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Abstract
Recent advances in Large Language Models001
(LLMs) have demonstrated strong capabilities002
in tasks such as code generation and mathemat-003
ical reasoning. However, their potential to in-004
ternalize structured spatial knowledge remains005
underexplored. This study investigates whether006
LLMs, grounded in locally relative human ob-007
servations, can construct coherent global spa-008
tial cognition by integrating fragmented rela-009
tional descriptions. We focus on two core as-010
pects of spatial cognition: spatial perception,011
where models infer consistent global layouts012
from local positional relationships, and spatial013
navigation, where models learn road connectiv-014
ity from trajectory data and plan optimal paths015
between unconnected locations. Experiments016
conducted in a simulated urban environment017
demonstrate that LLMs not only generalize to018
unseen spatial relationships between points of019
interest (POIs) but also exhibit latent represen-020
tations aligned with real-world spatial distri-021
butions. Furthermore, LLMs can learn road022
connectivity from trajectory descriptions, en-023
abling accurate path planning and dynamic spa-024
tial awareness during navigation.025

1 Introduction026

Recent advances in large language models (LLMs)027

have demonstrated impressive performance across028

diverse tasks, including code generation, mathe-029

matical reasoning, and natural language genera-030

tion (Chen et al., 2021; Shao et al., 2024; Kojima031

et al., 2022). LLMs are trained on vast amounts032

of human-generated text (Achiam et al., 2023; Bai033

et al., 2023), including structured resources such034

as Wikipedia and informal unstructured dialogues.035

Since human language inherently relies on local036

semantic relationships, this enables LLMs to excel037

at capturing these context-dependent associations.038

However, it remains unexplored whether they can039

implicitly acquire a deep, structured understanding040

of global information from large amounts of frag-041

mented, localized data—and apply it to reasoning042
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Figure 1: Summary of our research framework: First,
construct a simulated environment and generate training
data with relative spatial relations and shortest paths.
Then, train the LLM and evaluate its spatial cognition
via explicit prediction tasks, latent representation analy-
sis, and route interference experiments.

and planning tasks such as spatial reasoning, route 043

optimization, or multi-step inference. 044

A prime example of a domain requiring struc- 045

tured understanding is spatial cognition—the abil- 046

ity to construct coherent mental representations of 047

physical environments. In human communication, 048

spatial relationships are often conveyed through 049

relational language (e.g., “The library is 100 me- 050

ters southeast of the park”), which, though concise, 051

encodes rich geometric information such as direc- 052

tion, distance, and topology. Humans seamlessly 053

integrate such fragmented descriptions into unified 054

mental maps, demonstrating a remarkable capacity 055

to derive global spatial understanding from local- 056

ized cues. This global cognition supports higher- 057

level spatial reasoning, navigation, and planning. 058

This reliance on human perspectives raises a 059
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fundamental yet underexplored question: To what060

extent can LLMs, grounded in locally relative hu-061

man observations, develop a coherent understand-062

ing of global space? In essence, we are asking if063

LLMs can learn to “connect the dots” on a vast,064

unseen map. This challenge goes beyond process-065

ing coordinate data—it requires understanding of066

spatial language, integrating fragmented descrip-067

tions, and building consistent mental maps. The068

model must comprehend geometric relationships069

(e.g., direction, distance), synthesize incomplete070

information, and maintain logical coherence across071

global spatial contexts—all without relying on vi-072

sual input or explicit coordinates.073

While prior studies have demonstrated that074

LLMs can encode geospatial information (Liétard075

et al., 2021; Treutlein et al., 2024) and model world076

knowledge from sequential data (Nanda et al.,077

2023; Hazineh et al.; Vafa et al., 2024), they have078

not systematically evaluated the ability of LLMs079

to construct a global spatial understanding solely080

from local, relative relationships between POIs.081

To explore this, we conduct a comprehensive082

analysis focusing on two core aspects of spatial083

cognition: 1) Spatial Perception: The ability of084

LLMs to integrate local descriptions of distances085

and azimuth angles between POIs into a global086

understanding of spatial layouts without explicit087

coordinate information. 2) Spatial Navigation:088

The ability of LLMs to extract topological knowl-089

edge from local shortest paths and perform shortest090

path planning between previously unseen POIs in091

the absence of explicit road network information.092

To enable a controlled investigation, we con-093

struct a simulated urban environment and introduce094

a two-stage training and analysis framework guided095

by two core research questions, which leverages096

two complementary data modalities: (1) relational097

spatial descriptions capturing pairwise distances098

and directions between points of interest (POIs);099

and (2) trajectory descriptions representing shortest100

paths across the environment. We analyze whether101

spatial cognition is formed and how it is expressed102

through three experimental paradigms: (1) Explicit103

spatial prediction, assessing task-level prediction;104

(2) Latent representation analysis, probing geome-105

try in hidden states; and (3) Robustness evaluation,106

measuring stability under navigational perturba-107

tions. The key findings are as follows:108

• LLMs can construct global spatial cogni-109

tion from local observations: LLMs demon-110

strate spatial perception by inferring unseen POI 111

relationships, and spatial navigation by plan- 112

ning optimal paths between unconnected loca- 113

tions—revealing coherent global understanding 114

emerging from fragmented linguistic input. 115

• LLMs can develop implicit spatial representa- 116

tions: LLMs encode absolute coordinates within 117

their latent space, aligned with real-world geom- 118

etry, and dynamically track their position during 119

navigation—indicating the emergence of implicit 120

spatial abstraction without explicit coordinates. 121

• LLM’s spatial navigation remains fragile un- 122

der perturbation: LLMs exhibit limited robust- 123

ness to path perturbations, with their recovery 124

ability dependent on the distribution of training 125

data, suggesting that their understanding of road 126

spatial information is limited, lacking a continu- 127

ous and precise representation. 128

2 Global Setup 129

Simulation Environment. To facilitate con- 130

trolled investigation and data collection, we con- 131

struct a synthetic 100× 100 grid map representing 132

a simplified urban layout. Roads run along hor- 133

izontal and vertical lines (x = i or y = j, for 134

0 ≤ i, j ≤ 100), with traversal weights w ran- 135

domly sampled from [0.8, 1.2] to simulate varying 136

traffic conditions—higher weights indicate faster 137

travel. We randomly place NPOI = 1024 points of 138

interest (POIs) on the grid, each assigned a unique 139

identifier pk (k ∈ 1, 2, . . . , 1024). Each grid unit 140

represents 1 km, with the x-axis pointing east and 141

the y-axis north. In addition, we explore the real- 142

world data and synthetic data in the Appendix C.3. 143

Task Formulation. To explore whether LLMs 144

can develop spatial cognition from natural language 145

descriptions, we define two research tasks that cap- 146

ture key aspects of spatial cognition: (1) Global 147

Spatial Perception — Can the model build a glob- 148

ally consistent understanding of spatial layouts 149

based on local, relational language descriptions? 150

(2) Dynamic Spatial Planning and Navigation — 151

Can the model infer the structure of an underlying 152

road network from local shortest-path descriptions, 153

and use this knowledge to dynamically plan routes 154

between previously unseen pairs of POIs? 155

Data. (1) The Relational Spatial Dataset is used 156

in the first stage to train the model to infer global 157

spatial structure from local pairwise relations. Each 158

sample computes the Euclidean distance d(pi, pj) 159
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and azimuth α(pi, pj) ∈ [−180◦, 180◦] between160

POIs (pi, pj), expressed through templated natu-161

ral language (e.g., “The distance from pi to pj is162

2.5 km, and the azimuth is 135 degrees.”). To163

enhance linguistic diversity, we vary the surface164

realizations of each template. (2) The Trajectory165

Dataset is used in the second stage to train dynamic166

spatial navigation. The road network is modeled as167

a weighted graph, and shortest paths between POIs168

are computed using Dijkstra’s algorithm. Each169

path is translated into multi-step natural language170

instructions (Dijkstra, 1959) (e.g., “Start at pi, go171

east on r3 for 3 km, then north on r8 for 2 km172

to reach pj”), capturing both directional and topo-173

logical structure. These datasets are introduced174

through continuous pre-training in two stages: first,175

to build coherent spatial representations from re-176

lational cues; and second, to acquire navigation177

capabilities based on learned connectivity.178

Model and Two-Stage CPT Training. We adopt179

a two-stage continual pre-training (CPT). Con-180

tinual pre-training enables the model to gradu-181

ally learn general linguistic knowledge and world182

knowledge from training data, without being con-183

strained by task-specific objectives. Our research184

focus is on whether LLMs can construct a globally185

consistent spatial map from localized relational186

inputs, thereby demonstrating how spatial under-187

standing can be internalized as the model’s cogni-188

tive ability through CPT. The two training stages189

correspond to our datasets: the first uses pairwise190

relational data to foster global spatial perception;191

the second uses path-based training to develop192

spatial navigation abilities. We use QWEN2.5-193

0.5B (Yang et al., 2024b) as our base model. We194

also examine the impact of model size and archi-195

tecture, with results in Appendix E.2.196

Analysis Approach Overview. To systemati-197

cally investigate the emergence of spatial cogni-198

tion in LLMs, we design experiments along three199

complementary dimensions: functional ability, in-200

ternal representation, and behavioral robustness.201

This framework moves beyond surface-level per-202

formance to probe the cognitive structures formed203

during training. Specifically, we assess whether the204

model can generate accurate spatial predictions, in-205

ternalize geometry-consistent representations, and206

maintain stable behavior under perturbations.207

• Explicit spatial prediction Evaluate the model’s208

ability to perform spatial perception and naviga-209

tion by predicting distances, azimuths, or shortest 210

paths between unseen POI pairs. 211

• Latent representation analysis Analyze the spa- 212

tial structure encoded in the model’s latent space. 213

We apply probing methods to assess whether 214

these representations exhibit geometry-consistent 215

properties, such as encoding absolute coordinates 216

or tracking positions during navigation. 217

• Robustness evaluation tests whether the model 218

can navigate accurately under perturbations, fo- 219

cusing on its ability to recover from trajectory 220

deviations and plan effectively under uncertainty. 221

Together, these experiments progress from func- 222

tional assessment to structural interpretation and 223

robustness evaluation, offering a comprehensive 224

view of how spatial cognition is encoded, com- 225

posed, and utilized within LLMs. 226

3 Modeling Global Spatial Perception 227

from Pairwise Relational Observations 228

In this section, we investigate the capacity of LLMs 229

to develop a holistic understanding of spatial layout 230

from local spatial relationships, without access to 231

absolute coordinates. 232

3.1 Results of Explicit Spatial Prediction 233

Setting. We first evaluate whether the LLM can 234

predict spatial relationships between unseen POI 235

pairs. We adopt the relational spatial dataset in 236

Section 2, and evaluate the model’s performance 237

under different train-test split ratios. We primarily 238

use an 8:2 split, while also testing 6:4 and 4:6. 239

To avoid data leakage, reciprocal POI pairs (e.g., 240

pi → pj , pj → pi) are always assigned to the same 241

subset. We denote the trained model as MODELper. 242

Split Ratio Distance Azimuth

MRPE (%) ↓ R² ↑ MRPE (%) ↓ Spearman ↑

8:2 0.11 1.00 0.79 1.00
6:4 0.85 1.00 3.67 0.98
4:6 2.63 0.99 5.36 0.98

Table 1: Prediction performance on distance and az-
imuth for unseen POI pairs across different train/test
splits. MRPE is the Mean Relative Percentage Error;
R2 and Spearman reflect consistency in distance and
azimuth predictions, respectively.

LLMs exhibit generalized spatial perception 243

across unseen POI pairs. As shown in Table 1, 244

MODELper achieves low mean relative percent- 245

age errors—0.11% for distance and 0.79% for az- 246

imuth—demonstrating strong consistency with the 247
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Split Ratio X Y Euclidean Distance

MSE ↓ MAE ↓ R² ↑ MSE ↓ MAE ↓ R² ↑ Mean ↓ Std. ↓

Base 887.76 25.99 -0.01 878.72 25.10 -0.10 39.19 15.18
8:2 1.16 0.78 1.00 0.91 0.71 1.00 1.18 0.82
6:4 1.30 0.76 1.00 1.55 0.82 1.00 1.26 1.12
4:6 2.60 1.24 1.00 3.86 1.45 1.00 2.13 1.39

Table 2: Performance of the MLP probe in predicting the absolute coordinates of POIs from the LLM’s last hidden
states. Base refers to the untrained LLM. X/Y Coordinate Accuracy: the accuracy of the predicted x and y
coordinates using MSE (Mean Squared Error), MAE (Mean Absolute Error) and R2 (Coefficient of Determination).
Euclidean Distance: the Euclidean distance between the predicted and true coordinates.
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Figure 2: Consistency between POI latent representa-
tions and actual spatial locations. Spearman and Pearson
coefficients measure monotonic and linear relationships,
respectively.

ground truth. This highlights the model’s ability248

to infer spatial relationships between unseen POI249

pairs, confirming its success in generalizing spatial250

perception from local relative relationships.251

The strength of generalization is affected by252

training data scale. As the proportion of training253

data increases, the model’s accuracy in predicting254

the relative spatial positions of unseen POI pairs255

improves, with errors decreasing from 2.63% to256

0.11% across different train/test splits. This trend257

underscores the critical role of training data scale258

in enhancing the model’s ability to develop a robust259

and generalizable global spatial perception.260

3.2 Do LLMs Construct Structured Latent261

Spatial Representations?262

Setting. To investigate whether the model develops263

spatial perception beyond explicit prediction, we264

conduct a series of experiments on its latent space.265

These experiments aim to evaluate whether the266

model encodes spatial coordinate information, how267

it aligns with physical geometry, and whether spa-268

tial relationships can be compositionally inferred.269

Latent representations encode absolute coordi-270

nates. First, we use an MLP probe (Probeloc)271

to examine whether the model implicitly encodes272

absolute POI coordinates in its last hidden state. 273

Specifically, we encode POI names pi using 274

MODELper and extract their last hidden states as la- 275

tent representations. These vectors are then fed into 276

Probeloc, a non-linear regressor that maps them to 277

2D spatial coordinates (x, y). We randomly assign 278

90% of the POIs for training and use the remaining 279

10% for evaluation. The specific MLP configura- 280

tion is provided in Appendix B. 281

As shown in Table 2, predictions from Probeloc 282

yield low Mean Absolute Error, high R2, and small 283

Euclidean deviations, indicating that the last hidden 284

states of MODELper effectively capture absolute co- 285

ordinate information. This suggests that the model 286

not only learns local spatial relations between POIs, 287

but also internalizes a coherent global spatial struc- 288

ture with precise absolute positioning. 289

Latent spatial layout aligns with physical geome- 290

try. We further examine the consistency between 291

the last hidden states of POIs and their actual geo- 292

graphic locations. For any three distinct POIs (pi, 293

pj , and pk), we explore two types of spatial con- 294

sistency: 1) Distance Consistency: the correlation 295

between hidden space vector distances (pi-pj , pj- 296

pk, pi-pk) and corresponding Euclidean distances 297

on the map. 2) Angle Consistency: the alignment 298

between angles formed by hidden state vectors and 299

those formed by the physical locations. 300

The results in Figure 2 show a strong alignment 301

between the POIs’ spatial layout in latent space 302

and their real-world geography, with consistently 303

high Spearman and Pearson correlations for both 304

distance and angle consistency. This suggests that 305

the model’s spatial understanding is internalized 306

in its latent representations, beyond mere predic- 307

tion accuracy. Unlike probing methods, which train 308

an external model to extract absolute coordinates, 309

this experiment directly examines the latent repre- 310

sentations, providing more direct evidence of the 311
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Figure 3: Latent spatial composition evaluation. An MLP predicts distance and azimuth between POI pairs using
their concatenated hidden states. We use MAE to measure the deviation between the predicted and true values, and
use R² and Spearman correlation to assess the consistency.

model’s structured spatial understanding.312

Spatial relations are recoverable via compo-313

sitional inference over latent representations.314

Building upon these consistent findings, we fur-315

ther investigate whether the latent representations316

of individual POIs can be compositionally manip-317

ulated to infer relative spatial relationships. For318

any two POIs, pi and pj , we extract their last hid-319

den states, concatenate them, and feed the result320

into an MLP probe (denoted as Probegeo), which321

is trained to regress a 2D output representing the322

distance and azimuth between pi and pj . We ran-323

domly select 100 POIs for evaluation and use the324

remaining POIs for training.325

Figure 3 shows that Probegeo accurately predicts326

the distance and azimuth between POIs with low327

MAE (0.85 & 3.49) and high R2 (1.00 & 0.98), in-328

dicating that relative spatial relationships between329

POI pairs can be directly derived by composing330

their individual POI latent representations. This fur-331

ther validates the correctness of the spatial structure332

captured in the model’s latent space and demon-333

strates the compositionality of its representations,334

enabling spatial reasoning tasks to be performed335

directly through the combination of latent vectors.336

4 Modeling Spatial Navigation from337

Local Trajectories338

We investigate the ability of LLMs to learn road339

connectivity and spatial navigation capabilities340

from local trajectory data. The custom evaluation341

metrics defined in this section are shown in Table 3. 342

4.1 Results of Explicit Spacial Prediction 343

Setting. To facilitate generalization analysis, we 344

hold out a subset of 200 POIs (denoted as Pheldout), 345

which selectively participate in shortest-path train- 346

ing. For the remaining POIs (denoted as Pmain), 347

we generate shortest-path trajectories for all valid 348

point pairs, and use 80% of these pairs for training. 349

We denote the trained model as MODELnav. 350

Models generalize shortest-path planning to un- 351

seen POI pairs by learning from localized tra- 352

jectories. To evaluate model performance under 353

the partially observable condition where all POIs 354

appear as either origins or destinations (but not 355

both) in the training data, we incorporate Pheldout 356

by adding trajectories between Pheldout and Pmain 357

POIs, while paths between Pheldout POIs remain 358

unseen (denoted as Bridged Exposure setting). 359

Table 4 shows that MODELnav excels in shortest- 360

path prediction, with an exact match accuracy of 361

83.63%. This suggests that the model effectively 362

generalizes road connectivity patterns, not just 363

memorizing seen trajectories, but also performing 364

well on unseen POI pairs. 365

Models exhibit an emerging ability to compose 366

spatial layout understanding and road network 367

topology for navigation in unseen regions. To 368

further investigate whether the model can lever- 369

age the spatial layout understanding established in 370

Section 3 to perform shortest-path navigation in 371
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Metric Full Name Description

SED Start-End Deviation Euclidean distance between the predicted start/end points (p̂i, p̂j) and actual POIs (pi, pj); composed of
Start Point Deviation (SPD) and End Point Deviation (EPD).

VRP Valid Road Proportion Proportion of legal roads selected at each step based on the current position.
SPA Shortest Path Accuracy Fraction of predicted trajectories that exactly match the true shortest path.
VMR Vector Magnitude Ratio Compares straight-line distances between (pi, pj) and (p̂i, p̂j) to assess distance similarity.
VCS Vector Cosine Similarity Cosine similarity between displacement vectors pi → pj and p̂i → p̂j , indicating directional consistency.
FD Fréchet Distance Measures geometric similarity between predicted and ground truth trajectories via path point sequences.
FSA First-Step Accuracy Proportion of correct first road selections after applying perturbation to the initial point.
SA Subsequent Accuracy Proportion of correct road selections in all subsequent steps after the first.
DD Destination Deviation Euclidean distance between the final predicted destination and the actual end point.

Table 3: Evaluation Metrics for Predicted Shortest Paths and Path Perturbations

Method Accuracy Consistency

SPD ↓ EPD ↓ VRP (↑%) SPA (↑%) VMR (↑1.0) VCS (↑1.0) FD (↓0.0)

Zero-Exposure (Base) 49.26 49.81 87.97 0.00 0.97 0.10 58.39
Zero-Exposure 5.33 10.20 94.84 0.00 0.97 0.96 13.76

Bridged Exposure 0.06 0.48 96.07 83.63 1.00 1.00 0.91

Table 4: Performance of different training settings on shortest path prediction between POIs in Pheldout. (Base)
denotes the model trained on the base model.

unseen regions, we ensure that the POI set Pheldout372

does not participate in the training data (denoted373

as No-Exposure setting, these unseen POIs rep-374

resent unseen regions). We then compare the per-375

formance between: (1) Perception-MODELnav- the376

model trained on MODELper (with spatial layout un-377

derstanding), and (2) Base-MODELnav- the model378

trained on the base model (as baseline).379

The results in Table 4 reveal that MODELnav,380

while trained on MODELper without direct expo-381

sure to Pheldout POIs during shortest-path training,382

performs better than the baseline. The model shows383

improvements in both Start-End Deviation (SPD,384

49.26→ 5.33) and significant gains in directional385

(VCS, 0.10→ 0.96) and geometric (FD, 58.39→386

13.76) consistency metrics compared to the base-387

line. This suggests that while MODELnav may not388

yet fully excel at shortest-path navigation in un-389

seen regions, it demonstrates the ability to combine390

the understanding of POI spatial layout with the391

understanding of road network topology.392

4.2 Can LLMs Develop Spatial Perception of393

POI Positions Based on the Shortest Path394

Trajectory Data?395

Setting. We next examine whether the model396

retains spatial perception of POI locations. To397

this end, we compare models trained under the398

Bridged Exposure setting on MODELper and the399

base model (denoted as Perception-MODELnav and400

Base-MODELnav). The untrained base model is401

also included for comparison.402

The model still demonstrates an understand- 403

ing of the spatial layout of POIs in its latent 404

representations. To assess whether the model’s 405

latent space still encodes absolute coordinate in- 406

formation, we apply the same probing strategy as 407

in Section 3.2. As shown in Table 5, although 408

the spatial perception learned by Base-MODELnav 409

is less precise than that of Perception-MODELnav, 410

the model trained solely on shortest-path trajec- 411

tories shows significant improvements across all 412

evaluation metrics compared to the base model 413

(e.g., X-MAE: 25.99→ 7.08, X-R²: -0.01→ 0.89). 414

This demonstrates that even when trained solely on 415

shortest-path trajectories, the model’s latent space 416

can encode a certain degree of absolute coordinate 417

information, highlighting the effectiveness of such 418

data in fostering deeper spatial perception. 419

The model can dynamically recognize its current 420

position during the navigation process. We 421

evaluate the model’s ability to encode absolute co- 422

ordinates at each step of a predicted path using 423

the same probing setup as in previous experiments. 424

This allows us to assess whether the model can 425

dynamically track spatial positions as the path un- 426

folds. To do so, we segment each predicted path 427

into discrete navigation steps (e.g., “go east along 428

r1 for 4km”). At each step, we extract the model’s 429

last hidden state from the full input sequence up to 430

that point. The true coordinate of the current loca- 431

tion is used as supervision for probe training. For 432

evaluation, we randomly select 200 POIs as held- 433

out points and use the remaining POIs to construct 434
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Model X Y Euclidean Distance

MSE ↓ MAE ↓ R² ↑ MSE ↓ MAE ↓ R² ↑ Mean ↓ Std. ↓

Absolute Coordinate Probing
Base Model 887.76 25.99 -0.01 878.72 25.10 -0.10 39.19 15.18

Perception-MODELnav 8.53 2.16 0.99 10.21 2.40 0.99 3.54 2.49
Base-MODELnav 100.75 7.08 0.89 85.52 7.13 0.89 11.29 7.67

Step-wise Coordinates Probing
Base Model 713.44 19.76 0.05 621.05 18.39 0.17 30.39 20.30

Perception-MODELnav 6.51 1.84 0.99 6.96 1.94 0.99 3.01 2.10
Base-MODELnav 22.60 2.89 0.97 21.98 2.90 0.97 4.72 4.71

Table 5: Performance of the MLP probe in predicting the absolute coordinates of POIs and dynamic position
coordinates at each step of the generated navigation path from the model’s last hidden states.

the training set. We sample 20,000 training trajec-435

tories using only the training POIs as both start and436

end points, and 1,000 evaluation trajectories where437

the endpoints are drawn from the held-out POIs.438

As shown in Table 5, at each step of the model’s439

navigation, the absolute coordinate position can440

be clearly extracted from its hidden state (e.g., X-441

R² 0.05→ 0.97). This demonstrates the model’s442

ability to encode and dynamically update its cur-443

rent position at each navigation step, indicating its444

capacity for dynamic spatial location cognition.445

4.3 Are LLMs Robust to Path Perturbations446

When Navigating to a Destination?447

Setting. To assess the robustness of the model to448

trajectory perturbations, we introduce controlled449

deviations during path prediction to simulate realis-450

tic detours, and evaluate whether the model can still451

reach the intended destination. These experiments452

are based on the Perception-MODELnav defined in453

Section 4.2. We define pperturb as the perturbation454

point and ptarget as the immediate location reached455

after the deviation. Based on this, we design several456

perturbation strategies. We identify the step in the457

predicted trajectory corresponding to the road seg-458

ment with the highest traversal speed and designate459

it as the critical step, denoted as scritical.460

Type FSA (%) SA (%) DD (km)

No Pert. 100.00 100.00 0.00
Road Pert. 11.85 62.70 26.99

Distance Pert. 58.79 77.71 20.24
Direction Pert. 43.61 74.87 56.08

Table 6: Navigation performance under various pertur-
bation strategies applied at critical path steps.

The model exhibits poor robustness against ran-461

dom disturbances. We apply the following types462

of random perturbations to scritical: 1) Road Pertur-463

bation: Replace the original road name in scritical 464

with a different road (the direction should be modi- 465

fied accordingly); 2) Distance Perturbation: Ran- 466

domly adjust the distance at scritical, ensuring that 467

it does not exceed the remaining distance to the 468

destination. 3) Direction Perturbation: Invert the 469

heading direction in scritical (e.g., “east”→ “west”). 470

We select 10,000 cases with original correct pre- 471

dictions by the model for evaluation. 472

The experimental results in Table 6 show that the 473

model performs poorly when confronted with ran- 474

dom perturbations, and its robustness varies across 475

different types of disturbances. Specifically, in the 476

road perturbation scenario, the model only has an 477

11.85% chance of selecting the first valid passable 478

road, indicating that it does not have a precise un- 479

derstanding of its current location, or it lacks clarity 480

on the available roads at its current position. This 481

suggests that the model’s understanding of the road 482

network is not coherent. 483
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Figure 4: Heatmap of turning point frequencies in short-
est paths. The left side shows the training data statistics,
while the right side shows the test data statistics.

The model’s robustness to disturbances largely 484

depends on the distribution of the training data. 485

The results reveal a distinction between distance 486

(or direction) perturbation and road perturbation. 487

When subjected to distance or direction perturba- 488

tions, the model remains on the original high-speed 489

road, such as those within scritical. In contrast, road 490

perturbations often randomly cause the model to 491
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Figure 5: The model’s performance under different fre-
quency thresholds. A higher frequency threshold indi-
cates that the new starting point after the interference
appears more frequently in the paths of the training data.

deviate onto slower roads. The roads within scritical,492

which are frequently selected in the shortest-path493

training data and feature higher-frequency entry494

and exit points along with corresponding turning495

patterns, are more robust to disturbances.496

To analyze the impact of turning points, we497

count the frequency of points in the datasets498

where the direction of movement changes. High-499

frequency turning points generally correspond to500

transitions between high-speed and regular roads501

(Figure 4). We control the selection of pperturb and502

ptarget by ensuring the location frequency exceeds a503

threshold τ . We select 8,464 cases and analyze how504

the model’s performance varies across different τ .505

As shown in Figure 5, the model’s performance506

improves with an increase in the frequency thresh-507

old (τ ) for selecting pperturb and ptarget. This sug-508

gests that the model is more robust to perturbations509

at high-frequency turning points—enabling it to510

recover more effectively and reorient towards the511

correct destination. We provide further analysis512

and examples in Appendix D.3.513

These results suggest that although the model ex-514

hibits a degree of robustness to perturbations, its re-515

covery ability is highly dependent on the frequency516

of turning points encountered during training. This517

reliance implies that the model’s understanding of518

the road network is likely fragmented and localized,519

rather than comprehensive and global.520

5 Related Work521

World Cognition Previous studies have demon-522

strated that LLMs can encode real-world geospa-523

tial (Liétard et al., 2021; Treutlein et al., 2024)524

information and temporal (Gurnee and Tegmark)525

information within their internal representations.526

However, most of these studies use pretrained 527

LLMs in non-anonymized experiments and have 528

not fully explored the source of these capabilities. 529

Concurrently, many works have focused on the abil- 530

ity of LLMs to learn and internalize rules of the 531

physical world or form a “world cognition” of spe- 532

cific tasks from sequential data, such as in board 533

games (Nanda et al., 2023; Li et al., 2023; Hazineh 534

et al.) or simulated navigation (Jin and Rinard, 535

2024; Martorell, 2025; Vafa et al., 2024). Unlike 536

predicting the next token based on sequential data, 537

our work focuses on whether LLMs can create 538

a global understanding from natural language de- 539

scriptions of local observations. 540

Urban Space Reasoning Some works focus on 541

evaluating and enhancing the geospatial reason- 542

ing capabilities of LLMs (Feng et al., 2024a,b; Li 543

et al., 2024). These studies enhance LLMs through 544

knowledge training, external information, or tool 545

use to adapt to spatial reasoning tasks in urban sce- 546

narios. In contrast, we focus on evaluating whether 547

LLMs can reconstruct a global spatial understand- 548

ing from local descriptions. 549

Spatial Cognition Spatial cognition capabilities 550

are essential for LLMs to understand physical 551

environments and perform tasks involving spa- 552

tial reasoning. Many works focus on evaluating 553

and enhancing the spatial cognition capabilities of 554

LLMs (Mirzaee et al., 2021; Momennejad et al., 555

2023; Ramakrishnan et al., 2024), particularly in 556

MLLM settings involving spatial memory and path 557

reasoning (Yang et al., 2024a; Wu et al., 2024; Yu 558

et al., 2025). Our work examines text-only LLMs’ 559

ability to construct global spatial cognition from 560

localized natural language observations, without 561

relying on global information or coordinates. 562

6 Conclusion 563

Our study shows that LLMs can develop a global 564

spatial understanding by training on local relative 565

positions and shortest-path data. This is evident 566

in their ability to generalize to unseen POI-pair 567

relationships and in the strong alignment between 568

latent representations and real-world geographic 569

structures. These findings suggest that the model 570

can autonomously build structured spatial cogni- 571

tion from unstructured language to support spatial 572

reasoning. However, its limited robustness to nav- 573

igation disturbances reveals the constraints of its 574

understanding of road network structures. 575
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Limitations576

Our study reveals that during the training process,577

the model develops an understanding of the global578

spatial distribution of Points of Interest (POIs)579

through the description of local relative relation-580

ships. However, how the model utilizes such spatial581

understanding when explicitly predicting positional582

relationships and shortest-path trajectories between583

unseen point pairs has not been fully analyzed. Our584

experiments lack an in-depth investigation into the585

internal mechanisms underlying the model’s ex-586

plicit predictions of relative positions and shortest-587

path trajectories, which we will explore in future588

work. Furthermore, our training process has im-589

pacted the model’s original general language capa-590

bilities. Given that our work is primarily analytical591

rather than enhancement-oriented, although the is-592

sue of catastrophic forgetting does exist, it does593

not affect our evaluations or conclusions within the594

context of our assessment scenarios. Nevertheless,595

in future downstream application scenarios, how596

to balance the model’s general capabilities with its597

internal spatial cognitive abilities remains an open598

research question.599

Ethics Statement600

We hereby acknowledge that all authors of this601

work are aware of the provided ACL Code of Ethics602

and honor the code of conduct.603

Datasets Source All studies in this work are604

based on a simulated, synthetically constructed605

dataset. The generated data is solely for model606

analysis research and contains no other usable infor-607

mation. To ensure privacy and ethical compliance,608

the dataset has been anonymized with placeholder609

names and contains no real-world information. As610

a result, the risk of sensitive information leakage is611

effectively eliminated.612

AI assistants AI assistants (ChatGPT) were613

solely used to improve the grammatical structure614

of the text.615
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A Notation Table761

Definition

Task Formulation
G A graph where intersections are nodes, roads

remain unchanged, and the average travel
speed is used as the edge weight.

pi Names of Points of Interest.
ri Names of roads.

MODELper LLM trained on data describing the relative
positional relationships between POIs.

MODELnav LLM trained on data describing the shortest
path trajectories.

Metrics
MSE Mean Squared Error, a metric quantifying

the average squared difference between pre-
dictions and actual values.

MRPE Mean Relative Percentage Error, a metric
quantifying the average relative percentage
difference between predictions and actual
values.

MAE Mean Absolute Error, a metric quantifying
the average absolute difference between pre-
dictions and actual values.

RMSE Root Mean Squared Error, a metric quanti-
fying the square root of the average squared
difference between predictions and actual
values.

R² R-squared, a metric quantifying the propor-
tion of the variance in the dependent variable
that is predictable from the independent vari-
able(s).

Spearman Spearman correlation coefficient, a metric
measuring the strength and direction of the
monotonic relationship between two vari-
ables.

Pearson Pearson correlation coefficient, a metric mea-
suring the strength and direction of the linear
relationship between two variables.

FD Fréchet Distance, a metric that measures the
similarity between two curves by consider-
ing the location and ordering of points.

Table 7: The notation table.

In Table 7, we list the notations and abbrevia-762

tions in this paper, together with their definitions.763

B Training Parameters764

LLM Training For the continual pre-training of765

the LLM, we use 4×A800 80G GPUs with a batch766

size of 128, a learning rate of 1.0e−4, and a warmup767

ratio of 0.1, training for 10 epochs. Additionally,768

we designate the POI names P = {pi}1024i=1 and769

road names R = {ri}200i=1 as special tokens.770

For the SFT of the LLM, we train on a single771

A800 80G GPU with a batch size of 256, a learning772

rate of 3.0e−5, a warmup ratio of 0.1, and train for773

10 epochs. We use Llama-Factory as our training774

framework (Zheng et al., 2024).775

Probe We use the MLPRegression model from 776

scikit-learn (Pedregosa et al., 2011). The MLP 777

probe we use consists of two hidden layers, with 778

128 and 64 neurons, and ReLU activation functions. 779

The model is trained using the Adam optimizer 780

with an initial learning rate of 0.001, and L2 regu- 781

larization (alpha = 0.0001) with adaptive learning 782

rate adjustment. The maximum number of training 783

epochs is set to 500, and early stopping is enabled 784

based on validation set performance (patience = 785

100 epochs), with a validation set proportion of 786

10%. The batch size is adjusted automatically dur- 787

ing training, and data is shuffled before each epoch 788

to improve generalization. All models and tools 789

are publicly available for research purposes. 790

C Experimental Details in Modeling 791

Spatial Cognition 792

C.1 POI Distribution 793

The spatial distribution of POI points in Section 2 794

is shown in the Figure 6. 795
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Figure 6: POIs Distribution.

C.2 Data Format 796

We provide examples of the data format used for 797

training, as shown in Table 8. 798

C.3 Additional Experiment 799

POI-in-Area Prediction We design a simple spa- 800

tial reasoning task that is inconsistent with the form 801

of the training data in Section 2. We train the 802

MODELper through supervised fine-tuning to de- 803

termine whether a specific POI lies within a given 804
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Data Format

The distance from pi to pj is 1000 meters, with an azimuth of
30 degrees.

The distance from pi to pj is 1000 meters, and the azimuth
from pi to pj is 30 degrees.

The azimuth from pi to pj is 30 degrees, with a distance of
1000 meters.

Q: What is the distance from pi to pj?
A: 1000 meters.

Q: What is the azimuth from pi to pj?
A: 30 degrees.

Q: What is the azimuth and distance from pi to pj?
A: 30 degrees and 1000 meters.

Table 8: Different Forms of Training and Evaluation
Data for Positional Relationship Description.

Data Format

Start at pi, then go north on ri for 2km, then go east on rj for
10km, and you will arrive at pj .

To get from pi to pj , go along r1 heading north for 2km, then
go along r2 heading east for 10km.

What is the shortest path from pi to pj?
Answer: First, go north on r1 for 2km, then go east on r2 for
10km.

What is the shortest path from pi to pj?
Answer: Go along r1 heading north for 2km, then go along
r2 heading east for 10km.

Table 9: Different Forms of Training and Evaluation
Data for Shortest Path Description.

region. We consider two types of region descrip-805

tions: 1) a circular region defined by a central POI806

and a given radius; 2) a triangular region formed807

by three POIs. The LLM is required to provide a808

“yes” or “no” answer.809

Additionally, we reserve a quarter of the POI810

points in the Map region, which are not included in811

the region descriptions of the SFT training data and812

are only used for evaluation. The remaining POIs813

are randomly sampled and divided into training and814

testing sets. We directly use prediction accuracy815

for evaluation.816

Real World POIs The representation used in our817

synthetic data is universal and transferable. Real-818

world geographic data can be represented using our819

method and used for training, with no substantial820

differences between synthetic and real-world data.821

The focus of our work is to evaluate whether822

LLMs can construct global cognition from discrete823
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local descriptions; thus, using synthetic data is ap- 824

propriate here. Building spatial cognition in prac- 825

tical scenarios and accomplishing related down- 826

stream tasks will be the focus of future work. 827

Also, collecting real-world data is challenging, 828

especially the shortest path between two POIs, as 829

the shortest path depends not only on distance but 830

also on road conditions of each segment. In our 831

synthetic dataset, we design a road weighting mech- 832

anism to simulate real-world road conditions. This 833

weight represents the average driving speed of each 834

segment. For routes with the same straight line 835

distance, driving speeds may vary due to factors 836

such as road roughness or curvature. 837

To enhance the realism and generalizability of 838

the experiments, we sample 1,000 real-world POIs, 839
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POI Type Circle (%) Triangle (%)

Included (8:2) 98.8 96.2
Excluded (8:2) 97.1 97.9

Included (6:4) 98.9 97.8
Excluded (6:4) 96.1 95.8

Table 10: Prediction accuracy for POI-in-Area experi-
ment.

represented by their geographic coordinates (lat-840

itude and longitude). As with the synthetic data,841

we compute the pairwise Euclidean distances and842

azimuths, and split the dataset into training and843

testing sets (80/20).844

The LLM training parameters remain consistent845

with those used for the synthetic data. The predic-846

tion accuracy for distances and azimuths on unseen847

POI pairs is shown in Table 11.848

Distance Azimuth

MRPE (%) ↓ R² ↑ MRPE (%) ↓ Spearman ↑

0.30 1.00 0.53 1.00

Table 11: Prediction performance for distance and az-
imuth on unseen POI pairs in real-world scenarios.

The experimental results indicate that in more849

complex real-world scenarios, the model can also850

accurately model global positional cognition based851

on local relative positional relationships. We do not852

conduct experiments on the shortest path in real-853

world scenarios. This is because shortest path data854

is often difficult to collect in real-world settings,855

and our synthetic data simulates traffic conditions856

on real roads through weights, which is sufficient857

for our evaluation scenarios.858

D Experimental Details in Modeling859

Spatial Navigation860

D.1 Data Format861

We provide examples of the data format used for862

training and evaluation of MODELnav, as shown in863

Table 9.864

D.2 Metric Calculations865

Start-End Deviation (SED) : evaluates the spa-866

tial accuracy of the predicted path description by867

computing the Euclidean distance between pre-868

dicted and ground truth coordinates at both the869

start and end points. The predicted trajectory is870

reconstructed by simulating the movement along 871

a parsed sequence of road-based navigation steps 872

using map information. The final metric is reported 873

as a tuple: Start Deviation (SD) and End Deviation 874

(ED). Detailed computation logic is provided in 875

Algorithm 1. 876

Valid Road Proportion (VRP) : measures the 877

proportion of valid road choices at each step of the 878

predicted path description. The path is parsed into a 879

sequence of steps, and for each step, the algorithm 880

checks if the road and direction are valid accord- 881

ing to the map’s connectivity and direction rules. 882

The final metric, VRP, is the ratio of valid steps to 883

the total steps in the path description. If no steps 884

are described, the VRP is defined as 0. Detailed 885

computation logic is provided in Algorithm 2. 886

Shortest Path Accuracy (SPA) : measures the 887

proportion of cases where the model-generated tra- 888

jectory exactly matches the ground truth shortest 889

path. 890

D.3 Case Study 891

Failure Analysis In terms of distance and az- 892

imuth prediction, the model demonstrates high ac- 893

curacy, with most errors occurring in the shortest 894

path prediction task, especially in the presence of 895

perturbations. 896

To better understand the failure modes of the 897

model in shortest path prediction, we conducted 898

an error analysis. We categorized prediction errors 899

into three types: 1) start point errors, 2) intermedi- 900

ate path errors, and 3) end point errors. Since end 901

point errors are always a consequence of one of the 902

first two types, we do not report them separately. 903

The breakdown of errors on the test set (in terms 904

of error count / total number of test cases) is as 905

follows: 906

• Start point errors: 917 / 39800 907

• Intermediate path errors: 5656 / 39800 908

In intermediate path errors, we record the step at 909

which the first error occurs. The distribution is as 910

follows: 911

Step 1 2 3 4 5 6 7 8 9

Error Count 1819 2254 1049 367 113 39 13 1 1

Table 12: Distribution of the step where the first error
occurred in intermediate path errors

We further categorize the causes of intermediate 912

path errors into the following types: 913
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• Direction errors: 894914

• Road name errors: 37 (cases where the direction915

is correct but the road name is incorrect)916

• Distance errors: 4725917

These results indicate that most errors stem from918

a single incorrect step in the intermediate path (er-919

rors mainly occur in the early steps, primarily be-920

cause the average number of steps across all cases921

is 5.2).922

It is worth noting that most intermediate path923

errors are caused by incorrect distance predictions,924

accounting for 4725 out of 5656 cases.925

Disturbance Case Figure 12 demonstrates the926

performance of LLM in handling intermediate dis-927

turbances under different turning point frequencies.928

As the frequency increases, LLM exhibits stronger929

robustness against disturbances and can reach the930

final destination after being disturbed. When the931

frequency is low, the model is more prone to output932

interruptions (e.g., not knowing where to go).933

D.4 Additional Experiment934

Model Distance % ↓ Azimuth % ↓

Perception-MODELnav 3.08 5.52
Base-MODELnav 12.03 13.84

Table 13: Evaluation results for distance and azimuth
prediction, evaluated using MRPE.

The model remains capable of performing ex-935

plicit spatial relationship prediction. To assess936

whether the model directly trained on path data can937

still understand the relative positional relationships938

between POIs, we fine-tune it with supervised train-939

ing to predict the distance and azimuth between940

POI pairs. We use 200 POIs to construct the test941

set, while the remaining POIs are used to generate942

the training data (randomly sample 100,000 cases).943

The results in Table 13 show that training the944

base model on shortest-path trajectories (Base-945

MODELnav) allows it to capture the relative spatial946

relationships between POI pairs, achieving reason-947

able performance in both distance and azimuth pre-948

diction, with MRPE values of 12.03% and 13.84%,949

respectively. This suggests that, even without di-950

rectly relying on local distance and azimuth infor-951

mation between POI pairs, the model is still able952

to leverage shortest-path trajectories to build a cer-953

tain level of global spatial perception. This also954

indicates that shortest-path trajectories, as a topo- 955

logically structured data format, are effective in 956

constructing an understanding of spatial layout. 957

E Additional Experiments and Results 958

E.1 Training Strategy 959

Training Strategy Distance Azimuth

MRPE ↓ R² ↑ MRPE ↓ Spearman ↑

CPT 0.11 1.00 0.79 1.00
SFT 0.003 1.00 0.025 1.00

Table 14: The performance of the model’s prediction
of distance and azimuth for unseen POI pairs under
different training strategies.
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Figure 9: Consistency of POI point last hidden state
vector with actual spatial location in terms of distance
and angle under different training strategies.

Our primary experiments adopt a continual 960

pre-training approach for LLM training. In ad- 961

dition to this, we explore the use of SFT for 962

training MODELper and MODELnav. For train- 963

ing MODELper, we retain the question-answer for- 964

mat data from the original complete dataset and 965

adopt an 80/20 split for training and test sets. For 966

MODELnav, we follow the Bridged Exposure strat- 967

egy. We evaluate whether the LLM trained with 968

SFT can perform explicit predictions and construct 969

cognitive representations in the latent space. 970

We conduct training using 4×A800 80G GPUs, 971

with a batch size of 512 and a learning rate set to 972

3.0e-5. The LLM is trained for 10 epochs. 973

Spatial Perception The experimental results for 974

evaluating Spatial Cognition are shown in Table 14, 975

Table 15, Table 16 and Figure 9. 976

Experimental results show that while SFT- 977

trained LLM outperform CPT-trained LLM in dis- 978
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Training Strategy X Y Euclidean Distance

MSE ↓ MAE ↓ R² ↑ MSE ↓ MAE ↓ R² ↑ Mean ↓ Std. ↓

Base 887.76 25.99 -0.01 878.72 25.10 -0.10 39.19 15.18
CPT 1.16 0.78 1.00 0.91 0.71 1.00 1.18 0.82
SFT 406.66 15.41 0.46 373.35 14.23 0.53 23.10 15.69

Table 15: Performance of the MLP probe in predicting the absolute coordinates of POIs from the LLM ’s last
hidden states under different training strategies.

Training Strategy Distance Azimuth

MAE (km) R² MAE (°) Spearman

Base 14.90 0.03 39.12 0.62
CPT 0.85 1.00 3.49 0.98
SFT 31.62 -2.92 66.48 0.38

Table 16: Latent spatial composition evaluation. An
MLP predicts distance and azimuth between POI pairs
using their concatenated hidden states.

tance and azimuth prediction accuracy, they exhibit979

weaker latent spatial cognition, as evidenced by980

blurred awareness of absolute coordinates in hid-981

den states and poor alignment between latent vector982

distributions and actual spatial layouts.983

This result is expected, as the POI name tokens984

in the SFT training process do not directly con-985

tribute to the loss calculation. Consequently, their986

embeddings are not explicitly optimized, leading987

to a lack of structured distribution in the latent988

space. This highlights the importance of contin-989

ual pre-training for fostering deeper internal rep-990

resentations. At the same time, it suggests that991

a well-structured latent distribution of individual992

POIs is not strictly necessary for predicting relative993

relationships between unseen POI pairs.994

Spatial Navigation The experimental results for995

evaluating Spatial Navigation are shown in Table 17996

and Table 18.997

In addition, we further train the continual pre-998

trained model MODELper using the sft approach for999

the shortest path task, and evaluate its robustness1000

against disturbances. The experimental results are1001

shown in Table 19 and Figure 10.1002

Experimental results show that Cognition-1003

ModelTwo trained via SFT exhibits robustness com-1004

parable to that of the CPT-trained counterpart, with1005

both being influenced by the training data distri-1006

bution—performing better at critical points with1007

larger thresholds. Meanwhile, when facing ran-1008

dom disturbances, the SFT-trained model reaches1009

destinations closer to the target on average, but1010

demonstrates a significantly lower proportion of 1011

selecting valid roads at each step. 1012
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Figure 10: Performance metrics (FSA, SA, Mean/Me-
dian DD) versus high-frequency point thresholds. Left
y-axis: FSA/SA; Right y-axis: DD (km).

E.2 Model Architecture and Scale 1013

To investigate the impact of architecture and pa- 1014

rameter scale on models’ spatial cognition, in 1015

addition to Qwen2.5-0.5B used in the main ex- 1016

periments, we further examine the performance 1017

of Qwen2.5-1.5B, Qwen2.5-3B, and LLaMA-3.2- 1018

1B. (AI@Meta, 2024). 1019

Spatial Perception The results are shown in Ta- 1020

ble 25, Table 24 and Table 26. Experiments show 1021

that for the Qwen2.5 series models, as the model 1022

parameter scale increases, no significant improve- 1023

ment is observed in the explicit prediction of dis- 1024

tance and azimuth, nor in the probing accuracy of 1025

absolute coordinates. Even when the model pa- 1026

rameter scale is small (0.5B), it already achieves 1027

high accuracy. In addition, models with different 1028

architectures (LLaMA) also demonstrate highly ac- 1029

curate modeling cognition of relative positions and 1030

absolute coordinates, presenting consistent experi- 1031

mental conclusions. 1032
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Training Strategy Accuracy Consistency

SPD ↓ EPD ↓ VRP (↑%) SPA (↑%) VMR (↑1.0) VCS (↑1.0) FD (↓0.0)

CPT 0.06 0.48 96.07 83.63 1.00 1.00 0.91
SFT 0.02 0.02 99.65 97.34 1.00 1.00 0.11

Table 17: Performance of different training settings on shortest path prediction between POIs in Pheldout.

Model X Y Euclidean Distance

MSE ↓ MAE ↓ R² ↑ MSE ↓ MAE ↓ R² ↑ Mean ↓ Std. ↓

Absolute Coordinate Probing
Base Model 887.76 25.99 -0.01 878.72 25.10 -0.10 39.19 15.18

Cognition-CPT 8.53 2.16 0.99 10.21 2.40 0.99 3.54 2.49
Base-CPT 100.75 7.08 0.89 85.52 7.13 0.89 11.29 7.67

Cognition-SFT 13.05 2.89 0.98 12.88 2.76 0.99 4.39 3.84
Base-SFT 630.21 20.83 0.25 659.85 21.14 0.25 32.55 15.19

Step-wise Coordinates Probing
Base Model 713.44 19.76 0.05 621.05 18.39 0.17 30.39 20.30

Cognition-CPT 6.51 1.84 0.99 6.96 1.94 0.99 3.01 2.10
Base-CPT 22.60 2.89 0.97 21.98 2.90 0.97 4.72 4.71

Cognition-SFT 11.97 2.53 0.98 12.78 2.56 0.98 4.07 3.56
Base-SFT 39.01 3.91 0.95 80.64 5.13 0.89 7.50 5.21

Table 18: Performance of the MLP probe in predicting the absolute coordinates of POIs and dynamic position
coordinates at each step of the generated navigation path from the LLM ’s last hidden states.

Method FSA (%) SA (%) DD (km)

No Pert. 100.00 100.00 0.00
Road Pert. 8.14 52.31 12.42

Distance Pert. 14.95 60.29 9.46
Direction Pert. 6.01 59.53 40.89

Table 19: Evaluation Results for Different Types of
Perturbations Trained via SFT.

Spatial Navigation The results are shown in Ta-1033

ble 27 and Figure 11. The experimental results1034

show that for the Qwen2.5 series models, as the1035

scale of the model parameter increases, the predic-1036

tion accuracy of the shortest path improves (89.0%1037

→ 89.9% → 91.9%), but the robustness against1038

path interference does not improve. Moreover, the1039

LLaMA model exhibits poor performance in learn-1040

ing local path information and accomplishing short-1041

est path navigation, with a notable bias in identify-1042

ing the starting point.1043

E.3 Linear vs. Non-linear Probe1044

Setup We use the LinearRegression model from1045

scikit-learn. It relies on a direct mathematical solu-1046

tion to find the best-fit line, and we used its default1047

configuration. For the non-linear probe, we use the1048

same MLP configuration as in the main experiment.1049

Results We use MODELper and Base-MODELnav1050

to compare linear and non-linear probes in several1051

experiments involving probing. The experimental 1052

results are shown in the Table 23, Table 20. 1053

Conclusion The results in Table 23 demonstrate 1054

that a linear probe can map hidden states to ac- 1055

tual coordinate values, indicating the presence of 1056

linearly accessible coordinate information within 1057

the hidden representations of the LLM. However, 1058

non-linear regression achieves higher prediction 1059

accuracy. Furthermore, in the LLM trained on 1060

shortest-path trajectory data, the performance of 1061

the linear probe deteriorates significantly, with the 1062

average Euclidean distance increasing from 3.01 1063

to 18.68. This suggests that non-linear probes are 1064

better suited for capturing position information in 1065

more complex tasks. 1066

The experimental results in Table 20 show that 1067

when performing regression to predict distance and 1068

azimuth by combining the hidden states of two 1069

POIs, the linear probe performs poorly (R² of only 1070

0.20 for distance prediction). This suggests that 1071

we cannot achieve combined prediction through 1072

simple linear regression, which may also be related 1073

to how we process the two POI vectors (e.g., con- 1074

catenation). 1075

E.4 Data Construction Template 1076

Setup In addition to the data construction tem- 1077

plate adopted in the main experiment described in 1078

Section C.2, we also experiment with other forms 1079
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Figure 11: The robustness performance of models with different parameter scales when facing path interference.

Probe Type Distance Azimuth

MAE (km) R² MAE (°) Spearman

Non-linear 0.85 1.00 3.49 0.98
Linear 17.89 0.20 51.94 0.78

Table 20: Latent spatial composition evaluation. An
MLP predicts distance and azimuth between POI pairs
using their concatenated hidden states.

Data Format

At an azimuth of 30 degrees from pi, pj is located 1000 meters
away.

pj lies 1000 meters from pi at an azimuth of 30 degrees.

The azimuth from pi to pj is 30 degrees, and the separation is
1000 meters.

Q: How far is pj from pi?
A: 1000 meters.

Q: In what direction does pj lie relative to pi?
A: An azimuth of 30 degrees.

Q: What is the direction and separation between pi and pj?
A: An azimuth of 30 degrees and a distance of 1000 meters.

Table 21: An Alternative Template for Training and
Evaluation Data of Positional Relationship Description.

of templates to explore the impact of data con-1080

struction templates on model performance. For the1081

Template Distance Azimuth

MRPE (%) ↓ R² ↑ MRPE (%) ↓ Spearman ↑

type 1 0.11 1.00 0.79 1.00
type 2 1.10 1.00 0.92 1.00

Table 22: The model’s prediction performance under
different data construction templates: Type 1 represents
the original template used in the main experiment, and
Type 2 represents the replaced template.

training, prediction, and evaluation of distance and 1082

azimuth, the templates we use are shown in Table 1083

21. 1084

Results We all adopt an 8:2 split ratio between 1085

the training set and the evaluation set. The experi- 1086

mental results of the two different data construction 1087

templates are shown in Table 22. In addition, after 1088

training the model using the replaced template, we 1089

still attempt to use the original template as the in- 1090

put for model evaluation, specifically the question 1091

“What is the distance from pi to pj?”. The model’s 1092

mean relative prediction error (MRPE) for distance 1093

prediction remains only 1.30%. 1094

Conclusion The experimental results show that 1095

after replacing with more diverse templates, the 1096

prediction errors of the model are still controlled 1097
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Probe Type X Y Euclidean Distance

MSE ↓ MAE ↓ R² ↑ MSE ↓ MAE ↓ R² ↑ Mean ↓ Std. ↓

Absolute Coordinate Probing
Non-linear 1.16 0.78 1.00 0.91 0.71 1.00 1.18 0.82

Linear 21.18 3.61 0.97 12.70 2.75 0.99 4.99 2.99
Step-wise Coordinates Probing

Non-linear 6.51 1.84 0.99 6.96 1.94 0.99 3.01 2.60
Linear 238.65 11.97 0.68 228.98 11.73 0.69 18.68 10.86

Table 23: Performance of the MLP probe in predicting the absolute coordinates of POIs and dynamic position
coordinates at each step of the generated navigation path from the LLM ’s last hidden states.

Model X Y Euclidean Distance

MSE ↓ MAE ↓ R² ↑ MSE ↓ MAE ↓ R² ↑ Mean ↓ Std. ↓

Qwen2.5-0.5B 1.16 0.78 1.00 0.91 0.71 1.00 1.18 0.82
Qwen2.5-1.5B 6.83 1.96 0.99 3.40 1.47 1.00 2.73 1.66
Qwen2.5-3B 5.84 1.79 0.99 4.72 1.71 0.99 2.90 1.75

LlaMA-3.2-1B 5.71 1.94 0.99 6.97 1.99 0.99 3.07 1.81

Table 24: Performance of the MLP probe in predicting the absolute coordinates of POIs from the LLM ’s last
hidden states under different models.

Model
Distance Azimuth

MRPE ↓ R² ↑ MRPE ↓ Spearman ↑

Qwen2.5-0.5B 0.11 1.00 0.79 1.00
Qwen2.5-1.5B 0.28 1.00 1.30 0.99
Qwen2.5-3B 0.11 1.00 0.89 1.00

LlaMA-3.2-1B 1.71 1.00 3.99 0.98

Table 25: The performance of the model’s prediction
of distance and azimuth for unseen POI pairs under
different models.

Model
Distance Azimuth

MAE (km) R² MAE (°) Spearman

Qwen2.5-0.5B 0.85 1.00 3.49 0.98
Qwen2.5-1.5B 1.61 0.99 5.81 0.97
Qwen2.5-3B 0.84 1.00 3.81 0.98

LlaMA-3.2-1B 1.18 1.00 4.32 0.96

Table 26: Latent spatial composition evaluation. An
MLP predicts distance and azimuth between POI pairs
using their concatenated hidden states.

Model Accuracy Consistency

SPD ↓ EPD ↓ VRP (↑%) SPA (↑%) VMR (↑1.0) VCS (↑1.0) FD (↓0.0)

Qwen2.5-0.5B 0.07 0.47 97.5 89.0 1.00 1.00 0.81
Qwen2.5-1.5B 0.04 0.27 97.6 89.9 1.00 1.00 0.59
Qwen2.5-3B 0.03 0.24 98.0 91.9 1.00 1.00 0.49

LlaMA-3.2-1B 32.18 1.16 96.5 27.4 1.05 0.74 23.30

Table 27: Performance of different training settings on shortest path prediction between POIs in Pheldout.

within a very small range (1.1%), which indicates1098

that the templates have little impact on the model’s1099

construction of such spatial cognitive ability. More-1100

over, when using an evaluation method different1101

from the templates, the performance of the model1102

is still not significantly affected (1.1% → 1.3%),1103

which suggests that LLM has strong generaliza-1104

tion ability and can understand texts with the same1105

meaning but different forms.1106

F Other Statements 1107

Our use of existing artifacts are consistent with 1108

their intended use, and we follow their license and 1109

terms. 1110
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Figure 12: Case study on the model’s behavior under interference during navigation at different statistical frequen-
cies.
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Algorithm 1 SED: Start-End Deviation Calculation
1: Input: Ground truth start coordinates Pstart_gt, Ground truth end coordinates Pend_gt, LLM-

generated textual path description A, Map informationMmap

2: Output: Start-End Deviation SED ▷ Euclidean distance between predicted and ground truth points
3: S ← ParsePathDescription(A) ▷ Parse A into sequence of steps S = [(r1, d1, l1), . . . , (rn, dn, ln)]
4: if |S| < 2 then
5: Pstart_pred ← Pstart_gt ▷ Use ground truth start if path description has fewer than 2 steps
6: else
7: Let (r1, d1, l1) = S[1] ▷ First step details
8: Let (r2, d2, l2) = S[2] ▷ Second step details
9: Pintersect ← FindIntersection(r1, r2,Mmap) ▷ Find intersection of the first two roads (position

after the first step)
10: if Pintersect is valid then ▷ Check if a valid intersection was found
11: Pstart_pred ← MoveAlongRoad(Pintersect, r1,Opposite(d1), l1,Mmap) ▷ Backtrack from

intersection to estimate start
12: else
13: Pstart_pred ← Pstart_gt ▷ Fallback to ground truth start if intersection is indeterminate
14: end if
15: end if
16: Pcurrent ← Pstart_pred ▷ Initialize current position
17: if |S| > 0 then ▷ Simulate the path if steps exist
18: for each step (ri, di, li) in S do
19: Pcurrent ← MoveAlongRoad(Pcurrent, ri, di, li,Mmap) ▷ Update position
20: end for
21: end if
22: Pend_pred ← Pcurrent ▷ The final position is the predicted end position
23: SD ← EuclideanDistance(Pstart_pred, Pstart_gt) ▷ Calculate Start Deviation
24: ED ← EuclideanDistance(Pend_pred, Pend_gt) ▷ Calculate End Deviation
25: return (SD,ED) ▷ Return deviations at both start and end points

▷ Helper Functions:
▷ - ParsePathDescription(A): Parses the textual path description A into a structured list S of tuples,
where each tuple is (road_id, direction, length).
▷ - FindIntersection(ra, rb,Mmap): Returns the geographic coordinates of the intersection between
road segment ra and road segment rb based onMmap. Returns an invalid/null state if no relevant
intersection exists.
▷ - MoveAlongRoad(Porigin, r, d, l,Mmap): Calculates the coordinates resulting from starting at

Porigin, moving along road r in direction d for distance l, according toMmap.
▷ - Opposite(d): Returns the direction directly opposite to d (e.g., Opposite(North) = South).
▷ - EuclideanDistance(P1, P2): Computes the L2 norm (straight-line distance) ||P1 − P2||2.
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Algorithm 2 V RP : Valid Road Proportion Calculation

1: Input: Ground truth start coordinates Pstart_gt, LLM-generated textual path description A, Map
informationMmap

2: Output: Valid Road Proportion V RP ▷ Proportion of steps choosing a valid next road
3: S ← ParsePathDescription(A) ▷ Parse A into sequence of steps S = [(r1, d1, l1), . . . , (rn, dn, ln)]
4: if |S| < 2 then
5: Pstart_pred ← Pstart_gt ▷ Use ground truth start if path description has fewer than 2 steps
6: else
7: Let (r1, d1, l1) = S[1] ▷ First step details
8: Let (r2, d2, l2) = S[2] ▷ Second step details
9: Pintersect ← FindIntersection(r1, r2,Mmap) ▷ Find intersection of the first two roads (position

after the first step)
10: if Pintersect is valid then ▷ Check if a valid intersection was found
11: Pstart_pred ← MoveAlongRoad(Pintersect, r1,Opposite(d1), l1,Mmap) ▷ Backtrack from

intersection to estimate start
12: else
13: Pstart_pred ← Pstart_gt ▷ Fallback to ground truth start if intersection is indeterminate
14: end if
15: end if
16: Pcurrent ← Pstart_pred ▷ Initialize current position
17: valid_steps← 0 ▷ Initialize counter for valid road choices
18: total_steps← |S| ▷ Total number of steps in the described path
19: if total_steps > 0 then ▷ Simulate the path if steps exist
20: for each step (ri, di, li) in S do
21: Rvalid ← GetValidNextRoads(Pcurrent,Mmap) ▷ Get set of valid (road_name, road_direct)
22: if (ri, di) ∈ Rvalid then ▷ Check if the chosen road and direction are valid options
23: valid_steps← valid_steps+ 1 ▷ Increment valid step count
24: end if
25: Pcurrent ← MoveAlongRoad(Pcurrent, ri, di, li,Mmap) ▷ Update position
26: end for
27: end if
28: if total_steps == 0 then
29: V RP ← 0 ▷ Define VRP as 0 for empty paths
30: else
31: V RP ← valid_steps/total_steps ▷ Calculate the proportion of valid steps
32: end if
33: return V RP

▷ Helper Functions:
▷ - ParsePathDescription(A): Parses the textual path description A into a structured list S of tuples
(road_id, direction, length).

▷ - MoveAlongRoad(Porigin, r, d, l,Mmap): Calculates coordinates after moving from Porigin

along road r in direction d for distance l.
▷ - Opposite(d): Returns the direction opposite to d.

▷ - GetValidNextRoads(Ppos,Mmap): Returns a set of valid next moves as (road_id, direction)
tuples accessible from position Ppos. This considers connectivity and travel direction rules based on
map dataMmap.

▷ - EuclideanDistance(P1, P2): Computes the L2 norm ||P1 − P2||2. (Included for consistency,
though not used in VRP calculation itself).
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