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Abstract

Natural language processing (NLP) research001
has begun to embrace the notion of annota-002
tor subjectivity, motivated by variations in la-003
belling. This approach understands each an-004
notator’s view as valid, which can be highly005
suitable for tasks that embed subjectivity, e.g.,006
sentiment analysis. However, this construction007
may be inappropriate for tasks such as hate008
speech detection, as it affords equal validity to009
all positions on e.g., sexism or racism. We ar-010
gue that the conflation of hate and offence can011
invalidate findings on hate speech, and call for012
future work to be situated in theory, disentan-013
gling hate from its orthogonal concept, offense.014

1 Introduction015

Recently, Natural Language Processing (NLP) re-016

searchers have dedicated significant efforts towards017

tasks under the umbrella of online abuse detec-018

tion. For example, racism (e.g. Talat, 2016; Talat019

and Hovy, 2016), sexism and misogyny (e.g. Jiang020

et al., 2022; Zeinert et al., 2021), xenophobia (e.g.021

Ross et al., 2016), homophobia (Dias Oliva et al.,022

2021), and transphobia (e.g. Chakravarthi et al.,023

2022) have been all been proposed as suitable for024

automated identification using NLP methods. Col-025

lectively these can be referred to as isms. Isms are026

prejudices, stereotyping, or discrimination on the027

basis on some personal characteristic. For example,028

sexism is defined as prejudice, stereotyping, or dis-029

crimination, typically against women, on the basis030

of sex or gender (Masequesmay, 2008).031

This line of research has been faced with high an-032

notator disagreement (e.g. Leonardelli et al., 2021),033

and as a result has conceptualised this as an indi-034

cation that the concepts themselves are subjective.035

For example, Rottger et al. (2022) argue that la-036

belling these phenomena is inherently subjective037

and can either be addressed as descriptive, i.e., en-038

couraging annotator subjectivity, or prescriptive,039

i.e., discouraging it. By constructing abuse as in- 040

dividually subjective, social norms are disregarded 041

in favour of an approach that is blind to existing 042

conditions of marginalisation. This stands in con- 043

trast to early work in the field, which sought to 044

tease apart the distinction between offensiveness 045

and hate (Davidson et al., 2017), and sought frame- 046

works to identify the particular vectors which indi- 047

cated hate (Talat et al., 2017; Wright et al., 2017). 048

Discrimination is also an area subject to policy 049

and regulatory debates. Policy often distinguishes 050

hate from offence. For instance, in their definition 051

of sexism, the European Institute for Gender Equal- 052

ity (EIGE) position sexism as the presence rather 053

than the offensiveness of a gendered stereotype: 054

‘Sexism is linked to beliefs around the fun- 055

damental nature of women and men and the 056

roles they should play in society. Sexist as- 057

sumptions about women and men, which 058

manifest themselves as gender stereotypes, 059

can rank one gender as superior to another.’ 060

In this position paper, we consider such isms and 061

how offence and hate are orthogonal concepts that 062

can be mutually informative, and argue that their 063

conflation can delegitimise research artefacts and 064

findings. That is, we contend that the hatefulness 065

of a statement is invariant of a reader’s position 066

on whether it should be allowed within a partic- 067

ular public forum. Consider for instance the use 068

of gendered slurs: while inappropriate for a gen- 069

eral audience (e.g., a public debate) they may be 070

appropriate for others (e.g., academic work explor- 071

ing the uses of expletives). In particular, we argue 072

that isms are culturally defined, whereas offence 073

is a subjective experience. Thus, we argue that 074

it the presence of a stereotype that determines if 075

a statement is hate speech, rather than individual 076

perceptions of its offensiveness. Understanding 077

isms as culturally defined, and offence as individu- 078

ally subjective allows us to distinguish any offence 079
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caused to a reader from whether a message contains080

hate speech. To this end, we call for researchers to081

adopt new guidelines for annotating online abuse082

tasks which delineate the degree of offence caused083

by statements from the phenomenon itself.084

2 Understanding Subjectivity085

Recent efforts in NLP have constructed annotation086

as a subjective task, without attending to what other087

fields have understood subjectivity to be. Subjec-088

tivity has been given as the cause for “humans (e.g.089

dataset annotators) [being] sensitive to sensory090

demands, cognitive fatigue, and external factors091

that affect judgements made at a particular place092

and point in time” (Alm, 2011). Philosophy how-093

ever constructs subjectivity as concerned with peo-094

ple’s differing perspectives, formed by factors such095

as cultural and individual experiences (Solomon,096

2005). This construction of subjectivity purports097

that the only valid knowledge is based on personal098

experiences, thereby negating the existence of ob-099

jective or communal truths. In contrast, relativism100

proposes that criteria of judgement are relative to101

a culture or society (Baghramian, 2004). For in-102

stance, while humour would on one hand be sub-103

jective, we can understand concepts such as beauty104

standards to be culturally defined.105

Hate speech detection, in particular, has fre-106

quently been argued to be a subjective task (e.g.107

Almanea and Poesio, 2022; Basile, 2020; Sandri108

et al., 2023). Under this framing, researchers109

also collapse data labelled as offensive with that la-110

belled as hate speech (e.g. Leonardelli et al., 2021),111

thereby further conflating offence and hate. For112

instance, Akhtar et al. (2021) posit that ‘judging113

whether a message contains hate speech is quite114

subjective, given the nature of the phenomenon’.115

When categories of abuse are described as subjec-116

tive, we understand that there is no ground truth,117

and wider cultural norms do not impact what con-118

stitutes hate. Within the concept of isms, we argue119

that is the wrong approach and that these are cultur-120

ally defined. That is, we argue that, for a stereotype121

or norm, there is a ground truth given by the cul-122

tural and temporal context a statement is made in.123

2.1 Stereotypes as Socially-defined Artefacts124

Isms are a term given to various forms of marginal-125

ization and concepts such as racism, sexism, trans-126

phobia, etc. Such isms rely on tropes and stereo-127

types about a target group (Manne, 2017). They128

describe beliefs about the way a group is and how129

it ought to be (Ellemers, 2018). Although stereo- 130

types are held by individuals, they are formed col- 131

lectively. For example, stereotypes are observable: 132

we can catalogue the content of gender stereotypes 133

within a culture (Prentice and Carranza, 2002), sug- 134

gesting these are not solely individual but instead 135

exist in the ‘collective brain’. 136

Haslam et al. (1997) argue that stereotypes 137

emerge when individuals are acting in terms of 138

a common social identity. Although the belief that 139

stereotypes are simply an inferior representation of 140

an unfamiliar group may be alluring, they serve to 141

represent group-based realities: they represent (and 142

accentuate) perceived differences between then in- 143

and out-group (Haslam et al., 1997). Through 144

the lens of self-categorisation theory, Haslam et al. 145

(1997) argue that stereotypes are a social force– 146

they reassure individuals of their belonging to a 147

group ‘by: (1) enhancing perceived in-group ho- 148

mogeneity; (2) providing associated expectations 149

of mutual agreement; and (3) producing pressure 150

to actively reach consensus through mutual influ- 151

ence’. Uniformity of belief is thus the very essence 152

of a stereotype. The shared nature of stereotypes 153

is what causes their severity, a single individual 154

holding and acting on discriminatory beliefs is less 155

consequential than a group holding and acting on 156

the same beliefs. However, because stereotypes are 157

collective, they are also fuzzy; while individuals 158

in the in-group are at least aware of stereotypes, 159

they do not necessarily believe in them. This is in 160

part why the degree of offence to isms may vary. 161

Group memberships and social relations play a key 162

role in shaping cognition, leading to the application 163

and salience of stereotypes to be context-dependent 164

but consensual at the group level nonetheless. 165

2.2 Acceptability as a Social Norm 166

Generally speaking, some isms are less socially ac- 167

ceptable nowadays than they were a century ago 168

due to the social justice movements of the last cen- 169

tury. Such movements have, in some countries, 170

resulted in an increased public awareness of the 171

harms caused by stereotypes, making support for 172

some of them less socially acceptable. That is, 173

the Overton Window, a political theory that de- 174

scribes the spectrum of acceptable policies and dis- 175

course, has shifted to make it less socially accept- 176

able to hold particular stereotypical beliefs. The 177

result of such a shift is that people do not wish 178

to label statements they agree with as an ism lest 179

they be labelled as *ists themselves. For instance, 180
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homophobia has become less tolerated in many181

countries, and individuals do not want their state-182

ments, or them, to be labelled as homophobic. Yet183

while being labelled as homophobic is perceived184

as undesirable, this does not mean that homopho-185

bic comments are not made, and policies not pur-186

sued. For example, in the United States of Amer-187

ica, the American Civil Liberties Union has cur-188

rently flagged more than 500 legal bills as anti-189

LGBTQ (American Civil Liberties Union, 2023).190

Thus, despite forward progress on some forms191

of discrimination and isms (Azcona et al., 2023;192

Menasce Horowitz, 2023), there are still socially193

acceptable isms that come in two general flavours:194

the benevolent isms and the scientific isms.195

The Benevolent *Ism Some stereotypes may be196

seen as ‘positive’ and therefore not recognised197

by some as hateful. The existence of ‘benevo-198

lent’ stereotypes (Jha and Mamidi, 2017), such as199

‘neosexism’ (Tougas et al., 1995)—those without200

clear negative connotations—means that annota-201

tors may be unlikely to recognise them as harm-202

ful. For example, the seemingly positive stereo-203

type in Western nations that Asians are successful,204

high-achievers leads to their vilification (for being205

too high-achieving) and the perception that they206

lack interpersonal skills (Wong and Halgin, 2006).207

These stereotypes may also cause indirect harm208

to the individuals who may feel they are not liv-209

ing up to what is expected from them (Haslam210

et al., 1997). We might be tempted to only op-211

pose or target stereotypes that imply or directly212

state that a certain group is inferior, however this213

approach would leave many of the issues of stereo-214

typing unaddressed. For example, not addressing215

claims such as ‘women need to be protected’ or that216

‘women’s bodies are more aesthetically pleasing’217

suggests that the perception of women as inferior,218

or inherently sexualised, should remain acceptable.219

The Scientific *Ism This ism uses evolutionary220

biology as evidence for stereotypes. In this case,221

different groups are proposed as differing on the ba-222

sis of natural differences, such as physiology. One223

such example is the idea that women are naturally224

more nurturing than men due to imaginations of225

gender roles of the past. However, investigations of226

hunter-gatherer societies indicate that this idea may227

not be an accurate reflection of past societies and so-228

cial evolution (Hewlett and Macfarlan, 2010). The229

idea of evolutionary psychology as evidence stems230

from Social Darwinism (Miller, 2011), which ar-231

gues that one cannot accuse nature of being -ist, 232

and therefore any generalisation based on biology 233

cannot be labelled as such. Such pseudo-scientific 234

isms are commonly used as a rationalisation for 235

the ‘objective’ differences between dominant and 236

marginalised groups (e.g. Browne (2006)). 237

2.3 Separating Isms and Offensiveness 238

So far, we have established that isms are rooted 239

within socio-cultural contexts, and, while not nec- 240

essarily factual or objective, exist as normative and 241

therefore stable concepts, given their socio-cultural 242

and temporal situations. Due to being norms rooted 243

in a socio-cultural context, isms can be the cause of 244

harms to members of targeted groups, e.g., psycho- 245

logical harms to the targeted group, present barriers 246

to harmonious community relations, or pose threats 247

to law and order (Barendt, 2019). 248

Offensiveness can generally be understood as 249

moral outrage or disgust (Sneddon, 2020). As the 250

existence of isms can be harmful, it is tempting 251

to suggest that they should always be constructed 252

as offensive. However, this would not afford the 253

disagreements that have been observed in annota- 254

tion of various isms, a task that typically has a high 255

level of disagreement. Such disagreement can be 256

accounted for by considering the degree of offence 257

taken as subjective. That is, the degree of offence 258

is knowable only by each annotator. According 259

to Sneddon (2020), we tend to give claims of of- 260

fensiveness more credence than they deserve. In 261

general, people tend to be more offended about top- 262

ics that particularly matter to them, and these are 263

impacted by one’s identity: A citizen of the USA is 264

more likely to be offended by the burning of their 265

national flag than a European. That is to say, when 266

we are offended, we take the object of offence as a 267

personal affront. This has material consequences 268

when it comes to modelling isms as offensive. 269

This approach is often motivated by the desire 270

to maintain minority voices within the annotation 271

pool (Abercrombie et al., 2022), and in doing so, 272

argues that disagreements are often the result the 273

subjectivity of the annotation task. 274

3 Annotator Competency 275

Dataset labelling in NLP is typically performed by 276

annotators recruited either as crowd-sourced work- 277

ers (e.g. Abercrombie et al., 2023; Basile et al., 278

2019; Fersini et al., 2018), academics or students 279

available to the researchers (e.g. Cercas Curry et al., 280

2021; Fanton et al., 2021; Jiang et al., 2022), or peo- 281
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ple deemed to hold expertise in the phenomena (e.g.282

Talat, 2016; Vidgen et al., 2021; Zeinert et al.,283

2021). However, the Standpoint Theory (Hard-284

ing, 1991) argues that annotators, can largely only285

be competent within their own lived experiences,286

regardless of training. Without lived experience,287

annotators may not be able to gain a full understand-288

ing of the ism under consideration. For instance,289

Larimore et al. (2021) found that white annotators290

were far less competent in identifying anti-Black291

racism than Black annotators. Annotator guide-292

lines and labelling taxonomies, no matter how thor-293

oughly and carefully constructed are not capable294

of adjusting for a lifetime of lived experience. It is295

not, therefore, inherent subjectivity within the task,296

but rather differences in annotator ability due to297

their personal standpoint that impact on annotators’298

ability to recognise whether hate speech or abuse299

is present. Sometimes even if an individual does300

recognise the target phenomenon, they may choose301

to ignore it for political reasons (Marable, 1995).302

4 Towards a New Formulation of Isms as303

Cultural Formation of Societal Norms304

Given our understanding of isms as culturally rel-305

ative constructions and offence as an individually306

subjective concept, we propose that isms can best307

be understood as cultural formations of societal308

norms. That is, isms encode norms, which are in-309

herently fuzzy at the border (Hall, 1997). When310

creating data for isms, researchers often work at the311

fuzzy borders of acceptability. In operating at these312

borders, and developing computational methods to313

draw them, research delineates what is acceptable314

from that which is not. While such borders are315

inherently messy, through an understanding of de-316

termining acceptability as cultural norms, we can317

refocus our attention towards the question of how318

such norms and borders should be drawn.319

For instance, Douglas (1978) argues that deter-320

mining what is ‘dirt’ is a cultural process which321

strengthens communities and builds community co-322

hesion. That is, while encountering an offensive323

instance, i.e., an instance of sexism, can be desta-324

bilising to a community, the process with which325

the community makes a determination, and the326

determination itself, allows for the community to327

reify itself. This is particularly important as we can328

come to understand that isms are culturally defined329

objects, and identifying the borders of acceptability330

necessitates an ongoing negotiation with the com-331

munities in question (Thylstrup and Talat, 2020).332

Within this formulation of isms, we can come to 333

understand isms as distinct from offence. Thus, this 334

formulation of isms provides space for both a cul- 335

tural understanding of isms whilst making space 336

for offence as an individual and subjective notion. 337

5 Conclusion: Implications for NLP 338

If, as we propose, the task of identifiying isms in 339

language is not subjective, we must conclude that 340

annotator differences are irrelevant at the individual 341

level for such tasks. Rather, they are symptoms 342

of disagreement with the degree to which an ism 343

causes offence to individual annotators. 344

At the group level, we must be careful that con- 345

flicting responses are not treated equally. If a minor- 346

ity of people with the necessary lived experience 347

(e.g. to recognise misogyny) disagree with the ma- 348

jority who don’t, then that matters. For example, 349

Gordon et al. (2022) attempt to pick out the ‘cor- 350

rect’ minority perspectives from the wider pool of 351

annotators for each instance to be analysed and 352

Fleisig et al. (2023) specifically assume that the 353

majority of annotators are likely to be ‘wrong’, that 354

is, they will not recognise the target phenomenon. 355

Construction of the desired classification schema 356

based on societal norms comes with its challenges. 357

While prescriptivist annotation based on agreed so- 358

cietal norms may be desired, it can be difficult or 359

even impossible to implement comprehensively in 360

practice. One reason for this is that it is proba- 361

bly not possible to recruit annotators with the cor- 362

rect standpoint or competencies to recognise every 363

instance—or indeed to know what those character- 364

istics might be. Another is the nature of building 365

classification schema. While a clearly defined, un- 366

ambiguous, comprehensive and static Aristotelian 367

classification scheme may be desired rather than 368

prototypical classification,1 it can be hard or even 369

impossible to implement, and people generally re- 370

sort to the latter (Bowker and Star, 2000, p. 61-62). 371

Despite this, we believe that it is vital that isms 372

like misogyny and other hate and abuse not be con- 373

structed as individually subjective, but rather as cul- 374

turally formed societal norms. While there may be 375

much to gain from examining the responses of in- 376

dividual annotators to these tasks, NLP researchers 377

should be careful not to conflate individual differ- 378

ences with inherent subjectivity of tasks. 379

1The Aristotelian and prototypical classification
paradigms (Bowker and Star, 2000) could be said to
mirror Rottger et al.’s (2022) prescriptivist and descriptivist
paradigms.
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