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ABSTRACT

Attention mechanisms play a crucial role in state-of-the-art vision architectures,
enabling them to rapidly identify relationships between distant image patches.
Conventional attention mechanisms do not incorporate other structural properties
of images, such as invariance to geometric transformations, instead learning these
properties from data. In this paper, we introduce a novel mechanism, Invariant
Attention, which, like standard attention, captures image similarity, but with the
additional guarantee of being agnostic to geometric transformations. We provide
theoretical assurance and empirical verification that Invariant Attention is far more
successful than standard kernel attention on multi-class, transformed vision data,
and illustrate its potential to correctly cluster transformed data with intra-class
variation.

1 INTRODUCTION

In recent years, self-attention (Vaswani et al., 2017; Bahdanau et al., 2014) has emerged as a key
component of state-of-the-art vision architectures, enabling vision transformers to efficiently identify
relationships between distant image patches (Dosovitskiy et al., 2020). Nonlocal representations of
this kind are effective because natural images typically contain repeated and related content, even at
large distances (Buades et al., 2005; Wang et al., 2018).

Figure 1: Invariant Attention Achieves Clustering.
Three image manifolds representing three images of the
same class with intra-class variation (left). After several
iterations of Invariant Attention, manifolds get closer
to one another (middle). Eventually, a cluster center
represented by a manifold is found (right).

The core operation in self-attention is repeated
kernel averaging, in which new features are gen-
erated as weighted averages of current features.
Because averaging brings similar feature vectors
closer together, this operation has a tendency to
produce clusters in the collection of feature vec-
tors. We show this via an experiment in Figure 2
where Kernel attention clusters data points with
a relatively small euclidean distance between
them as opposed to data points that are farther
away. When the Euclidean distance between
data points within a class is bounded, Figure 2
shows that kernel attention with the radial ba-
sis function (RBF) kernel collapses clusters into
their respective means in just 4 iterations. In
fact, kernel attention (in which attention weights
are produced via an arbitrary kernel) can be in-
terpreted as an instance of the classical mean

shift clustering algorithm by Fukunaga & Hostetler (1975), which has been widely used for image
segmentation (Paris & Durand, 2007; Mayer & Greenspan, 2009), tracking (Comaniciu et al., 2000),
and other applications.

In transformer architectures, kernel averaging is interleaved with learned transformations, which
enable vision transformers to cope with the statistical variability of images, leading to state of the
art results on a wide range of tasks (Dosovitskiy et al., 2020; Liu et al., 2021; Lan et al., 2023; Han
et al., 2022). These learnable components also allow transformers to neglect certain basic properties
of visual data – e.g., the adjacency of the pixel grid (Hinton et al., 2012; Bello et al., 2019) and the
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Figure 2: Clustering nature of kernel attention. Isotropic Gaussian blobs as initial data, and their respective
means (left). Blobs after two (middle) and four (right) iterations of kernel attention.

multiscale structure of images (Fan et al., 2021) – at the cost of massive training data and energy.
This limitation has inspired a flurry of works which aim to develop hybrid architectures that are
effective at capturing nonlocal relationships and are insensitive to image translations. Typically, these
hybrid methods exhibit significantly improved performance-complexity tradeoffs compared to pure
transformers (Bello et al., 2019; Woo et al., 2018; Carion et al., 2020; Wu et al., 2021; Wang et al.,
2021; Li et al., 2021; Liu et al., 2021; Fan et al., 2021).

Motivated by the need for data processing strategies which (i) identify relationships across images or
image features, and (ii) respect the properties of images, we revisit the core self-attention mechanism
from the perspective of transformation invariance. We ask whether it is possible to produce self-
attention iterations whose outputs are unchanged, even if the inputs are transformed. We answer this
question in the affirmative, analyzing an invariant counterpart to the standard self-attention, which
takes as its input a collection of images, image patches, or feature maps, and produces a collection of
abstract features, by an invariant form of kernel averaging.

Our main theoretical result shows that this operation rapidly identifies clusters in the data, even if the
individual data elements have been transformed. In contrast, standard (transform-variant) clustering
methods and standard self-attention lack this property. As a theoretical by-product, we obtain new
results on averaging under transformations. Experimental results corroborate our main theoretical
claims.

The remainder of this paper is organized as follows: in Section 2, we lay out the basic assumptions
and describe the Invariant Attention iteration. Sections 3-4 introduce our main theoretical results,
which demonstrate that this iteration clusters transformed data. Section 5 presents simulations and
experiments verifying this property. Finally, Section 6 discusses the relationship between our results
and the existing literatures on attention, invariance and clustering, and concludes with a discussion of
directions for future work.

2 FORMULATION: INVARIANT ATTENTION AND KERNEL ATTENTION

Kernel (Self) Attention. Kernel attention (KA) can be represented by the following two steps:
(i) we use a kernel (·, ·) to construct a similarity matrix � 2 Rn⇥n and a weight matrix W by
column-normalizing �, and (ii) we replace the current data point vj with v+

j , the similarity-weighted
average of points {vi}

n
i=1:

v+
j =

Pn
i=1 vi�ijPn
l=1 �lj

=
nX

i=1

viWij (2.1)

where �ij is the similarity score between images vi and vj , 1  i, j  n, and Wij = �ij/
Pn

l=1 �lj .
Note that v+

j is the solution to the optimization problem of minimizing sum of squared distances of
vj from all other data points.

The proposed Invariant Attention (IA) also comprises of two steps: (i) finding invariant similarity
weights and (ii) finding the quantity called "Invariant Mean" described in detail in the following
subsections.
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2.1 DEFINITIONS RELATED TO TRANSFORMATIONS

Each discrete image (or an image patch1) vi is of size n1 ⇥ n2 with n3 channels (e.g., n3 = 3 for
RGB images), as vi 2 Rn1⇥n2⇥n3 . We represent a transformation vector field as ⌧ 2 Rn1⇥n2⇥2.
This field acts on an image x, producing a transformed image denoted by x � ⌧ , where the pixel
[x � ⌧ ]pq =

P
kl xkl�(⌧pq0� k)�(⌧pq1� l). Here, � : R! R is the cubic convolution interpolation

kernel (Keys, 1981; Buchanan et al., 2022), and � denotes function composition. To populate the
pixel (p, q) in image x � ⌧ , we extract the value located at (⌧pq0, ⌧pq1) from image x.

To compute Invariant Weights and the Invariant Mean (introduced in the next section), the transfor-
mation group T can be any group as long as it satisfies the definition of a group. For example, T can
be the group of affine transformations, perspective transformations etc.

In this paper, for our theoretical and experimental results, we focus on one such transformation group:
the Special Euclidean group T = SE(2), which can be represented by two parameters: a rotation

matrix A =


cos ✓ sin ✓
� sin ✓ cos ✓

�
2 R2⇥2 with angle ✓ and a translation vector b 2 R2⇥1. We can write

the following relations:

⌧pq0
⌧pq1

�
= A


p
q

�
+ b.

This framework can be readily applied to other groups of transformations T. For example, for affine
transformations, A must be a non-singular matrix. For similarity transformations (rotation, translation
and isotropic scaling), we have an additional dilation parameter. We can then apply gradient descent
to optimize these parameters to find the invariant mean.

2.2 COMPUTING INVARIANT SIMILARITY WEIGHTS

To compute invariant similarity weights, we construct a kernel that exhibits invariance to geometric
transformations. This kernel is denoted by max : Rd

⇥ Rd
! R, is defined as follows:

max(vi,vj) = max
⌧i2T,⌧j2T


⇣
vi � ⌧i,vj � ⌧j

⌘
(2.2)

The similarity score computed by this kernel is invariant to transformations applied on input images,
i.e. max(v,v0) = max(v � �,v0

� �0) for some images v,v0 and transformations �,�0
2 T. The

proof for invariance can be found in Section A of the Appendix.

The kernel max is not positive definite. However, it does provide an invariant similarity measure
which (i) can be efficiently computed, and (ii) provably facilitates clustering. Unlike averaging kernels
(Mroueh et al., 2015; Haasdonk & Burkhardt, 2007) which achieve invariance through integration,
kernel max achieves invariance through optimization. This is beneficial for two reasons: first, when
the set T of transformations has moderate dimension (say, 4 dimensions for similarity or 6 dimensions
for affine transforms), finding an optimal transformation pair ⌧ ?

i , ⌧
?
j is more efficient than averaging

over all possible transformations ⌧i, ⌧j in the group T. Second, in many vision applications, the
set T is not a full group, but only a subset of a group.2 In this setting, averaging kernels are no
longer invariant. Nevertheless, our overall Invariant Attention (IA) iteration is compatible with other
invariant similarity measures.

While this kernel allows us to compute meaningful similarity scores between images that have been
subject to transformations, these scores may not be perfect due to intra-class variation. Consequently,
relying solely on this step will be insufficient for accurately identifying clusters within the dataset.
As an example of intra-class variation that is affecting similarity scores, consider the MNIST digit
“7”. It can be depicted with and without a bar across its stem, and the angle between the horizontal
and slant lines can vary, among other examples.

1In the context of this work, the word “image" is used to denote both a complete image and an image patch.
2Consider, e.g., similarity transforms, which rotate, translate and scale the image. When working with

sampled images, we can only consider scales within a certain range [smin, smax]. The resulting set T is not a
group, because it is not closed under the group operation.
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As in (2.1) for kernel attention (KA), we formulate the weight matrix for Invariant Attention (IA) using
an identical procedure. Let the similarity score between images vi,vj be given by �ij = max(vi,vj).
We denote the ijth element of the invariant weight matrix as Wij , given by Wij =

�ijP
k �kj

.

Note that the weight Wij tells us how similar images vi and vj are up to transformation. To find
the full similarity matrix W , we solve (2.2) for all pairs of images, thus concluding the first step of
Invariant Attention (IA).

2.3 INVARIANT MEAN FORMULATION

In the first step of IA, we compute correct attention scores for images using the invariant kernel
max. However, relying solely on this step and applying a straightforward weighted averaging of
these images, as outlined in KA (2.1), results in a superposition of images that is not meaningful.
An example of this is shown in Figure 3b. We therefore propose the Invariant Mean, the solution to
the optimization problem [can i put this here? – (2.3)] that aims to find a tensor that is closest on a
weighted-average to all the images in such a way that these inherent transformations in each image
are inconsequential.

The invariant mean µ?
j

3 is found by optimizing a weighted distance function, given as:

µ?
j = arg min

µ
⌧1,...,⌧n

nX

i=1

Wij kvi � ⌧i � µk22 (2.3)

where W is the invariant weights matrix. Note that we jointly minimize over µ and ⌧1, . . . , ⌧n.

Since T is a group, by its property of closure under group operation, (i.e. if ⌧ ,� 2 T, then
⌧ � � 2 T) the solution set to (2.3) is invariant to transformations of input images. Namely, for some
transformations �1, . . . ,�n 2 T and input data v̄1 = v1 � �1, v̄2 = v2 � �2, . . . , v̄n = vn � �n,
we solve precisely the same optimization problem (2.3) as we would for v1, . . . ,vn. We therefore
call µ?

j as the Invariant Mean – invariant to transformations present in input data. The corresponding
optimal transformations of the two problems, however, are different and are related by the following
equations: ⌧̄ ?

1 = ��1
1 � ⌧

?
1 , ⌧̄

?
2 = ��1

2 � ⌧
?
2 , . . . , ⌧̄

?
n = ��1

n � ⌧
?
n 2 T. Here ⌧ ?

1 , . . . ⌧
?
n are optimal

for v1 . . .vn, and ⌧̄ ?
1 , . . . ⌧̄

?
n are optimal for v̄1 . . . v̄n.

Our mechanism’s iterative nature arises from replacing the initial image matrix V =
[ v1 v2 . . . vn ] with the updated matrix V + generated by Invariant Attention. For a given
point vj , the next iterate v+

j is given by setting v+
j  µ?

j , meaning that we replace each image with
its Invariant Mean. This concludes one full cycle of Invariant Attention.

For convenience, we define the following function:

'(µ) = min
⌧1,...,⌧n

nX

i=1

Wij kvi � ⌧i � µk22 (2.4)

and note that argminµ '(µ) is equivalent to the definition of the Invariant Mean in (2.3). To get a
closed-form expression for µ, we use the first order optimality conditionrµ'(µ) = 0.

The differentiation of (2.3) to determine the optimal µ is permissible only when unique optimal
transformations ⌧ ?

i are used, as per Danskin’s theorem. For these transformations to be unique,
we must impose certain geometrical conditions and utilize properties of image manifolds. This is
explained in detail in the Appendix. Under these conditions, we have that

µ?
j =

1P
`0 W`0j

X

`

W`j (v` � ⌧
?
` ) , (2.5)

Since the Invariant Mean is a weighted sum of images that have been acted upon by their optimal
transformations in (2.3), the solution to (2.3) is called invariant "mean".

3In the context of this work, we use star (?) to indicate optimality.
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2.4 COMPUTING THE INVARIANT MEAN

To compute the Invariant Mean, we use gaussian smoothing in the optimization problem in (2.3).
Since the optimization objective in (2.3) is non-convex, smoothing helps us increase the basin of
attraction. Our optimization problem then becomes:

µ?
j = arg min

µ
⌧1,...,⌧n

nX

i=1

Wij kg�2 ⇤ (vi � ⌧i � µ)k22 (2.6)

where � is the smoothing level and ⇤ represents convolution with a gaussian kernel of the same size.
We also denote the following:

f(⌧1, ⌧2, . . . , ⌧n;µ) =
nX

i=1

Wij kg�2 ⇤ (vi � ⌧i � µ) k22 (2.7)

To compute the Invariant Mean, we use gradient descent to minimize the objective in (2.7). We begin
with n identity transformation vector fields ⌧ (0)

1 , ⌧ (0)
2 , . . . , ⌧ (0)

n that correspond to no translation
or rotation, each for one of the input images v1,v2, . . . ,vn. At the kth iteration of descent, 8i 2
{1, . . . , n}, we compute gradients for ⌧ (k)

i and corresponding gradients for
⇣
A(k)

i , b(k)i

⌘
using the

chain rule, and finally compute gradients with respect to angle ✓(k) using the chain rule. With these
updated SE(2) parameters, b(k+1)

i , ✓(k+1)
i compute A(k+1)

i , and then ⌧ (k+1)
i for the next iteration.

At each iteration k, we then update the Invariant Mean to obtain µ(k+1) via the following equation
based on (2.5):

µ(k+1)
j =

1P
` W`j

X

i

Wijvi � ⌧
(k+1)
i .

For a given index i, computing the gradients and the interoplated images contain several operations –
convolutions are represented by ⇤, interpolation is represented by �, and element-wise multiplication
is denoted by �. We have parallelized these operations across each element using CuPy on NVIDIA
T4 GPUs. For example, We note that the gradient of (2.7) is given by r⌧if(⌧1, ⌧2 . . . ⌧n;µ) =

2g�2 ⇤ g�2 ⇤ (vi � ⌧i � µ)� d(vi�⌧i)
d⌧i

.
We further note that interpolations and gradient calculations for a given index i are independent of
other indices. We therefore have further parallelized our implementation across the n transformation
vector fields in CuPy.

The Invariant Mean is a feature tensor that we learn from the input images. Algorithm 1 presents
pseudo code outlining the optimization procedure for the Invariant Mean.

Algorithm 1 Computing the Invariant Mean
Input data matrix V = [v1, . . . ,vn], learning rate t, # of iterations N , invariant weights W:j

1: Set [⌧ (0)
1 , . . . , ⌧ (0)

n ] as a set of identity transformation vector fields.
2: Set the initial invariant mean µ(0)

j as the sample mean of input data V (0).
3: Set f(⌧1, ⌧2 . . . ⌧n;µ) to be the objective as in (2.7).
4: for k=0,1, . . . , N do

5:
h
⌧ (k+1)
1 , . . . , ⌧ (k+1)

n

i
 

h
⌧ (k)
1 , . . . , ⌧ (k)

n

i

� t
h
r⌧1f

⇣
⌧ (k)
1 , . . . , ⌧ (k)

n ;µ(k)
⌘
, . . . ,r⌧nf

⇣
⌧ (k)
1 , . . . , ⌧ (k)

n ;µ(k)
⌘i

6: µ(k+1)
j  

1P
` W`j

P
i Wij

�
vi � ⌧

(k+1)
i

�

7: end for

Output µj
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3 UNIQUENESS OF THE INVARIANT MEAN (UP TO TRANSFORMATIONS)

Now that we are able to compute the invariant mean, we would like to know what would happen
when we apply one iteration of Invariant Attention and then use the computed invariant means as
inputs for the next iteration and repeat this process many times.We take a mathematical approach
to answering this question and give the main results in this section and subsequent Section 4. A
detailed and interesting proof is found in the Appendix. We corroborate our proofs with experiments
in Section 5.

The proofs and theory in the paper uses a continuum model for images while for experiments and
computation we use the discrete formulation of images given so far. This is described in detail in the
Appendix Section D. Further, we allow T = SE(2) for the theoretical sections of our work.

To prove any result related to clustering, we first have to understand the nature of the solution to the
optimization problem in (2.3) which form the data for the next iteration. Equation (2.5) arrived at
from the first order optimality equation gives us a closed-form expression of the Invariant Mean but
doesn’t convey information about second order optimality conditions needed to characterize it as
local minima. Furthermore, we are interested in global minima in (2.3).

We try to answer these questions in this section for T = SE(2). We recall the norm-preserving
property of Euclidean transformations: kvk2 = kv � ⌧k2 , ⌧ 2 T. We also recall that T is a group
with composition (denoted �) as its group operation, so it is closed under transformations. Using
these two properties, we can readily show that if µ?

j is a minimizer of (2.3), then so is µ?
j � ⌧ for

⌧ 2 T. We therefore see that our solution set to our optimization problem in (2.3) contains a tensor
(image) acted upon by the all transformations of the group. The solution set contains the following
set of images which forms a manifold in image space:

Sµ?
j
= {µ?

j � � | � 2 T} (3.1)

This manifold has the same dimensions as the dimensions of the transformation group. For T =
SE(2), it is two dimensional. It however remains to prove if the solution set only contains elements
of Sµ?

j
.

For each data point v1, . . . ,vn, we define a corresponding transformation manifold: Si = {vi �

⌧i | ⌧i 2 T} 8i 2 {0, 1, . . . , n}.

We define the distance between two manifolds defined as

d(Si, Sj) = min
⌧i,⌧j

kvi � ⌧i � vj � ⌧jk2 (3.2)

These are the image transformation manifolds where each point on the manifold represents a base
image subject to a transformation. The manifolds of images belonging to the same class and exhibiting
intra-class variation have distinct manifolds that are closer (distance given by (D.63)) to each other
than they are to manifolds of other classes. For example, the two image transformation manifolds of
the digit MNIST 7 written with a bar across its stem and without a bar are closer to each other than to
any image transformation manifold of the digit 3. That is, for any two images vi,vj that belong to
the same class, d(Si, Sj) is bounded.

We shall prove that when we have transformation manifolds {S1 . . . Sn} of images {v1 . . .vn} that
belong to the same class and exhibit intra-class variation such that d(Si, Sj) is bounded for any i, j,
under certain geometrical conditions Sµ?

j
is the unique global minimizer of equation (2.3). That is,

µ?
j is unique up to transformations.

Reach and Curvature for Convex Combinations. We introduce an important geometrical sum-
mary paramter for our analysis called "infimal convex combination reach", denoted by ⇢min defined
in (B.9). Since the weights sum to 1, we can think of the invariant mean µ?

j in equation (2.5) as a
convex combination of vectors belonging to each image transformation manifold. The reach of a
manifold is inversely related to its curvature. We require that the curvature of Sµ?

j
is bounded to be

able to prove our results and introduce this parameter which bounds the reach of all possible convex
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combinations.This is explained in detail in the Appendix. With this background we give the first
result of this paper:

Theorem 3.1 (Uniqueness of the Invariant Mean) Consider data points {vi}
n
i=1 and their corre-

sponding transformation manifolds Si = {vi � ⌧ | ⌧ 2 T = SE(2)}, and let ⇢min(v1, . . . ,vn)
denote the infimal convex combination reach, defined in (B.9). Consider the optimization problem

min
µ2L2(R2)

'(µ) ⌘
nX

i=1

min
⌧i2T

Wijkvi � ⌧i � µk2L2 , (3.3)

with Wij � 0 and
P

i Wij = 1. There exists a numerical constant c > 0 such that if

max
i,j

d(Si,Sj)  c ⇢min(v1, . . . ,vn), (3.4)

then the solution to (3.3) is unique up to transformation, in the sense that for any pair of solutions

µ?
, µ?0

, we have µ?0 = µ?
� ⌧ for some ⌧ 2 T.

The detailed proof of Theorem 3.1 is supported by interesting geometric derivations and is found in
Appendix Section D.

4 INVARIANT ATTENTION CLUSTERS

As described in Section 2, we would like to perform many iterations of Invariant Attention.

In this section, we give the theorem which that after many iterations, the manifolds converge to their
invariant means, i.e., S(t)

i ' S(t)
j as t!1, where t is the iteration number. This is illustrated in 1

That is, given a set of images from the same class, by showing convergence, we prove that Invariant
Attention clusters.

We denote the new image transformation manifold S+
j = {v+

j � ⌧ |⌧ 2 T} and d(Si, Sj) =
min⌧i,⌧jkvi � ⌧i � vj � ⌧jk2.

We now give the second important result of the paper through the following theorem:

Theorem 4.1 Let v(p)
1 , . . . ,v(p)

n denote the features produced by the p-th iteration of Invariant

Attention, S
(p)
j =

n
v(p)
j � ⌧ | ⌧ 2 T

o
the corresponding transformation manifolds, �, the rbf kernel

bandwidth and

R(p) = maxm,l d
⇣
S
(p)
m ,S(p)

l

⌘
.

There exist positive constants c, c0, " such that if R(p) < c ⇢min(v1, . . . ,vn) and � < c0/
�
R(p)

�2
.

Then

d
⇣
S
(p+1)
j ,S(p+1)

k

⌘
 (1� ")d

⇣
S
(p)
j ,S(p)

k

⌘
. (4.1)

The proof for the Theorem 4.1 is found in Appendix Section E. We verify this claim experimentally
in Section 5.

5 EXPERIMENTS

In this section we show that experimental results corroborate our theory. We see that Invariant
Attention indeed clusters invariantly! Our optimization framework for transformation fields follows
Buchanan et al. (2022).

Experiment 1: Clustering of Images. In this experiment, we have base images of three classes: a
hand-drawn crab, a handmade 7 and an image of Pikachu. We then generate 6 transformed images per
class. Images are subject to Euclidean transformations with the rotation parameter sampled uniformly
at random from the range [-65, 65] degrees, and the translation parameter sampled uniformly at
random from the range [-10, 10]. The dataset is shown in the Figure 3a.
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(a) The dataset (b) Means of each class calculated by kernel attention

Figure 3: Dataset of three classes. A dataset of three classes used in experiments (left). Means calculated by
kernel attention (KA) do not convey meaningful information (right).

The corresponding sample mean of the these classes is shown in the Figure 3b. We can see that the
information conveyed by this mean is not very meaningful.

We then perform 2 iterations of Invariant Attention on this set of images. We note that since there
is no intra-class variation, we can find the clusters in just one iteration. However to show the
case of clustering even when we find suboptimal solutions to our formulation, i.e. not running
our numerical optimization perfectly, we choose a low number for optimization iterations over the
weights. Specifically, each optimization iteration is a gradient descent step with a step size 1 and
kernel bandwith � = 2. We therefore see the first iteration of Invariant Attention resulting in an
imperfect block matrix (Figure 4a). We also show the invariant mean computed for each image
in Figure 4b The matrix is improved upon in the second iteration where we see correct clustering.
Invariant means for the second iteration are shown in Figure 4c Such an instance of imperfect weights
is also found in the case of intra-class variation.

(a) Invariant weights,
iteration 1 (b) Invariant means

(c) Improved invariant
weights, iteration 1 (d) Invariant means

Figure 4: Invariant weights and invariant means In one iteration, a block-diagonal matrix emerges, showing
the desirable Invariant Weights ((a), (c)). Using these Invariant Weights, the Invariant Means of each class
are calculated ((b, d)). Unlike the means calculated by kernel attention in Figure 3b, Invariant Means convey
meaningful information.

Experiment 2: Invariant Mean with Intra-Class Variation. We show how our Invariant Mean
formulation is able to find a meaningful result even in the presence of intra-class variation. We select
10 images of the digit 3 written in different styles from the MNIST dataset (LeCun et al., 1998).
These images are subject to rotations chosen uniformly at random within the interval [0, 90] degrees,
and a translation also chosen uniformly at random from the interval (0.1, 0.2), which is expressed as
the tuple of maximum absolute fraction for horizontal and vertical translations. The dataset for this
experiment is shown in Figure 5a. We illustrate the progression of the Invariant Mean by capturing
the 0th, 25th, and the 50th iterations of optimization shown in Figures 5b, 5c, and 5d, respectively.
We see that at the end of 50 iterations, we have an meaningful Invariant Mean!

Greedy Search for the Smoothing Parameter. A constant smoothing value � at every iteration
might result in solutions in spurious minima. To avoid this issue and for faster numerical optimization,
we do a greedy search over the smoothing level at each iteration of optimization. To do this we enlist
a few smoothing levels and choose the one that decreases the invariant mean objective function the
most after one step of gradient descent.
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(a) A subset of transformed
MNIST digits

(b) The Invariant Mean
at iteration 0

(c) The Invariant Mean
at iteration 25

(d) The Invariant Mean
at iteration 50

Figure 5: Invariant Mean with Intra-Class Variation. Ten handwritten digits are chosen from the MNIST dataset
and are subject to transformations. As the optimization progresses, the Invariant Mean becomes more and more
meaningful.

6 DISCUSSION AND RELATED WORK

Addressing invariance to geometric transformations in vision is a longstanding challenge. Deep
learning has opened empirical avenues to tackle this issue, leading to the development of numerous
methods focused on maintaining invariance in images. Several works have focused on learning better
feature representations to improve clustering tasks. For instance, Ji et al. (2019) introduced "Invariant
Information Clustering," a method that trains a network to predict cluster identities. The central
objective of this approach is to learn a representation that preserves commonalities between two data
points x and x0 by maximizing the mutual information. To capture mutual content, Peng et al. (2019)
trained networks to attain invariance by minimizing a KL divergence-based objective, bringing two
distributions of latent representations closer to each other. In contrast to seeking improved feature
representations, Monnier et al. (2020) proposed to perform clustering in pixel space.

In our work, we introduce Invariant Attention, a novel mechanism designed to embed invariance
into an attention model. Central to this approach is the introduction of the invariant kernel max –
a kernel that determines the highest attainable similarity score between two images by optimizing
over transformations. Notably, Liu et al. (2022) also study this kernel, motivated by the challenge of
learning with a limited number of samples. Unlike kernels based on averaging, this kernel may not
possess positive definiteness. However, this fact does not impede our utilization of it, as our primary
objective is to ascertain the maximum similarity between two data points. In this regard, max fulfills
our intended purpose, regardless of its positive-definiteness. We also introduce the concept of the
Invariant Mean, and provide theoretical evidence that Invariant Attention achieves the sought-after
property of invariant clustering.

The need for invariance to transformations extends across diverse domains, such as protein structure
prediction (Jumper et al., 2021). Within the context of the AlphaFold2 network, the authors introduce
a concept termed "Invariant Point Attention" that appears to have a similar name as Invariant Attention
proposed in our work. However, Invariant Point Attention in AlphaFold2 aims to maintain invariance
under global Euclidean transformations, driven by the fact that the 3D structure of a protein remains
consistent regardless of its orientation. In contrast, Invariant Attention enforces invariance under
unknown transformations of the domain by optimizing over these transformations.

Limitations and Future Work, Following this work, further exploration of the proof of con-
vergence results can be taken up with a particular emphasis on expressing the introduced quantity
of infimal convex combination reach in terms of geometric parameters inherent to the problem.
Additionally, we envision expanding both the theoretical framework and empirical investigations
beyond Euclidean transformations, encompassing similarity and affine transformations and potentially
revealing intriguing geometric properties of Invariant Attention. Such developments aim to render
Invariant Attention more versatile and applicable in real-world scenarios.

Our overarching goal is to position Invariant Attention (IA) to serve as both a standalone computa-
tional primitive and as a modular building block seamlessly incorporated into larger architectural
frameworks, including Vision Transformers (ViTs). To achieve this, we are incorporating learnable
components within the proposed Invariant Attention module, aimed to enhance Invariant Attention’s
resilience to statistical variability while simultaneously considering structural properties of images.
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