male vs. female in CelebA). These class labels are the targets
for training the classifiers. We employ a strict train-validation-test split and account for the privacy
cost of classifier hyperparameter selection. Specifically, we divide the private dataset into disjoint
training and validation sets. We then run on the training set to generate synthetic data. Next,
we train three classifiers—ResNet ( s ), WideResNet ( R ),
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Figure 2: The real and generated images on MNIST under the “ClassUnavail” setting. Each row
corresponds to one class. The simulator generates images that are very different from the real ones
and are from the incorrect classes. Starting from these bad images, can effectively guide the
generation of the simulator towards high-quality images with correct classes.

(private) images (b) Simulator-generated images (©) images (e = 10)

Table 1: Accuracy and FID. The best between methods is in bold, and the best between all
methods is underlined. “Simulator” refers to samples from the simulator’s RANDOM_API. Results

other than and Simulator are taken from ( ).
(a) Accuracy (%) of downstream classifiers. (b) FID of synthetic images.
. MNIST CelebA . MNIST CelebA
Algorithm =1 ¢=10]c=1 e=10 Algorithm =1 e=10] e=1 =10
DP-MERF 80.3 81.3 81.0 81.2 DP-MERF 113.7  106.3 176.3 147.9
DP-NTK 500 913 | 612 642 DP-NTK 382.1 692 | 3504 2278
DP-Kernel 94.0 93.6 83.0 83.7 DP-Kernel 33.7 38.9 140.3 128.8
GS-WGAN 72.4 75.3 61.4 61.5 GS-WGAN 57.0 47.7 611.8 290.0
DP-GAN 924 927 77.9 89.2 DP-GAN 82.3 30.3 112.5 31.7
DPDM 892 977 | 745 918 DPDM 36.1 4.4 153.99  28.8
PDP-Diffusion | 94.5 974 | 894  94.0 PDP-Diffusion | 8.9 3.8 17.1 8.1
DP-LDM (SD) | 78.8 94.4 84.4 89.1 DP-LDM (SD) | 319 18.7 46.2 24.1
DP-LDM 44.2 95.5 85.8 924 DP-LDM 1552 99.1 124.1 40.4
DP-LoRA 822 97.1 87.0 92.0 DP-LoRA 112.8 95.4 53.3 322
Privimage 940  97.8 | 90.8 92,0 Privimage 76 23 | 14 113
Simulator M6(c=0) | 6l4(c=0) Simulator 862(e=10) 37.2(e=0)
2790 327 | 705 742 488 453 | 234 220
(ours) | 89.1  93.6 | 80.0 825 (ours) | 207 94 | 247 208
and ResNeXt ( , )—on the synthetic data and evaluate their accuracy on the validation
set. Since the validation set is part of the private data, we use the Report Noisy Max algorithm
( , ) to select the best classifier checkpoint across all epochs of all three classifiers.

Finally, we report the accuracy of this classifier on the test set. This procedure ensures that the re-
ported accuracy is not inflated due to train-test overlap or DP violations in classifier hyperparameter
tuning. See App. 1.2 for further discussion on the rationale behind our choice of metrics.

Following ( ), we set DP parameter 6 = 1/(Npyiy - log Npriv ), Where Ny, is the
number of samples in the private dataset, and € = 1 or 10.

4.1.3 BASELINES

We compare with 12 SoTA DP image synthesizers reported in ( ), including
DP-MERF ( , ), DP-NTK ( , ), DP-Kernel ( , ),
GS-WGAN ( , ), DP-GAN ( , ), DPDM ( , ), PDP-
Diffusion ( , ), DP-LDM ( , ), DP-LoRA ( , )
Privimage ( , ), and with foundation models ( , ). Except for PE,
all other baselines require model training. When experimenting with simulator-generated data, we
additionally compare against the two baselines introduced in § 3.3.

Note: Different methods rely on different prior knowledge. For instance, many baselines use pre-
trained models or public data from similar distributions (see Tab. 2 of ( )), whereas

does not. Instead, leverages simulators, which are not used by others. As such,

represents a new evaluation setting, and baseline results serve primarily to contextualize
this new paradigm and inspire future work, rather than an apple-to-apple comparison.
4.2 WITH SIMULATOR ACCESS

In this section, we evaluate with a text rendering program on MNIST dataset. The results
are shown in Tab. 1 and Fig. 2. The key takeaway messages are:
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(a) Real (prlvate) images (b) Simulator-generated images (©) images (e = 10)

Figure 3: The real and generated images on CelebA. The top rows correspond to the “female” class,
and the bottom rows correspond to the “male” class. The simulator generates images with incorrect
classes. However, starting from these misclassified images, effectively selects those that
better match the correct class.

Table 2: Accuracy (%) of classifiers trained on synthetic images and FID of synthetic images on
CelebA. The best results are highlighted in bold. Using a combination of both (weak) simulators
and foundation models outperforms using either one alone.

. FID | Classification Acc. T
Algorithm e=1 e=10]e=1 e=10
with foundation models 23.4 22.0 70.5 74.2
with weak simulators (i.e., ) | 101.4 99.5 62.6 63.2
with both 15.0 11.9 72.7 78.1

effectively guides the simulator to generate high-quality samples. As shown in Fig. 2b,
without any information from the private data or guidance from , the simulator initially pro-
duces poor-quality images with incorrect digit sizes, rotations, and stroke widths. These low-quality
samples serve as the starting point for (via RANDOM_API). Through iterative refinement
and private data voting, gradually optimizes the simulator parameters, ultimately generating
high-quality MNIST samples, as illustrated in Fig. 2c.

Quantitative results in Tab. 1 further support this. Without private data guidance, the simulator often
generates digits from incorrect classes, yielding a classifier accuracy of just 11.6%-near random
guess. In contrast, boosts accuracy to around 90%. FID scores also confirm that
produces images more similar to real data.

can improve the performance of PE by a large margin. The PE baseline ( , )
uses a diffusion model pre-trained on ImageNet, which primarily contains natural object images
(e.g., plants, animals, cars). Since MNIST differs significantly from such data, PE, as a training-
free method, struggles to generate meaningful MNIST-like images. Most PE-generated images lack
recognizable digits (see ( ), resulting in a classification accuracy of only ~ 30%
(Tab. 1a). By leveraging a simulator better suited for this domain, achieves much better
results, tripling the classification accuracy and reducing the FID by 80% at € = 10.

achieves competitive results among SoTA methods. When the foundation model or public
data differs significantly from the private data, training-based baselines can still adapt the model to
the private data distribution by updating its weights, whereas PE cannot. This limitation accounts for
the substantial performance gap between PE and other methods. Specifically, PE records the lowest
classification accuracy among all 12 methods (Tab. 1a). By leveraging domain-specific simulators,

substantially narrows this gap, achieving classification accuracy within 5.4% and 4.2% of
the best-performing method for € = 1 and € = 10, respectively.

4.3 WITH SIMULATOR-GENERATED DATA

We evaluate using a generated dataset from a computer graphics-based renderer on the
CelebA dataset. The results, presented in Tab. 1 and Fig. 3, highlight the following key takeaways:

selects samples that better match target classes. Without private data, the simulator
naturally generates images with incorrect labels (Fig. 3b). As a result, a gender classifier trained
on this data achieves at most 61.4% accuracy—the majority class (female) rate. iteratively
refines selection from this noisy pool, ultimately choosing samples more aligned with target classes
(Fig. 3c), boosting accuracy by up to 21.1% (Tab. 1a).

maintains the strong data quality of PE. As shown in Tab. 1b, and PE achieve
similar FID. Unlike in MNIST (§ 4.2) where brought large gains, the modest improvement
on CelebA stems from two factors. First, with foundation models already ranks 3rd in FID,
leaving little room to improve. Second, here only selects from a fixed simulator-generated
dataset. As seen in Fig. 3, these images differ from real CelebA (e.g., having larger faces), and it is
impossible for to correct such discrepancies. Having access to simulator code, as in § 4.2,
could help alleviate such errors by allowing parameter adjustments. A hybrid approach combining
foundation models and simulators, as we will explore next, may also offer further gains.
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(a) Real (private) images (b) Simulator-generated images (c) images (e = 10)

Figure 4: The real and generated images on CelebA. The simulator is a weak rule-based avatar
generator ( , ) significantly different from the real dataset. The top rows correspond to
the “female” class, and the bottom rows correspond to the “male” class. The simulator generates
images with incorrect classes. tends to generate faces with long hair for the female class
and short hair for the male class (correctly), but the generated images have mode collapse issues.

4.4 WITH BOTH SIMULATORS AND FOUNDATION MODELS

In this section, we examine under weak simulators. As in the previous section, we use
CelebA as the private dataset, but replace the simulator with a rule-based cartoon avatar generator
( , ). As shown in Fig. 4b, the generated avatars differ significantly from real images.

with weak simulators still learns useful features. From Tab. 2, we observe that down-
stream classifiers trained on with weak simulators achieve poor classification accuracy.
However, two interesting results emerge: (1) Despite the significant difference between avatars and
real face images, still captures certain characteristics of the two classes correctly. Specifi-
cally, tends to generate faces with long hair for the female class and short hair for the male
class (Fig. 4c). (2) Although the FID of is quite poor (Tab. 2), they still outperform many
baselines (Tab. 1b). This can be explained by the fact that, as shown in ( ), high DP
noise makes the training of many baselines unstable. This results in images with noisy patterns, non-
face images, or significant mode collapse, particularly for DP-NTK, DP-Kernel, and GS-WGAN. In
contrast, is training-free, and thus it avoids these issues. See App. E for more analysis.

Next, we explore the feasibility of using with both foundation models and the weak avatar sim-
ulator (§ 3.4). The results are shown in Tab. 2.

benefits from utilizing simulators and foundation models together. We observe that
using both simulators and foundation models yields the best results in terms of both FID and classi-
fication accuracy. This result is intuitive: the foundation model, pre-trained on the diverse ImageNet
dataset, has a low probability of generating a face image through RANDOM_API. While avatars are
quite different from CelebA, they retain the correct image layout, such as facial boundaries, eyes,
nose, etc. Using these avatars as seed samples for variation allows the foundation model to focus on
images closer to real faces, rather than random, unrelated patterns.

Unlike other SoTA methods that are tied to a specific data synthesizer, this result suggests that PE is
a promising framework that can easily combine the strengths of multiple types of data synthesizers.

4.5 FURTHER ANALYSES

Number of iterations. Like PE, achieves good results in a few (e.g., 6) iterations (Fig. 8).

Computation cost. Since simulators could be much cheaper to run than foundation models,

could be much more efficient than PE. For instance, on MNIST, each PE’s API call takes over 2400
GPU seconds, whereas takes less than 30 CPU seconds—an 80x speedup, not to mention the
lower cost of CPU than GPU. See App. H for detailed results.

Hyperparameter sensitivity. We conduct ablation studies in App. F. Overall, is robust to
simulator parameter ranges, hyperparameters («, 3,7y), and the timing of switching from
simulators to foundation models. We also study the effect of sample size and distribution alignment.

5 LIMITATIONS AND FUTURE WORK

In this paper, we demonstrate the potential of the PE framework for utilizing powerful simulators in
DP image synthesis. While the results are promising, several important questions remain open:

(1) Since (in § 3.3) can be applied to any public dataset (App. D), it could support applica-
tions such as pre-training data selection for private fine-tuning ( , ; , ). (2)
This paper applies on images. In domains like networking and systems, simulators are more
common than foundation models, and could offer even greater potential. (3) for im-
age synthesis is still outperformed by the best baseline. Exploring better ways to combine simulators
and foundation models could further push the limits of the framework. (4) It remains an open
question how to effectively apply PE in domains where suitable foundation models, simulators, and
public datasets are all unavailable.
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REPRODUCIBILITY STATEMENT

The hyperparameters are reported in App. G, and the code for reproducing the experiments is pro-
vided in the supplementary materials. The code will be open-sourced.
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A PRIVATE EVOLUTION

Alg. 1 presents the (PE) algorithm, reproduced from ( ). This al-
gorithm represents the conditional version of PE, where each generated image is associated with a
class label. It can be interpreted as running the unconditional version of PE separately for each class
(Line 2).

Algorithm 1: (PE)

Input: The set of private classes: C' (C' = {0} if for unconditional generation)
Private samples: Spiv = {(2i, yi)}jv:"{“, where x; is a sample and y; € C'is its label

Number of iterations: T'

Number of generated samples: Ny, (assuming Ny, mod |C| = 0)
Noise multiplier for DP Nearest Neighbors Histogram: o

Threshold for DP Nearest Neighbors Histogram: H

Ssyn 0

for c € C'do

private_samples < {z;|(x;,yi) € Spriv and y; = ¢}
So + RANDOM_API (Nyyn/ |C|)

fort«+ 1,...,Tdo

histogram; < DP_NN_HISTOGRAM (private_samples, Sy_1,0, H) // See
Alg. 2
Py + histogram;/sum(histogramt) // P; is a distribution on S

S} < draw Ny, /|C| samples with replacement from P, // S, is a multiset
S, < VARIATION_API (S!)

| Ssyn < Ssyn U {(z,c)|z € ST}
return Sgyp,

Algorithm 2: DP Nearest Neighbors Histogram (DP_NN_HISTOGRAM)

Input : Private samples: Spriv
Generated samples: S = {z;}!_,
Noise multiplier: o
Threshold: H
Distance function: d (-, -)
Qutput: DP nearest neighbors histogram on S

ES T N}

histogram «+ [0, ..., 0]
for Tpriv € Spriv do
i = argminjcp,) d (Tpriv, 25)
histogramli| < histograml[i] + 1
histogram < histogram + N (0,01,) // Add noise to ensure DP
histogram <+ max (histogram — H,0) // ‘max’, ‘-’ are element-wise

return histogram

B THEORETICAL ANALYSIS

Convergence analysis. Since only changes PE’s RANDOM_API and VARIATION_API, the
original convergence analysis (App. E in ( )) remains valid for . Specifically:

e The analysis assumes that RANDOM_API generates samples within a ball of diameter D covering
the private samples. Changing RANDOM_API affects D but not the overall analysis procedure.

e The analysis assumes that VARIATION_API draws samples from a Gaussian distribution—an es-
sential assumption for any tractable analysis involving complex, unknown foundation models
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and simulators. Under this assumption, modifying VARIATION_API does not impact the analysis
procedure.

Privacy analysis. Since does not change the way utilizes private data, the privacy
analysis of PE ( , ) applies to . We repeat the privacy analysis in PE below for
completeness.

The only step that directly accesses private data is DP_NN_HISTOGRAM (Line 6 in Alg. 1, detailed
in Alg. 2). Let us analyze its privacy cost first:

e Each private sample contributes only one vote (Line 5 in Alg. 2).

e Adding or removing a single sample alters the resulting histogram by at most 1 in the [y
norm—so the sensitivity is 1.

e Line 5 adds i.i.d. Gaussian noise with standard deviation ¢ to each histogram bin. This corre-

sponds to the standard Gaussian mechanism ( , ) with noise multiplier o (i.e.,
o/1).
Now, consider the entire procedure (Alg. 1).

(1) Let’s first consider the procedure for one class c (Line 3-Line 10). All steps other than
DP_NN_HISTOGRAM do not access private data and simply post-process results from earlier DP
steps. Therefore, Alg. 1 can be interpreted as T" adaptive compositions of Gaussian mechanisms.

According to Corollary 3.3 in ( ),> T compositions of Gaussian mechanisms with
noise multiplier o can be viewed as a single Gaussian mechanism with effective noise multiplier

a/VT.

Thus, the final privacy cost reduces to computing the ¢ and § of a standard Gaussian mechanism

with noise o/+/T. We use the tight results from ( ) for this computation: the
mechanism is (g, 0)-differentially private if

VE e\ . [ VT o
(2-5) o £-5)=

where ® denotes the Gaussian cumulative distribution function (CDF). Given § and o, we can use
the above equation to solve for .

(2) Now, let’s first consider the full algorithm involving multiple classes. Since the private samples
from different classes are disjoint, due to parallel composition property ( , ), the pri-
vacy cost remains the same as above. See ( ) for an alternative analysis that gives the
same conclusion.

C JUSTIFYING THE METHODOLOGICAL DESIGN OF WITH
SIMULATOR-GENERATED DATA

In this section, we provide experimental evidence to support the claim in § 3.3: “If we already know
that a sample z; is far from the private dataset, then its nearest neighbors in Sy, are also likely to be
far from the private dataset.”

Consider ’s synthetic dataset S; from the ¢-th iteration. For each private sample x; in the

priv

private dataset Sp,4v, We find its nearest sample in S; as z;. S(selected); = {z; fil contains
samples close to Spriv (chosen by DP_NN_HISTOGRAM (Alg. 2) in PE under non-DP settings).
Conversely, the remaining samples, S(unselected); = S, \ S(selected), are farther from Sy .

Now, we need to confirm that S(unselected),’s nearest neighbors in Sy, are farther away from the
private dataset Sp,iy than S(selected),. We define:

e 2(Y'); as the nearest neighbor of the private sample z; in S(Y);, for Y € {selected, unselected}
. q(Y)é. as the j — th nearest neighbor of z(Y); in Sgm

e FID(Y) as the FID between Sy, and {q(Y)’ }N"“V’V

Jti=1,j=1"

3Please see their arXiv version https://arxiv.orqg/pdf/1905.02383.
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Fig. 5 shows that F'I D(selected) is smaller (better) than F'I D (unselected) across most PE itera-
tions, supporting our claim.

—— Selected
43 Unselected
[a)
=42
41 \
./\'ﬂ/d
0.0 2.5 5.0
Iteration

Figure 5: FID of the nearest neighbors of the selected and unselected samples.

D WITH CIFAR10 AS THE PRIVATE DATASET AND IMAGENET AS
THE SIMULATOR-GENERATED DATASET

In this section, we apply the algorithm in § 3.3 on the setting where CIFAR10 is treated as the private
dataset and ImageNet is treated as the simulator-generated dataset. We conduct this experiment for
the following reasons:

e In § 3.3, we discuss that can apply to any public dataset beyond simulator-generated
data. This experiment provides evidence for that claim.

e The original PE approach on CIFAR10 ( , ) uses a foundation model pretrained on
ImageNet, which aligns with the simulator data in this experiment. Comparing their performance
removes the impact of distribution alignment and highlights the differences in the RANDOM_API
and VARIATION_API designs of PE and .

Experiment settings. We use ¢ = 10. The downstream task is classifying images into the 10

classes in CIFARI10, following DPImageBench ( , ) and the original PE paper (

9 )'
Results. achieves FID=8.76, and acc=70.06%. In comparison, with a foundation model
achieves similarly with FID=9.2 and acc=75.3%. These results suggest that and can

be competitive when both suitable simulators and foundation models are available for the private
dataset. In addition, the results are comparable to state-of-the-art training-based methods, demon-
strating that is a promising framework.

E MORE ANALYSIS ON WITH WEAK SIMULATORS

In Fig. 4c, we see that ’s generated images have many duplicates. In this section, we conduct
more analysis on this phenomenon.

Fig. 6 shows that FID between generated images and the private dataset decreases (improves) across
iterations, confirming that generated images better align with the private distribution over iterations.
However, the number of unique samples in the generated dataset drops significantly (Fig. 7), leading
to duplicates in Fig. 4c. This may be due to the simulator being too weak, generating most images
far from the private dataset. As a result, converges to a small set of good images.
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Figure 6: (using DIGIFACE-1M)’s FID on CelebA improves over the course of the
iterations.
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Figure 7: The number of unique generated samples in each iteration of (using DIGIFACE-
1M) on CelebA.

F ADDITIONAL ABLATION STUDIES

F.1 DATA SELECTION ALGORITHMS

In § 3.3, we discussed two simple alternatives for simulator data selection. The comparison is in
Tab. 3. We see that with iterative data selection outperforms the baselines on most metrics,
validating the intuition outlined in § 3.3. However, the clustering approach used in the second
baseline still has merit, as it results in a better FID for e = 10. This idea is orthogonal to the design
of and could potentially be combined for further improvement. We leave this exploration to
future work.

Table 3: Accuracy (%) of classifiers trained on synthetic images and FID of synthetic images on

CelebA. The best results are highlighted in bold. outperforms the baselines in most metrics.
. FID | Classification Acc. T
Algorithm =T ¢=10[ce=1 ¢=10
DP_NN_HISTOGRAM on S¢yn 36.2 29.3 61.5 71.9
DP_NN_HISTOGRAM on cluster centers of Sy, | 26.4 18.3 74.7 77.7
24.7 20.8 80.0 82.5

F.2 PERFORMANCE ACROSS ITERATIONS

Fig. 8 shows that both the FID and the downstream classifier’s accuracy generally improve as
progresses. This confirms that PE’s iterative data refinement process is effective when combined
with simulators.
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Figure 8: ’s FID and accuracy generally improve over the course of the iterations.

F.3 SENSITIVITY ANALYSIS OF a, 3,7y

These hyperparameters (defined in § 3.2 and 3.3) control the variation degree in VARIATION_API.
Higher values induce larger variations. These are the only new hyperparameters introduced in

Following the paper ( , ), we gradually decrease them across iterations. The idea
is that larger variations at the beginning help /PE explore and find good seeds, while smaller
variations are needed later for convergence. In our experiments, most are set to follow an arithmetic
or geometric sequence across iterations (App. G) based on heuristics. In the following, we modify
their values: for each hyperparameter, we either fix it to the largest or smallest value in its base
sequence. Figs. 9 and 10 show that:

e Setting these hyperparameters to a fixed large value is not ideal. For instance, setting a large text
variation throughout greatly hurts FID and accuracy. Conversely, using a fixed small value has a
smaller impact.

e The default parameters do not always yield the best result (e.g., setting -y to a fixed small value
improves FID). This suggests that our main results in the paper could be improved with better
hyperparameters.
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Figure 9: Accuracy and FID on MNIST with different «, 3 schedules (¢ = 10). The “base”
parameter schedule across iterations is: (a) font size’s « = [5,4,3,2], (b) rotation degree’s
a = 1[9,7,5,3], (c) stroke width’s &« = [1,1,0,0], (d) font’s 3 = [0.8,0.4,0.2,0.0], (e) text’s
£ =10.8,0.4,0.2,0.0]. “Small” (“large”) means fixing /3 to be the smallest (largest) value across
iterations. For example, the unit under “font variation” and “large” indicates the results when we set
font’s 8 = [0.8,0.8,0.8,0.8].
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Figure 10: Accuracy and FID on CelebA using simulator-generated data with different v schedules
(e = 10). The “base” parameter schedule across iterations is [1000, 500, 200, 100, 50, 20]. “Small”
(“large”) means fixing v to be the smallest (largest) value across iterations. For example, the unit
under “large” indicates the results when we set v = [1000, 1000, 1000, 1000, 1000, 1000].

F.4 WHEN TO SWITCH FROM THE SIMULATOR TO THE FOUNDATION MODEL

In § 4.4, the foundation model was introduced after iteration 1. We vary it to be either earlier (after
iteration 0, using only simulators for the initial samples) or later (after iteration 2). The result is in
Tab. 4. We can see that:

e Our reported main results can be improved with better parameters. For instance, starting the
foundation model after iteration 0 improves accuracy to 74.3% (+1.6%) and reduces FID to 14.2
(-0.8)ate = 1.

e Nevertheless, the results across different schedules are relatively close. In most cases, they
outperform using either the foundation model or the simulator alone (see Tab. 2), reinforcing the
conclusions in § 4.4.
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Diffusion Start \ FID(e=1) Acc(e=1) \ FID (¢ =10) Acc (e = 10)

After iter O 14.2 74.3 13.2 73.6
After iter 1 15.0 72.7 11.9 78.1
After iter 2 16.0 73.6 14.2 76.5

Table 4: Comparison of FID and accuracy with different diffusion start iterations for ¢ = 1 and
e = 10.

F.5 RANGE OF SIMULATOR PARAMETERS

We vary the range of all numerical parameters in the MNIST experiment ¢ = 1, including font size,
rotation, and stroke width. Results across all iterations are presented.

e Font size. In our main experiments, we used the range [10, 30). We evaluate two alternatives:
[15, 25) (narrower) and [5, 35) (wider). See Tab. 5 for the results.

o Rotation degree. In our main experiments, we used the range [-30, 30]. We evaluate two
alternatives: [—15, 15] (narrower) and [-60, 60] (wider). See Tab. 6 for the results.

e Stroke width. In our main experiments, we used the range [0, 2]. We evaluate two alternatives:
[0, 1] (narrower) and [0, 3] (wider). See Tab. 7 for the results.

We can see from the above three experiments that:

e For font size and rotation, varying the parameter range has minimal effect on accuracy or FID
across iterations. In contrast, a suboptimal stroke width range ([0, 3]) leads to poor initial samples

(FID 109.1), but gradually improves quality, narrowing the final FID gap to the best
setting to 4.3.
e Regardless of the specific parameter range chosen, the overall trend is consistent: con-

sistently improves the synthetic data over iterations and outperforms standard significantly
(see Table 1). These are the core messages of the paper, and they hold even when the parameter
ranges are varied.

Range Metric Iter=0 Tter=1 Iter=2 TIter=3 Iter=4
[15,25) Accuracy | 13.6 71.6 81.4 87.4 84.8
FID 88.1 61.8 45.3 31.1 224
[10,30) Accuracy | 16.6 76.7 86.7 89.5 89.1
FID 85.8 57.0 42.4 28.7 20.7
[5.35)  Accuracy | 13.3 66.0 82.8 90.6 86.2
FID 87.2 58.2 41.4 28.7 20.2

Table 5: Effect of font size range on accuracy and FID.

Range Metric Iter=0 TIter=1 Iter=2 Iter=3 Iter=4
[-15,15] Accuracy | 14.5 75.7 86.0 88.3 87.7
FID 83.1 56.7 423 28.6 19.7
[-30,30] Accuracy | 16.6 76.7 86.7 89.5 89.1
FID 85.8 57.0 42.4 28.7 20.7
[-60, 60]  Accuracy | 13.3 72.3 83.0 88.5 86.3
FID 86.6 56.0 40.9 27.5 19.4

Table 6: Effect of rotation degree range on accuracy and FID.
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Range Metric Iter=0 Tter=1 Iter=2 TIter=3 Iter=4
[0,1]  Accuracy | 12.8 70.0 87.6 91.5 91.3
FID 69.0 48.7 35.3 25.1 18.1
[0,2]  Accuracy | 16.6 76.7 86.7 89.5 89.1
FID 85.8 57.0 424 28.7 20.7
[0,3]  Accuracy | 20.4 71.6 75.4 84.6 85.2
FID 109.1  67.6 474 313 224

Table 7: Effect of stroke width range on accuracy and FID.

F.6 NUMBER OF SAMPLES GENERATED FROM THE SIMULATOR.

We fixed the number of images to 60,000 across all experiments and iterations, following the DPIm-
ageBench evaluation protocol ( , ) for fair and consistent comparison across methods.
Additionally, we run MNIST experiments (¢ = 1) with 30,000 and 120,000 samples in Tab. 8.

Consistent with the claims in the original PE paper (Appendix N in ( )), we see that
more samples don’t always improve results. On one hand, more samples increase the chance of
generating examples close to the private data, potentially improving synthetic data. On the other
hand, a larger sample size flattens the DP Nearest Neighbors Histogram, reducing its signal-to-noise
ratio and possibly degrading quality. The overall effect is nuanced. Following ( ), we
recommend setting the number of generated samples to be close to the number of private samples.

#Samples | FID ~ Accuracy

30,000 14.4 87.2
60,000 20.7 89.1
120,000 329 854

Table 8: Performance comparison with different numbers of samples.

F.7 THE IMPACT OF DISTRIBUTION ALIGNMENT

On CelebA, we show that with a simulator that aligns well with the private data outperforms
standard PE (§ 4.3 and Tab. 1). However, with a simulator less aligned with the private data
performs worse than (§ 4.4 and Tab. 2).

To provide a more controlled experiment, we fix the simulator type and only vary the alignment
between the simulator and private data.

Experiment settings. We use the same 1.2M simulator-generated images from a computer graphics
renderer as in § 4.3 and artificially adjust their alignment to CelebA. Specifically, for each image, we
compute its distance to the closest CelebA image in the Inception embedding space, sort all images
by this distance, and divide them into five subsets, Dy, ..., D4 (e.g., the closest 0.24M images form
Dy). Fig. 11 confirms that the FID between D; and CelebA increases with i, meaning that Dy is the
most aligned and D, the least. We then apply to each D; independently.

Results. Fig. 12 shows that as alignment decreases, the sample quality generally drops. Specifically,
with Dy, ..., D3 yields better classification accuracy than PE, while Dy yields worse results

than PE. This confirms that ’s performance is influenced by the degree of alignment. Addi-

tionally, in all cases, ’s FID is better than the original simulator data’s FID, demonstrating
’s ability to select useful samples.

F.8 CLASS LABEL INFORMATION FROM THE SIMULATORS

For simulator 1, the target class label (i.e., the digit) is fully controlled by one parameter. For
simulators 2 and 3, the target class label (i.e., the gender) is not directly controlled by any param-
eter, but could potentially be obtained by an external image gender classifier. One benefit of using
domain-specific simulators is that we can potentially use the class label information to enhance
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Figure 12: Results of -generated data using the subsets in Fig. 11 (e = 10).
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Figure 13: The real and generated images on MNIST under the “ClassAvail” setting. Each row
corresponds to one class. The simulator generates images that are very different from the real ones.
Starting from these bad images, can effectively guide the generation of the simulator towards
high-quality images that are more similar to real data.

data quality ( , ; s ). To get a more comprehensive understanding of

, we consider two settings: (1) Class label information is unavailable (abbreviated as
“ClassUnavail”). We artificially make the problem more challenging by assuming that the class
label information is not available. Therefore, has to learn to synthesize images with the
correct class by itself. Our main experiments are based on this setting. (2) Class label information
is available (abbreviated as ‘“‘ClassAvail”’). On MNIST, we further test how can be im-
proved if the class label information is available. In this case, the RANDOM_API and VARIATION_API
(Egs. (1) and (2)) are restricted to draw parameters from the corresponding class (i.e., the digit is set
to the target class).

Results: Class label information from the simulators can be helpful. The results are presented
in Tab. 9 and Fig. 13. We observe that with digit information, the simulator-generated data achieves
much higher classification accuracy (92.2%), although the FID remains low due to the generated
digits exhibiting incorrect characteristics (Fig. 13b). The fact that outperforms the simulator
in both FID and classification accuracy across all settings suggests that effectively incorpo-
rates private data information to enhance both data fidelity and utility, even when compared to such
a strong baseline. As expected, under ClassAvail matches or surpasses the results obtained
in ClassUnavail across all settings, suggesting the usefulness of leveraging class label information.
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Table 9: Accuracy (%) of classifiers trained on synthetic images and FID of synthetic images on
MNIST under the “ClassAvail” setting. See Tab. 1 for results under the “ClassUnavail” setting for
reference.

. FID | Classification Acc. T
Algorithm |——1—"— 957 =1 c=10
Simulator 86.0 (¢ =0) 922 (e =0)

20.7 8.6 93.9 95.5

G EXPERIMENTAL DETAILS
In this section, we provide more experimental details.

G.1 MNIST wiTH TEXT RENDERING PROGRAM

The categorical parameters include: (1) Font. We use Google Fonts ( , ), which
offers 3589 fonts in total. (2) Text. The text consists of digits ‘0’ - ‘9’. The numerical pa-
rameters include: (1) Font size, ranging from 10 to 29. (2) Stroke width, ranging from 0 to 2.
(3) Digit rotation degree, ranging from —30° to 30°.

Tabs. 10 and 11 show their variation degrees. The total number of PE iterations is 4. Following
( ), we set the number of generated samples to be 60,000.

Table 10: The configurations of the categorical parameters in MNIST with Text Rendering Program
experiments.

Categorical Parameter (§) \ Feasible Set (2) \ Variation Degrees (/3) across Iterations

Font 1-3589 0.8,0.4,0.2,0.0
Text ‘0 -9 0,0,0,0

Table 11: The configurations of the numerical parameters in MNIST with Text Rendering Program
experiments.

Numerical Parameter (¢) \ Feasible Set () \ Variation Degrees («) across Iterations

Font size [10, 30] 5,4,3,2
Font rotation [-30, 30] 9,7,5,3
Stroke width [0, 2] 1,1,0,0

G.2 CELEBA WITH GENERATED IMAGES FROM COMPUTER GRAPHICS-BASED RENDER

The variation degrees 7y across iterations are [1000, 500, 200, 100, 50, 20]. The total number
of PE iterations is 6. Following ( ), we set the number of generated samples to be
60,000.

G.3 CELEBA WITH RULE-BASED AVATAR GENERATOR

The full list of the categorical parameters are

Style

Background color
Top

Hat color
Eyebrows

Eyes

Nose

Mouth
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Facial hair

Skin color

Hair color
Facial hair color
Accessory
Clothing
Clothing color
Shirt graphic

These are taken from the input parameters to the library ( , ). There is no numerical
parameter.

For the experiments with only the simulator, the variation degrees /3 across iterations are [0.8,
0.6, 0.4, 0.2, 0.1, 0.08, 0.06]. The total number of PE iterations is 7. Following ( ),
we set the number of generated samples to be 60,000.

For the experiments with both foundation models and the simulator, we use a total of 5 iterations

so as to be consistent with the setting in ( ). For the RANDOM_API and the first
iteration, we use the simulator (5 = 0.8). For the next 4 iterations, we use the same foundation
model as in ( ) with variation degrees [96, 94, 92, 90]. Following ( ),

we set the number of generated samples to be 60,000.

H EFFICIENCY EVALUATION

As simulators could be much cheaper to generate samples than the foundation models, we show in
this section that is much more efficient than PE in our experiments.

Note that the only difference between and is the RANDOM_API and VARIATION_API.
Therefore, we focus on comparing the computation time and peak CPU/GPU memory of the APIs.
Tabs. 12 to 14 show that APISs require far less time than PE. For instance, on MNIST, each

’s API call takes over 2400 GPU seconds, whereas takes less than 30 CPU seconds—
an 80x speedup, not to mention the lower cost of CPU than GPU. Consequently, each
iteration is much faster than PE (Tab. 15). The only operation requiring GPU is computing
the embedding and nearest neighbors of simulator-generated data (§ 3.3), which is a one-time cost
per dataset. Even this one-time process is significantly faster than one API call. with
data access requires more CPU memory to store simulator-generated data, but this can be easily
optimized by loading only the needed data.

Time Peak CPU Memory | Peak GPU Memory
RANDOM_API | 3920.30 seconds (GPU) 15292.98 MB 13859.10 MB
VARIATION_API | 2422.44 seconds (GPU) 15880.25 MB 16203.89 MB
Sim- RANDOM_API 27.17 seconds (CPU) 758.90 MB 0MB
VARIATION_API 18.51 seconds (CPU) 1083.11 MB 0MB
Table 12: Efficiency comparison of PE and on the MNIST dataset. Tested on a Linux server

with AMD EPYC 7V12 64-Core Processor andone NVIDIA RTX A6000 GPU.

Time Peak CPU Memory | Peak GPU Memory
RANDOM_API | 39272.33 seconds (GPU) 15293.29 MB 13859.10 MB
VARIATION_API | 31028.24 seconds (GPU) 15879.47 MB 16203.89 MB
Sim- RANDOM_API 0.04 seconds (CPU) 61416.62 MB 0MB
VARIATION_API 0.03 seconds (CPU) 61427.29 MB 0 MB
Sim-PE Setup 1450.94 seconds (GPU) 61420.69 MB 3728.16 MB
Table 13: Efficiency comparison of and (with data access) on the CelebA dataset.

Tested on a Linux server with AMD EPYC 7V12 64-Core Processor and one NVIDIA
RTX A6000 GPU.

26



Under review as a conference paper at ICLR 2026

Time Peak Memory | Peak GPU Memory
RANDOM_API | 39272.33 seconds (GPU) | 15293.29 MB 13859.10 MB
VARIATION_API | 31028.24 seconds (GPU) | 15879.47 MB 16203.89 MB
Sim- RANDOM_API 46.69 seconds (CPU) 811.72 MB 0MB
VARIATION_API 48.78 seconds (CPU) 1067.93 MB 0 MB
Table 14: Efficiency comparison of and (with code access) on the CelebA dataset.

Tested on a Linux server with AMD EPYC 7V12 64-Core Processor and one NVIDIA
RTX A6000 GPU.

MNIST | CelebA ( with data access) | CelebA ( with code access)
22243.32 279695.52 279695.52
Sim- 607.95 441.63 880.38
Table 15: The runtime (seconds) of one iteration in and . Tested on a Linux server with

AMD EPYC 7V12 64-Core Processor andone NVIDIA RTX A6000 GPU.

I EXTENDED DISCUSSIONS

1.1 THE PREVALENCE AND IMPORTANCE OF SIMULATORS

In this paper, we define simulators as any data synthesizers that do not rely on neural networks.
These simulators are widely used across various applications due to their unique advantages over
neural network-based approaches.

The prevalence of simulators. Despite the widespread adoption of foundation models, simulators
remain highly prevalent. Here are a few notable examples:

e Genesis:* A physics-based simulator used in robotics, embodied Al, and physical Al applica-
tions. Since its release in late 2024, it has received over 24k GitHub stars and 84k downloads as
of April 2024.

e Blender:®> A rendering framework widely used for image and video production, including in
movie-making (see examples at Blender Studio®). One simulator used in our face experiment
(the DIGIFACE-1M dataset) is built on Blender.

e Unreal:” A widely adopted game engine with image/video rendering capability. It holds a
14.85% market share in the game development industry.® Note that competing engines also
qualify as “simulators” under our definition.

The importance of simulators. As demonstrated above, simulators continue to play a crucial role
in industry applications. Even synthetic data generation also frequently relies on simulators rather
than foundation models (e.g., META-SIM ( s ), DIGIFACE-1M ( s )). This
preference stems from several unique advantages of simulators over foundation models:

e Rich annotations: Simulators provide additional structured labels due to explicit control over

the data generation process. For instance, besides face images, FACE SYNTHETICS ( ,
) offers pixel-level segmentation masks (e.g., identifying eyes, noses), which are highly
valuable for downstream tasks such as face parsing.

o Task-specific strengths: Certain generation tasks remain challenging for foundation models.
For example, despite recent advances, foundation models still struggle with generating images
containing text ( s ), whereas simulators can handle it easily. Our MNIST
experiment was specifically designed to highlight this distinction.

¢ Domain-specific strengths: In domains like networking, where robust foundation models are
lacking, network simulators such as ns-3° remain a more reliable and scalable solution.

4y

ttps://genesis-embodied-ai.github.io/

com/blender/blender
g/ films/
realengir com/en-US

blender.c

com/tech/game-development /unreal-engine-market—-share
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e Greater reliability and control: Because simulators model the data generation process, they
mitigate issues such as generating anatomically incorrect images (e.g., faces without noses'?).

That said, there are indeed data domains for which no suitable simulators exist. However, the
goal and contribution of this work is not to cover every possible data domain—which is inherently
infeasible—but rather to significantly expand the range of domains where can be applied. For
example, we demonstrate its effectiveness on challenging domains for PE such as text rendering and
face generation.

Moreover, the proposed approach is not limited to using simulators. The method in § 3.3 can also
be applied to any public dataset, as demonstrated in App. D. This highlights the broader potential of
our approach that sidesteps the limitation of requiring a suitable simulator.

1.2 DISCUSSION ON THE CHOSEN METRICS

In the main experiments, we use FID and the accuracy of downstream classifiers as the metrics.

Why we pick these metrics. We chose FID and classification accuracy because they are the most
widely used metrics in DP image synthesis. Most of the baselines we compared to utilize only these
two metrics or just one of them ( R ). The only exception is GS-WGAN, which
also uses Inception Score (IS) ( s ). However, IS is more relevant for natural
images (e.g., ImageNet images) because it evaluates the diversity across ImageNet classes, making
it unsuitable for the datasets we considered in the main paper. Additionally, for the downstream
task (ten-class classification for MNIST and binary classification for CelebA), we also follow prior
works ( , ).

The differences between these metrics. FID measures the “fidelity” of synthetic data by map-
ping both synthetic and private data to an embedding space, approximating each with a Gaussian
distribution, and calculating the Wasserstein distance between the two distributions. Classification
accuracy measures the “utility” of synthetic data by evaluating its performance when used to train
a downstream classifier, simulating real-world use where users expect the synthetic data to support
good classifier performance on real data. FID and classification accuracy are complementary: FID
focuses on distribution-level closeness, while classification accuracy is sensitive to outliers or sam-
ples near the classification boundary. A high score in one does not necessarily correlate with a high
score in the other. This is why we often see cases where the best methods for these metrics differ

( b )'

1.3 BIAS IN SIMULATORS

Because relies on simulators, biases inherent in the simulator can be transferred to the
synthetic data produced by

1.4 THE ORDERING OF APPLYING THE SIMULATOR AND THE FOUNDATION MODEL

In § 3.4, we propose to use simulators in early iterations and then switch to foundation models. The
reverse ordering—“foundation model — simulator”—is also feasible with appropriate modifications.
In this setup, when transitioning from the foundation model to the simulator, one would need to find
the optimal simulator parameters corresponding to each sample generated by the foundation model,
potentially using gradient-free optimization methods.

However, we only explore “simulator — foundation model” in the paper for two main reasons:

e This ordering keeps the approach simple and avoids the need for special treatments like the one
described above.

e It is also more promising in data quality. Simulators can generate diverse samples that span a
wide range of variations, making them ideal for initialization. However, their image quality is
bad. Foundation models, on the other hand, are better at producing high-fidelity, realistic sam-
ples, which is more desirable in the final stages of the pipeline, which creates the final synthetic
data.

mhttps://www.r%ddit.CQH/r/StableDiftusion/comﬂents/lefddGZ/weirdiandi
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J THE USE OF LARGE LANGUAGE MODELS (LLMS)

The paper was mostly written by the authors, with LLMs assisting in grammar correction and lan-
guage polishing.
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