
Published as a conference paper at ICLR 2026

ASYNCHRONOUS POLICY GRADIENT AGGREGA-
TION FOR EFFICIENT DISTRIBUTED REINFORCEMENT
LEARNING

Alexander Tyurin
AXXX, Moscow, Russia
Applied AI Institute, Moscow, Russia

Andrei Spiridonov
AXXX, Moscow, Russia

Varvara Rudenko
AXXX, Moscow, Russia

ABSTRACT

We study distributed reinforcement learning (RL) with policy gradient methods
under asynchronous and parallel computations and communications. While non-
distributed methods are well understood theoretically and have achieved remark-
able empirical success, their distributed counterparts remain less explored, partic-
ularly in the presence of heterogeneous asynchronous computations and commu-
nication bottlenecks. We introduce two new algorithms, Rennala NIGT and Male-
nia NIGT, which implement asynchronous policy gradient aggregation and achieve
state-of-the-art efficiency. In the homogeneous setting, Rennala NIGT provably im-
proves the total computational and communication complexity while supporting
the AllReduce operation. In the heterogeneous setting, Malenia NIGT simultane-
ously handles asynchronous computations and heterogeneous environments with
strictly better theoretical guarantees. Our results are further corroborated by ex-
periments, showing that our methods significantly outperform prior approaches.

1 INTRODUCTION

Reinforcement Learning (RL) is one of the most important tools in modern deep learning and large
language model training. There are many applications, including robotics and control (Kober et al.,
2013; Levine et al., 2016), recommender systems (Chen et al., 2019), and game playing such as
Go, chess, and StarCraft II (Silver et al., 2017; Vinyals et al., 2019). Moreover, RL has used in the
fine-tuning of large language models through reinforcement learning from human feedback (RLHF)
(Christiano et al., 2017).

Modern machine learning and RL models are typically trained in a distributed fashion, where many
agents, workers, or GPUs perform asynchronous computations in parallel and communicate period-
ically (Dean et al., 2012; Recht et al., 2011; Goyal et al., 2017). This distributed paradigm enables
training at scale by efficiently utilizing massive computational resources. However, distributed train-
ing poses many challenges, including communication bottlenecks (Alistarh et al., 2017; Lin et al.,
2017), system heterogeneity across agents (Lian et al., 2015), and stragglers and fault tolerance
(Chen et al., 2016). These challenges have motivated a large body of work on communication-
efficient methods, asynchronous and decentralized optimization algorithms, and federated learning
frameworks (Konečný et al., 2016; McMahan et al., 2017; Kairouz et al., 2021).

Policy Gradient (PG) methods are among the most popular and effective classes of RL algorithms
(Williams, 1992; Sutton et al., 1998). They have demonstrated remarkable empirical performance
across a wide range of challenging tasks. In non-distributed settings, significant recent progress has
been made, and PG-based methods are now well studied and better understood (Yuan et al., 2022;
Masiha et al., 2022; Ding et al., 2022; Lan, 2023; Fatkhullin et al., 2023). However, distributed RL
scenarios are less studied, and many critical challenges and open questions remain.

In this work, we study state-of-the-art policy-based methods in parallel and asynchronous setups,
where a large number of agents collaborate to maximize the expected return of a discrete-time dis-
counted Markov decision process. Our focus is on addressing computational and communication
challenges that arise in distributed RL.

1

Published as a conference paper at ICLR 2026

1.1 RELATED WORK

Non-distributed PG methods. In tabular settings, Lan (2023) study policy mirror descent and es-
tablish global guarantees for discrete state–action spaces. Alfano & Rebeschini (2022); Yuan et al.
(2023) analyze PG methods with log-linear parameterizations. Our focus, however, is on general
continuous state–action spaces with trajectory sampling and stochastic policy gradients. In this set-
ting, Yuan et al. (2022) analyze Vanilla PG and prove a sample complexity of O(ε−4) for finding
an ε-stationary point. Several PG variants have since improved this rate. In particular, Huang et al.
(2020); Ding et al. (2022); Xu et al. (2020a;b); Fan et al. (2021) introduce momentum-based PG
methods, but their analyses rely on importance sampling (IS) and therefore require strong additional
assumptions (e.g., variance of IS weights is bounded, as in Assumption 4.4 of (Xu et al., 2020a)),
which we ideally want to avoid. More recently, Fatkhullin et al. (2023), based on (Cutkosky &
Mehta, 2020), propose a normalized PG method that improves the rate for finding an ε-stationary
point to O(ε−7/2) under much weaker assumptions, requiring only second-order smoothness (with-
out explicit use of Hessians). Hessian-aided PG methods have also been investigated (Fatkhullin
et al., 2023; Ganesh et al., 2024); however, in practice, the stochastic Hessian–vector products sam-
pled in these methods have much higher variance than stochastic gradients (Fatkhullin et al., 2023).

Parallel and asynchronous optimization. Distributed optimization is typically considered in two
settings: homogeneous and heterogeneous. Both settings are equally important. The former, in the
context of RL, implies that all agents access the same environment and data, while the heterogeneous
setting, which is more prevalent in federated learning (FL) (Konečný et al., 2016), arises when the
data and environments differ due to privacy constraints or the infeasibility of sharing environments.

In the homogeneous case, many studies have analyzed asynchronous variants of stochastic gradient
descent, such as (Lian et al., 2015; Feyzmahdavian et al., 2016; Stich & Karimireddy, 2020; Sra
et al., 2016). A common limitation of these works is the requirement that the delays in stochastic
gradient indices remain bounded. Consequently, their results provide weaker guarantees on compu-
tational time complexity compared to more recent analyses (Cohen et al., 2021; Koloskova et al.,
2022; Mishchenko et al., 2022; Tyurin & Richtárik, 2023; Maranjyan et al., 2025), which avoid this
restriction. In the heterogeneous case, many works have also been proposed, including (Mishchenko
et al., 2022; Koloskova et al., 2022; Wu et al., 2022; Tyurin & Richtárik, 2023; Islamov et al., 2024).

In order to compare parallel methods, Mishchenko et al. (2022) proposed the hi-fixed computation
model in the context of stochastic optimization (see Assumption 2.5 in the context of RL), assuming
that it takes at most hi seconds to calculate one stochastic gradient on agent i. Mishchenko et al.
(2022); Koloskova et al. (2022) provided new analyses and proofs of Asynchronous SGD, show-
ing that their versions of Asynchronous SGD have the time complexity O((1/n

∑n
i=1

1/hi)−1(1/ε +
1/nε2)), where the Big-O notation is up to an error tolerance ε and hi. Surprisingly, this complexity
can be improved1 to Θ(minm∈[n][(1/m

∑m
i=1

1/hi)−1(1/ε + 1/mε2)]), achieved by the Rennala SGD
method from (Tyurin & Richtárik, 2023). For the heterogeneous setting, they also developed the
Malenia SGD method with the time complexity Θ(maxi∈[n] hi/ε + (1/n

∑n
i=1

1/hi)1/nε2). Moreover,
Tyurin & Richtárik (2023) proved that these complexities are optimal under smoothness and the
bounded stochastic gradient assumption.

In the distributed RL domain, numerous works have been proposed. For instance, Fan et al. (2021);
Ganesh et al. (2024) analyzed federated reinforcement learning with fault-tolerance approaches in
settings with adversarial attacks, Jin et al. (2022); Ganesh et al. (2024); Labbi et al. (2025) studied
federated policy gradient in synchronous homogeneous and heterogeneous settings, while Lu et al.
(2021); Chen et al. (2021) investigated decentralized policy optimization with a focus on communi-
cation efficiency.

The current state-of-the-art method in asynchronous and parallel RL. The most relevant and
central work for our study is the recent result of Lan et al. (2025), which considers an asynchronous
PG method called AFedPG and provides the current state-of-the-art time complexity under our as-
sumptions. Their method builds on the idea of applying the NIGT method (Cutkosky & Mehta, 2020;
Fatkhullin et al., 2023) to the asynchronous RL domain, aided by recent insights from Koloskova
et al. (2022); Mishchenko et al. (2022). It is worth noting that this combination is not straightforward
and requires several technical steps to adapt the previous analysis to RL problems.

1Notice that min
m∈[n]

g(m) ≤ g(n) for any g : N → R.

2

Published as a conference paper at ICLR 2026

Table 1: Homogeneous Setup. The time complexities of distributed methods to find an ε-stationary
point in problem (1) up to an error tolerance ε, number of agents n, computation times ḣi, commu-
nication time κ (see Section 4.1), and ignoring logarithmic factors.

Method
Total Time Complexity

Support
AllReduceComputational

Complexity
Communication

Complexity

(Syncronous) Vanilla PG
(Yuan et al., 2022) max

i∈[n]
ḣi

(
1
ε2

+ 1
nε4

)
+ κ ×

(
1
ε2

+ 1
nε4

)
Yes

(Syncronous) NIGT
(Fatkhullin et al., 2023) Ω

(
max
i∈[n]

ḣi × 1

nε7/2

)
+ κ × 1

ε7/2
Yes

Rennala PG/SGD
(Tyurin & Richtárik, 2023) min

m∈[n]

[(
1
m

m∑
i=1

1
ḣi

)−1 (
1
ε2

+ 1
mε4

)]
+ κ × 1

ε2
Yes

AFedPG
(Lan et al., 2025)

(
1
n

n∑
i=1

1
ḣi

)−1 (
n4/3

ε7/3
+ 1

nε7/2

)
+ κ × 1

ε3
No

Rennala NIGT (new)
(Theorem 4.4) min

m∈[n]

[(
1
m

m∑
i=1

1
ḣi

)−1 (
1
ε2

+ 1

mε7/2

)]
+ κ × 1

ε2
Yes

Lower bound(a) (new)
(Theorem G.1)

min
m∈[n]

[(
1
m

m∑
i=1

1
ḣi

)−1 (
1

ε3/2
+ 1

mε7/2

)]
+ κ × 1

ε12/7
—

The total time complexity of Rennala NIGT is better than that of previous methods:
i) for small-ε, its computational complexity is much better than that of Vanilla PG, NIGT, and Rennala PG;

ii) Rennala NIGT supports AllReduce and its communication complexity is much better than that of AFedPG for small-ε;
iii) its computational complexity can be arbitrarily better2than that of AFedPG, whose complexity can grow with n.

(a) The lower bound applies to methods that only access unbiased stochastic gradients of an (Lg, Lh)–twice smooth function with
σ–bounded variance, treating (3) as a black-box oracle. Extending it to methods exploiting the full structure of J in (1) and closing
the gap remains open. See discussion in Sections 4.1 and G.

However, AFedPG has several limitations: i) although motivated by and designed for federated learn-
ing, this method does not support the heterogeneous setting; ii) due to its greedy update strategy, the
method has suboptimal communication time complexity (as we illustrate in Section 4.1 and Table 1)
and does not support the AllReduce operation, which is essential in most distributed environments;
iii) finally, its computational time complexity is also suboptimal and can be improved (Table 1).

1.2 CONTRIBUTIONS

We develop two new methods, Rennala NIGT and Malenia NIGT, which achieve new state-of-the-art
computational and communication time complexities in the homogeneous and heterogeneous set-
tings, respectively. Our theory strictly improves upon the result of Lan et al. (2025) in all aspects
within the same setting, without requiring additional assumptions: i) we develop and analyze Malenia
NIGT, which supports asynchronous computations in the heterogeneous setup; ii) our communication
time complexity is provably better in the homogeneous setup. For example, in the small–ε regime,
Rennala NIGT improves AFedPG’s bound of O(κε−3) to O(κε−2). And in the worst case, the com-
munication complexity of AFedPG can provably be as large as O(κε−7/2) (see Section 4.1). Further-
more, both Rennala NIGT and Malenia NIGT support AllReduce; iii) our computational time complex-
ity is also strictly better in the homogeneous setup. In the small–ε regime, we improve their complex-
ity Õ((1/n

∑n
i=1

1/ḣi)−1(n
4/3
/ε7/3 + 1/nε7/2)) to Õ(minm∈[n][(1/m

∑m
i=1

1/ḣi)−1(1/ε2 + 1/mε7/2)]),
which can be arbitrarily smaller (see the discussion in Section 4). Even in the classical optimiza-
tion setting, we significantly improve upon the current state-of-the-art results of Tyurin & Richtárik
(2023); Maranjyan et al. (2025) by leveraging momentum and normalization techniques, together
with a mild second-order smoothness assumption. As a final contribution, we establish a new lower
bound, Theorem G.1 from Section G, which enables us to quantify the remaining optimality gap.

We believe our new methods, analysis, insights, and numerical experiments are important for the
RL community, as they achieve state-of-the-art time complexities in asynchronous and parallel RL
(Tables 1 and 2), an area that is rapidly gaining importance with the growing availability of compu-
tational resources.

2
min

m∈[n]

[(
1
m

m∑
i=1

1
ḣi

)−1 (
1
ε2

+ 1

mε7/2

)]
≤
(

1
n

n∑
i=1

1
ḣi

)−1 (
1
ε2

+ 1

nε7/2

)
≤
(

1
n

n∑
i=1

1
ḣi

)−1 (
n4/3

ε7/3
+ 1

nε7/2

)

3

Published as a conference paper at ICLR 2026

2 PROBLEM FORMULATION AND PRELIMINARIES

We consider a discrete-time discounted Markov decision process M = (S,A,P, r, ρ, γ), where S
and A denote the state and action spaces, P : S ×A×S → R is the transition kernel, r : S ×A →
[−rmax, rmax] is the reward function bounded by rmax > 0, ρ is the initial state distribution, and
γ ∈ (0, 1) is the discount factor (Puterman, 2014).

We assume n agents operate asynchronously in parallel and interact with independent copies of the
environment. Each agent selects an action at ∈ A in a state st ∈ S according to the parameterized
density function πθ(·|st). The agent then receives the reward r(st, at), and the environment transi-
tions to the next state st+1 according to the distribution P(·|st, at). One of the main problems in
RL is to find θ ∈ Rd that maximize the expected return

max
θ∈Rd

{
J(θ) = E(st,at)t≥0

[∞∑
t=0

γtr(st, at)

]}
, (1)

where s0 ∼ ρ(·), at ∼ πθ(·|st), and st+1 ∼ P(·|st, at) for all t ≥ 0. In practice,
it is infeasible to generate an infinite trajectory. Instead, each agent generates a finite tra-
jectory τ = (s0, a0, · · · , sH−1, aH−1) of length H ≥ 1 from the density p(τ |πθ) :=

ρ(s0)πθ(a0|s0)
∏H−1

t=1 P(st|st−1, at−1)πθ(at|st). We define the truncated expected return:

JH(θ) = Eτ

[
H−1∑
t=0

γtr(st, at)

]
, (2)

which approximates J(θ). Given the rewards, we can compute the truncated stochastic policy gra-
dient

gH(τ, θ) =
H−1∑
t=0

(
H−1∑
h=t

γhr(sh, ah)

)
∇ log πθ(at|st), (3)

where τ = (s0, a0, · · · , sH−1, aH−1) ∼ p(·|πθ). The random vector gH(τ, θ) is an unbiased estima-
tor of ∇JH(θ) (Sutton et al., 1998; Masiha et al., 2022): ∇JH(θ) = Eτ [gH(τ, θ)]. In total, sampling
trajectories and calculating gH , the goal of the agents is to find an ε–stationary point θ ∈ Rd, i.e., a
point θ such that E [∥∇J(θ)∥] ≤ ε.

2.1 ASSUMPTIONS

We consider the standard assumptions from the RL literature:
Assumption 2.1. For all s, a ∈ S ×A, the function θ → πθ(a, s) is positive, twice continu-
ously differentiable, ∥∇ log πθ(a|s)∥ ≤ Mg, and

∥∥∇2 log πθ(a|s)
∥∥ ≤ Mh for all θ ∈ Rd, where

Mg,Mh > 0.

Assumption 2.2. For all s, a ∈ S ×A, the function θ → πθ(a|s) is positive, twice continuously
differentiable, and there exists l2 > 0, such that

∥∥∇2 log πθ(a|s)−∇2 log πθ̄(a|s)
∥∥ ≤ l2

∥∥θ − θ̄
∥∥

for all θ, θ̄ ∈ Rd.

Using the assumptions, we can derive the following useful properties.
Proposition 2.3 (e.g. (Zhang et al., 2020; Masiha et al., 2022; Yuan et al., 2022)). Let Assumptions
2.1 and 2.2 hold. Then,

1. Function J satisfies ∥∇J(θ)−∇J(θ′)∥ ≤ Lg ∥θ − θ′∥ for all θ, θ′ ∈ Rd, where Lg :=
rmax(M

2
g +Mh)/(1− γ)2.

2. Function J satisfies
∥∥∇2J(θ)−∇2J(θ′)

∥∥ ≤ Lh ∥θ − θ′∥ for all θ, θ′ ∈ Rd, where Lh :=
rmaxMgMh

(1−γ)2 +
rmaxM

3
g (1+γ)

(1−γ)3 +
rmaxMg

1−γ max
{
Mh,

γM2
g

1−γ ,
l2
Mg

, Mhγ
1−γ ,

Mg(1+γ)+Mhγ(1−γ)
1−γ2

}
.

3. ∥∇JH(θ)−∇J(θ)∥ ≤ Dgγ
H and

∥∥∇2JH(θ)−∇2J(θ)
∥∥ ≤ Dhγ

H for all θ ∈ Rd, where

Dg :=
Mgrmax

1−γ

√
1

1−γ +H and Dh :=
(Mh+M2

g)rmax

1−γ

(
1

1−γ +H
)
.

4. For gH defined in (3), we have ∇JH(θ) = Eτ [gH(τ, θ)] and Eτ

[
∥gH(τ, θ)−∇JH(θ)∥2

]
≤ σ2

∀θ ∈ Rd with σ2 := r2maxM
2
g /(1− γ)3.

4

Published as a conference paper at ICLR 2026

Table 2: Heterogeneous Setup. The time complexities of distributed methods to find an ε-stationary
point in problem (1) up to an error tolerance ε, computation times ḣi, communication time κ (see
Section 4.1), and ignoring logarithmic factors.

Method
Total Time Complexity

Support
AllReduceComputational

Complexity
Communication

Complexity

(Syncronous) Vanilla PG
(Yuan et al., 2022) max

i∈[n]
ḣi

1
ε2

+ max
i∈[n]

ḣi
1

nε4
+ κ ×

(
1
ε2

+ 1
nε4

)
Yes

Malenia PG/SGD
(Tyurin & Richtárik, 2023) max

i∈[n]
ḣi · 1

ε2
+

(
1
n

n∑
i=1

ḣi

)
· 1

nε4
+ κ × 1

ε2
Yes

AFedPG
(Lan et al., 2025) does not support heterogeneous setup

Malenia NIGT (new)
(Theorem 5.1) max

i∈[n]
ḣi · 1

ε2
+

(
1
n

n∑
i=1

ḣi

)
· 1

nε7/2
+ κ × 1

ε2
Yes

Similar to Rennala NIGT (Table 1), the total time complexity of Malenia NIGT
is better than that of previous methods in the heterogeneous setup.

2.2 HOMOGENEOUS AND HETEROGENEOUS SETUPS

We consider two important settings: homogeneous and heterogeneous. The homogeneous setting
arises in open-data scenarios, where each agent has access to the same environment and distribution.
In contrast, the heterogeneous setting is more relevant in federated learning (FL) (Konečný et al.,
2016; Kairouz et al., 2021), where agents aim to preserve privacy or where sharing environments is
infeasible.
Homogeneous setup. We start with the homogeneous setup, where agents have access to the same
distribution, share the same reward function, and πθ. This problem is the same as in (Lan et al.,
2025) and defined in Section 2.

Heterogeneous setup. However, unlike (Lan et al., 2025), our theory also supports the heteroge-
neous setting, where agents have access to arbitrary heterogeneous distributions and reward func-
tions, which is important in FL. We consider the problem of maximizing

J(θ) = 1
n

n∑
i=1

Ji(θ), where Ji(θ) = E(si,t,ai,t)t≥0

[∞∑
t=0

γtri(si,t, ai,t)

]
(4)

and si,0 ∼ ρi(·), ai,t ∼ πi,θ(·|si,t), and si,t+1 ∼ Pi(·|si,t, ai,t) for all t ≥ 0, i ∈ [n]. We assume
the fully general setting, where agents sample from arbitrary heterogeneous distributions, and both
the reward function and πi,θ may differ. The truncated expected return and stochastic gradient are
defined as

JH(θ) = 1
n

n∑
i=1

Ji,H(θ) and gi,H(τi, θ) =
H−1∑
t=0

(
H−1∑
h=t

γhri(si,h, ai,h)

)
∇ log πi,θ(ai,t|si,t) (5)

where Ji,H(θ) = Eτi

[∑H−1
t=0 γtri(si,t, ai,t)

]
and τi = (si,0, ai,0, · · · , si,H−1, ai,H−1) from the

density pi(τ |πi,θ) := ρi(s0)πi,θ(ai,0|si,0)
∏H−1

t=1 Pi(si,t|si,t−1, ai,t−1)πi,θ(ai,t|si,t). Similarly to
Section 2, ∇Ji,H(θ) = Eτi [gi,H(τi, θ)]. In the heterogeneous setting, Proposition 2.3–(1), (2), and
(3) still hold. However, due to heterogeneity, the last property concerning the unbiasedness and the
variance of stochastic gradients holds only locally, for gi,H instead of gi.
Proposition 2.4. For all i ∈ [n], let πi,θ satisfy Assumptions 2.1 and 2.2. Then, Proposition 2.3-
(1),(2),(3) are satisfied in the heterogeneous setting (4) and (5) for the functions J and JH (follows
from triangle’s inequality).
4. For gi,H defined in (5), we have ∇Ji,H(θ) = Eτ [gi,H(τ, θ)] and

E
[
∥gi,H(τ, θ)−∇Ji,H(θ)∥2

]
≤ σ2 for all θ ∈ Rd, i ∈ [n].

2.3 COMPUTATION AND COMMUNICATION TIMES

To illustrate our improvements over the previous state-of-the-art results, we make the following
assumption. Notice that it is not required for the convergence of our methods.

5

Published as a conference paper at ICLR 2026

Assumption 2.5.
• Computing a single stochastic policy gradient gH (or gi,H) on agent i requires at most

hi := ḣi ×H

seconds, where ḣi denotes the time required to obtain the next state, and H is the trajectory
length. Without loss of generality, we assume that ḣ1 ≤ · · · ≤ ḣn, and consequently
h1 ≤ · · · ≤ hn.

• In the centralized setup (with a server), transmitting a vector from an agent to and from the
server takes at most κ seconds. In the decentralized setup, transmitting vectors between
agents (e.g., via AllReduce) also takes at most κ seconds.

In order to compute a stochastic gradient gH , an agent must generate a trajectory and collect the
corresponding rewards. Since trajectories are generated sequentially in a Markov decision process,
the time required grows linearly with the horizon length H. Therefore, it is natural to assume that
the computation time is bounded by ḣi ×H, where ḣi denotes the maximal time needed by agent i
to simulate or observe a single state transition.

The second condition is natural in distributed training and optimization, where communication be-
tween agents requires a non-negligible time κ > 0, for instance when performed over the Internet
or via MPI-based message passing.

We consider heterogeneous computations hi and the communication time κ to compare methods and
highlight our contributions in the asynchronous setup. All our new methods work without assuming
these. Moreover, Theorem 4.3 illustrates how our time complexity results can be generalized to
arbitrary computation patterns.

3 NEW METHODS: Rennala NIGT AND Malenia NIGT

In this section, we present our new algorithm, Rennala NIGT (Algorithm 1 and Algorithm 2). Later,
we present its heterogeneous version, Malenia NIGT (Algorithm 1 and Algorithm 3). They are in-
spired by (Cutkosky & Mehta, 2020; Fatkhullin et al., 2023; Tyurin & Richtárik, 2023). The core
steps (Algorithm 1) are almost the same as in (Cutkosky & Mehta, 2020). Using the extrapolation
steps, Cutkosky & Mehta (2020) showed that it is possible to improve the oracle complexity of
the vanilla SGD method (Lan, 2020) under the additional assumption that the Hessian is smooth.
It turns out that the oracle complexity from (Cutkosky & Mehta, 2020) can be improved with the
STORM/MVR method (Cutkosky & Orabona, 2019), but the latter requires calculating stochastic gra-
dients at two different points using the same random variable, which cannot easily be applied in the
RL context due to the non-stationarity of the distribution.

To adapt Algorithm 1 to parallel and asynchronous scenarios, we follow the idea from (Tyurin &
Richtárik, 2023; Tyurin et al., 2024a) and design the AggregateRennala procedure. The method
broadcasts θ to all agents. Each agent i then starts sampling τi,1, obtaining the reward, and com-
puting the stochastic gradient gH(τi,1, θ) locally. Next, the algorithm enters a loop and waits for
any agent to complete these steps. Once an agent finishes, the algorithm increases the counter i
and instructs that agent to sample another trajectory and repeat the process. This continues until the
total number of calculated stochastic gradients reaches M . Notice that, unlike (Lan et al., 2025),
the agents can aggregate the stochastic gradients locally, thereby reducing the communication over-
head. Finally, performing only one communication, the algorithm aggregates all vectors to ḡ (e.g.,
via AllReduce), which Algorithm 1 uses to make the steps.

Our strategy offers several advantages: i) Rennala NIGT (Algorithm 1 and Algorithm 2) can be
applied in both centralized and decentralized settings; ii) it is asynchronous-friendly, as Algorithm 2
is resilient to stragglers: if an agent is slow or even disconnected, the procedure is not delayed,
since AggregateMalenia only needs to collect M stochastic gradients from all agents. This will be
formalized in Section 4. iii) it is also communication-efficient, as vector communication occurs only
once at the end of Algorithm 2 (see Section 4.1). iv) finally, our theoretical guarantees are provably
better than those of the previous results.

6

Published as a conference paper at ICLR 2026

Algorithm 1 Rennala NIGT or Malenia NIGT

1: Input: momentum η and step size α, starting point θ0, parameters Minit and M, horizon H
2: Initialize d0 = AggregateRennala(θ0,Minit, H)

(
or = AggregateMalenia(θ0,Minit, H)

)
3: θ1 = θ0 + α d0

∥d0∥
4: for t = 1, 2, . . . do
5: θ̃t = θt +

1−η
η (θt − θt−1)

6: gt = AggregateRennala(θ̃t,M,H)
(
or = AggregateMalenia(θ̃t,M,H)

)
7: dt = (1− η)dt−1 + ηgt
8: θt+1 = θt + α dt

∥dt∥
9: end for

Algorithm 2 AggregateRennala(θ, M , H)

1: Init ḡ = 0 ∈ Rd and i = 1
2: Broadcast θ to all agents
3: Each agent i starts sampling τi,1 ∼ p(·|πθ)

and calculating gH(τi,1, θ)
4: while i ≤ M do
5: Wait for gH(τj,k, θ) from an agent j
6: ḡ = ḡ + 1

M gH(τj,k, θ); i = i+ 1
7: Agent j starts sampling τj,k+1 ∼ p(·|πθ)

and calculating gH(τj,k+1, θ)
8: end while
9: Stop all calculations

10: Return ḡ (e.g., via AllReduce)

Algorithm 3 AggregateMalenia(θ, M , H)

1: Init ḡi = 0 ∈ Rd and Mi = 0 for all i ∈ [n]
2: Broadcast θ to all agents
3: Each agent i starts sampling τi,1 ∼ pi(·|πi,θ)

and calculating gi,H(τi,1, θ)
4: while (1/n

∑n
i=1

1/Mi)−1 < M/n do
5: Wait for gj,H(τj,k, θ) from an agent j
6: ḡj = ḡj + gj,H(τj,k, θ);Mj = Mj + 1
7: Agent j starts sampling τj,k+1 ∼

pj(·|πj,θ) and calculating gj,H(τj,k+1, θ)
8: end while
9: Stop all calculations

10: Return 1/n
∑n

i=1
ḡi/Mi (e.g., via AllReduce)

Note: The agents can locally aggregate gH and gi,H , after which the algorithm can perform a single
AllReduce call to collect all computed gradients. The trajectories {τi,j} are statistically independent.

4 TIME COMPLEXITY IN THE HOMOGENEOUS SETUP

Theorem 4.1. Let Assumptions 2.1 and 2.2 hold. Consider Rennala NIGT (Algo-
rithm 1 and Algorithm 2) in the homogeneous setup, or Malenia NIGT (Algorithms 1
and Algorithm 3) in the heterogeneous setup. Let η = min

{
Mε2

64σ2 ,
1
2

}
, α =

min
{

ε
8Lg

, η
√
ε

4
√
Lh

}
, H = max

{
logγ

(
εη

64max{Dg,αDh}
)
, 1
}

= Õ(1/(1−γ)). Let θ̄T be a

uniformly sampled iterate from {θ0, · · · , θT−1} . Then E
∥∥∇J(θ̄T)

∥∥ ≤ ε after T =

O
(

Lg∆
ε2 +

√
Lh∆
ε3/2

+ σ√
Minitε

+ σ3

M
√
Minitε3

+ σ2√Lh∆
Mε7/2

)
global iterations.

Notice that Theorem 4.1 does not rely on Assumption 2.5; convergence is guaranteed even
without Assumption 2.5. It is an auxiliary result that holds for any choice of M and Minit. We now
establish the time complexity of Rennala NIGT in Theorem 4.1, our first main result.

Theorem 4.2. Consider the results and assumptions of Theorem 4.1. Additionally, consider that
Assumption 2.5 holds with κ = 0 (i.e., communication is free). Taking Minit = max

{⌈
σ2

ε2

⌉
, 1
}

and M = max
{⌈(

σ2

ε2 + σ2√Lh∆
ε7/2

)
/
(Lg∆

ε2 +
√
Lh∆
ε3/2

)⌉
, 1
}
, the time required to find an ε–

stationary point by Rennala NIGT (Algorithms 1 and 2) is

Õ

(
1

1−γ min
m∈[n]

[(
1
m

m∑
i=1

1
ḣi

)−1 (
Lg∆
ε2 +

√
Lh∆
ε3/2

+ σ2

mε2 + σ2√Lh∆
mε7/2

)])
. (6)

We now compare this result with (Lan et al., 2025). Although that paper requires the impractical
assumption that generated trajectories have infinite horizons, we assume that they also require ḣi ×
H seconds to generate one trajectory for agent i. Then, they obtain at least the time complexity

7

Published as a conference paper at ICLR 2026

Õ
(
(1/n

∑n
i=1

1/ḣi)
−1 (

n4/3
/ε7/3 + 1/nε7/2

))
, up to ε, n, and ḣi constant factors. If n is large, which

is the case in federated learning and distributed optimization, their complexity can be arbitrarily
large due to the n4/3 and (1/n

∑n
i=1

1/ḣi)
−1 dependencies3. Notice that our complexity (6) can only

decrease with larger n due to the Õ
(
minm∈[n]

[(
1
m

∑m
i=1

1/ḣi

)−1
(1/ε2+1/mε7/2)

])
dependency. In

Section 4.1, we show that the gap is even larger when we start taking into account the communication
factor.

Our time complexity (6) has a harmonic-like dependency Õ
(
minm∈[n]

[(
1/m

∑m
i=1

1/ḣi

)−1(
A +

B/m
)])

on {ḣi} for A := Lg∆/ε2 +
√
Lh∆/ε3/2 and B := σ2

/ε2 + σ2√Lh∆/ε7/2. To the best of
our knowledge, this is the current state-of-the-art computational complexity for maximizing (1).
It has many nice properties: i) it is robust to stragglers. If we take ḣn → ∞, this complexity
starts ignoring the slowest agent and becomes Õ

(
minm∈[n−1]

[(
1/m

∑m
i=1

1/ḣi

)−1(
A+B/m

)])
; ii)

since the harmonic mean is less than or equal to the maximum term, this complexity is much better
than the time complexity of the naive synchronized distributed version of NIGT with the complexity
Õ
(
maxi∈[n] ḣi

(
A + B/n

))
, where all agents synchronize after each has computed one stochastic

gradient. Notice that we can easily generalize our result when the times are non-static.
Theorem 4.3. Consider the results and assumptions of Theorem 4.1. Additionally, con-
sider that computing a single stochastic policy gradient gH on agent i in iteration t re-
quires at most ḣt,i × H seconds. Taking Minit = max

{⌈
σ2

ε2

⌉
, 1
}

and M = max
{⌈(

σ2

ε2 +
σ2√Lh∆

ε7/2

)
/
(Lg∆

ε2 +
√
Lh∆
ε3/2

)⌉
, 1
}
, the time required to find an ε–stationary point by Rennala

NIGT (Algorithms 1 and 2) is Õ
(
1/1−γ

∑T
t=1 minm∈[n]

[(
1
m

∑m
i=1

1/ḣt,πt,i

)−1
(M/m + 1)

]
+

1/1−γminm∈[n]

[(
1
m

∑m
i=1

1/ht,π0,i

)−1
(Minit/m + 1)

])
, where T = O

(
Lg∆/ε2 +

√
Lh∆/ε3/2

)
and

πt,i is a permutation such that ḣt,πt,1
≤ · · · ≤ ḣt,πt,n

.

To simplify the discussion, we further focus on Assumption 2.5 and assume that the bounds on
computation times are {hi}.

4.1 TIME COMPLEXITY WITH COMMUNICATION TIMES

We now generalize Theorem 4.2 by taking into account the communication time κ:

Theorem 4.4. Consider the results and assumptions of Theorem 4.1. Additionally, con-
sider that Assumption 2.5 holds. Taking Minit = max

{⌈
σ2

ε2

⌉
, 1
}

and M = max
{⌈(

σ2

ε2 +
σ2√Lh∆

ε7/2

)
/
(Lg∆

ε2 +
√
Lh∆
ε3/2

)⌉
, 1
}
, the time required to find an ε–stationary point by Rennala

NIGT (Algorithms 1 and 2) is

Õ

(
κ
(

Lg∆
ε2 +

√
Lh∆
ε3/2

)
+ 1

1−γ min
m∈[n]

[(
1
m

m∑
i=1

1
ḣi

)−1 (
Lg∆
ε2 +

√
Lh∆
ε3/2

+ σ2

mε2 + σ2√Lh∆
mε7/2

)])
.

Compared to (6), we obtain an additional time term κ
(
Lg∆/ε2 +

√
Lh∆/ε3/2

)
, which accounts

for the communication time complexity. Recall that the method of Lan et al. (2025) performs
asynchronous updates, where each agents independently send gradients to the server, which is
non-communication-efficient. For small ε, in Lan et al. (2025), the fastest agent sends at least
O(max{n4/3ε−7/3, n−1ε−7/2}) stochastic gradients (according to their Theorem 5.2). Conse-
quently, their communication time complexity is at least4 O(κε−3), whereas our algorithm achieves
a significantly better dependence on ε, namely O(κε−2). In the extreme case, when only the fastest
agent participates and contributes, AFedPG reduces to a non-distributed stochastic method in which
a single agent sends a gradient for every oracle call. In this setting, AFedPG provably requires at
least Ω(ε−7/2) communications (Arjevani et al., 2020), resulting in an even larger gap compared
to our complexity of O(ε−2). Moreover, our method supports AllReduce, an important feature in
practical engineering scenarios.

3For instance, take ḣi = h, then it reduces to ḣ(n
4/3

/ε7/3 + 1/nε7/2)
n→∞→ ∞. As a concrete example, if

ε = 0.0001, the first term n4/3
/ε7/3 already dominates when n = 100. In practice, the number of computational

resources n continues to grow toward 10K–100K, causing the complexity to increase with n as well.
4since max{n4/3ε−7/3, n−1ε−7/2} = Ω(ε−3)

8

Published as a conference paper at ICLR 2026

In Section G, we prove a lower bound for functions and stochastic gradients satisfying Proposi-
tion 2.3. Although we do not establish a lower bound under Assumptions 2.1 and 2.2, we believe our
result still reflects the fundamental lower bound of the considered task, since all recent state-of-the-
art results (Fatkhullin et al., 2023; Lan et al., 2025), including ours, rely solely on Proposition 2.3.
Comparing Theorems 4.4 and G.1, one can see that there is still a gap, for instance, between κε−2

and κε−12/7. We obtain the latter term by reducing our problem to the lower bound of Carmon
et al. (2021) for (Lg, Lh)–twice smooth functions. To the best of our knowledge, it remains an open
problem whether the ε−12/7 rate can be achieved, even in the non-distributed deterministic case.

5 TIME COMPLEXITIES IN THE HETEROGENEOUS SETUP

In the heterogeneous setup, we consider Algorithm 3 instead of Algorithm 2. Algorithm 3 is also
an asynchronous aggregation scheme of stochastic gradients adapted to the heterogeneous setting.
Unlike Algorithm 2, which is specialized for the homogeneous setup, Algorithm 3 ensures that the
returned vector is unbiased in the heterogeneous setup: E [1/n

∑n
i=1

ḡi/Mi] = 1/n
∑n

i=1 Ji,H(θ) =
JH(θ). For Malenia NIGT, we can prove the following result:

Theorem 5.1. Consider the results and assumptions of Theorem 4.1. Additionally, con-
sider that Assumption 2.5 holds. Taking Minit = max

{⌈
σ2

ε2

⌉
, 1
}

and M = max
{⌈(

σ2

ε2 +
σ2√Lh∆

ε7/2

)
/
(Lg∆

ε2 +
√
Lh∆
ε3/2

)⌉
, 1
}
, the time required to find an ε–stationary point by Malenia

NIGT (Algorithms 1 and 3) is

Õ
(
κ
(

Lg∆
ε2 +

√
Lh∆
ε3/2

)
+ 1

1−γ

[
ḣn

(
Lg∆
ε2 +

√
Lh∆
ε3/2

)
+

(
1
n

n∑
i=1

ḣi

)(
σ2

nε2 + σ2√Lh∆
nε7/2

)])
.

To the best of our knowledge, this result represents the current state-of-the-art complexity for RL
problems in the heterogeneous, distributed, and asynchronous setting. Compared to Theorem 4.2,
which has a harmonic-like dependency, the dependence on {ḣi} in Theorem 5.1 is mean-like in
the small-ε regime. This behavior is expected, as the heterogeneous case is more challenging due
to agents operating with different distributions and environments. However, the term related to the
communication time complexity is the same.

6 SUMMARY OF EXPERIMENTS

0 200 400 600 800 1000 1200 1400
Time (s)

100

150

200

250

300

350

400

450

500

Re
wa

rd

Rennala NIGT
Syncronized NIGT
AFedPG

(a) Equal times

0 2500 5000 7500 10000 12500 15000 17500
Time (s)

100

150

200

250

300

350

400

450

500

Re
wa

rd

Rennala NIGT
Syncronized NIGT
AFedPG

(b) Heterogeneous times

0 5000 10000 15000 20000 25000
Time (s)

100

150

200

250

300

350

400

450

500

Re
wa

rd

Rennala NIGT
Syncronized NIGT
AFedPG

(c) Increased communication times

Figure 1: Experiments on Humanoid-v4 with increasing heterogeneity of times (from left to right).

In this section, we empirically test the performance of Rennala NIGT and compare it with the previous
state-of-the-art method by (Lan et al., 2025) and the synchronized version of NIGT (Synchronized
NIGT). Following previous works (Lan et al., 2025; Fatkhullin et al., 2023), we focus on the MuJoCo
tasks (Todorov et al., 2012). We defer details, parameters, and additional experiments to Section H.
Figure 1 shows the main results: i) when the computation times are equal, all methods exhibit almost
the same performance, which is expected since they reduce to nearly the same algorithm; ii) when
the computation times are heterogeneous, Rennala NIGT converges faster than other methods; iii)
when the computation times are heterogeneous and the communication times are large, Rennala
NIGT is the only robust method, and the gap increases even more. These experiments, together with
the additional experiments from Section H, support our theoretical results.

9

Published as a conference paper at ICLR 2026

7 UNIVERSAL COMPUTATION MODEL

Following (Tyurin, 2025; Maranjyan et al., 2025), for completeness, we can extend the previously
derived time complexities to arbitrary computational dynamics.

Assumption 7.1.
• We define a non-negative and continuous almost everywhere computation power function
vi : R+ → R+ for all agent i ∈ [n]. The number of stochastic policy gradient that agent i
can compute between times t0 and t1 is

Ni(t0, t1) :=
⌊∫ t1

t0
vi(τ)dτ

⌋
. (7)

• For simplicity, we ignore the communication time.

Using these computational powers, we can formalize the changing computation behaviors of agents,
taking into account random fluctuations, different trends, and disconnections in a more flexible
way. In particular, when vi(τ) = vi ∈ R+ is constant, Ni(t0, t1) = ⌊vi × (t1 − t0)⌋ , and if
agent i starts calculating at time t0, then it will compute one policy gradient after t0 + 1/vi seconds
because Ni(t0, t0 + 1/vi) = 1, two after t0 + 2/vi seconds, and so forth. This example reduces
to Assumption 2.5 with hi ≡ 1/vi. However, Assumption 7.1 allows us to capture virtually any
computational scenarios (see examples in (Tyurin, 2025)).

Theorem 7.2. Consider the results and assumptions of Theorem 4.1. Additionally, con-
sider that Assumption 7.1 holds. Taking Minit = max

{⌈
σ2

ε2

⌉
, 1
}

and M = max
{⌈(

σ2

ε2 +
σ2√Lh∆

ε7/2

)
/
(Lg∆

ε2 +
√
Lh∆
ε3/2

)⌉
, 1
}
, the time required to find an ε–stationary point by Rennala

NIGT (Algorithms 1 and 2) is tT seconds, where T = O
(

Lg∆
ε2 +

√
Lh∆
ε3/2

)
and the sequence tk

is defined recursively:

tk = min

{
t :

n∑
i=1

Ni(tk−1, t) ≥ M

}
∀k ≥ 1 (8)

with t0 = min {t :
∑n

i=1 Ni(0, t) ≥ Minit} .

One can show that this theorem admits an analytical formula and reduces to Theorem 4.2 when
{vi} are constant functions. In general, to find tT , one should solve (8) for each particular choice
of vi, and it is always possible to do so numerically. First, find the smallest t ≥ 0 such that∑n

i=1 Ni(0, t) ≥ Minit, where
∑n

i=1 Ni(0, t) is the number of gradients that the agents can compute
in parallel after t seconds. Then, repeat the same procedure recursively for (8). We can also extend
Theorem 5.1 (ignoring communication times):

Theorem 7.3. Consider the results and assumptions of Theorem 4.1. Additionally, con-
sider that Assumption 7.1 holds. Taking Minit = max

{⌈
σ2

ε2

⌉
, 1
}

and M = max
{⌈(

σ2

ε2 +
σ2√Lh∆

ε7/2

)
/
(Lg∆

ε2 +
√
Lh∆
ε3/2

)⌉
, 1
}
, the time required to find an ε–stationary point by Malenia

NIGT (Algorithms 1 and 3) is tT seconds, where T = O
(

Lg∆
ε2 +

√
Lh∆
ε3/2

)
and the sequence tk

is defined recursively:

tk = min

{
t :
(

1
n

∑n
i=1

1
Ni(tk−1,t)

)−1

≥ M
n

}
∀k ≥ 1 (9)

with t0 = min

{
t :
(

1
n

∑n
i=1

1
Ni(0,t)

)−1

≥ Minit
n

}
.

ACKNOWLEDGEMENTS

The work was supported by the grant for research centers in the field of AI provided by the
Ministry of Economic Development of the Russian Federation in accordance with the agreement
000000C313925P4F0002 and the agreement №139-10-2025-033.

10

Published as a conference paper at ICLR 2026

REFERENCES

Carlo Alfano and Patrick Rebeschini. Linear convergence for natural policy gradient with log-linear
policy parametrization. arXiv preprint arXiv:2209.15382, 2022.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD:
Communication-efficient SGD via gradient quantization and encoding. In Advances in Neural
Information Processing Systems (NIPS), pp. 1709–1720, 2017.

Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Ayush Sekhari, and Karthik Sridha-
ran. Second-order information in non-convex stochastic optimization: Power and limitations. In
Conference on Learning Theory, pp. 242–299. PMLR, 2020.

Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth.
Lower bounds for non-convex stochastic optimization. Mathematical Programming, pp. 1–50,
2022.

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary
points i. Mathematical Programming, 184(1):71–120, 2020.

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary
points ii: first-order methods. Mathematical Programming, 185(1):315–355, 2021.

Jianmin Chen, Xinghao Pan, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. Revisiting dis-
tributed synchronous SGD. arXiv preprint arXiv:1604.00981, 2016.

Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and Ed H Chi. Top-k
off-policy correction for a reinforce recommender system. In Proceedings of the twelfth ACM
international conference on web search and data mining, pp. 456–464, 2019.

Tianyi Chen, Kaiqing Zhang, Georgios B Giannakis, and Tamer Başar. Communication-efficient
policy gradient methods for distributed reinforcement learning. IEEE Transactions on Control of
Network Systems, 9(2):917–929, 2021.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in Neural Information Processing
Systems, 30, 2017.

Alon Cohen, Amit Daniely, Yoel Drori, Tomer Koren, and Mariano Schain. Asynchronous stochastic
optimization robust to arbitrary delays. Advances in Neural Information Processing Systems, 34:
9024–9035, 2021.

Ashok Cutkosky and Harsh Mehta. Momentum improves normalized SGD. In International con-
ference on machine learning, pp. 2260–2268. PMLR, 2020.

Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex SGD.
In Neural Information Processing Systems, 2019.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc’aurelio
Ranzato, Andrew Senior, Paul Tucker, Ke Yang, et al. Large scale distributed deep networks.
Advances in Neural Information Processing Systems, 25, 2012.

Yuhao Ding, Junzi Zhang, and Javad Lavaei. On the global optimum convergence of momentum-
based policy gradient. In International Conference on Artificial Intelligence and Statistics, pp.
1910–1934. PMLR, 2022.

Xiaofeng Fan, Yining Ma, Zhongxiang Dai, Wei Jing, Cheston Tan, and Bryan Kian Hsiang Low.
Fault-tolerant federated reinforcement learning with theoretical guarantee. Advances in neural
information processing systems, 34:1007–1021, 2021.

Ilyas Fatkhullin, Anas Barakat, Anastasia Kireeva, and Niao He. Stochastic policy gradient methods:
Improved sample complexity for fisher-non-degenerate policies. In International Conference on
Machine Learning, pp. 9827–9869. PMLR, 2023.

11

Published as a conference paper at ICLR 2026

Hamid Reza Feyzmahdavian, Arda Aytekin, and Mikael Johansson. An asynchronous mini-batch
algorithm for regularized stochastic optimization. IEEE Transactions on Automatic Control, 61
(12):3740–3754, 2016.

Swetha Ganesh, Jiayu Chen, Gugan Thoppe, and Vaneet Aggarwal. Global convergence guarantees
for federated policy gradient methods with adversaries. arXiv preprint arXiv:2403.09940, 2024.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Feihu Huang, Shangqian Gao, Jian Pei, and Heng Huang. Momentum-based policy gradient meth-
ods. In International Conference on Machine Learning, pp. 4422–4433. PMLR, 2020.

Rustem Islamov, Mher Safaryan, and Dan Alistarh. AsGrad: A sharp unified analysis of
asynchronous-SGD algorithms. In International Conference on Artificial Intelligence and Statis-
tics, pp. 649–657. PMLR, 2024.

Hao Jin, Yang Peng, Wenhao Yang, Shusen Wang, and Zhihua Zhang. Federated reinforcement
learning with environment heterogeneity. In International Conference on Artificial Intelligence
and Statistics, pp. 18–37. PMLR, 2022.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and Trends® in Machine Learning,
14(1–2):1–210, 2021.

Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238–1274, 2013.

Anastasia Koloskova, Sebastian U Stich, and Martin Jaggi. Sharper convergence guarantees for
asynchronous SGD for distributed and federated learning. Advances in Neural Information Pro-
cessing Systems, 2022.

Jakub Konečný, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Safwan Labbi, Paul Mangold, Daniil Tiapkin, and Eric Moulines. On global convergence rates for
federated policy gradient under heterogeneous environment. arXiv preprint arXiv:2505.23459,
2025.

Guangchen Lan, Dong-Jun Han, Abolfazl Hashemi, Vaneet Aggarwal, and Christopher G Brinton.
Asynchronous federated reinforcement learning with policy gradient updates: Algorithm design
and convergence analysis. In International Conference on Learning Representations, 2025.

Guanghui Lan. First-order and stochastic optimization methods for machine learning. Springer,
2020.

Guanghui Lan. Policy mirror descent for reinforcement learning: Linear convergence, new sampling
complexity, and generalized problem classes. Mathematical programming, 198(1):1059–1106,
2023.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuo-
motor policies. Journal of Machine Learning Research, 17(39):1–40, 2016.

Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel stochastic gradient for
nonconvex optimization. Advances in Neural Information Processing Systems, 28, 2015.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. Deep gradient compression: Re-
ducing the communication bandwidth for distributed training. arXiv preprint arXiv:1712.01887,
2017.

12

Published as a conference paper at ICLR 2026

Songtao Lu, Kaiqing Zhang, Tianyi Chen, Tamer Başar, and Lior Horesh. Decentralized policy
gradient descent ascent for safe multi-agent reinforcement learning. In Proceedings of the AAAI
conference on artificial intelligence, volume 35, pp. 8767–8775, 2021.

Artavazd Maranjyan, Alexander Tyurin, and Peter Richtárik. Ringmaster ASGD: The first asyn-
chronous SGD with optimal time complexity. In International Conference on Machine Learning.
PMLR, 2025.

Saeed Masiha, Saber Salehkaleybar, Niao He, Negar Kiyavash, and Patrick Thiran. Stochastic
second-order methods provably beat sgd for gradient-dominated functions. Advances in Neural
Information Processing Systems, 2022.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Konstantin Mishchenko, Francis Bach, Mathieu Even, and Blake Woodworth. Asynchronous SGD
beats minibatch SGD under arbitrary delays. Advances in Neural Information Processing Systems,
2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems, 2019.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild!: A lock-free approach
to parallelizing stochastic gradient descent. Advances in Neural Information Processing Systems,
24, 2011.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. Nature, 550(7676):354–359, 2017.

Suvrit Sra, Adams Wei Yu, Mu Li, and Alex Smola. Adadelay: Delay adaptive distributed stochastic
optimization. In Artificial Intelligence and Statistics, pp. 957–965. PMLR, 2016.

Sebastian U Stich and Sai Praneeth Karimireddy. The error-feedback framework: SGD with delayed
gradients. Journal of Machine Learning Research, 21(237):1–36, 2020.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Alexander Tyurin. Tight time complexities in parallel stochastic optimization with arbitrary compu-
tation dynamics. In International Conference on Learning Representations, 2025.

Alexander Tyurin and Peter Richtárik. Optimal time complexities of parallel stochastic optimization
methods under a fixed computation model. Advances in Neural Information Processing Systems,
2023.

Alexander Tyurin and Peter Richtárik. On the optimal time complexities in decentralized stochastic
asynchronous optimization. Advances in Neural Information Processing Systems, 2024.

Alexander Tyurin, Kaja Gruntkowska, and Peter Richtárik. Freya PAGE: First optimal time com-
plexity for large-scale nonconvex finite-sum optimization with heterogeneous asynchronous com-
putations. Advances in Neural Information Processing Systems, 2024a.

Alexander Tyurin, Marta Pozzi, Ivan Ilin, and Peter Richtárik. Shadowheart SGD: Distributed asyn-
chronous SGD with optimal time complexity under arbitrary computation and communication
heterogeneity. Advances in Neural Information Processing Systems, 2024b.

13

Published as a conference paper at ICLR 2026

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229–256, 1992.

Xuyang Wu, Sindri Magnusson, Hamid Reza Feyzmahdavian, and Mikael Johansson. Delay-
adaptive step-sizes for asynchronous learning. In International Conference on Machine Learning,
2022.

Pan Xu, Felicia Gao, and Quanquan Gu. Sample efficient policy gradient methods with recursive
variance reduction. International Conference on Learning Representations, 2020a.

Pan Xu, Felicia Gao, and Quanquan Gu. An improved convergence analysis of stochastic variance-
reduced policy gradient. In Uncertainty in Artificial Intelligence, pp. 541–551. PMLR, 2020b.

Rui Yuan, Robert M Gower, and Alessandro Lazaric. A general sample complexity analysis of
vanilla policy gradient. In International Conference on Artificial Intelligence and Statistics, pp.
3332–3380. PMLR, 2022.

Rui Yuan, Simon S Du, Robert M Gower, Alessandro Lazaric, and Lin Xiao. Linear convergence of
natural policy gradient methods with log-linear policies. In International Conference on Learning
Representations, 2023.

Kaiqing Zhang, Alec Koppel, Hao Zhu, and Tamer Basar. Global convergence of policy gradient
methods to (almost) locally optimal policies. SIAM Journal on Control and Optimization, 58(6):
3586–3612, 2020.

14

Published as a conference paper at ICLR 2026

A GLOBAL CONVERGENCE

Under additional technical Assumptions 2.1 and 4.6 from (Ding et al., 2022) about the Fisher infor-
mation matrix induced by the policy πθ and the initial state distribution, following previous works
(Ding et al., 2022; Fatkhullin et al., 2023; Lan et al., 2025), we can guarantee global convergence up
to an

√
2ε′/

√
µ neighborhood:

Theorem A.1. Let Assumptions 2.1, 2.2, and Assumptions 2.1 and 4.6 from (Ding et al.,
2022) hold. Consider Rennala NIGT (Algorithm 1 and Algorithm 2) in the homogeneous setup,
or Malenia NIGT (Algorithms 1 and Algorithm 3) in the heterogeneous setup. Let Minit =

max
{⌈

σ2

µε2

⌉
, 1
}
, M = max

{⌈(
σ2

µε2 + σ2√Lh

µ7/4ε5/2

)
/
(Lg

µε +
√
Lh

µ3/4
√
ε

)⌉
, 1
}
, η = min

{
Mµε2

64σ2 , 1
2

}
,

α = min
{√

µε

8Lg
, ηµ1/4√ε

4
√
Lh

, 1√
2µ

, εη
√
Minit

8σ

}
, H = max

{
logγ

(√
µεη

64max{Dg,αDh}
)
, 1
}
. Then

E [J∗ − J(θT)] ≤ ε +
√
2ε′√
µ after T = O

((
Lg

µε +
√
Lh

µ3/4
√
ε

)
log
(
∆
ε

))
global iterations, where

ε′ :=
µF

√
εbias

Mg(1−γ) and µ :=
µ2
F

2M2
g
. Parameter εbias is an approximation error and µF is the small-

est eigenvalue of the Fisher information matrix induced by the policy πθ and and the initial state
distribution (Ding et al., 2022).

In this case, the time complexities of Rennala NIGT and Malenia NIGT follow the same structure as
in Sections 4.1 and 5:

Theorem A.2. Consider the results and assumptions of Theorem A.1. Additionally, consider
that Assumption 2.5 holds. The time required to find an ε–solution up to

√
2ε′/

√
µ neighbor-

hood by Rennala NIGT (Algorithms 1 and 2) in the homogeneous setup is

Õ

(
κ
(

Lg

µε +
√
Lh

µ3/4
√
ε

)
+ 1

1−γ min
m∈[n]

[(
1
m

m∑
i=1

1
ḣi

)−1 (
Lg

µε +
√
Lh

µ3/4
√
ε
+ σ2

mµε2 + σ2√Lh

mµ7/4ε5/2

)])
.

Theorem A.3. Consider the results and assumptions of Theorem A.1. Additionally, consider
that Assumption 2.5 holds. The time required to find an ε–solution up to

√
2ε′/

√
µ neighbor-

hood by Malenia NIGT (Algorithms 1 and 3) in the heterogeneous setup is

Õ
(
κ
(

Lg

µε +
√
Lh

µ3/4
√
ε

)
+ 1

1−γ

[
ḣn

(
Lg

µε +
√
Lh

µ3/4
√
ε

)
+

(
1
n

n∑
i=1

ḣi

)(
σ2

nµε2 + σ2√Lh

nµ7/4ε5/2

)])
.

B NOTATIONS

N := {1, 2, . . . }; [n] := {1, . . . n}; ∥·∥ is the Euclidean norm; ⟨x, y⟩ =
∑d

i=1 xiyi is the standard
dot product; ∥A∥ is the standard spectral norm for all A ∈ Rd×d; g = O(f) : there exists C > 0
such that g(z) ≤ C × f(z) for all z ∈ Z; g = Ω(f) : there exists C > 0 such that g(z) ≥ C × f(z)
for all z ∈ Z; g = Θ(f) : if g = O(f) and g = Ω(f) : g ≃ h : g and h are equal up to a universal
positive constant; Õ, Ω̃, Θ̃ the same as O,Ω,Θ, but up to logarithmic factors.

C USEFUL LEMMAS

The following lemmas provide the time complexities of collecting stochastic gradients in Algo-
rithms 2 and 3.

Lemma C.1. Under Assumption 2.5, Algorithms 2 returns the output vector after at most

O

κ+ min
m∈[n]

(m∑
i=1

1

hi

)−1

(M +m)

 = O

κ+ min
m∈[n]

(1

m

m∑
i=1

1

hi

)−1(
M

m
+ 1

)
seconds.

15

Published as a conference paper at ICLR 2026

Proof. Let

t = min
m∈[n]

(m∑
i=1

1

hi

)−1

(M +m)

 .

As soon as some agent finishes computing a stochastic policy gradient, it immediately starts com-
puting the next one. Hence, by time t, the agents together will have processed at least

n∑
i=1

⌊
t

hi

⌋
stochastic gradients. Let

m∗ = arg min
m∈[n]

(m∑
i=1

1

hi

)−1

(M +m)

 .

Using ⌊x⌋ ≥ x− 1 for all x ≥ 0, we obtain

n∑
i=1

⌊
t

hi

⌋
≥

m∗∑
i=1

⌊
t

hi

⌋
≥

m∗∑
i=1

t

hi
−m∗ =

(
m∗∑
i=1

1

hi

)(m∗∑
i=1

1

hi

)−1

(M +m∗)

−m∗ = M.

Therefore, by time t the algorithm has collected at least M stochastic gradients and exits the inner
loop. Returning the output vector then requires a single communication/aggregation, which by
Assumption 2.5 takes at most κ seconds (via a server or AllReduce for instance). In the centralized
setting, broadcasting would also take at most κ seconds. Thus, Algorithm 2 returns after at most

t+ 2κ = O
(
κ+minm∈[n]

[(∑m
i=1

1
hi

)−1

(M +m)

])
seconds.

Lemma C.2. Under Assumption 2.5, Algorithms 3 returns the output vector after at most

O

(
κ+ hn +

(
1

n

n∑
i=1

hi

)
M

n

)
seconds.

Proof. By Assumption 2.5, broadcasting θ takes at most κ seconds. After that, the agents compute
in parallel and after hn seconds each agent has completed at least one gradient. Thus, Mi ≥ 1 for
all i ∈ [n] after hn seconds. Let us take

t =

(
1

n

n∑
i=1

hi

)
M

n
.

For all i ∈ [n], after hn + t seconds, agent i produces Mi(t) gradients, where Mi(t) satisfy the
inequality

Mi(t) ≥ 1 +
⌊

t
hi

⌋
.

since agent i can calculate at least
⌊

t
hi

⌋
gradients after t seconds. Using ⌊x⌋ ≥ x− 1 for all x ∈ R,

1

Mi(t)
≤ 1

1 + ⌊t/hi⌋
≤ hi

t
.

Summing over i yields
n∑

i=1

1

Mi(t)
≤ 1

t

n∑
i=1

hi =
n2

M

and (
1

n

n∑
i=1

1

Mi(t)

)−1

≥ M

n

16

Published as a conference paper at ICLR 2026

Thus, by time κ + hn + t the while-condition
(
1
n

∑n
i=1

1
Mi

)−1
< M

n becomes false and the loop
terminates. Returning the output vector then requires at most an additional κ seconds. In total, it
takes

O

(
κ+ hn +

(
1

n

n∑
i=1

hi

)
M

n

)
seconds.

D PROOF OF THEOREMS

We start with supporting lemmas and then apply them in the proof of the theorem.
Lemma D.1. Let Assumption 2.1 and 2.2 hold, {dt} is any sequence of vectors from Rd and θt+1 =
θt + α dt

∥dt∥ , where θ0 ∈ Rd and we use the standard convention 0/∥0∥ = 0. Then

−J(θt+1) ≤ −J(θt)− α ∥∇J(θt)∥+ 2α ∥dt −∇J(θt)∥+
Lgα

2

2
. (10)

for every integer t ≥ 0.

Proof. Using Proposition 2.3-(1) (or Proposition 2.4-(1)) and the update rule, we get

−J(θt+1) ≤ −J(θt)− ⟨∇J(θt), θt+1 − θt⟩+
Lg

2
∥θt+1 − θt∥2

= −J(θt)−
α

∥dt∥
⟨∇J(θt), dt⟩+

Lg

2

(
α

∥dt∥

)2

∥dt∥2

= −J(θt)−
α

∥dt∥
∥dt∥2 −

α

∥dt∥
⟨∇J(θt)− dt, dt⟩+

Lgα
2

2

≤ −J(θt)− α ∥dt∥+ α ∥dt −∇J(θt)∥+
Lgα

2

2
,

where we use the C-S inequality. Using ∥∇J(θt)∥ ≤ ∥dt∥+ ∥dt −∇J(θt)∥ , we have

−J(θt+1) ≤ −J(θt)− α ∥∇J(θt)∥+ 2α ∥dt −∇J(θt)∥+
Lgα

2

2
.

Let Et [·] be the conditional expectation condition on all randomness up to tth iteration. In the next
lemma, we bound

∑T−1
t=0 E[∥dt −∇JH(θt)∥].

Lemma D.2. Let Assumptions 2.1 and 2.2 hold. Consider Algorithms 1 and assume that

E [d0] = ∇JH(θ0) and E
[
∥d0 −∇JH(θ0)∥2

]
≤ σ2

Minit
(11)

and

Et [gt] = ∇JH(θ̃t) and Et

[∥∥∥gt −∇JH(θ̃t)
∥∥∥2] ≤ σ2

M
(12)

in Algorithms 1 for any integer t ≥ 1. For every t ≥ 1,

E[∥dt −∇JH(θt)∥] ≤ (1− η)t
σ√
Minit

+
√
η

σ√
M

+ Lh
2α2

η2
+

4Dgγ
H

η
+ 2Dhγ

H α

η
.

Moreover, for every T ≥ 1,

T−1∑
t=0

E[∥dt −∇JH(θt)∥] ≤
σ√

Minitη
+

√
ησT
√
M

+
2α2LhT

η2
+

4Dgγ
HT

η
+

2αDhγ
HT

η
.

where Dg and Dh are defined in Proposition 2.3.

17

Published as a conference paper at ICLR 2026

Proof. Let us define

êt := dt −∇JH(θt),

et := gt −∇JH(θ̃t),

St := ∇JH(θt−1)−∇JH(θt) +∇2JH(θt)(θt−1 − θt),

S̄t := ∇J(θt−1)−∇J(θt) +∇2J(θt)(θt−1 − θt),

Zt := ∇JH(θ̃t)−∇JH(θt) +∇2JH(θt)(θ̃t − θt),

Z̄t := ∇J(θ̃t)−∇J(θt) +∇2J(θt)(θ̃t − θt).

Using triangle inequality and Proposition 2.3-(2),(3) (or Proposition 2.4-(2),(3)), we get

∥St∥ ≤ Lh ∥θt − θt−1∥2 +
∥∥St − S̄t

∥∥ = Lhα
2 + 2Dgγ

H +Dhγ
Hα. (13)

Similarly,

∥Zt∥ ≤ Lh
(1− η)2α2

η2
+ 2Dgγ

H +Dhγ
H (1− η)α

η
. (14)

Applying the update rule for dt Algorithm 1:

dt = (1− η)dt−1 + ηgt, (15)

connecting this with notation for St and Zt, and using θ̃t = θt +
1−η
η (θt − θt−1), we derive the

recursion

êt = dt −∇JH(θt) = (1− η)dt−1 + ηgt −∇JH(θt)

= (1− η)êt−1 + ηet + (1− η)St + ηZt.

We can rewrite unroll the recursion and get

êt = (1− η)t(d0 −∇JH(θ0)) + η

t−1∑
τ=0

(1− η)t−τ−1eτ+1 + (1− η)

t−1∑
τ=0

(1− η)t−τ−1Sτ+1 + η

t−1∑
τ=0

(1− η)t−τ−1Zτ+1.

Now, we estimate the expectation of the norm. Using triangle inequality,

E[∥êt∥] ≤ (1−η)tE[∥d0 −∇JH(θ0)∥] + ηE

[∥∥∥∥∥
t−1∑
τ=0

(1− η)t−τ−1eτ+1

∥∥∥∥∥
]
+

+ (1− η)E

[∥∥∥∥∥
t−1∑
τ=0

(1− η)t−τ−1Sτ+1

∥∥∥∥∥
]
+ ηE

[∥∥∥∥∥
t−1∑
τ=0

(1− η)t−τ−1Zτ+1

∥∥∥∥∥
]

≤ (1−η)t
σ√
Minit

+

η2E

∥∥∥∥∥
t−1∑
τ=0

(1− η)t−τ−1eτ+1

∥∥∥∥∥
2
1/2

+

+ (1− η)

t−1∑
τ=0

(1− η)t−τ−1E [∥Sτ+1∥] + η

t−1∑
τ=0

(1− η)t−τ−1E [∥Zτ+1∥] ,

where we use the Jensen’s inequality , triangle inequality, and (11); Using (12), for all i > j,
E [⟨ei, ej⟩] = E [Ei [⟨ei, ej⟩]] = E [⟨Ei [ei] , ej⟩] = 0, and we get

E[∥êt∥] ≤ (1−η)t
σ√
Minit

+

(
η2

t−1∑
τ=0

(1− η)2(t−τ−1) σ
2

M

)1/2

+

+ (1− η)

t−1∑
τ=0

(1− η)t−τ−1E [∥Sτ+1∥] + η

t−1∑
τ=0

(1− η)t−τ−1E [∥Zτ+1∥]

≤ (1−η)t
σ√
Minit

+
√
η

σ√
M

+ (1− η)

t−1∑
τ=0

(1− η)t−τ−1E [∥Sτ+1∥] + η

t−1∑
τ=0

(1− η)t−τ−1E [∥Zτ+1∥] ,

18

Published as a conference paper at ICLR 2026

where we use
∑t−1

τ=0(1− η)2(t−τ−1) ≤ 1
η . Using (13) and (14),

E[∥êt∥] ≤ (1− η)t
σ√
Minit

+
√
η

σ√
M

+ (1− η)

t−1∑
τ=0

(1− η)t−τ−1
(
Lhα

2 + 2Dgγ
H +Dhγ

Hα
)

+ η

t−1∑
τ=0

(1− η)t−τ−1

(
Lh

(1− η)2α2

η2
+ 2Dgγ

H +Dhγ
H (1− η)α

η

)
≤ (1− η)t

σ√
Minit

+
√
η

σ√
M

+ Lh
2α2

η2
+

4Dgγ
H

η
+ 2Dhγ

H α

η
,

where we use
∑t−1

τ=0(1−η)t−τ−1 ≤ 1
η and 0 < η < 1. It left sum the inequality and use

∑T−1
t=0 (1−

η)t ≤ 1
η to get

T−1∑
t=0

E[∥êt∥] ≤
σ√

Minitη
+
√
η

σ√
M

T +
2α2LhT

η2
+

4Dgγ
HT

η
+

2αDhγ
HT

η
.

Theorem 4.1. Let Assumptions 2.1 and 2.2 hold. Consider Rennala NIGT (Algo-
rithm 1 and Algorithm 2) in the homogeneous setup, or Malenia NIGT (Algorithms 1
and Algorithm 3) in the heterogeneous setup. Let η = min

{
Mε2

64σ2 ,
1
2

}
, α =

min
{

ε
8Lg

, η
√
ε

4
√
Lh

}
, H = max

{
logγ

(
εη

64max{Dg,αDh}
)
, 1
}

= Õ(1/(1−γ)). Let θ̄T be a

uniformly sampled iterate from {θ0, · · · , θT−1} . Then E
∥∥∇J(θ̄T)

∥∥ ≤ ε after T =

O
(

Lg∆
ε2 +

√
Lh∆
ε3/2

+ σ√
Minitε

+ σ3

M
√
Minitε3

+ σ2√Lh∆
Mε7/2

)
global iterations.

Proof. We rely on Lemma D.2, which requires d0 and {gt} to satisfy (11) and (12). For Rennala

NIGT with Algorithm 2, this condition holds because E [ḡ] = 1
M

∑M
j=1 E [gH(τ̄j , θ)] = ∇JH(θ) for

all θ ∈ Rd, where τ̄j ∼ p(·|πθ) are i.i.d. trajectories sampled by the agents. (For instance, if agent 1
is the first to return a stochastic gradient, then τ̄1 ≡ τ1,1. If agent 3 is the next, then τ̄2 ≡ τ3,1. If
agent 1 returns again, then τ̄3 ≡ τ1,2, and so on.) Moreover,

E
[
∥ḡ −∇JH(θ)∥2

]
= E


∥∥∥∥∥∥ 1

M

M∑
j=1

gH(τ̄j , θ)−∇JH(θ)

∥∥∥∥∥∥
2


=
1

M2

M∑
j=1

E
[
∥gH(τ̄j , θ)−∇JH(θ)∥2

]
≤ σ2

M

for all θ ∈ Rd due to the unbiasedness, the i.i.d. nature of the trajectories, and Proposition 2.3-(4).

In the case of Malenia NIGT with Algorithm 3, (11) and (12) also hold since E
[
1
n

∑n
i=1

ḡi
Mi

]
=

1
n

∑n
i=1

1
Mi

∑Mi

j=1 E [gi,H(τi,j , θ)] =
1
n

∑n
i=1 ∇Ji,H(θ) = ∇JH(θ), and

E


∥∥∥∥∥∥ 1n

n∑
i=1

1

Mi

Mi∑
j=1

gi,H(τi,j , θ)−∇JH(θ)

∥∥∥∥∥∥
2
 = E


∥∥∥∥∥∥ 1n

n∑
i=1

 1

Mi

Mi∑
j=1

gi,H(τi,j , θ)−∇Ji,H(θ)

∥∥∥∥∥∥
2


=
1

n2

n∑
i=1

1

M2
i

Mi∑
j=1

E
[
∥gi,H(τi,j , θ)−∇Ji,H(θ)∥2

]
≤ 1

n2

n∑
i=1

1

Mi
σ2.

for all θ ∈ Rd, where we use E [gi,H(τi,j , θ)] = ∇Ji,H(θ) for i ∈ [n], j ≥ 1, independence,
and Proposition 2.4-(4). It left to use the exit loop condition of Algorithm 3, which ensure that

19

Published as a conference paper at ICLR 2026

(1/n
∑n

i=1
1/Mi)−1 ≥ M/n and

E


∥∥∥∥∥∥ 1n

n∑
i=1

1

Mi

Mi∑
j=1

gi,H(τi,j , θ)−∇JH(θ)

∥∥∥∥∥∥
2
 ≤ σ2

M
.

Using (10) from Lemma D.1 and summing it for t = 0, . . . , T − 1,

1

T
E [J∗ − J(θT)] ≤

1

T
(J∗ − J(θ0))− α

1

T

T−1∑
t=0

E [∥∇J(θt)∥] + 2α
1

T

T−1∑
t=0

E [∥dt −∇J(θt)∥] +
Lgα

2

2
.

Due to (J∗ − J(θT)) ≥ 0 and Lemma D.2,

1

T

T−1∑
t=0

E [∥∇J(θt)∥] ≤
∆

αT
+

Lgα

2
+

(
2σ√

MinitTη
+ 2

√
η

σ√
M

+
4α2Lh

η2
+

8Dgγ
H

η
+

4αDhγ
H

η

)
Choosing H = max

{
logγ

(
εη

64max{Dg,αDh}

)
, 1
}
, we get 8Dgγ

H

η + 4αDhγ
H

η ≤ ε
4 and

1

T

T−1∑
t=0

E [∥∇J(θt)∥] ≤
∆

αT
+

Lgα

2
+

2σ√
MinitTη

+ 2
√
η

σ√
M

+
4α2Lh

η2
+

ε

4

Now, we set α = min
{

ε
8Lg

, η
√
ε

4
√
Lh

}
to get

1

T

T−1∑
t=0

E [∥∇J(θt)∥] ≤
∆

αT
+

2σ√
MinitTη

+ 2
√
η

σ√
M

+
ε

2
.

We choose η = min
{

Mε2

64σ2 ,
1
2

}
:

1

T

T−1∑
t=0

E [∥∇J(θt)∥] ≤
∆

αT
+

2σ√
MinitTη

+
3ε

4
.

Thus, the method converges after

T = O
(
∆

εα
+

σ√
Minitεη

)
= O

(
Lg∆

ε2
+

√
Lh∆

ε3/2η
+

σ√
Minitεη

)
= O

(
Lg∆

ε2
+

√
Lh∆

ε3/2
+

σ2
√
Lh∆

Mε7/2
+

σ√
Minitε

+
σ3

M
√
Minitε3

)
global iterations.

E TIME COMPLEXITY

E.1 TIME COMPLEXITY OF Rennala NIGT

Theorem 4.2. Consider the results and assumptions of Theorem 4.1. Additionally, consider that
Assumption 2.5 holds with κ = 0 (i.e., communication is free). Taking Minit = max

{⌈
σ2

ε2

⌉
, 1
}

and

M = max
{⌈(

σ2

ε2 + σ2√Lh∆
ε7/2

)
/
(Lg∆

ε2 +
√
Lh∆
ε3/2

)⌉
, 1
}
, the time required to find an ε–stationary point

by Rennala NIGT (Algorithms 1 and 2) is

Õ

(
1

1−γ min
m∈[n]

[(
1
m

m∑
i=1

1
ḣi

)−1 (
Lg∆
ε2 +

√
Lh∆
ε3/2

+ σ2

mε2 + σ2√Lh∆
mε7/2

)])
. (6)

20

Published as a conference paper at ICLR 2026

Proof. With our choice of M and Minit, the number of global iterations to get an ε–stationary point
is

T = O
(
Lg∆

ε2
+

√
Lh∆

ε3/2
+

σ2
√
Lh∆

Mε7/2
+

σ√
Minitε

+
σ3

M
√
Minitε3

)
= O

(
Lg∆

ε2
+

√
Lh∆

ε3/2
+

σ2

Mε2
+

σ2
√
Lh∆

Mε7/2

)
= O

(
Lg∆

ε2
+

√
Lh∆

ε3/2

)
.

Notice that the time requires to collect M stochastic gradients in Algorithm 2 is

O

 min
m∈[n]

(m∑
i=1

1

hi

)−1

(M +m)

 .

with κ = 0 due to Lemma C.1. At the beginning, the algorithm collects Minit stochastic gradients

that takes O
(
minm∈[n]

[(∑m
i=1

1
hi

)−1

(Minit +m)

])
seconds. Then, in each iteration the agents

collect M stochastic gradients, which takes O
(
minm∈[n]

[(∑m
i=1

1
hi

)−1

(M +m)

])
seconds.

Thus, after T iterations, the total time to find an ε–stationary point is

O

T × min
m∈[n]

(m∑
i=1

1

hi

)−1

(M +m)

+ min
m∈[n]

(m∑
i=1

1

hi

)−1

(Minit +m)


= O

 min
m∈[n]

(1

m

m∑
i=1

1

hi

)−1(
Lg∆

ε2
+

√
Lh∆

ε3/2
+

σ2

mε2
+

σ2
√
Lh∆

mε7/2

)
+O

 min
m∈[n]

(1

m

m∑
i=1

1

hi

)−1(
σ2

mε2
+ 1

)
= O

 min
m∈[n]

(1

m

m∑
i=1

1

hi

)−1(
Lg∆

ε2
+

√
Lh∆

ε3/2
+

σ2

mε2
+

σ2
√
Lh∆

mε7/2

) .

It is left to substitute hi = ḣi ×H and recall that H = Õ
(

1
1−γ

)
to get (6).

Theorem 4.3. Consider the results and assumptions of Theorem 4.1. Additionally, con-
sider that computing a single stochastic policy gradient gH on agent i in iteration t re-
quires at most ḣt,i × H seconds. Taking Minit = max

{⌈
σ2

ε2

⌉
, 1
}

and M = max
{⌈(

σ2

ε2 +
σ2√Lh∆

ε7/2

)
/
(Lg∆

ε2 +
√
Lh∆
ε3/2

)⌉
, 1
}
, the time required to find an ε–stationary point by Rennala

NIGT (Algorithms 1 and 2) is Õ
(
1/1−γ

∑T
t=1 minm∈[n]

[(
1
m

∑m
i=1

1/ḣt,πt,i

)−1
(M/m + 1)

]
+

1/1−γminm∈[n]

[(
1
m

∑m
i=1

1/ht,π0,i

)−1
(Minit/m + 1)

])
, where T = O

(
Lg∆/ε2 +

√
Lh∆/ε3/2

)
and

πt,i is a permutation such that ḣt,πt,1
≤ · · · ≤ ḣt,πt,n

.

Proof. The proof is the same as in Theorem 4.2. One should only notice that the total time com-
plexity is

Õ

 T∑
t=1

min
m∈[n]

(1

m

m∑
i=1

1

ht,πt,i

)−1(
M

m
+ 1

)+ min
m∈[n]

(1

m

m∑
i=1

1

ht,π0,i

)−1(
Minit

m
+ 1

)
because Algorithm 2 requires at most minm∈[n]

[(
1
m

∑m
i=1

1
ht,πt,i

)−1 (
M
m + 1

)]
seconds to col-

lect a batch of size M in tth iteration, and minm∈[n]

[(
1
m

∑m
i=1

1
ht,π0,i

)−1 (
Minit
m + 1

)]
seconds to

collect a batch of size Minit before the loop. It is left to substitute hi,j = ḣi,j ×H .

21

Published as a conference paper at ICLR 2026

Theorem 4.4. Consider the results and assumptions of Theorem 4.1. Additionally, consider that
Assumption 2.5 holds. Taking Minit = max

{⌈
σ2

ε2

⌉
, 1
}

and M = max
{⌈(

σ2

ε2 + σ2√Lh∆
ε7/2

)
/
(Lg∆

ε2 +
√
Lh∆
ε3/2

)⌉
, 1
}
, the time required to find an ε–stationary point by Rennala NIGT (Algorithms 1 and 2)

is

Õ

(
κ
(

Lg∆
ε2 +

√
Lh∆
ε3/2

)
+ 1

1−γ min
m∈[n]

[(
1
m

m∑
i=1

1
ḣi

)−1 (
Lg∆
ε2 +

√
Lh∆
ε3/2

+ σ2

mε2 + σ2√Lh∆
mε7/2

)])
.

Proof. The second term in the complexity is proved in Theorem 4.2. However, Theorem 4.2 does
not take into account the first communication term. Using the same reasoning, after T iterations, the
total time to find an ε–stationary point is

O

T × κ+ T × min
m∈[n]

(m∑
i=1

1

hi

)−1

(M +m)

+ κ+ min
m∈[n]

(m∑
i=1

1

hi

)−1

(Minit +m)


= O

κ

(
Lg∆

ε2
+

√
Lh∆

ε3/2

)
+ min

m∈[n]

(1

m

m∑
i=1

1

hi

)−1(
Lg∆

ε2
+

√
Lh∆

ε3/2
+

σ2

mε2
+

σ2
√
Lh∆

mε7/2

) .

It is left to substitute hi = ḣi ×H and recall that H = Õ
(

1
1−γ

)
.

E.2 TIME COMPLEXITY OF Rennala NIGT UNDER ASSUMPTION 7.1

Theorem 7.2. Consider the results and assumptions of Theorem 4.1. Additionally, consider that
Assumption 7.1 holds. Taking Minit = max

{⌈
σ2

ε2

⌉
, 1
}

and M = max
{⌈(

σ2

ε2 + σ2√Lh∆
ε7/2

)
/
(Lg∆

ε2 +
√
Lh∆
ε3/2

)⌉
, 1
}
, the time required to find an ε–stationary point by Rennala NIGT (Algorithms 1 and 2)

is tT seconds, where T = O
(

Lg∆
ε2 +

√
Lh∆
ε3/2

)
and the sequence tk is defined recursively:

tk = min

{
t :

n∑
i=1

Ni(tk−1, t) ≥ M

}
∀k ≥ 1 (8)

with t0 = min {t :
∑n

i=1 Ni(0, t) ≥ Minit} .

Proof. With our choice of M and Minit, the number of global iterations to get an ε–stationary point
is

T = O
(
Lg∆

ε2
+

√
Lh∆

ε3/2

)
.

At the beginning, the algorithm collects Minit stochastic gradients that takes

t0 = min

{
t :

n∑
i=1

Ni(0, t) ≥ Minit

}
seconds because Ni(0, t) is the number of calculated gradients in agent i and they work in parallel.
Then, in each iteration k the agents collect M stochastic gradients. The first iteration finishes after
at most

t1 = min

{
t :

n∑
i=1

Ni(t0, t) ≥ M

}
seconds. Similarly, the kth iteration finishes after at most

tk = min

{
t :

n∑
i=1

Ni(tk−1, t) ≥ M

}
seconds. Thus, T iterations finish after at most tT seconds.

22

Published as a conference paper at ICLR 2026

E.3 TIME COMPLEXITY OF Malenia NIGT

Theorem 5.1. Consider the results and assumptions of Theorem 4.1. Additionally, consider that
Assumption 2.5 holds. Taking Minit = max

{⌈
σ2

ε2

⌉
, 1
}

and M = max
{⌈(

σ2

ε2 + σ2√Lh∆
ε7/2

)
/
(Lg∆

ε2 +
√
Lh∆
ε3/2

)⌉
, 1
}
, the time required to find an ε–stationary point by Malenia NIGT (Algorithms 1 and 3)

is

Õ
(
κ
(

Lg∆
ε2 +

√
Lh∆
ε3/2

)
+ 1

1−γ

[
ḣn

(
Lg∆
ε2 +

√
Lh∆
ε3/2

)
+

(
1
n

n∑
i=1

ḣi

)(
σ2

nε2 + σ2√Lh∆
nε7/2

)])
.

Proof. Similarly to the proof of Theorem 4.2, with our choice of M and Minit,

T = O
(
Lg∆

ε2
+

√
Lh∆

ε3/2

)
.

At the beginning, the algorithm collects Minit stochastic gradients that takes
O
(
κ+ hn +

(
1
n

∑n
i=1 hi

)
Minit
n

)
seconds due to Lemma C.2. Then, in each iteration the

agents collect M stochastic gradients, which takes O
(
κ+ hn +

(
1
n

∑n
i=1 hi

)
M
n

)
seconds. Thus,

after T iterations, the total time to find an ε–stationary point is

O

(
κ+ hn +

(
1

n

n∑
i=1

hi

)
Minit

n
+ T ×

(
κ+ hn +

(
1

n

n∑
i=1

hi

)
M

n

))

= O

((
Lg∆

ε2
+

√
Lh∆

ε3/2

)
(κ+ hn) +

(
1

n

n∑
i=1

hi

)
σ2

nε2
+

((
1

n

n∑
i=1

hi

)(
σ2

nε2
+

σ2
√
Lh∆

nε7/2

)))

= O

(
(κ+ hn)

(
Lg∆

ε2
+

√
Lh∆

ε3/2

)
+

(
1

n

n∑
i=1

hi

)(
σ2

nε2
+

σ2
√
Lh∆

nε7/2

))
,

where we substitute our choice of M and Minit, and use T = O
(

Lg∆
ε2 +

√
Lh∆
ε3/2

)
. It is left to

substitute hi = ḣi ×H and recall that H = Õ
(

1
1−γ

)
E.4 TIME COMPLEXITY OF Malenia NIGT UNDER ASSUMPTION 7.1

Theorem 7.3. Consider the results and assumptions of Theorem 4.1. Additionally, consider that
Assumption 7.1 holds. Taking Minit = max

{⌈
σ2

ε2

⌉
, 1
}

and M = max
{⌈(

σ2

ε2 + σ2√Lh∆
ε7/2

)
/
(Lg∆

ε2 +
√
Lh∆
ε3/2

)⌉
, 1
}
, the time required to find an ε–stationary point by Malenia NIGT (Algorithms 1 and 3)

is tT seconds, where T = O
(

Lg∆
ε2 +

√
Lh∆
ε3/2

)
and the sequence tk is defined recursively:

tk = min

{
t :
(

1
n

∑n
i=1

1
Ni(tk−1,t)

)−1

≥ M
n

}
∀k ≥ 1 (9)

with t0 = min

{
t :
(

1
n

∑n
i=1

1
Ni(0,t)

)−1

≥ Minit
n

}
.

Proof. Similarly to the proof of Theorem 4.2, with our choice of M and Minit,

T = O
(
Lg∆

ε2
+

√
Lh∆

ε3/2

)
.

At the beginning, the algorithm collects Minit stochastic gradients. According to Algorithm 3, we
wait for the moment when (

1

n

n∑
i=1

1

Mi

)−1

≥ Minit

n
.

23

Published as a conference paper at ICLR 2026

Since Mi = Ni(0, t), the initial phase finishes after at most

t0 = min

t :

(
1

n

n∑
i=1

1

Ni(0, t)

)−1

≥ Minit

n


seconds. Similarly, the kth iteration finishes after at most

tk = min

t :

(
1

n

n∑
i=1

1

Ni(tk−1, t)

)−1

≥ M

n


seconds. Thus, T iterations finish after at most tT seconds.

F GLOBAL CONVERGENCE

Lemma F.1 (Relaxed weak gradient domination (Ding et al. (2022))). Let Assumption 2.1 and
Assumptions 2.1 and 4.6. from (Ding et al., 2022) hold. Then,

ε′ + ∥∇J(θ)∥ ≥
√
2µ(J∗ − J(θ)),

for all θ ∈ Rd, where ε′ :=
µF

√
εbias

Mg(1−γ) and µ :=
µ2
F

2M2
g
. Parameter εbias is an approximation error

and µF is the smallest eigenvalue of the Fisher information matrix induced by the policy πθ and and
the initial state distribution (Ding et al., 2022).

Typically, the parameter εbias is small (Ding et al., 2022).

Theorem A.1. Let Assumptions 2.1, 2.2, and Assumptions 2.1 and 4.6 from (Ding et al.,
2022) hold. Consider Rennala NIGT (Algorithm 1 and Algorithm 2) in the homogeneous setup,
or Malenia NIGT (Algorithms 1 and Algorithm 3) in the heterogeneous setup. Let Minit =

max
{⌈

σ2

µε2

⌉
, 1
}
, M = max

{⌈(
σ2

µε2 + σ2√Lh

µ7/4ε5/2

)
/
(Lg

µε +
√
Lh

µ3/4
√
ε

)⌉
, 1
}
, η = min

{
Mµε2

64σ2 , 1
2

}
,

α = min
{√

µε

8Lg
, ηµ1/4√ε

4
√
Lh

, 1√
2µ

, εη
√
Minit

8σ

}
, H = max

{
logγ

(√
µεη

64max{Dg,αDh}
)
, 1
}
. Then

E [J∗ − J(θT)] ≤ ε +
√
2ε′√
µ after T = O

((
Lg

µε +
√
Lh

µ3/4
√
ε

)
log
(
∆
ε

))
global iterations, where

ε′ :=
µF

√
εbias

Mg(1−γ) and µ :=
µ2
F

2M2
g
. Parameter εbias is an approximation error and µF is the small-

est eigenvalue of the Fisher information matrix induced by the policy πθ and and the initial state
distribution (Ding et al., 2022).

Proof. In the proof of Theorem 4.1, we show that (11) and (12) are satisfied, and we can use
Lemma D.2. Using (10) from Lemma D.1 and Lemma D.2:

E [J∗ − J(θt+1)] ≤ E [J∗ − J(θt)]− αE [∥∇J(θt)∥] + 2αE [∥dt −∇J(θt)∥] +
Lgα

2

2
≤ E [J∗ − J(θt)]− αE [∥∇J(θt)∥]

+ 2α

(
(1− η)t

σ√
Minit

+
√
η

σ√
M

+ Lh
2α2

η2
+

4Dgγ
H

η
+ 2Dhγ

H α

η

)
+

Lgα
2

2
.

Due to Lemma F.1,

E [J∗ − J(θt+1)] ≤
(
1− α

√
2µ
)
E [J∗ − J(θt)] + αε′

+ 2α

(
(1− η)t

σ√
Minit

+
√
η

σ√
M

+ Lh
2α2

η2
+

4Dgγ
H

η
+ 2Dhγ

H α

η

)
+

Lgα
2

2
.

24

Published as a conference paper at ICLR 2026

Unrolling the recursion,

E [J∗ − J(θt+1)] ≤
(
1− α

√
2µ
)t+1

E [J∗ − J(θ0)]

+ 2α

t∑
i=0

(
1− α

√
2µ
)i(

(1− η)t−i σ√
Minit

+
√
η

σ√
M

+ Lh
2α2

η2
+

4Dgγ
H

η
+ 2Dhγ

H α

η
+ ε′ +

Lgα

2

)
≤
(
1− α

√
2µ
)t+1

E [J∗ − J(θ0)]

+ 2α

t∑
i=0

(
(1− η)t−i σ√

Minit

)

+ 2α

t∑
i=0

(
1− α

√
2µ
)i(√

η
σ√
M

+ Lh
2α2

η2
+

4Dgγ
H

η
+ 2Dhγ

H α

η
+ ε′ +

Lgα

2

)
.

Using
∑t

i=0

(
1− α

√
2µ
)i ≤ 1

α
√
2µ

for all α ≤ 1√
2µ

and
∑t

i=0(1− η)t−i ≤ 1
η for all η ≤ 1,

E [J∗ − J(θt+1)] ≤
(
1− α

√
2µ
)t+1

E [J∗ − J(θ0)] +
2ασ

η
√
Minit

+

√
2

√
µ

(
√
η

σ√
M

+ Lh
2α2

η2
+

4Dgγ
H

η
+ 2Dhγ

H α

η
+ ε′ +

Lgα

2

)
.

It is left to apply our choice of the parameters to get

E [J∗ − J(θT)] ≤
(
1− α

√
2µ
)T

∆+
3ε

4
+

√
2ε′

√
µ

≤ ε+

√
2ε′

√
µ

.

after T iterations.

F.1 TIME COMPLEXITY OF Rennala NIGT

Theorem A.2. Consider the results and assumptions of Theorem A.1. Additionally, consider that
Assumption 2.5 holds. The time required to find an ε–solution up to

√
2ε′/

√
µ neighborhood by

Rennala NIGT (Algorithms 1 and 2) in the homogeneous setup is

Õ

(
κ
(

Lg

µε +
√
Lh

µ3/4
√
ε

)
+ 1

1−γ min
m∈[n]

[(
1
m

m∑
i=1

1
ḣi

)−1 (
Lg

µε +
√
Lh

µ3/4
√
ε
+ σ2

mµε2 + σ2√Lh

mµ7/4ε5/2

)])
.

Proof. With our choice of M and Minit, the number of global iterations is

T = O
((

Lg

µε
+

√
Lh

µ3/4
√
ε

)
log

(
∆

ε

))
. (16)

Notice that the time requires to collect M stochastic gradients in Algorithm 2 is

O

κ+ min
m∈[n]

(m∑
i=1

1

hi

)−1

(M +m)

 .

due to Lemma C.1. Thus, after T iterations, the total communication time is

Õ

T ×

κ+ min
m∈[n]

(m∑
i=1

1

hi

)−1

(M +m)

+ κ+ min
m∈[n]

(m∑
i=1

1

hi

)−1

(Minit +m)


= Õ

Tκ+ T

 min
m∈[n]

(1

m

m∑
i=1

1

hi

)−1(
M

m
+ 1

)+ min
m∈[n]

(1

m

m∑
i=1

1

hi

)−1(
Minit

m
+ 1

) .

25

Published as a conference paper at ICLR 2026

Using the choice of Minit and M, and the bound (16), we get the time complexity

= Õ

κ

(
Lg

µε
+

√
Lh

µ3/4
√
ε

)
+ min

m∈[n]

(1

m

m∑
i=1

1

hi

)−1(
Lg

µε
+

√
Lh

µ3/4
√
ε
+

σ2

mµε2
+

σ2
√
Lh

mµ7/4ε5/2

)
+ Õ

 min
m∈[n]

(1

m

m∑
i=1

1

hi

)−1(
σ2

mµε2
+ 1

)
= Õ

κ

(
Lg

µε
+

√
Lh

µ3/4
√
ε

)
+ min

m∈[n]

(1

m

m∑
i=1

1

hi

)−1(
Lg

µε
+

√
Lh

µ3/4
√
ε
+

σ2

mµε2
+

σ2
√
Lh

mµ7/4ε5/2

) .

It is left to substitute hi = ḣi ×H and recall that H = Õ
(

1
1−γ

)
.

F.2 TIME COMPLEXITY OF Malenia NIGT

Theorem A.3. Consider the results and assumptions of Theorem A.1. Additionally, consider that
Assumption 2.5 holds. The time required to find an ε–solution up to

√
2ε′/

√
µ neighborhood by

Malenia NIGT (Algorithms 1 and 3) in the heterogeneous setup is

Õ
(
κ
(

Lg

µε +
√
Lh

µ3/4
√
ε

)
+ 1

1−γ

[
ḣn

(
Lg

µε +
√
Lh

µ3/4
√
ε

)
+

(
1
n

n∑
i=1

ḣi

)(
σ2

nµε2 + σ2√Lh

nµ7/4ε5/2

)])
.

Proof Sketch. With our choice of M and Minit, the number of global iterations is

T = O
((

Lg

µε
+

√
Lh

µ3/4
√
ε

)
log

(
∆

ε

))
Notice that the time requires to collect M stochastic gradients in Algorithm 3 is

O

(
κ+ hn +

(
1

n

n∑
i=1

hi

)
M

n

)
.

due to Lemma C.2. Thus, after T iterations, the total communication time is

O

(
T ×

[
κ+ hn +

(
1

n

n∑
i=1

hi

)
M

n

])
+O

(
κ+ hn +

(
1

n

n∑
i=1

hi

)
Minit

n

)

= O (κT) +O (hnT) +O

((
1

n

n∑
i=1

hi

)
MT

n

)
+O

(
κ+ hn +

(
1

n

n∑
i=1

hi

)
Minit

n

)
.

Using the choice of Minit and M, and the bound on T, the total communication time is

O

(
κT + hnT +

(
1

n

n∑
i=1

hi

)(
σ2

nµε2
+

σ2
√
Lh

nµ7/4ε5/2

)
+

(
1

n

n∑
i=1

hi

)
σ2

nµε2

)

O

(
κ

(
Lg

µε
+

√
Lh

µ3/4
√
ε

)
+ hn

(
Lg

µε
+

√
Lh

µ3/4
√
ε

)
+

(
1

n

n∑
i=1

hi

)(
σ2

nµε2
+

σ2
√
Lh

nµ7/4ε5/2

))
.

It is left to substitute hi = ḣi ×H and recall that H = Õ
(

1
1−γ

)
.

G PROOF OF THE LOWER BOUND IN THE HOMOGENEOUS SETUP

In this section, we prove a lower bound for a family of methods that only access unbiased stochastic
gradients of an (Lg, Lh)–twice smooth function F with σ–bounded stochastic variance. We should
clarify that our lower bound applies only to methods and proofs that use stochastic gradients (3) as
a black-box oracle. In other words, our lower bound applies to all methods and proofs for which it

26

Published as a conference paper at ICLR 2026

is sufficient to take Proposition 2.3 as an assumption with Lg, Lh, and σ2 being constants. For our
proof strategy, as well as the previous state-of-the-art strategies (Fatkhullin et al., 2023; Lan et al.,
2025), this is the case. Extending the lower bound to methods that fully utilize the structure of J in
(1) is an important and challenging problem. Nevertheless, to the best of our knowledge, this is the
first attempt to provide a lower bound for our asynchronous and distributed setting.
Theorem G.1. For all ∆ > 0, Lg, Lh, ε > 0, and σ > 0 such that ε ≤ O(σ), there exists an twice
smooth function F with Lg–Lipschitz gradients, Lh-Lipschitz Hessians, and F (0) − F ∗ ≤ ∆, and
an oracle that returns unbiased stochastic gradients with σ–bounded gradient variance such that
any first-order zero-respecting algorithm, where the agents communicate with the server or other
agents to update an iterate, requires at least

Ω̃

κ× L
3/7
1 L

2/7
2 ∆

ε12/7
+H min

m∈[n]

(1

m

m∑
i=1

1

ḣi

)−1(
σ2

mε2
+ 1

)×min

{
Lg∆

ε2
,

√
Lh∆

ε3/2

} .

seconds under Assumption 2.5 to output an ε-stationary point with high probability.

One particular direction is to extend the result to methods with variance-reduction techniques
(Huang et al., 2020; Ding et al., 2022; Xu et al., 2020a;b; Fan et al., 2021), which rely on im-
portance sampling (IS). Since the distribution of trajectories is non-stationary, such methods require
an additional strong assumption that the IS weights are bounded. Our lower bound applies to all
methods that do not require this additional assumption, and extending the lower bound to settings
with these extra assumptions is an important direction for future work. Moreover, it would be in-
teresting to extend the lower bound to Hessian-aided PG methods (Fatkhullin et al., 2023; Ganesh
et al., 2024), which will also require taking into account an extra assumption in the design of lower
bounds that the variance of Hessians is bounded.

G.1 PROOF OF THEOREM G.1

Proof. We are slightly concise in descriptions since the proof almost repeats the ideas from (Arjevani
et al., 2022; Carmon et al., 2021; Arjevani et al., 2020; Tyurin & Richtárik, 2023; 2024; Tyurin et al.,
2024b). In particular, Tyurin & Richtárik (2023) provided the proof of the lower bound

Ω̃

 min
m∈[n]

(1

m

m∑
i=1

1

hi

)−1(
σ2

mε2
+ 1

)× T


for Lg–smooth functions F without second-order smoothness, where T = Θ

(
Lg∆
ε2

)
. However,

following (Arjevani et al., 2020) and using the same scaled “worst-case” function as in (Carmon
et al., 2020; Arjevani et al., 2020; 2022), we have to take a different dimension

T = Θ

(
∆

ε
min

{
Lg

ε
,

√
Lh√
ε

})
= Θ

(
min

{
Lg∆

ε2
,

√
Lh∆

ε3/2

})
instead of Lg∆

ε2 to ensure that the function has Lh–smooth Hessians (we take T as in (84) from
(Arjevani et al., 2020)). Thus, the lower bound is

Ω̃

 min
m∈[n]

(1

m

m∑
i=1

1

hi

)−1(
σ2

mε2
+ 1

)×min

{
Lg∆

ε2
,

√
Lh∆

ε3/2

} .

It is left to substitute hi = ḣi × H. We can get the communication term using the deterministic
construction from (Carmon et al., 2021), which says that required number call of the first-order
oracle is

Ω

(
L
3/7
1 L

2/7
2 ∆

ε12/7

)
.

Thus, the lower bound for communication is Ω

(
κ× L

3/7
1 L

2/7
2 ∆

ε12/7

)
seconds under the assumption

that the agents communicate with the server or other agents after every gradient computation.

27

Published as a conference paper at ICLR 2026

H EXPERIMENTS

In our experiments, we compare the performance of Rennala NIGT with AFedPG by Lan et al. (2025)
and with the synchronized version of NIGT (Synchronized NIGT), where all agents compute one
stochastic gradient, aggregate them in a synchronized fashion, and perform the standard NIGT step
(Fatkhullin et al., 2023). We focus on the MuJoCo tasks (Todorov et al., 2012). We consider the
standard setup, where the actions are sample from a Gaussian policy. Given a state s, the policy
outputs mean µθ(s) and standard deviation σθ(s) > 0, and samples

ut ∼ πθ(· | s) = N
(
µθ(s), diag(σ2

θ(s))
)
.

Then, the actions are defined as at = α tanh(ut), where α is an appropriate scaling factor (for the
most MuJoCo tasks, α = 1). We take the neural network architecture s → Linear(ds, 64) → Tanh
→ Linear(64, 64) → Tanh → {Linear(64, da) → µθ, Linear(64, da) → Softplus → σθ}, where ds
and da are the dimensions of the state and action spaces, respectively.

We consider the centralized setting with different computation and communication scenarios, with
hi denoting the computation time of agent i and κi denoting the communication time for sending
one vector from agent i to the server. For instance, if hi = 1 and κi = 0, then agent i computes one
gradient in 1 second and sends it to the server without delay. Unlike Section 2.3, in the experimental
part we consider a more general setting where agents have different communication times. However,
Assumption 2.5 still holds with κ = max

i∈[n]
κi.

We run every experiment with 5 seeds and report (20%, 80%) confidence intervals. All meth-
ods start from the same point, for a fixed seed, and have two parameters: the momentum η ∈
{0.001, 0.01, 0.1} and the learning rate α ∈ {2−10, 2−9, . . . , 2−1}. We tune both on the Humanoid-
v4 task with equal computation speeds and zero communication delays and observe that η = 0.1 is
the best choice for all algorithms. However, α is tuned differently for different algorithms. Thus,
in the following experiments, we tune α ∈ {2−10, 2−9, . . . , 2−1} for every plot and algorithm. Our
algorithm Rennala NIGT has the additional parameters M and Minit. We take Minit = M which is
tuned as M ∈ {20, 30, 50}.
The code was written in Python 3 using PyTorch (Paszke et al., 2019). The distributed environment
was emulated on machines with Intel(R) Xeon(R) Gold 6278C CPU @ 2.60GHz and 52 CPUs.

H.1 EXPERIMENTS WITH DIFFERENT ENVIRONMENTS

We start with the experiment on Humanoid-v4 from the main part of the paper (see Figure 1 or
Figure 2). We consider horizon 512 and n = 10 agents with equal computation speeds and zero
communication delays: hi = 1 and κi = 0 for all i ∈ [n], and observe that the performance of all
methods is almost the same, which is expected. Then, we increase the heterogeneity of times by
taking hi =

√
i and κi =

√
i for all i ∈ [n], and hi =

√
i and κi =

√
i × d1/4 for all i ∈ [n],

where d is the number of parameters. We observe that Rennala NIGT is the only robust method, and
converges faster than other methods.

0 200 400 600 800 1000 1200 1400
Time (s)

100

150

200

250

300

350

400

450

500

Re
wa

rd

Rennala NIGT
Syncronized NIGT
AFedPG

(a) Equal times: hi = 1, κi = 0
(similar rates since times are equal)

0 2500 5000 7500 10000 12500 15000 17500
Time (s)

100

150

200

250

300

350

400

450

500

Re
wa

rd

Rennala NIGT
Syncronized NIGT
AFedPG

(b) Heterogeneous times: hi =
√
i,

κi =
√
i

0 5000 10000 15000 20000 25000
Time (s)

100

150

200

250

300

350

400

450

500

Re
wa

rd

Rennala NIGT
Syncronized NIGT
AFedPG

(c) Increased communication
times: hi =

√
i, κi =

√
i× d1/4

Figure 2: Experiments on Humanoid-v4 with increasing heterogeneity of times (from left to right).

28

Published as a conference paper at ICLR 2026

We also consider other environments in Figure 3: Reacher-v4 with horizon 1024, Walker2d-v4 with
horizon 1024, and Hopper-v4 with horizon 1024. We observe that our algorithm converges faster
on Humanoid-v4 and Reacher-v4. However, for Walker2d-v4 and Hopper-v4, the gap between the
algorithms is less pronounced.

0 5000 10000 15000 20000 25000 30000 35000 40000
Time (s)

35

30

25

20

15

10

Re
wa

rd

Rennala NIGT
Syncronized NIGT
AFedPG

(a) Environment: Reacher-v4

0 5000 10000 15000 20000 25000
Time (s)

100

150

200

250

300

350

400

Re
wa

rd

Rennala NIGT
Syncronized NIGT
AFedPG

(b) Environment: Walker2d-v4

0 5000 10000 15000 20000 25000 30000 35000 40000
Time (s)

100

150

200

250

300

350

400

450

500

Re
wa

rd

Rennala NIGT
Syncronized NIGT
AFedPG

(c) Environment: Hopper-v4

Figure 3: Experiments on MuJoCo tasks with hi =
√
i, κi =

√
i× d1/4.

H.2 INCREASING NUMBER OF AGENTS AND MORE SCENARIOS

We now verify whether Rennala NIGT performs better as the number of agents increases to n = 100.
Moreover, we examine different computation scenarios to validate the robustness of Rennala NIGT.
Once again, in the equal-times case shown in Figure 4, all algorithms scale with the number of
agents and exhibit similar performance, which is expected.

Next, we consider four heterogeneous computation and communication scenarios: i) In Figure 5,
communication is free while computation times are heterogeneous. We observe that Rennala NIGT
converges faster; ii) In Figure 6, communication times are equal to computation times. Here, Rennala
NIGT still achieves the best convergence rate; iii) In Figure 7, we increase the communication time
and observe that the performance gap also increases: Rennala NIGT is significantly faster, which
aligns with our theoretical results (see Table 1); iv) Finally, in Figure 8, we examine the case where
computation times decrease and find that Rennala NIGT remains the fastest method.

0 100 200 300 400 500 600 700 800
Time (s)

100

150

200

250

300

350

400

450

500

Re
wa

rd

Rennala NIGT
Syncronized NIGT
AFedPG

(a) Environment: Humanoid-v4

0 200 400 600 800 1000
Time (s)

35

30

25

20

15

10

Re
wa

rd

Rennala NIGT
Syncronized NIGT
AFedPG

(b) Environment: Reacher-v4

Figure 4: Experiments on MuJoCo tasks with hi = 1, κi = 0 and n = 100 (similar rates since times
are equal).

29

Published as a conference paper at ICLR 2026

0 1000 2000 3000 4000 5000
Time (s)

100

150

200

250

300

350

400

450

500

Re
wa

rd

Rennala NIGT
Syncronized NIGT
AFedPG

(a) Environment: Humanoid-v4

0 2000 4000 6000 8000 10000
Time (s)

35

30

25

20

15

10

Re
wa

rd

Rennala NIGT
Syncronized NIGT
AFedPG

(b) Environment: Reacher-v4

Figure 5: Experiments on MuJoCo tasks with hi =
√
i, κi = 0 and n = 100.

0 2000 4000 6000 8000 10000
Time (s)

100

150

200

250

300

350

400

450

500

Re
wa

rd

Rennala NIGT
Syncronized NIGT
AFedPG

(a) Environment: Humanoid-v4

0 2000 4000 6000 8000 10000 12000 14000 16000
Time (s)

35

30

25

20

15

10
Re

wa
rd

Rennala NIGT
Syncronized NIGT
AFedPG

(b) Environment: Reacher-v4

Figure 6: Experiments on MuJoCo tasks with hi =
√
i, κi =

√
i and n = 100.

0 5000 10000 15000 20000 25000
Time (s)

100

150

200

250

300

350

400

450

500

Re
wa

rd

Rennala NIGT
Syncronized NIGT
AFedPG

(a) Environment: Humanoid-v4

0 5000 10000 15000 20000 25000 30000 35000 40000
Time (s)

35

30

25

20

15

10

Re
wa

rd

Rennala NIGT
Syncronized NIGT
AFedPG

(b) Environment: Reacher-v4

Figure 7: Experiments on MuJoCo tasks with hi =
√
i, κi =

√
i× d1/4 and n = 100.

30

Published as a conference paper at ICLR 2026

0 10000 20000 30000 40000 50000
Time (s)

100

150

200

250

300

350

400

450

500

Re
wa

rd

Rennala NIGT
Syncronized NIGT
AFedPG

(a) Environment: Humanoid-v4

0 10000 20000 30000 40000 50000
Time (s)

35

30

25

20

15

10
Re

wa
rd

Rennala NIGT
Syncronized NIGT
AFedPG

(b) Environment: Reacher-v4

Figure 8: Experiments on MuJoCo tasks with hi = i1/4, κi =
√
i× d1/4 and n = 100.

31

Published as a conference paper at ICLR 2026

H.3 HETEROGENEOUS SETTING

0 10000 20000 30000 40000 50000
Time (s)

100

150

200

250

300

350

400

Re
wa

rd
Malenia NIGT
Syncronized NIGT
AFedPG

Figure 9: Experiments on Humanoid-v4 in the heterogeneous setting.

In this section, we compare Malenia NIGT, a method designed for heterogeneous setups. This section
repeats the previous experimental setup with one important difference: the agents sample trajectories
from different environments. We take two agents, n = 2. The first agent has access to the standard
Humanoid-v4 environment from MuJoCo. However, the second agent receives inverted states. More
formally, when the first worker performs action at, the Humanoid-v4 environment returns state st+1,
and instead of immediately receiving it, we concatenate the value 0 to st+1, and finally redirect
(st+1, 0) to the first agent. In the case of the second worker, we redirect (−st+1, 1), where we
multiply the state by −1 to invert it. Thus, the second worker gets inverted states. We concatenate
the values 0 and 1 to indicate the type of environment to the agents and to the model. This way,
we can compare algorithms and analyze their capability to handle heterogeneous environments. We
present the results for n = 2 workers with h0 = 1, h1 = 10, and no communication overhead,
emulating the scenario where one worker is much faster.

In Figure 9, we can see a large gap between Malenia NIGT and AFedPG: Malenia NIGT achieves a
much higher reward, as expected, since it provably supports both heterogeneous computations and
heterogeneous environments (see Section 5 and Table 2).

32

	Introduction
	Related Work
	Contributions

	Problem Formulation and Preliminaries
	Assumptions
	Homogeneous and Heterogeneous Setups
	Computation and Communication Times

	New Methods: Rennala NIGT and Malenia NIGT
	Time Complexity in the Homogeneous Setup
	Time complexity with communication times

	Time Complexities in the Heterogeneous Setup
	Summary of Experiments
	Universal Computation Model
	Global Convergence
	Notations
	Useful Lemmas
	Proof of Theorems
	Time Complexity
	Time complexity of Rennala NIGT
	Time complexity of Rennala NIGT under Assumption 7.1
	Time complexity of Malenia NIGT
	Time complexity of Malenia NIGT under Assumption 7.1

	Global Convergence
	Time complexity of Rennala NIGT
	Time complexity of Malenia NIGT

	Proof of the Lower Bound in the Homogeneous Setup
	Proof of Theorem G.1

	Experiments
	Experiments with different environments
	Increasing number of agents and more scenarios
	Heterogeneous setting

