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ABSTRACT

Many important problems in the real world don’t have unique solutions. It is
thus important for machine learning models to be capable of proposing differ-
ent plausible solutions with meaningful probability measures. In this work we
propose a novel deep learning based framework, named modal uncertainty esti-
mation (MUE), to learn the one-to-many mappings between the inputs and out-
puts, together with faithful uncertainty estimation. Motivated by the multi-modal
posterior collapse problem in current conditional generative models, MUE uses
a set of discrete latent variables, each representing a latent mode hypothesis that
explains one type of input-output relationship, to generate the one-to-many map-
pings. Benefit from the discrete nature of the latent representations, MUE can
estimate any input the conditional probability distribution of the outputs effec-
tively. Moreover, MUE is efficient during training since the discrete latent space
and its uncertainty estimation are jointly learned. We also develop the theoreti-
cal background of MUE and extensively validate it on both synthetic and realistic
tasks. MUE demonstrates (1) significantly more accurate uncertainty estimation
than the current state-of-the-art, and (2) its informativeness for practical use.

1 INTRODUCTION

Making predictions in the real world has to face with various uncertainties. One of the arguably most
common uncertainties is due to partial or corrupted observations, as such it is often insufficient for
making a unique and deterministic prediction. For example, when inspecting where a single CT scan
of a patient contains lesion, without more information it is possible for radiologists to reach different
conclusions, as a result of the different hypotheses they have about the image. In such an ambiguous
scenario, the question is thus, given the observable, which one(s) out of the many possibilities would
be more reasonable than others? Mathematically, this is a one-to-many mapping problem and can
be formulated as follows. Suppose the observed information is x € X in the input space, we are
asked to estimate the conditional distribution p(y|x) for y € ) in the prediction space, based on the
training sample pairs (x,y).

There are immediate challenges that prevent p(y|x) being estimated directly in practical situations.
First of all, both X and ), e.g.as spaces of images, can be embedded in very high dimensional
spaces with very complex structures. Secondly, only the unorganized pairs (x,y), not the one-to-
many mappings x — {y;}:, are explicitly available. Fortunately, recent advances in conditional
generative models based on Variational Auto-Encoder (VAE) framework from Kingma & Welling
(2014) shed light on how to tackle our problem. By modelling through latent variables ¢ = c(x),
one aims to explain the underlying mechanism of how y is assigned to x. And hopefully, variation
of ¢ will result in variation in the output y(x,c), which will approximate the true one-to-many
mappings distributionally.

Many current conditional generative models, including cVAE in Sohn et al. (2015), BiCycleGAN
in Zhu et al. (2017b), Probabilistic U-Net in Kohl et al. (2018), efc., are developed upon the VAE
framework, with Gaussian distribution with diagonal covariance as the de facto parametrization of
the latent variables. However, in the following we will show that such a parametrization put a
dilemma between model training and actual inference, as a form of what is known as the posterior
collapse problem in the VAE literature Alemi et al. (2018); Razavi et al. (2018). This issue is
particularly easy to understand in our setting, where we assume there are multiple y’s for a given x.
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Figure 1: Comparison between Gaussian latent representations and discrete latent representations
in a multi-modal situation. Gaussian latents are structurally limited in such a setting. (a) The ideal
situation when there is no posterior collapse as multiple modes appear, but the prior distribution
is a poor approximation of the posterior. (b) Posterior collapse happens, and no multi-modal in-
formation is conveyed from the learned prior. (c) Discrete latent representation can ameliorate the
posterior collapse problem while the prior can approximate the posterior more accurately when both
are restricted to be discrete.

Let us recall that one key ingredient of the VAE framework is to minimize the KL-divergence be-
tween the latent prior distribution p(c|x) and the latent variational approximation pg(c|x, y) of the
posterior. Here ¢ denotes the model parameters of the “recognition model” in VAE. It does not mat-
ter if the prior is fixed p(c|x) = p(c) Kingma & Welling (2014) or learned p(c|x) = pg(c|x) Sohn
et al. (2015), as long as both prior and variational posterior are parameterized by Gaussians. Now
suppose for a particular x, there there are two modes y, y2 for the corresponding predictions. Since
the minimization is performed on the entire training set, p(c|x) is forced to approximate a posterior
mixture p(c|x, y(.)) of two Gaussians from mode y; and y». In the situation when the minimization
is successful, meaning the KL divergence is small, the mixture of the variational posteriors must be
close to a Gaussian, i.e.posterior collapsed as in Fig.1(b), and hence the multi-modal information
is lost. Putting it in contrapositive, if multi-modal information is to be conveyed by the variational
posterior, then the minimization will not be successful, meaning higher KL divergence. This may
partly explain why it can be a delicate matter to train a conditional VAE. The situation is schemat-
ically illustrated in Figure 1 in one dimension. Note that the case in Figure 1(a) is usually more
preferable, however the density values of the prior used during testing cannot reflect the uncertainty
level of the outputs. We quantitative demonstrate this in Section 4 and Fig.2.

One direction to solve the above problem is to modify the strength of KL-divergence or the vari-
ational lower bound, while keeping the Gaussian parametrization, and has been explored in the
literature extensively, as in Higgins et al. (2017); Alemi et al. (2018); Rezende & Viola (2018).
However, besides the need of extensive parameter tuning for these approaches, they are not tailored
for the multi-modal posterior collapse problem we described above, thus do not solve the inaccurate
uncertainty estimation problem. Mixture or compositions of Gaussian priors have also been pro-
posed in Nalisnick et al. (2016); Tomczak & Welling (2018), but the number of Gaussians in the
mixture is usually fixed apriori. Hence making it a conditional generative model further complicates
the matter, since the number in the mixture should depend on the input. We therefore adopt another
direction, which is to use a latent distribution parameterization other than Gaussians, and one that
can naturally exhibit multiple modes. The simplest choice would be to constrain the latent space
to be a finite set, as proposed in van den Oord et al. (2017), so that we can learn the conditional
distribution as a categorical distribution.

We argue that the approach of discrete latent space may be beneficial particularly in our setting. First,
different from unconditional or weak conditional generative modelling tasks where diversity is the
main consideration, making accurate predictions based on partial information often leads to a sig-
nificantly restricted output space. Second, there is no longer noise injection during training, so that
the decoder can utilize the information from the latent variable more effectively. This makes it less
prone to ignore the latent variable completely, in contrast to many conditional generation methods
using noise inputs. Third, the density value learned on the latent space is more interpretable, since
the learned prior can approximate the variational posterior better. In our case, the latent variables
can now represent latent mode hypotheses for making the corresponding most likely predictions.
We call our approach modal uncertainty estimation (MUE).

The main contributions of this work are: (1) We solve the MUE problem by using c-VAE and
justify the use of a discrete latent space from the perspective of multi-modal posterior collapse
problem. (2) Our uncertainty estimation improves significantly over the existing state-of-art. (3)
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In contrast to models using noise inputs that require sampling at the testing stage, our model can
directly produce results ordered by their latent mode hypothesis probabilities, and is thus more
informative and convenient for practical use.

The rest of paper is organized as follows. In Section 2 we sample some works that related to ours
and stress the key differences between them. In Section 3 we layout our general framework and
model details. We conducted a series of experiments on both synthetic and real datasets described
in Section 4. The paper is concluded in Section 5.

2 RELATED WORK

Conditional generative models aim to capture the conditional distribution of the data and generate
them according to some given information. Thanks to the recent advancement of deep learning tech-
niques, especially the methods of generative adversarial networks (GANs) Goodfellow et al. (2014)
and variational auto-encoders (VAEs) Kingma & Welling (2014), conditional generative models
have been effectively applied to various computer vision and graphics tasks such as image synthe-
sis, style transfer, image in-painting, efc. Early works in this direction focused on learning the uni-
modal mapping, as in Isola et al. (2017) and Zhu et al. (2017a). They are called uni-modal because
the mapping is between fixed categories, namely a one-to-one mapping. There are no latent codes to
sample from, thus the generation is deterministic. In these works, images of a specific category are
translated to another category, while keeping the desired semantic content. These methods achieved
the goal through a meta supervision technique known as the adversarial loss as in the GAN frame-
work, where one only needs to supply weak supervision for whether the generated image belongs
to a certain category or not. Adversarial loss has been known for producing sharp visual look but
it alone cannot guarantee faithful distribution approximation, where issues known as mode collapse
and mode dropping often occur for complicated data distribution Srivastava et al. (2017). In Isola
et al. (2017) it is noted that additional noise input in the conditional model in fact fails to increase
variability in the output. How to ensure good approximation of output distribution for GAN:Ss is still
an active area of research. Therefore, the above frameworks might not be suitable for approximating
the distribution of one-to-many mappings.

Many works have been proposed to extend to the setting of one-to-many mappings by learning disen-
tangled representations, of e.g.“ “content” and “style”, and consequently some form of auto-encoding
has to be used. Conditional generation can then be accomplished by corresponding latent code
sampling and decoding. This includes the approaches of Zhu et al. (2017b); Huang et al. (2018) for
multi-modal image-to-image translation, Zheng et al. (2019) for image in-painting, and many others.
Since the main objectives of these works are the visual quality and diversity of the outputs, they are
usually not evaluated in terms of the approximation quality of the output distribution. One notable
exception is Probabilistic U-Net proposed in Kohl et al. (2018), which is based on the conditional
VAE framework Sohn et al. (2015) and is close in spirit to ours. Probabilistic U-Net has shown su-
perior performance over various other methods for calibrated uncertainty estimation, including the
ensemble methods of Lakshminarayanan et al. (2017), multi-heads of Rupprecht et al. (2017); Ilg
et al. (2018), drop-out of Kendall et al. (2015) and Image2Image VAE of Zhu et al. (2017b). How-
ever, as discussed in Section I, Probabilistic U-Net cannot solve the multi-modal posterior collapse
problem since it uses Gaussian latent parameterization. Therefore, in case the conditional distribu-
tion is varying for different input data, the performance is expected to degrade. Furthermore, the
latent prior density learned has no interpretation, and thus cannot rank its prediction. To perform
uncertainty estimation for Probabilistic U-Net, one must perform extensive sampling and clustering.

Our framework improves significantly upon Probabilistic U-Net by introducing discrete latent space.
With this latent parameterization we can directly output the uncertainty estimation and we can rank
our predictions easily. The discrete latent space has been proposed in the vq-VAE framework of
van den Oord et al. (2017). With such a latent space it can get rid of the noise sampling, which
enables the latent variable to be more effectively utilized by the decoder and produce outputs with
better visual quality. While our use of discrete latent space is motivated by the multi-modal posterior
collapse problem. The major technical difference compared to our framework is that the image in
vq-VAE framework is encoded by a collection of codes arranged in the spatial order. As such, the
joint distribution of the codes cannot be obtained directly, and has to be estimated or sampled using
e.g.an auto-regressive model in the spatial dimension, such as PixelCNN Van den Oord et al. (2016).
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In contrast, we learn disentangled representations and only the necessary information to produce
different outputs goes into the discrete latent space. In particular, we model the each mode of y
given x by a single latent code, thus our model enjoys much simpler sampling.

Besides vq-VAE van den Oord et al. (2017), the use of discrete latent variables in neural network
has been explored in various previous works, including the early work of Mnih & Gregor (2014)
and Mnih & Rezende (2016) that use single or multiple samples objectives with variance reduction
techniques to help training. Others have explored using continuous approximations to the discrete
distributions, know as Concrete Maddison et al. (2016) or Gumbel-Softmax Jang et al. (2016) dis-
tributions. As is noted in van den Oord et al. (2017), in general the above approaches have fallen
short of their continuous counterparts. Worth mentioning is a recently proposed neural dialogue
generation method Zhao et al. (2018) that uses Gumbel-Softmax approximation, which treats the
dialogue generation as a one-to-many mapping problem. Our method diverge from theirs by the
assumption about the model. In Zhao et al. (2018), they designed the learned discrete representation
for an utterance to be “context free”. This is in contrast to our assumption that the latent hypothesis
of an input should depend on the input itself. Taking the task of medical image segmentation for an
example, if we encode the hypotheses from the segmentation alone as in Zhao et al. (2018), likely
there will either be two modes (benign vs malignant) or a huge number of modes if the shape of the
segmentation is taken into account. Moreover, it will not contain any information about what kinds
of actual biological tissue they might be, which on the other hand can be judged from the actual scan
image. In our case, we have deliberately separated the recognition task learning, e.g. segmenting
the image, and the hypothesis learning, so that together they can approximate the variation of the
outputs given the input.

Finally, we briefly summarize the differences between MUE and existing uncertainty estimation
methodologies in deep learning. Many existing works Gal & Ghahramani (2016); Gal (2016);
Kendall et al. (2015); Kendall & Gal (2017) focus on model uncertainty, which try to capture the
calibrated level of confidence of the model prediction by using stochastic regularization techniques.
Such uncertainty will be of major interest for model predictions on unseen data and long-tail rare
cases, or when model is trained on limited data. While ours is more about learning from conflicting
or ambiguous training data, and estimating the calibrated uncertainty of the input-output relation-
ship in the dataset. Interestingly, Kohl et al. (2018) has experimented using Dropout as comparison
to the c-VAE framework in the MUE setting, but found it only achieved inferior performance. In
general, since MUE is independent from the model uncertainty, our framework can be used jointly
with existing techniques for prediction confidence estimation.

3 METHOD

3.1 GENERAL FRAMEWORK

Let (x,y) denote the data-label pair. We model the generation of y conditioned on x using the
conditional VAE framework as in Sohn et al. (2015). First, a latent variable c is generated from
some prior distribution py (c|x) parametrized by a neural network. Then the label y is generated from
some conditional distribution py(y|c,x). We use 6 to represent the collection of model parameters
at testing time. The major distinction of our approach is that we assume c takes value in a finite set C,
thought of as a code book for the latent mode hypotheses of our multi-modal data distribution. Our
goal is to learn the optimal parameters 8* and the code book C, so that possibly multiple of the latent
modes corresponding to x can be identified, and label predictions y can be faithfully generated from
x. The latter means the marginal likelihood py(y|x) should be maximized.

The variational inference approach as in Kingma & Welling (2014) starts by introducing a posterior
encoding model g4(c|x, y) with parameters ¢, which is used only during training. Since the label
information is given, we will assume the posterior encoding model is deterministic, meaning there
is no “modal uncertainty” for the posterior encoding model. So the posterior distribution will be a
delta distribution for each data-label pair (x,y). In any case, the marginal log-likelihood of y can
now be written as

4s(clx, y)

po(c,yX)] )
po(clx,y)

+Eg,(clx {log
} 94 (c|x,y) 4o(cx,y)

log po(y1%) = Ey, (c|x.y) {10%
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Since the first term in the RHS of (1) is non-negative, we have the variational lower bound

po(c, Y|X)}

logpg(y|x) > E % [10
g ( | ) Q¢(C| ,y) gq¢(c|x,y)

gp(cly,x) @
= _Eqd,(c\x,y) l:lOg pe(c|;():| + Eq¢(c\x,y) [1ng9(y|cax)}

We further lower bound Equation (2) by observing that the entropy term —E,.)(log ¢(+)) is positive
and is constant if ¢4 (c|x,y) is deterministic. This yields a sum of a negative cross entropy and a
conditional likelihood

log pa(y1x) > Ey, (clx.y) log pa(c|x)] + Eq, (c|x,y) [l0g po(y|c, x)] (3)

For our optimization problem, we will maximize the lower bound (3). Since c takes value in the finite
code book C, the probability distribution py(c|x) can be estimated using multi-class classification,
and the cross entropy term can be estimated efficiently using stochastic approximation.

It is important to note that since we assume g4 (c|x, y) is deterministic, we will not regularize it by
pulling it to the prior distribution, in contrast to the previous conditional VAE frameworks. This
means that the probability values of the posterior is not influenced by the probability values of
the prior distribution. Instead, we will let the prior encoding model to be trained by the posterior
encoding model, as a classification task with ground-truth being the class index obtained from the
posterior encoder and the code book C. The lacking of prior regularization is also featured in the vg-
VAE approach in van den Oord et al. (2017) for unconditional generation, and in Razavi et al. (2018)
it is argued that restricting the latent space C to be a finite set is itself a structural prior constraint
for the VAE framework. Note that here the discrete latent space C should be considered just as a
finite set of indices, without any other structure between these indices. Below we will discuss how
to realize it in R™ so that the actual representation can be useful to the decoder.

First of all, because C is a finite set, the objective (3) is not fully differentiable. We tackle this
problem using a simple gradient approximation method and an extra regularization loss, following
the approach of van den Oord et al. (2017); Razavi et al. (2019). In details, denote the prior encoding
network by Ej, the posterior encoding network by gy, and the decoder as Dg. Since we assume
a delta distribution for the posterior encoding model ¢4(c|x,y), we can let the posterior encoder
produce a deterministic output for the given input-output pair (x,y). In other words, no sampling
is performed by the posterior encoder. Suppose the output of the posterior encoding network is
e = E4(x,y). Its nearest neighbor c in C in £? distance

¢ = arg min [|c’ — e’

will become the input to the decoder network. And we simply copy the gradient of c to that of e so
that the posterior encoder can obtain gradient information from the label prediction error. To make
sure the gradient approximation is accurate, we need to encourage the posterior encoder’s outputs to
approximate values in C as close as possible. To achieve this we use an ¢2-penalization of the form
Blle — sg[c]||? with parameter 3 > 0, and sg is the stop-gradient operation. The code c is updated
using exponential moving average of the corresponding posterior encoder’s outputs. In the above
notation, our loss function to be minimized for a single input pair (x,y) is

L(0,¢) = CE(Ey(x),idc) + Recon(De(c,x),y) + Bl Es(x,y) — sg[c]|| )

where C'E denotes the cross entropy loss, Ey(x) is the probability vector of length |C| and id, is
corresponding code index for the input pair (x,y). Recon denotes the label reconstruction loss in
lieu of the negative log-likelihood.

During training, we learn the prior encoding model py(c|x), the posterior encoding model
¢s(c|x,y), the decoding model pg(y|c, x), together with the code book C in an end-to-end fashion.
The posterior encoder plus decoder will learn good representation of the latent code, and the prior
encoder will learn faithful uncertainty estimation from the stochastic training. At inference time, we
use the learned prior encoding model to output a conditional distribution given x on C, where each
of the code will correspond to a decoded label prediction with the associated probability.
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3.2 MODEL DESIGN AND TRAINING

Our proposed framework in Section 3.1 is general and can be applied to a wide range of network
architecture designs. Nonetheless it is worth discussing how the latent code c¢ should be learned
and utilized, so that the posterior encoding model can really learn the mode hypothesis of the given
data-label pair, not simply memorize the data which causes an overwhelming number of codes and
over-fitting. One important principle is that the latent code should not be learned or used in a spatially
dependent manner, especially in pixel-level recognition tasks such as segmentation. This can also
ensure that the prior encoding network is learning to solve the majority of the recognition problem
while the latent code supplies only the additional but necessary information to reconstruct distinct
outputs from the same (or similar) input. For this purpose we have adopted a simple approach: the
code output by posterior encoding network is obtained by global average pooling of its last layer; for
the incorporation of the code into the intermediate feature of the decoding network that has spatial
dimension (h,w), we will simply make h x w copies of the code, reshape it to have spatial size
(h,w) and concatenate it to the corresponding feature.

In the experiments in Section 4 we will consider applications in computer vision and thus will use
convolutional neural networks (CNNs) for the prior and posterior encoder, as well for the decoder,
which together is similar to the U-Net architecture. Specifically, each encoding network consists of
a sequence of downsampling residual blocks, and the decoder a sequence of upsampling residual
blocks, where the decoder also has skip connections to the prior encoder by receiving its feature at
each resolution level. The latent code is incorporated at a single level L into the decoder, which
depends on the task.

Suppose the latent code is c-dimensional. We initialize the code book C as a size (n¢, ¢) i.i.d ran-
dom normal matrix, where each column represent an individual code. The statistics of the normal
distribution is computed from the output of the posterior encoding network at initialization on the
training data. We have found it to be beneficial since it allows the entire model to be initialized at
a lower loss position on the optimization landscape. We have also found that the number of code
utilized during training follows an interesting pattern: at the very first stage only very few codes
will be used, then the number gradually grows to maximum before it slowly declines and becomes
stable when the reconstruction loss plateaus. We therefore allow the network to warm up in the
first n epochs by training without the cross-entropy loss, since during this stage the number of uti-
lized codes is unstable. This will not impair the learning of the posterior encoder, since it receive
no gradient information from the prior. We have found ne = 512 to be well sufficient for all of
our tasks, and the actual number of codes utilized after training is usually a fraction of it. Because
of these observations, we did not try to explicitly enforce different codes to have different outputs,
since for one reason the final number of codes are usually compact, and for the other we would like
to allow different codes to have similar outputs, which means the possible situation where different
hypotheses lead to similar predictions. We expect there will be some connection with the informa-
tion bottleneck theory Tishby & Zaslavsky (2015) and leave this direction for future work. We will
release our open source implementation to promote future research.

4 EXPERIMENTS

To rigorously access our method’s ability to approximate the distribution of one-to-many mappings,
in Section 4.1 we first conduct a synthetic experiment with known ground truth conditional distribu-
tions. In Section 4.2 we then demonstrate our method’s performance on the realistic and challenging
task of lesion segmentation on possibly ambiguous lesion scan on the LIDC-IDRI benchmark. In
both experiments we compare with the state-of-the-art method Probabilistic U-Net Kohl et al. (2018)
of the same model complexity as ours. More details on the experimental setting and additional re-
sults can be found in Appendix A.

4.1 QUANTITATIVE ANALYSIS ON SYNTHETIC TASKS

MNIST guess game To test the ability for multi-modal prediction quantitatively, we design a
simple guessing game using the MNIST dataset LeCun & Cortes (2010) as follows. We are
shown a collection of images and only one of them is held by the opponent. The image be-
ing held is not fixed and follows certain probability distribution. We need to develop a genera-
tive model to understand the mechanism of which image is being held based on the previously
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Figure 2: Quantitative comparison on the MNIST guessing task. The small dots represent the pre-
dictions for 1000 testing samples. Our method in (a) successfully produces accurate uncertainty
estimate for each mode. Probabilistic U-Net uses conventional Gaussian latent parametrization,
thus the sample’s density provides no useful information about the uncertainty level, as shown in the
left axis. We also count the frequencies for each category and plot it on the right axis. However, the
approximation is far less accurate than ours even calculated on the entire testing dataset.

seen examples. In details, the input x will be an image that consists of four random digits,
and belongs to one of the four categories: (A) (1,2,3,4); (B) (3,4,5,6); (C) (5,6,7,8); (D)
(7,8,9,0). The number represents the label of the image sampled. The output y will be an im-
age of the same size but only one of the input digit is present. Specifically, for (A) the proba-
bility distribution is (0.25, 0.25,0.25, 0.25); for (B) (0.1,0.4,0.1,0.4); for (C) (0.3,0.5,0.1,0.1);
for (D) (0.1,0.1,0.1,0.7). Note that the distribution of the output, conditioned on each cate-
gory’s input, consists of four modes, and is designed to be different for each category. We re-
quire the model to be trained solely based on the observed random training pairs (x,y), and thus
no other information like digit categories should be used. The model would therefore need to
learn to discriminate each category and assign the correct outputs with corresponding probabilities.

Z

Thus for instance, an input image of Category (A)
will be the combination of four random samples
from Digit 1 to 4 in that order, and the output can be
the same digit 1 in the input with probability 0.25,
or it can be the same digit 2 with probability 0.25,
and so forth. The images in the first row in Fig.3 il-
lustrate an input image, where we also annotate the |
ground truth probability on the upper-left corner. q /

We trained our model on samples from the training (a) Ours (b) Probabilistic U-Net
dataset of MNIST and tested it on samples from the
testing dataset, during both stages the random com-
bination is conducted on the fly. The model here for
demonstrating the results used a total of 11 codes af-
ter training. Please refer to Appendix A.1 for train-
ing specifics and more results.

Figure 3: Results visualization on the
MNIST guess game. Note that our model
can predict calibrated uncertainty estimation
(e.g.“2” appears with probability 0.25 ver-
sus our prediction 0.2634, best to zoom on
a screen to see the probability annotation in
From the second to fifth row in Fig.3 we show the (a)). While Probabilistic U-Net cannot pre-
results of different models. Ours in Fig.3(a) are the dict such estimates and can produce non-
top-4 predictions with explicit probability estimates sensible output from random sampling.
annotated on the upper-left in each row. For exam-

ple, the second row has probability 0.2634, which is

very close to the ground truth 0.25. In contrast, Probabilistic U-Net cannot rank its outputs and
hence four random samples are drawn. Consequently one has little control when generating the
samples and it’s likely to obtain non-sensible outputs as in the fourth row of Fig.3(b).
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Figure 4: Visualization of our results on the highly ambiguous samples from LIDC-IDRI dataset.
The first row shows the input samples and their segmentations, and the next two rows show the
top-8 predictions from our method. The uncertainty estimation for each segmentation proposal is
annotated on the upper-left corner.

Our method also performs much better quantitatively, as shown in Fig.2 with the results on 1000
random testing samples. We classify both models’ outputs into the ground truth modes and aggregate
the corresponding probabilities. We can see in Fig.2(a) that our method successfully discovered the
distributional properties of the one-to-many mappings, and provides accurate uncertainty estimate.
In contrast, due to the Gaussian latent parametrization, neither the individual density of each input
nor their averages can provide useful information, as shown by the left axis of Fig.2(b). By the
right axis of Fig.2(b) we also count the mode frequencies for each category for Probabilistic U-Net.
However, even calculated on the entire testing dataset, the distribution approximation is still far from
accurate compared to ours. Note that our method can directly output the uncertainty estimate for
each input accurately. This clearly demonstrates our method’s superiority and practical value.

4.2 REAL APPLICATIONS

Lesion segmentation of possibly ambiguous lung CT scans We use the LIDC-IDRI dataset pro-
vided by Armato Il et al. (2015; 2011); Clark et al. (2013), which contains 1018 lung CT scans from
1010 patients. Each scan has lesion segmentations by four (out of totally twelve) expert graders. The
identities of the graders for each scan are unknown from the dataset. Samples from the testing set
can be found in the first row of Fig.4. As can be seen, the graders are often in disagreement about
whether the scan contains lesion tissue. We hypothesize that the disagreement is due to the different
assumptions the experts have about the scan. For example, judging from the scan’s appearance,
one of the graders might have believed that the suspicious tissue is in fact a normal tissue based
on his/her experience, and thus gave null segmentation. There are also other possible underlying
assumptions for the graders to come up with different segmentation shapes.

Our task is to identify such ambiguous scenarios by proposing distinct segmentation results from the
corresponding latent hypotheses with their associated probabilities, which will be helpful for clini-
cians to easily identify possible mis-identifications and ask for further examinations of the patients.

Our network architecture for this task is a scaled-up version of the same model used in the MNIST
guessing task. At training time, we randomly sample an CT scan x from the training set, and we
randomly sample one of its four segmentations as y. The model we used to report the results has a
total of 31 codes. The specifics of the training and more results can be found in Appendix A.3.

Some sample testing results predicted by our model to have high uncertainty are illustrated in Fig.4.
The first row is the input and its four segmentations, and the last two rows are our top-8 predictions,
where the probability associated to each latent code is annotated on the upper-left corner. We can
see that our method can capture the uncertainty that is contained in the segmentation labels with
notable probability scores, as well as other type of segmentations that seem plausible without further
information.

Since no ground truth distribution for LIDC-IDRI dataset is available, quantitative evaluation has
to be conducted differently from the MNIST guessing task. We follow the practice of Kohl et al.
(2018) to adopt the generalized energy distance metric DZgp, found in Bellemare et al. (2017);
Salimans et al. (2018); Székely & Rizzo (2013), which is a statistical quantity that measures the
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Figure 5: Results visualization on LIDC segmentation task. (a) The small dots represent test data
instances’ D&y, values and the triangles mark the mean values. Our performance is competitive with
the state-of-the-art. (b) We show the segmentation results for some frequently used code, annotated
at the bottom. The segmentation from the codes of probability < 10~* are left blank.

incoherence between two subsets of a metric space. Please refer to Appendix A.2 for calculation
details of this metric for segmentations based on Intersection over Union (IoU). The lower the
value of D%, the closer the two subsets are. We report the results on the entire testing dataset
in Fig.5(a). For our model, the mean D2y, of all testing data is 0.3354, the standard deviation
is 0.2947. Our performance is thus competitive with that of Probabilistic U-Net, whose mean is
0.3470 and the standard deviation is 0.3139. Moreover, our model can give quantitative uncertainty
estimate directly for each input scan, unlike Probabilistic U-Net that needs to perform sampling and
clustering using a metric such as IoU to obtain uncertainty estimate.

Finally, we visualize some segmentation results for some frequently used codes in Fig.5(b). The
code used is annotated at the bottom. The segmentations from the codes of negligible probability
(e.g.less than 10~*) are left blank. For example, the fourth column for code#102 may correspond
to a latent hypothesis that leads to the conclusion of no lesion, and the scan in the third row is not
compatible with that particular latent hypothesis. It would be an interesting future work to explore
the semantics of the latent codes if more information about the patient and the scan is given.

5 DISCUSSION AND CONCLUSION

We have proposed MUE, a novel framework for learning one-to-many mapping with calibrated un-
certainty estimation. As an effective solution of the multi-modal posterior collapse problem, the
discrete latent representations are learned to explain the corresponding types of input-output rela-
tionship in one-to-many mappings. It also allows us effectively and efficiently perform uncertainty
estimation of the model prediction. We have extensively validated our method’s performance and
usefulness on both synthetic and realistic tasks, and demonstrate superior performance over the
state-of-the-art methods.



Under review as a conference paper at ICLR 2021

REFERENCES

Alexander Alemi, Ben Poole, Ian Fischer, Joshua Dillon, Rif A Saurous, and Kevin Murphy. Fixing
a broken elbo. In International Conference on Machine Learning, pp. 159-168, 2018.

Samuel G Armato III, Geoffrey McLennan, Luc Bidaut, Michael F McNitt-Gray, Charles R Meyer,
Anthony P Reeves, Binsheng Zhao, Denise R Aberle, Claudia I Henschke, Eric A Hoffman,
et al. The lung image database consortium (lidc) and image database resource initiative (idri): a
completed reference database of lung nodules on ct scans. Medical physics, 38(2):915-931, 2011.

Samuel G Armato III, Geoffrey McLennan, Luc Bidaut, Michael F McNitt-Gray, Charles R Meyer,
Anthony P Reeves, Binsheng Zhao, Denise R Aberle, Claudia I Henschke, Eric A Hoffman,
et al. Data from lidc-idri, 2015. URL https://wiki.cancerimagingarchive.net/
x/rghe.

Marc G Bellemare, Ivo Danihelka, Will Dabney, Shakir Mohamed, Balaji Lakshminarayanan,
Stephan Hoyer, and Rémi Munos. The cramer distance as a solution to biased wasserstein gradi-
ents. arXiv preprint arXiv:1705.10743, 2017.

Kenneth Clark, Bruce Vendt, Kirk Smith, John Freymann, Justin Kirby, Paul Koppel, Stephen
Moore, Stanley Phillips, David Maffitt, Michael Pringle, et al. The cancer imaging archive (tcia):
maintaining and operating a public information repository. Journal of digital imaging, 26(6):
1045-1057, 2013.

Yarin Gal. Uncertainty in deep learning. University of Cambridge, 1(3), 2016.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pp. 1050-1059,
2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural infor-
mation processing systems, pp. 2672-2680, 2014.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew M Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. In ICLR, 2017.

Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz. Multimodal unsupervised image-to-
image translation. In Proceedings of the European Conference on Computer Vision (ECCV), pp.
172-189, 2018.

Eddy Ilg, Ozgun Cicek, Silvio Galesso, Aaron Klein, Osama Makansi, Frank Hutter, and Thomas
Brox. Uncertainty estimates and multi-hypotheses networks for optical flow. In Proceedings of
the European Conference on Computer Vision (ECCV), pp. 652-667, 2018.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
conditional adversarial networks. CVPR, 2017.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer
vision? In Advances in neural information processing systems, pp. 5574-5584, 2017.

Alex Kendall, Vijay Badrinarayanan, and Roberto Cipolla. Bayesian segnet: Model uncertainty
in deep convolutional encoder-decoder architectures for scene understanding. arXiv preprint
arXiv:1511.02680, 2015.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

10


https://wiki.cancerimagingarchive.net/x/rgAe
https://wiki.cancerimagingarchive.net/x/rgAe
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

Under review as a conference paper at ICLR 2021

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Yoshua Bengio and Yann
LeCun (eds.), 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB,
Canada, April 14-16, 2014, Conference Track Proceedings,2014. URL http://arxiv.org/
abs/1312.6114.

Simon Kohl, Bernardino Romera-Paredes, Clemens Meyer, Jeffrey De Fauw, Joseph R Ledsam,
Klaus Maier-Hein, SM Ali Eslami, Danilo Jimenez Rezende, and Olaf Ronneberger. A probabilis-
tic u-net for segmentation of ambiguous images. In Advances in Neural Information Processing
Systems, pp. 6965-6975, 2018.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predic-
tive uncertainty estimation using deep ensembles. In Advances in neural information processing
systems, pp. 6402-6413, 2017.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http://yann.
lecun.com/exdb/mnist/.

Chris J] Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

Andriy Mnih and Karol Gregor. Neural variational inference and learning in belief networks. arXiv
preprint arXiv:1402.0030, 2014.

Andriy Mnih and Danilo J Rezende. Variational inference for monte carlo objectives. arXiv preprint
arXiv:1602.06725, 2016.

Eric Nalisnick, Lars Hertel, and Padhraic Smyth. Approximate inference for deep latent gaussian
mixtures. In NIPS Workshop on Bayesian Deep Learning, volume 2, 2016.

Ali Razavi, Aaron van den Oord, Ben Poole, and Oriol Vinyals. Preventing posterior collapse with
delta-vaes. In International Conference on Learning Representations, 2018.

Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with
vq-vae-2. In Advances in Neural Information Processing Systems, pp. 14837-14847, 2019.

Danilo Jimenez Rezende and Fabio Viola. Taming vaes. arXiv preprint arXiv:1810.00597, 2018.

Christian Rupprecht, Iro Laina, Robert DiPietro, Maximilian Baust, Federico Tombari, Nassir
Navab, and Gregory D Hager. Learning in an uncertain world: Representing ambiguity through
multiple hypotheses. In Proceedings of the IEEE International Conference on Computer Vision,
pp- 3591-3600, 2017.

Tim Salimans, Han Zhang, Alec Radford, and Dimitris Metaxas. Improving gans using optimal
transport. In International Conference on Learning Representations, 2018.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using
deep conditional generative models. In Advances in neural information processing systems, pp.
3483-3491, 2015.

Akash Srivastava, Lazar Valkov, Chris Russell, Michael U Gutmann, and Charles Sutton. Veegan:
Reducing mode collapse in gans using implicit variational learning. In Advances in Neural Infor-
mation Processing Systems, pp. 3308-3318, 2017.

Gabor J Székely and Maria L Rizzo. Energy statistics: A class of statistics based on distances.
Journal of statistical planning and inference, 143(8):1249-1272, 2013.

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In
2015 IEEE Information Theory Workshop (ITW), pp. 1-5. IEEE, 2015.

Jakub Tomczak and Max Welling. Vae with a vampprior. In International Conference on Artificial
Intelligence and Statistics, pp. 1214—-1223, 2018.

Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Con-
ditional image generation with pixelcnn decoders. In Advances in neural information processing
systems, pp. 4790-4798, 2016.

11


http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Under review as a conference paper at ICLR 2021

Aaron van den Oord, Oriol Vinyals, et al. Neural discrete representation learning. In Advances in
Neural Information Processing Systems, pp. 6306-6315, 2017.

Tiancheng Zhao, Kyusong Lee, and Maxine Eskenazi. Unsupervised discrete sentence representa-
tion learning for interpretable neural dialog generation. arXiv preprint arXiv:1804.08069, 2018.

Chuanxia Zheng, Tat-Jen Cham, and Jianfei Cai. Pluralistic image completion. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1438-1447, 2019.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference
on computer vision, pp. 2223-2232, 2017a.

Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Darrell, Alexei A Efros, Oliver Wang, and Eli
Shechtman. Toward multimodal image-to-image translation. In Advances in neural information
processing systems, pp. 465-476, 2017b.

12



Under review as a conference paper at ICLR 2021

APPENDIX

A EXPERIMENTAL DETAILS

As described in the main text, each of our encoding network consists of a sequence of downsampling
residual blocks, and the decoder a sequence of upsampling residual blocks. The decoder also has
skip connections to the prior encoder by receiving its feature at each resolution level. A residual
block consists of three convolution layers. As the shortcut connection, the input is added to the
output if the input and the output have the same channel size, or otherwise a 1 x 1 convolution is
applied before the addition. Bi-linear down sampling and up sampling is applied before the residual
blocks if the spatial size is changed. We fix the ¢ penalization weight 3 = 0.25, number of initial
candidate codes ne = 512, and use the Adam optimizer Kingma & Ba (2015) with its default
setting for all of our experiments. Hyper-parameters specific to each experiment are detailed in the
following subsections.

A.1 MNIST GUESSING GAME

We use 6 layers in the prior and the posterior encoding networks, with output channel dimension
[16,32,64,128] 4 [128,128]. This notation means that the first 4 levels are used as in the U-Net
which feed the decoder, and the last 2 levels are used for the latent code learning. The posterior
encoder further uses a 1 x 1 and global average pooling to obtain the code. The code is of dimension
128. The prior encoder uses a linear layer to learn the distribution on C. Our decoder has output
channel dimension [64, 32, 16, 1]. We incorporate the code at the bottom level, namely the 1-st layer
of the decoder. For the Probabilistic U-Net, since the architecture is different, we used a structure
of similar capacity, with the parameter num filter= [16, 32, 64, 128] in its released version, and we
find the suggested hyperparameters in Kohl et al. (2018) for LIDC task works well in this case. For
both networks, we use the binary cross entropy loss, a batch size of 256, and use the learning rate
schedule [le™*,5e7°, 175, 5e~°] at [0, 30k, 90k, 120k] iterations.

Some additional results from our model and Probabilistic U-Net are shown in Fig.6 and Fig.7.

A.2 GENERALIZED ENERGY DISTANCE METRIC FOR SEGMENTATIONS

Denote Yy, Sx C Y to be the set of segmentation labels and the set of model predictions corre-
sponding to the scan x, respectively. ) is equipped with the metric

d(yv S) =1- IOU(Ya S))

where IoU(+, -) is the intersection-over-union operator that is suitable for evaluating the similarity
between segmentations. The DZ, statistic in our case is defined to be

Deen (Ve Sx) =2 ) > papyd(y,s) = > Y pypyd(y,y') = D> > paperd(s,s),

YEYVx sESx YEVx Y €EVx SESx 8’ €Sk

where ps is our model’s probability prediction for the output x and py, is the ground truth probability.
In case the ground truth is not available like LIDC-IDRI, we use p,, = ﬁ where |)x| denotes the

cardinality of Vx. For our model, we choose Sx to be the top-N predictions. To be rigorous we
normalize the sum of their probabilities to be 1 (though which in fact has negligible effect since N
are usually chosen so that probability always almost sum up to 1). In the case of Probabilistic U-Net,
we use N random output samples and ps is replaced by @ = %

A.3 LIDC-IDRI SEGMENTATION

We use 6 layers in the prior and the posterior encoding networks, with output channel dimension
[32,64,128,192] + [256,512]. The code is of dimension 128. Our decoder has output channel
dimension [128,64, 32, 1]. We incorporate the code at the bottom level, namely the 1-st layer of
the decoder. For the Probabilistic U-Net, since the architecture is different, we used a structure
of similar capacity, with the parameter num_filter= [32,64,128,192] in its released version, and
follows the suggested hyperparameters in Kohl et al. (2018). For both networks, we use the binary

13
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Figure 6: Results from our model on the MNIST guessing task. Top-6 results with the predicted
uncertainties are shown.
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Figure 7: Results from Probabilistic U-Net on the MNIST guessing task. 6 random samples are
shown.

15



Under review as a conference paper at ICLR 2021

-
‘

Graderg
0.1869 0.1539

[Grader 1 [Grader 3

0.1736 0.1460

-

.
B
| | i
0.0187 j0.0010 0.0947 X . X

. v
B
" | |
j0.0003 j0.0000 0.0930 0.0842 X

*

Figure 8: Results from our model on the LIDC-IDRI segmentation task. Top-8 results with the
predicted uncertainties are shown.
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cross entropy loss, a batch size of 256, and use the learning rate schedule [le=*,5¢75 1e=5, 5e 9]
at [0, 30k, 90k, 120k] iterations.

Some additional results from our model and Probabilistic U-Net are shown in Fig.8,9 and Fig.10,
11, respectively.
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Figure 9: Results from our model on the LIDC-IDRI segmentation task. Top-8 results with the
predicted uncertainties are shown.
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Figure 10: Results from Probabilistic U-Net on the LIDC-IDRI segmentation task. 8 random sam-
ples are shown.
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Figure 11: Results from Probabilistic U-Net on the LIDC-IDRI segmentation task. 8 random sam-
ples are shown.
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