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Abstract

Recent advances in Large Language Models
(LLMs) have demonstrated strong capabilities
in tasks such as code generation and mathemat-
ical reasoning. However, their potential to in-
ternalize structured spatial knowledge remains
underexplored. This study investigates whether
LLMs, grounded in locally relative human ob-
servations, can construct coherent global spa-
tial cognition by integrating fragmented rela-
tional descriptions. We focus on two core as-
pects of spatial cognition: spatial perception,
where models infer consistent global layouts
from local positional relationships, and spatial
navigation, where models learn road connectiv-
ity from trajectory data and plan optimal paths
between unconnected locations. Experiments
conducted in a simulated urban environment
demonstrate that LLMs not only generalize to
unseen spatial relationships between points of
interest (POIs) but also exhibit latent represen-
tations aligned with real-world spatial distri-
butions. Furthermore, LLLMs can learn road
connectivity from trajectory descriptions, en-
abling accurate path planning and dynamic spa-
tial awareness during navigation.

1 Introduction

Recent advances in large language models (LLMs)
have demonstrated impressive performance across
diverse tasks, including code generation, mathe-
matical reasoning, and natural language genera-
tion (Chen et al., 2021; Shao et al., 2024; Kojima
et al., 2022). LLMs are trained on vast amounts
of human-generated text (Achiam et al., 2023; Bai
et al., 2023), including structured resources such
as Wikipedia and informal unstructured dialogues.
Since human language inherently relies on local
semantic relationships, this enables LLMs to excel
at capturing these context-dependent associations.
However, it remains unexplored whether they can
implicitly acquire a deep, structured understanding
of global information from large amounts of frag-
mented, localized data—and apply it to reasoning
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Figure 1: Summary of our research framework: First,
construct a simulated environment and generate training
data with relative spatial relations and shortest paths.
Then, train the LLM and evaluate its spatial cognition
via explicit prediction tasks, latent representation analy-
sis, and route interference experiments.

and planning tasks such as spatial reasoning, route
optimization, or multi-step inference.

A prime example of a domain requiring struc-
tured understanding is spatial cognition—the abil-
ity to construct coherent mental representations of
physical environments. In human communication,
spatial relationships are often conveyed through
relational language (e.g., “The library is 100 me-
ters southeast of the park™), which, though concise,
encodes rich geometric information such as direc-
tion, distance, and topology. Humans seamlessly
integrate such fragmented descriptions into unified
mental maps, demonstrating a remarkable capacity
to derive global spatial understanding from local-
ized cues. This global cognition supports higher-
level spatial reasoning, navigation, and planning.

This reliance on human perspectives raises a



fundamental yet underexplored question: To what
extent can LLMs, grounded in locally relative hu-
man observations, develop a coherent understand-
ing of global space? In essence, we are asking if
LLMs can learn to “connect the dots” on a vast,
unseen map. This challenge goes beyond process-
ing coordinate data—it requires understanding of
spatial language, integrating fragmented descrip-
tions, and building consistent mental maps. The
model must comprehend geometric relationships
(e.g., direction, distance), synthesize incomplete
information, and maintain logical coherence across
global spatial contexts—all without relying on vi-
sual input or explicit coordinates.

While prior studies have demonstrated that
LLMs can encode geospatial information (Liétard
etal., 2021; Treutlein et al., 2024) and model world
knowledge from sequential data (Nanda et al.,
2023; Hazineh et al.; Vafa et al., 2024), they have
not systematically evaluated the ability of LLMs
to construct a global spatial understanding solely
from local, relative relationships between POls.

To explore this, we conduct a comprehensive
analysis focusing on two core aspects of spatial
cognition: 1) Spatial Perception: The ability of
LLMs to integrate local descriptions of distances
and azimuth angles between POlIs into a global
understanding of spatial layouts without explicit
coordinate information. 2) Spatial Navigation:
The ability of LLMs to extract topological knowl-
edge from local shortest paths and perform shortest
path planning between previously unseen POIs in
the absence of explicit road network information.

To enable a controlled investigation, we con-
struct a simulated urban environment and introduce
a two-stage training and analysis framework guided
by two core research questions, which leverages
two complementary data modalities: (1) relational
spatial descriptions capturing pairwise distances
and directions between points of interest (POIs);
and (2) trajectory descriptions representing shortest
paths across the environment. We analyze whether
spatial cognition is formed and how it is expressed
through three experimental paradigms: (1) Explicit
spatial prediction, assessing task-level prediction;
(2) Latent representation analysis, probing geome-
try in hidden states; and (3) Robustness evaluation,
measuring stability under navigational perturba-
tions. The key findings are as follows:

* LLMs can construct global spatial cogni-
tion from local observations: LLMs demon-

strate spatial perception by inferring unseen POI
relationships, and spatial navigation by plan-
ning optimal paths between unconnected loca-
tions—revealing coherent global understanding
emerging from fragmented linguistic input.

* LLMs can develop implicit spatial representa-
tions: LLMs encode absolute coordinates within
their latent space, aligned with real-world geom-
etry, and dynamically track their position during
navigation—indicating the emergence of implicit
spatial abstraction without explicit coordinates.

* LLM'’s spatial navigation remains fragile un-
der perturbation: LLMs exhibit limited robust-
ness to path perturbations, with their recovery
ability dependent on the distribution of training
data, suggesting that their understanding of road
spatial information is limited, lacking a continu-
ous and precise representation.

2 Global Setup

Simulation Environment. To facilitate con-
trolled investigation and data collection, we con-
struct a synthetic 100 x 100 grid map representing
a simplified urban layout. Roads run along hor-
izontal and vertical lines (x = ¢ or y = j, for
0 < 4,5 < 100), with traversal weights w ran-
domly sampled from [0.8, 1.2] to simulate varying
traffic conditions—higher weights indicate faster
travel. We randomly place Npo; = 1024 points of
interest (POIs) on the grid, each assigned a unique
identifier pg, (k € 1,2,...,1024). Each grid unit
represents 1 km, with the x-axis pointing east and
the y-axis north. In addition, we explore the real-
world data and synthetic data in the Appendix C.3.

Task Formulation. To explore whether LLMs
can develop spatial cognition from natural language
descriptions, we define two research tasks that cap-
ture key aspects of spatial cognition: (1) Global
Spatial Perception — Can the model build a glob-
ally consistent understanding of spatial layouts
based on local, relational language descriptions?
(2) Dynamic Spatial Planning and Navigation —
Can the model infer the structure of an underlying
road network from local shortest-path descriptions,
and use this knowledge to dynamically plan routes
between previously unseen pairs of POIs?

Data. (1) The Relational Spatial Dataset is used
in the first stage to train the model to infer global
spatial structure from local pairwise relations. Each
sample computes the Euclidean distance d(p;, p;)



and azimuth a(p;,p;) € [—180°,180°] between
POIs (p;, p;), expressed through templated natu-
ral language (e.g., “The distance from p; to p; is
2.5 km, and the azimuth is 135 degrees.”). To
enhance linguistic diversity, we vary the surface
realizations of each template. (2) The Trajectory
Dataset is used in the second stage to train dynamic
spatial navigation. The road network is modeled as
a weighted graph, and shortest paths between POIs
are computed using Dijkstra’s algorithm. Each
path is translated into multi-step natural language
instructions (Dijkstra, 1959) (e.g., “Start at p;, go
east on rg for 3 km, then north on rg for 2 km
to reach p;”), capturing both directional and topo-
logical structure. These datasets are introduced
through continuous pre-training in two stages: first,
to build coherent spatial representations from re-
lational cues; and second, to acquire navigation
capabilities based on learned connectivity.

Model and Two-Stage CPT Training. We adopt
a two-stage continual pre-training (CPT). Con-
tinual pre-training enables the model to gradu-
ally learn general linguistic knowledge and world
knowledge from training data, without being con-
strained by task-specific objectives. Our research
focus is on whether LLMs can construct a globally
consistent spatial map from localized relational
inputs, thereby demonstrating how spatial under-
standing can be internalized as the model’s cogni-
tive ability through CPT. The two training stages
correspond to our datasets: the first uses pairwise
relational data to foster global spatial perception;
the second uses path-based training to develop
spatial navigation abilities. We use QWEN2.5-
0.5B (Yang et al., 2024b) as our base model. We
also examine the impact of model size and archi-
tecture, with results in Appendix E.2.

Analysis Approach Overview. To systemati-
cally investigate the emergence of spatial cogni-
tion in LLMs, we design experiments along three
complementary dimensions: functional ability, in-
ternal representation, and behavioral robustness.
This framework moves beyond surface-level per-
formance to probe the cognitive structures formed
during training. Specifically, we assess whether the
model can generate accurate spatial predictions, in-
ternalize geometry-consistent representations, and
maintain stable behavior under perturbations.

» Explicit spatial prediction Evaluate the model’s
ability to perform spatial perception and naviga-

tion by predicting distances, azimuths, or shortest
paths between unseen POI pairs.

* Latent representation analysis Analyze the spa-
tial structure encoded in the model’s latent space.
We apply probing methods to assess whether
these representations exhibit geometry-consistent
properties, such as encoding absolute coordinates
or tracking positions during navigation.

* Robustness evaluation tests whether the model
can navigate accurately under perturbations, fo-
cusing on its ability to recover from trajectory
deviations and plan effectively under uncertainty.

Together, these experiments progress from func-
tional assessment to structural interpretation and
robustness evaluation, offering a comprehensive
view of how spatial cognition is encoded, com-
posed, and utilized within LLMs.

3 Modeling Global Spatial Perception
from Pairwise Relational Observations

In this section, we investigate the capacity of LLMs
to develop a holistic understanding of spatial layout
from local spatial relationships, without access to
absolute coordinates.

3.1 Results of Explicit Spatial Prediction

Setting. We first evaluate whether the LLM can
predict spatial relationships between unseen POI
pairs. We adopt the relational spatial dataset in
Section 2, and evaluate the model’s performance
under different train-test split ratios. We primarily
use an 8:2 split, while also testing 6:4 and 4:6.
To avoid data leakage, reciprocal POI pairs (e.g.,
Di — Dj, pj — p;) are always assigned to the same
subset. We denote the trained model as MODEL ;.

. . Distance Azimuth
Split Ratio
MRPE (%) R?>*t MRPE (%)) Spearman 1
8:2 0.11 1.00 0.79 1.00
6:4 0.85 1.00 3.67 0.98
4:6 2.63 0.99 5.36 0.98

Table 1: Prediction performance on distance and az-
imuth for unseen POI pairs across different train/test
splits. MRPE is the Mean Relative Percentage Error;
R? and Spearman reflect consistency in distance and
azimuth predictions, respectively.

LLMs exhibit generalized spatial perception
across unseen POI pairs. As shown in Table 1,
MODEL,,, achieves low mean relative percent-
age errors—0.11% for distance and 0.79% for az-
imuth—demonstrating strong consistency with the



. . X Y Euclidean Distance
Split Ratio
MSE| MAE] R21t MSE]| MAE| R?1T Mean| Std. |
Base 887.76 25.99 -0.01 878.72 25.10 -0.10 39.19 15.18
8:2 1.16 0.78 1.00 0.91 0.71 1.00 1.18 0.82
6:4 1.30 0.76 1.00 1.55 0.82 1.00 1.26 1.12
4:6 2.60 1.24 1.00 3.86 1.45 1.00 2.13 1.39

Table 2: Performance of the MLP probe in predicting the absolute coordinates of POIs from the LLM’s last hidden
states. Base refers to the untrained LLM. X/Y Coordinate Accuracy: the accuracy of the predicted x and y
coordinates using MSE (Mean Squared Error), MAE (Mean Absolute Error) and R? (Coefficient of Determination).
Euclidean Distance: the Euclidean distance between the predicted and true coordinates.
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Figure 2: Consistency between POI latent representa-
tions and actual spatial locations. Spearman and Pearson
coefficients measure monotonic and linear relationships,
respectively.

ground truth. This highlights the model’s ability
to infer spatial relationships between unseen POI
pairs, confirming its success in generalizing spatial
perception from local relative relationships.

The strength of generalization is affected by
training data scale. As the proportion of training
data increases, the model’s accuracy in predicting
the relative spatial positions of unseen POI pairs
improves, with errors decreasing from 2.63% to
0.11% across different train/test splits. This trend
underscores the critical role of training data scale
in enhancing the model’s ability to develop a robust
and generalizable global spatial perception.

3.2 Do LLMs Construct Structured Latent
Spatial Representations?

Setting. To investigate whether the model develops
spatial perception beyond explicit prediction, we
conduct a series of experiments on its latent space.
These experiments aim to evaluate whether the
model encodes spatial coordinate information, how
it aligns with physical geometry, and whether spa-
tial relationships can be compositionally inferred.

Latent representations encode absolute coordi-
nates. First, we use an MLP probe (Probej,.)
to examine whether the model implicitly encodes

absolute POI coordinates in its last hidden state.
Specifically, we encode POI names p; using
MODEL,,, and extract their last hidden states as la-
tent representations. These vectors are then fed into
Probey,., a non-linear regressor that maps them to
2D spatial coordinates (z, y). We randomly assign
90% of the POlIs for training and use the remaining
10% for evaluation. The specific MLP configura-
tion is provided in Appendix B.

As shown in Table 2, predictions from Probe;,,
yield low Mean Absolute Error, high R?, and small
Euclidean deviations, indicating that the last hidden
states of MODEL,,, effectively capture absolute co-
ordinate information. This suggests that the model
not only learns local spatial relations between POls,
but also internalizes a coherent global spatial struc-
ture with precise absolute positioning.

Latent spatial layout aligns with physical geome-
try. We further examine the consistency between
the last hidden states of POIs and their actual geo-
graphic locations. For any three distinct POIs (p;,
pj, and py), we explore two types of spatial con-
sistency: 1) Distance Consistency: the correlation
between hidden space vector distances (p;-p;, p;-
Pk, Pi-pr) and corresponding Euclidean distances
on the map. 2) Angle Consistency: the alignment
between angles formed by hidden state vectors and
those formed by the physical locations.

The results in Figure 2 show a strong alignment
between the POIs’ spatial layout in latent space
and their real-world geography, with consistently
high Spearman and Pearson correlations for both
distance and angle consistency. This suggests that
the model’s spatial understanding is internalized
in its latent representations, beyond mere predic-
tion accuracy. Unlike probing methods, which train
an external model to extract absolute coordinates,
this experiment directly examines the latent repre-
sentations, providing more direct evidence of the
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Figure 3: Latent spatial composition evaluation. An MLP predicts distance and azimuth between POI pairs using
their concatenated hidden states. We use MAE to measure the deviation between the predicted and true values, and
use R? and Spearman correlation to assess the consistency.

model’s structured spatial understanding.

Spatial relations are recoverable via compo-
sitional inference over latent representations.
Building upon these consistent findings, we fur-
ther investigate whether the latent representations
of individual POIs can be compositionally manip-
ulated to infer relative spatial relationships. For
any two POlIs, p; and p;, we extract their last hid-
den states, concatenate them, and feed the result
into an MLP probe (denoted as Probeg,,), which
is trained to regress a 2D output representing the
distance and azimuth between p; and p;. We ran-
domly select 100 POIs for evaluation and use the
remaining POIs for training.

Figure 3 shows that Probeg,, accurately predicts
the distance and azimuth between POIs with low
MAE (0.85 & 3.49) and high R? (1.00 & 0.98), in-
dicating that relative spatial relationships between
POI pairs can be directly derived by composing
their individual POI latent representations. This fur-
ther validates the correctness of the spatial structure
captured in the model’s latent space and demon-
strates the compositionality of its representations,
enabling spatial reasoning tasks to be performed
directly through the combination of latent vectors.

4 Modeling Spatial Navigation from
Local Trajectories

We investigate the ability of LLMs to learn road
connectivity and spatial navigation capabilities
from local trajectory data. The custom evaluation

metrics defined in this section are shown in Table 3.

4.1 Results of Explicit Spacial Prediction

Setting. To facilitate generalization analysis, we
hold out a subset of 200 POIs (denoted as Pieldout),
which selectively participate in shortest-path train-
ing. For the remaining POIs (denoted as Pyain),
we generate shortest-path trajectories for all valid
point pairs, and use 80% of these pairs for training.
We denote the trained model as MODEL,,,,.

Models generalize shortest-path planning to un-
seen POI pairs by learning from localized tra-
jectories. To evaluate model performance under
the partially observable condition where all POIs
appear as either origins or destinations (but not
both) in the training data, we incorporate Pheidout
by adding trajectories between Peigout and Puain
POIs, while paths between Fieigout POIs remain
unseen (denoted as Bridged Exposure setting).

Table 4 shows that MODEL,,,,, excels in shortest-
path prediction, with an exact match accuracy of
83.63%. This suggests that the model effectively
generalizes road connectivity patterns, not just
memorizing seen trajectories, but also performing
well on unseen POI pairs.

Models exhibit an emerging ability to compose
spatial layout understanding and road network
topology for navigation in unseen regions. To
further investigate whether the model can lever-
age the spatial layout understanding established in
Section 3 to perform shortest-path navigation in



Euclidean distance between the predicted start/end points (p;, p;) and actual POIs (p;, p;); composed of

Start Point Deviation (SPD) and End Point Deviation (EPD).

Metric Full Name Description
SED Start-End Deviation

VRP Valid Road Proportion

SPA Shortest Path Accuracy

VMR Vector Magnitude Ratio

VCS Vector Cosine Similarity

FD Fréchet Distance

FSA First-Step Accuracy

SA Subsequent Accuracy

DD Destination Deviation

Proportion of legal roads selected at each step based on the current position.

Fraction of predicted trajectories that exactly match the true shortest path.

Compares straight-line distances between (p;, p;) and (p;, p;) to assess distance similarity.

Cosine similarity between displacement vectors p; — p; and p; — p;, indicating directional consistency.
Measures geometric similarity between predicted and ground truth trajectories via path point sequences.
Proportion of correct first road selections after applying perturbation to the initial point.

Proportion of correct road selections in all subsequent steps after the first.

Euclidean distance between the final predicted destination and the actual end point.

Table 3: Evaluation Metrics for Predicted Shortest Paths and Path Perturbations

Method Accuracy Consistency
SPD| EPD| VRP(1%) SPA(t%) VMR (11.0) VCS(11.0) FD (J0.0)
Zero-Exposure (Base)  49.26 49.81 87.97 0.00 0.97 0.10 58.39
Zero-Exposure 5.33 10.20 94.84 0.00 0.97 0.96 13.76
Bridged Exposure 0.06 0.48 96.07 83.63 1.00 1.00 0.91

Table 4: Performance of different training settings on shortest path prediction between POIs in Peigone. (Base)

denotes the model trained on the base model.

unseen regions, we ensure that the POI set Pejgout
does not participate in the training data (denoted
as No-Exposure setting, these unseen POIs rep-
resent unseen regions). We then compare the per-
formance between: (1) Perception-MODEL,,,- the
model trained on MODEL,,, (with spatial layout un-
derstanding), and (2) Base-MODEL,,,- the model
trained on the base model (as baseline).

The results in Table 4 reveal that MODEL,,,,
while trained on MODEL,,, without direct expo-
sure to Pheigout POIs during shortest-path training,
performs better than the baseline. The model shows
improvements in both Start-End Deviation (SPD,
49.26 — 5.33) and significant gains in directional
(VCS, 0.10 — 0.96) and geometric (FD, 58.39 —
13.76) consistency metrics compared to the base-
line. This suggests that while MODEL,,,, may not
yet fully excel at shortest-path navigation in un-
seen regions, it demonstrates the ability to combine
the understanding of POI spatial layout with the
understanding of road network topology.

4.2 Can LLMs Develop Spatial Perception of
POI Positions Based on the Shortest Path
Trajectory Data?

Setting. We next examine whether the model
retains spatial perception of POI locations. To
this end, we compare models trained under the
Bridged Exposure setting on MODEL,,, and the
base model (denoted as Perception-MODEL,,,, and
Base-MODEL,,,). The untrained base model is
also included for comparison.

The model still demonstrates an understand-
ing of the spatial layout of POlIs in its latent
representations. To assess whether the model’s
latent space still encodes absolute coordinate in-
formation, we apply the same probing strategy as
in Section 3.2. As shown in Table 5, although
the spatial perception learned by Base-MODEL,,,,
is less precise than that of Perception-MODEL,,,,
the model trained solely on shortest-path trajec-
tories shows significant improvements across all
evaluation metrics compared to the base model
(e.g., X-MAE: 25.99 — 7.08, X-R2: -0.01 — 0.89).
This demonstrates that even when trained solely on
shortest-path trajectories, the model’s latent space
can encode a certain degree of absolute coordinate
information, highlighting the effectiveness of such
data in fostering deeper spatial perception.

The model can dynamically recognize its current
position during the navigation process. We
evaluate the model’s ability to encode absolute co-
ordinates at each step of a predicted path using
the same probing setup as in previous experiments.
This allows us to assess whether the model can
dynamically track spatial positions as the path un-
folds. To do so, we segment each predicted path
into discrete navigation steps (e.g., “go east along
r1 for 4km”). At each step, we extract the model’s
last hidden state from the full input sequence up to
that point. The true coordinate of the current loca-
tion is used as supervision for probe training. For
evaluation, we randomly select 200 POIs as held-
out points and use the remaining POIs to construct



Model X Y Euclidean Distance
MSE| MAE| R21t MSE| MAE| R?1 Mean| Std. |
Absolute Coordinate Probing
Base Model 887.76 25.99 -0.01  878.72 25.10  -0.10 39.19 15.18
Perception-MODEL 4y 8.53 2.16 0.99 10.21 2.40 0.99 3.54 2.49
Base-MODELay 100.75 7.08 0.89 85.52 7.13 0.89 11.29 7.67
Step-wise Coordinates Probing
Base Model 713.44 19.76 0.05 621.05 18.39 0.17 30.39 20.30
Perception-MODEL 4y 6.51 1.84 0.99 6.96 1.94 0.99 3.01 2.10
Base-MODEL 4y 22.60 2.89 0.97 21.98 2.90 0.97 4.72 4.71

Table 5: Performance of the MLP probe in predicting the absolute coordinates of POIs and dynamic position
coordinates at each step of the generated navigation path from the model’s last hidden states.

the training set. We sample 20,000 training trajec-
tories using only the training POIs as both start and
end points, and 1,000 evaluation trajectories where
the endpoints are drawn from the held-out POISs.
As shown in Table 5, at each step of the model’s
navigation, the absolute coordinate position can
be clearly extracted from its hidden state (e.g., X-
R20.05 — 0.97). This demonstrates the model’s
ability to encode and dynamically update its cur-
rent position at each navigation step, indicating its
capacity for dynamic spatial location cognition.

4.3 Are LLMs Robust to Path Perturbations
When Navigating to a Destination?

Setting. To assess the robustness of the model to
trajectory perturbations, we introduce controlled
deviations during path prediction to simulate realis-
tic detours, and evaluate whether the model can still
reach the intended destination. These experiments
are based on the Perception-MODEL,,,, defined in
Section 4.2. We define pperwur as the perturbation
point and piarger as the immediate location reached
after the deviation. Based on this, we design several
perturbation strategies. We identify the step in the
predicted trajectory corresponding to the road seg-
ment with the highest traversal speed and designate
it as the critical step, denoted as Scitical-

Type FSA (%) SA (%) DD (km)
No Pert. 100.00 100.00 0.00
Road Pert. 11.85 62.70 26.99
Distance Pert. 58.79 77.71 20.24
Direction Pert. 43.61 74.87 56.08

Table 6: Navigation performance under various pertur-
bation strategies applied at critical path steps.

The model exhibits poor robustness against ran-
dom disturbances. We apply the following types
of random perturbations to Scitica: 1) Road Pertur-

bation: Replace the original road name in Scritical
with a different road (the direction should be modi-
fied accordingly); 2) Distance Perturbation: Ran-
domly adjust the distance at Scitical, €nsuring that
it does not exceed the remaining distance to the
destination. 3) Direction Perturbation: Invert the
heading direction in Scrigical (e.g., “east” — “west”).

We select 10,000 cases with original correct pre-
dictions by the model for evaluation.

The experimental results in Table 6 show that the
model performs poorly when confronted with ran-
dom perturbations, and its robustness varies across
different types of disturbances. Specifically, in the
road perturbation scenario, the model only has an
11.85% chance of selecting the first valid passable
road, indicating that it does not have a precise un-
derstanding of its current location, or it lacks clarity
on the available roads at its current position. This
suggests that the model’s understanding of the road
network is not coherent.
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Figure 4: Heatmap of turning point frequencies in short-
est paths. The left side shows the training data statistics,
while the right side shows the test data statistics.

The model’s robustness to disturbances largely
depends on the distribution of the training data.
The results reveal a distinction between distance
(or direction) perturbation and road perturbation.
When subjected to distance or direction perturba-
tions, the model remains on the original high-speed
road, such as those within Scyisica;. In contrast, road
perturbations often randomly cause the model to
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Figure 5: The model’s performance under different fre-
quency thresholds. A higher frequency threshold indi-
cates that the new starting point after the interference
appears more frequently in the paths of the training data.

deviate onto slower roads. The roads within Scitical,
which are frequently selected in the shortest-path
training data and feature higher-frequency entry
and exit points along with corresponding turning
patterns, are more robust to disturbances.

To analyze the impact of turning points, we
count the frequency of points in the datasets
where the direction of movement changes. High-
frequency turning points generally correspond to
transitions between high-speed and regular roads
(Figure 4). We control the selection of ppeturh and
Drarget Dy ensuring the location frequency exceeds a
threshold 7. We select 8,464 cases and analyze how
the model’s performance varies across different 7.

As shown in Figure 5, the model’s performance
improves with an increase in the frequency thresh-
old (7) for selecting pperturb and prarger. This sug-
gests that the model is more robust to perturbations
at high-frequency turning points—enabling it to
recover more effectively and reorient towards the
correct destination. We provide further analysis
and examples in Appendix D.3.

These results suggest that although the model ex-
hibits a degree of robustness to perturbations, its re-
covery ability is highly dependent on the frequency
of turning points encountered during training. This
reliance implies that the model’s understanding of
the road network is likely fragmented and localized,
rather than comprehensive and global.

5 Related Work

World Cognition Previous studies have demon-
strated that LLMs can encode real-world geospa-
tial (Liétard et al., 2021; Treutlein et al., 2024)
information and temporal (Gurnee and Tegmark)
information within their internal representations.

However, most of these studies use pretrained
LLMs in non-anonymized experiments and have
not fully explored the source of these capabilities.
Concurrently, many works have focused on the abil-
ity of LLMs to learn and internalize rules of the
physical world or form a “world cognition” of spe-
cific tasks from sequential data, such as in board
games (Nanda et al., 2023; Li et al., 2023; Hazineh
et al.) or simulated navigation (Jin and Rinard,
2024; Martorell, 2025; Vafa et al., 2024). Unlike
predicting the next token based on sequential data,
our work focuses on whether LLMs can create
a global understanding from natural language de-
scriptions of local observations.

Urban Space Reasoning Some works focus on
evaluating and enhancing the geospatial reason-
ing capabilities of LLMs (Feng et al., 2024a,b; Li
et al., 2024). These studies enhance LLMs through
knowledge training, external information, or tool
use to adapt to spatial reasoning tasks in urban sce-
narios. In contrast, we focus on evaluating whether
LLMs can reconstruct a global spatial understand-
ing from local descriptions.

Spatial Cognition Spatial cognition capabilities
are essential for LLMs to understand physical
environments and perform tasks involving spa-
tial reasoning. Many works focus on evaluating
and enhancing the spatial cognition capabilities of
LLMs (Mirzaee et al., 2021; Momennejad et al.,
2023; Ramakrishnan et al., 2024), particularly in
MLLM settings involving spatial memory and path
reasoning (Yang et al., 2024a; Wu et al., 2024; Yu
et al., 2025). Our work examines text-only LLMs’
ability to construct global spatial cognition from
localized natural language observations, without
relying on global information or coordinates.

6 Conclusion

Our study shows that LLMs can develop a global
spatial understanding by training on local relative
positions and shortest-path data. This is evident
in their ability to generalize to unseen POI-pair
relationships and in the strong alignment between
latent representations and real-world geographic
structures. These findings suggest that the model
can autonomously build structured spatial cogni-
tion from unstructured language to support spatial
reasoning. However, its limited robustness to nav-
igation disturbances reveals the constraints of its
understanding of road network structures.



Limitations

Our study reveals that during the training process,
the model develops an understanding of the global
spatial distribution of Points of Interest (POIs)
through the description of local relative relation-
ships. However, how the model utilizes such spatial
understanding when explicitly predicting positional
relationships and shortest-path trajectories between
unseen point pairs has not been fully analyzed. Our
experiments lack an in-depth investigation into the
internal mechanisms underlying the model’s ex-
plicit predictions of relative positions and shortest-
path trajectories, which we will explore in future
work. Furthermore, our training process has im-
pacted the model’s original general language capa-
bilities. Given that our work is primarily analytical
rather than enhancement-oriented, although the is-
sue of catastrophic forgetting does exist, it does
not affect our evaluations or conclusions within the
context of our assessment scenarios. Nevertheless,
in future downstream application scenarios, how
to balance the model’s general capabilities with its
internal spatial cognitive abilities remains an open
research question.

Ethics Statement

We hereby acknowledge that all authors of this
work are aware of the provided ACL Code of Ethics
and honor the code of conduct.

Datasets Source All studies in this work are
based on a simulated, synthetically constructed
dataset. The generated data is solely for model
analysis research and contains no other usable infor-
mation. To ensure privacy and ethical compliance,
the dataset has been anonymized with placeholder
names and contains no real-world information. As
a result, the risk of sensitive information leakage is
effectively eliminated.

Al assistants Al assistants (ChatGPT) were
solely used to improve the grammatical structure
of the text.
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A Notation Table

Definition

‘ Task Formulation

g A graph where intersections are nodes, roads
remain unchanged, and the average travel
speed is used as the edge weight.

i Names of Points of Interest.

T Names of roads.
MODELy,, |LLM trained on data describing the relative
positional relationships between POls.
LLM trained on data describing the shortest
path trajectories.

MODELnav

Metrics
Mean Squared Error, a metric quantifying
the average squared difference between pre-
dictions and actual values.
Mean Relative Percentage Error, a metric
quantifying the average relative percentage
difference between predictions and actual
values.
Mean Absolute Error, a metric quantifying
the average absolute difference between pre-
dictions and actual values.
Root Mean Squared Error, a metric quanti-
fying the square root of the average squared
difference between predictions and actual
values.
R? R-squared, a metric quantifying the propor-
tion of the variance in the dependent variable
that is predictable from the independent vari-
able(s).
Spearman correlation coefficient, a metric
measuring the strength and direction of the
monotonic relationship between two vari-
ables.
Pearson correlation coefficient, a metric mea-
suring the strength and direction of the linear
relationship between two variables.
Fréchet Distance, a metric that measures the
similarity between two curves by consider-
ing the location and ordering of points.

MSE

MRPE

MAE

RMSE

Spearman

Pearson

FD

Table 7: The notation table.

In Table 7, we list the notations and abbrevia-
tions in this paper, together with their definitions.

B Training Parameters

LLM Training For the continual pre-training of
the LLM, we use 4 x A800 80G GPUs with a batch
size of 128, a learning rate of 1.0e %, and a warmup
ratio of 0.1, training for 10 epochs. Additionally,
we designate the POI names P = {p;}1%3* and
road names R = {r;}?% as special tokens.
For the SFT of the LLM, we train on a single
A800 80G GPU with a batch size of 256, a learning
rate of 3.0e°, a warmup ratio of 0.1, and train for
10 epochs. We use Llama-Factory as our training

framework (Zheng et al., 2024).
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Probe We use the MLPRegression model from
scikit-learn (Pedregosa et al., 2011). The MLP
probe we use consists of two hidden layers, with
128 and 64 neurons, and ReLLU activation functions.
The model is trained using the Adam optimizer
with an initial learning rate of 0.001, and L2 regu-
larization (alpha = 0.0001) with adaptive learning
rate adjustment. The maximum number of training
epochs is set to 500, and early stopping is enabled
based on validation set performance (patience =
100 epochs), with a validation set proportion of
10%. The batch size is adjusted automatically dur-
ing training, and data is shuffled before each epoch
to improve generalization. All models and tools
are publicly available for research purposes.

C Experimental Details in Modeling
Spatial Cognition

C.1 POI Distribution

The spatial distribution of POI points in Section 2
is shown in the Figure 6.

Distribution of Points
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Figure 6: POIs Distribution.

C.2 Data Format

We provide examples of the data format used for
training, as shown in Table 8.

C.3 Additional Experiment

POI-in-Area Prediction We design a simple spa-
tial reasoning task that is inconsistent with the form
of the training data in Section 2. We train the
MODEL,,, through supervised fine-tuning to de-
termine whether a specific POI lies within a given



Data Format

The distance from p; to p; is 1000 meters, with an azimuth of
30 degrees.

The distance from p; to p; is 1000 meters, and the azimuth
from p; to p; is 30 degrees.

The azimuth from p; to p; is 30 degrees, with a distance of
1000 meters.

Q: What is the distance from p; to p;?
A: 1000 meters.

Q: What is the azimuth from p; to p;?
A: 30 degrees.

Q: What is the azimuth and distance from p; to p;?
A: 30 degrees and 1000 meters.

Table 8: Different Forms of Training and Evaluation
Data for Positional Relationship Description.

Data Format

Start at p;, then go north on r; for 2km, then go east on r; for
10km, and you will arrive at p;.

To get from p; to p;, go along 71 heading north for 2km, then
go along 72 heading east for 10km.

What is the shortest path from p; to p;?
Answer: First, go north on r; for 2km, then go east on r for

10km.
What is the shortest path from p; to p;?

Answer: Go along r; heading north for 2km, then go along
r2 heading east for 10km.

Table 9: Different Forms of Training and Evaluation
Data for Shortest Path Description.

region. We consider two types of region descrip-
tions: 1) a circular region defined by a central POI
and a given radius; 2) a triangular region formed
by three POIs. The LLM is required to provide a
“yes” or “no” answer.

Additionally, we reserve a quarter of the POI
points in the Map region, which are not included in
the region descriptions of the SFT training data and
are only used for evaluation. The remaining POIs
are randomly sampled and divided into training and
testing sets. We directly use prediction accuracy
for evaluation.

Real World POIs The representation used in our
synthetic data is universal and transferable. Real-
world geographic data can be represented using our
method and used for training, with no substantial
differences between synthetic and real-world data.

The focus of our work is to evaluate whether
LLMs can construct global cognition from discrete
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Figure 8: Consistency of POI hidden state vectors with
actual spatial locations across training steps.

local descriptions; thus, using synthetic data is ap-
propriate here. Building spatial cognition in prac-
tical scenarios and accomplishing related down-
stream tasks will be the focus of future work.

Also, collecting real-world data is challenging,
especially the shortest path between two POls, as
the shortest path depends not only on distance but
also on road conditions of each segment. In our
synthetic dataset, we design a road weighting mech-
anism to simulate real-world road conditions. This
weight represents the average driving speed of each
segment. For routes with the same straight line
distance, driving speeds may vary due to factors
such as road roughness or curvature.

To enhance the realism and generalizability of
the experiments, we sample 1,000 real-world POIs,
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POI Type  Circle (%) Triangle (%)
Included (8:2) 98.8 96.2
Excluded (8:2) 97.1 97.9
Included (6:4) 98.9 97.8
Excluded (6:4) 96.1 95.8

Table 10: Prediction accuracy for POI-in-Area experi-
ment.

represented by their geographic coordinates (lat-
itude and longitude). As with the synthetic data,
we compute the pairwise Euclidean distances and
azimuths, and split the dataset into training and
testing sets (80/20).

The LLM training parameters remain consistent
with those used for the synthetic data. The predic-
tion accuracy for distances and azimuths on unseen
POI pairs is shown in Table 11.

Distance Azimuth
MRPE (%) | R?*1 MRPE (%) | Spearman 1
0.30 1.00 0.53 1.00

Table 11: Prediction performance for distance and az-
imuth on unseen POI pairs in real-world scenarios.

The experimental results indicate that in more
complex real-world scenarios, the model can also
accurately model global positional cognition based
on local relative positional relationships. We do not
conduct experiments on the shortest path in real-
world scenarios. This is because shortest path data
is often difficult to collect in real-world settings,
and our synthetic data simulates traffic conditions
on real roads through weights, which is sufficient
for our evaluation scenarios.

D Experimental Details in Modeling
Spatial Navigation

D.1 Data Format

We provide examples of the data format used for
training and evaluation of MODEL,,,,, as shown in
Table 9.

D.2 Metric Calculations

Start-End Deviation (SED) : evaluates the spa-
tial accuracy of the predicted path description by
computing the Euclidean distance between pre-
dicted and ground truth coordinates at both the
start and end points. The predicted trajectory is
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reconstructed by simulating the movement along
a parsed sequence of road-based navigation steps
using map information. The final metric is reported
as a tuple: Start Deviation (SD) and End Deviation
(ED). Detailed computation logic is provided in
Algorithm 1.

Valid Road Proportion (VRP) : measures the
proportion of valid road choices at each step of the
predicted path description. The path is parsed into a
sequence of steps, and for each step, the algorithm
checks if the road and direction are valid accord-
ing to the map’s connectivity and direction rules.
The final metric, VRP, is the ratio of valid steps to
the total steps in the path description. If no steps
are described, the VRP is defined as 0. Detailed
computation logic is provided in Algorithm 2.

Shortest Path Accuracy (SPA) : measures the
proportion of cases where the model-generated tra-
jectory exactly matches the ground truth shortest
path.

D.3 Case Study

Failure Analysis In terms of distance and az-
imuth prediction, the model demonstrates high ac-
curacy, with most errors occurring in the shortest
path prediction task, especially in the presence of
perturbations.

To better understand the failure modes of the
model in shortest path prediction, we conducted
an error analysis. We categorized prediction errors
into three types: 1) start point errors, 2) intermedi-
ate path errors, and 3) end point errors. Since end
point errors are always a consequence of one of the
first two types, we do not report them separately.

The breakdown of errors on the test set (in terms
of error count / total number of test cases) is as
follows:

e Start point errors: 917 / 39800
* Intermediate path errors: 5656 / 39800

In intermediate path errors, we record the step at
which the first error occurs. The distribution is as
follows:

Step 1 2 3 4 5 6 7 89
Error Count 1819 2254 1049 367 113 39 13 1 1

Table 12: Distribution of the step where the first error
occurred in intermediate path errors

We further categorize the causes of intermediate
path errors into the following types:



¢ Direction errors: 894

¢ Road name errors: 37 (cases where the direction
is correct but the road name is incorrect)

* Distance errors: 4725

These results indicate that most errors stem from
a single incorrect step in the intermediate path (er-
rors mainly occur in the early steps, primarily be-
cause the average number of steps across all cases
is 5.2).

It is worth noting that most intermediate path
errors are caused by incorrect distance predictions,
accounting for 4725 out of 5656 cases.

Disturbance Case Figure 12 demonstrates the
performance of LLM in handling intermediate dis-
turbances under different turning point frequencies.
As the frequency increases, LLM exhibits stronger
robustness against disturbances and can reach the
final destination after being disturbed. When the
frequency is low, the model is more prone to output
interruptions (e.g., not knowing where to go).

D.4 Additional Experiment

Model Distance % | Azimuth % |
Perception-MODEL,,,, 3.08 5.52
Base-MODEL,,, 12.03 13.84

Table 13: Evaluation results for distance and azimuth
prediction, evaluated using MRPE.

The model remains capable of performing ex-
plicit spatial relationship prediction. To assess
whether the model directly trained on path data can
still understand the relative positional relationships
between POlIs, we fine-tune it with supervised train-
ing to predict the distance and azimuth between
POI pairs. We use 200 POIs to construct the test
set, while the remaining POIs are used to generate
the training data (randomly sample 100,000 cases).

The results in Table 13 show that training the
base model on shortest-path trajectories (Base-
MODEL,,,) allows it to capture the relative spatial
relationships between POI pairs, achieving reason-
able performance in both distance and azimuth pre-
diction, with MRPE values of 12.03% and 13.84%,
respectively. This suggests that, even without di-
rectly relying on local distance and azimuth infor-
mation between POI pairs, the model is still able
to leverage shortest-path trajectories to build a cer-
tain level of global spatial perception. This also
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indicates that shortest-path trajectories, as a topo-
logically structured data format, are effective in
constructing an understanding of spatial layout.

E Additional Experiments and Results
E.1 Training Strategy

. . Distance Azimuth
Training Strategy
MRPE | R?1 MRPE | Spearman 1
CPT 0.11  1.00 0.79 1.00
SFT 0.003 1.00 0.025 1.00

Table 14: The performance of the model’s prediction
of distance and azimuth for unseen POI pairs under
different training strategies.
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Figure 9: Consistency of POI point last hidden state
vector with actual spatial location in terms of distance
and angle under different training strategies.

Our primary experiments adopt a continual
pre-training approach for LLM training. In ad-
dition to this, we explore the use of SFT for
training MODEL,,, and MODEL,,,. For train-
ing MODEL,,,, we retain the question-answer for-
mat data from the original complete dataset and
adopt an 80/20 split for training and test sets. For
MODEL,,,, we follow the Bridged Exposure strat-
egy. We evaluate whether the LLM trained with
SFT can perform explicit predictions and construct
cognitive representations in the latent space.

We conduct training using 4xA800 80G GPUs,
with a batch size of 512 and a learning rate set to
3.0e-5. The LLM is trained for 10 epochs.

Spatial Perception The experimental results for
evaluating Spatial Cognition are shown in Table 14,
Table 15, Table 16 and Figure 9.

Experimental results show that while SFT-
trained LLM outperform CPT-trained LLM in dis-



. . X Y Euclidean Distance
Training Strategy
MSE| MAE| R?21 MSE| MAE| R?1 Mean]  Std.|
Base 887.76 2599 -0.01 878.72 25.10 -0.10 39.19 15.18
CPT 1.16 0.78 1.00 0.91 0.71 1.00 1.18 0.82
SFT 406.66 1541 046 37335 1423 0.53 23.10 15.69

Table 15: Performance of the MLP probe in predicting the absolute coordinates of POIs from the LLM ’s last

hidden states under different training strategies.

demonstrates a significantly lower proportion of
selecting valid roads at each step.

- Distance Azimuth
Training Strategy
MAE (km) R? MAE (°) Spearman
Base 14.90 0.03 39.12 0.62
CPT 0.85 1.00 349 0.98
SFT 31.62 -2.92 66.48 0.38

Performance under Perturbations with Varying Thresholds

Table 16: Latent spatial composition evaluation. An
MLP predicts distance and azimuth between POI pairs
using their concatenated hidden states.

tance and azimuth prediction accuracy, they exhibit
weaker latent spatial cognition, as evidenced by
blurred awareness of absolute coordinates in hid-
den states and poor alignment between latent vector
distributions and actual spatial layouts.

This result is expected, as the POI name tokens
in the SFT training process do not directly con-
tribute to the loss calculation. Consequently, their
embeddings are not explicitly optimized, leading
to a lack of structured distribution in the latent
space. This highlights the importance of contin-
ual pre-training for fostering deeper internal rep-
resentations. At the same time, it suggests that
a well-structured latent distribution of individual
POIs is not strictly necessary for predicting relative
relationships between unseen POI pairs.

Spatial Navigation The experimental results for
evaluating Spatial Navigation are shown in Table 17
and Table 18.

In addition, we further train the continual pre-
trained model MODEL,,, using the sft approach for
the shortest path task, and evaluate its robustness
against disturbances. The experimental results are
shown in Table 19 and Figure 10.

Experimental results show that Cognition-
ModelTwo trained via SFT exhibits robustness com-
parable to that of the CPT-trained counterpart, with
both being influenced by the training data distri-
bution—performing better at critical points with
larger thresholds. Meanwhile, when facing ran-
dom disturbances, the SFT-trained model reaches
destinations closer to the target on average, but
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Figure 10: Performance metrics (FSA, SA, Mean/Me-
dian DD) versus high-frequency point thresholds. Left
y-axis: FSA/SA; Right y-axis: DD (km).

E.2 Model Architecture and Scale

To investigate the impact of architecture and pa-
rameter scale on models’ spatial cognition, in
addition to Qwen2.5-0.5B used in the main ex-
periments, we further examine the performance
of Qwen2.5-1.5B, Qwen2.5-3B, and LLaMA-3.2-
1B. (Al@Meta, 2024).

Spatial Perception The results are shown in Ta-
ble 25, Table 24 and Table 26. Experiments show
that for the Qwen2.5 series models, as the model
parameter scale increases, no significant improve-
ment is observed in the explicit prediction of dis-
tance and azimuth, nor in the probing accuracy of
absolute coordinates. Even when the model pa-
rameter scale is small (0.5B), it already achieves
high accuracy. In addition, models with different
architectures (LLaMA) also demonstrate highly ac-
curate modeling cognition of relative positions and
absolute coordinates, presenting consistent experi-
mental conclusions.



Accuracy

Consistency

SPD | EPD | VRP (%) SPA (1%) VMR (11.0) VCS (11.0) FD (]0.0)

Training Strategy
CPT 0.06 048 96.07
SFT 0.02  0.02 99.65

0.91
0.11

83.63
97.34

1.00
1.00

1.00
1.00

Table 17: Performance of different training settings on shortest path prediction between POIs in Peidout-

Model X Y Euclidean Distance
MSE| MAE| Rt MSE| MAE| R?*t Mean| Std.|
Absolute Coordinate Probing
Base Model 887.76 25.99 -0.01 878.72 25.10 -0.10 39.19 15.18
Cognition-CPT  8.53 2.16 099 10.21 240 099 354 2.49
Base-CPT 100.75 7.08 0.89 8552 7.13 0.89 11.29 7.67
Cognition-SFT 13.05 2.89 098 1288 276 099 439 3.84
Base-SFT 630.21 20.83 0.25 659.85 21.14 0.25 3255 15.19
Step-wise Coordinates Probing
Base Model 713.44 19.76 0.05 621.05 18.39 0.17 30.39 20.30
Cognition-CPT  6.51 1.84 099 6.96 1.94 099 3.01 2.10
Base-CPT 2260 2.89 097 2198 290 097 472 4.71
Cognition-SFT 11.97  2.53 098 1278 256 098 4.07 3.56
Base-SFT 39.01 391 095 80.64 513 089 17.50 5.21

Table 18: Performance of the MLP probe in predicting the absolute coordinates of POIs and dynamic position
coordinates at each step of the generated navigation path from the LLM ’s last hidden states.

Method FSA (%) SA (%) DD (km)
No Pert. 100.00  100.00 0.00
Road Pert. 8.14 52.31 12.42
Distance Pert. 14.95 60.29 9.46
Direction Pert. 6.01 59.53 40.89

Table 19: Evaluation Results for Different Types of
Perturbations Trained via SFT.

Spatial Navigation The results are shown in Ta-
ble 27 and Figure 11. The experimental results
show that for the Qwen2.5 series models, as the
scale of the model parameter increases, the predic-
tion accuracy of the shortest path improves (89.0%
— 89.9% — 91.9%), but the robustness against
path interference does not improve. Moreover, the
LLaMA model exhibits poor performance in learn-
ing local path information and accomplishing short-
est path navigation, with a notable bias in identify-
ing the starting point.

E.3 Linear vs. Non-linear Probe

Setup We use the LinearRegression model from
scikit-learn. It relies on a direct mathematical solu-
tion to find the best-fit line, and we used its default
configuration. For the non-linear probe, we use the
same MLP configuration as in the main experiment.

Results We use MODEL,,, and Base-MODEL 4,
to compare linear and non-linear probes in several
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experiments involving probing. The experimental
results are shown in the Table 23, Table 20.

Conclusion The results in Table 23 demonstrate
that a linear probe can map hidden states to ac-
tual coordinate values, indicating the presence of
linearly accessible coordinate information within
the hidden representations of the LLM. However,
non-linear regression achieves higher prediction
accuracy. Furthermore, in the LLM trained on
shortest-path trajectory data, the performance of
the linear probe deteriorates significantly, with the
average Euclidean distance increasing from 3.01
to 18.68. This suggests that non-linear probes are
better suited for capturing position information in
more complex tasks.

The experimental results in Table 20 show that
when performing regression to predict distance and
azimuth by combining the hidden states of two
POIs, the linear probe performs poorly (R? of only
0.20 for distance prediction). This suggests that
we cannot achieve combined prediction through
simple linear regression, which may also be related
to how we process the two POI vectors (e.g., con-
catenation).

E.4 Data Construction Template

Setup In addition to the data construction tem-
plate adopted in the main experiment described in
Section C.2, we also experiment with other forms
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Figure 11: The robustness performance of models with different parameter scales when facing path interference.

Distance Azimuth
Probe Type
MAE (km) R? MAE (°) Spearman
Non-linear 0.85 1.00 3.49 0.98
Linear 17.89 0.20 51.94 0.78

Table 20: Latent spatial composition evaluation. An
MLP predicts distance and azimuth between POI pairs
using their concatenated hidden states.

Data Format

At an azimuth of 30 degrees from p;, p; is located 1000 meters
away.

p; lies 1000 meters from p; at an azimuth of 30 degrees.
The azimuth from p; to p; is 30 degrees, and the separation is
1000 meters.

Q: How far is p; from p;?

A: 1000 meters.

Q: In what direction does p; lie relative to p;?
A: An azimuth of 30 degrees.

Q: What is the direction and separation between p; and p;?
A: An azimuth of 30 degrees and a distance of 1000 meters.

Table 21: An Alternative Template for Training and
Evaluation Data of Positional Relationship Description.

of templates to explore the impact of data con-
struction templates on model performance. For the
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Distance Azimuth
Template
MRPE (%) | R*1 MRPE (%) | Spearman 1
type 1 0.11 1.00 0.79 1.00
type 2 1.10 1.00 0.92 1.00

Table 22: The model’s prediction performance under
different data construction templates: Type 1 represents
the original template used in the main experiment, and
Type 2 represents the replaced template.

training, prediction, and evaluation of distance and
azimuth, the templates we use are shown in Table
21.

Results We all adopt an 8:2 split ratio between
the training set and the evaluation set. The experi-
mental results of the two different data construction
templates are shown in Table 22. In addition, after
training the model using the replaced template, we
still attempt to use the original template as the in-
put for model evaluation, specifically the question
“What is the distance from p; to p;?”. The model’s
mean relative prediction error (MRPE) for distance
prediction remains only 1.30%.

Conclusion The experimental results show that
after replacing with more diverse templates, the
prediction errors of the model are still controlled



X Y Euclidean Distance
Probe Type
MSE | MAE | R2t MSE | MAE| R?21 Mean| Std. |
Absolute Coordinate Probing
Non-linear  1.16 0.78 1.00 0091 071 1.00 1.18 0.82
Linear 21.18 361 097 1270 275 099 499 2.99
Step-wise Coordinates Probing
Non-linear  6.51 1.84 099 6.96 1.94 099 3.01 2.60
Linear 238.65 1197 0.68 22898 11.73 0.69 18.68 10.86

Table 23: Performance of the MLP probe in predicting the absolute coordinates of POIs and dynamic position
coordinates at each step of the generated navigation path from the LLM ’s last hidden states.

Model X Y Euclidean Distance
MSE| MAE| R21 MSE| MAE| R2t Mean| Std. ]
Qwen2.5-0.5B 1.16 0.78 1.00 0091 071 1.00 1.18 0.82
Qwen2.5-1.5B  6.83 196 099 340 147 1.00 2.73 1.66
Qwen2.5-3B 5.84 1.79 099 472 1.71 099 290 1.75
LlaMA-3.2-1B  5.71 1.94 099 6.97 1.99 099 3.07 1.81

Table 24: Performance of the MLP probe in predicting the absolute coordinates of POIs from the LLM ’s last

hidden states under different models.

Model Distance Azimuth
MRPE | R?1 MRPE | Spearman 1
Qwen2.5-0.5B  0.11 1.00 0.79 1.00
Qwen2.5-1.5B  0.28 1.00 1.30 0.99
Qwen2.5-3B 0.11 1.00 0.89 1.00
LlaMA-3.2-1B  1.71 1.00 3.99 0.98

Table 25: The performance of the model’s prediction
of distance and azimuth for unseen POI pairs under
different models.

Model Distance Azimuth
MAE (km) R2? MAE (°) Spearman
Qwen2.5-0.5B 0.85 1.00 3.49 0.98
Qwen2.5-1.5B 1.61 0.99 5.81 0.97
Qwen2.5-3B 0.84 1.00  3.81 0.98
LlaMA-3.2-1B 1.18 1.00 4.32 0.96

Table 26: Latent spatial composition evaluation. An
MLP predicts distance and azimuth between POI pairs
using their concatenated hidden states.

Model Accuracy Consistency
SPD | EPD| VRP (%) SPA (1%) VMR (11.0) VCS (11.0) FD ({0.0)
Qwen2.5-0.5B  0.07 047 97.5 89.0 1.00 1.00 0.81
Qwen2.5-1.5B  0.04 0.27 97.6 89.9 1.00 1.00 0.59
Qwen2.5-3B 0.03 024 98.0 91.9 1.00 1.00 0.49
LlaMA-3.2-1B 32.18 1.16 96.5 274 1.05 0.74 23.30

Table 27: Performance of different training settings on shortest path prediction between POIs in P eidout-

within a very small range (1.1%), which indicates
that the templates have little impact on the model’s
construction of such spatial cognitive ability. More-
over, when using an evaluation method different
from the templates, the performance of the model
is still not significantly affected (1.1% — 1.3%),
which suggests that LLM has strong generaliza-
tion ability and can understand texts with the same
meaning but different forms.
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F Other Statements

Our use of existing artifacts are consistent with
their intended use, and we follow their license and
terms.
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Figure 12: Case study on the model’s behavior under interference during navigation at different statistical frequen-

cies.
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Algorithm 1 SE D: Start-End Deviation Calculation

1:

10:
11:

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

S R O A

Input: Ground truth start coordinates Psiqrt_gt» Ground truth end coordinates P4 4¢, LLM-
generated textual path description .A, Map information M,
Output: Start-End Deviation SE D > Euclidean distance between predicted and ground truth points

S < ParsePathDescription(.A) > Parse A into sequence of steps S = [(r1,d1,11), ..., (Th, dn, 1n)]
if |S| < 2 then

Pstart_pred < Pstart_gt > Use ground truth start if path description has fewer than 2 steps
else

Let (r1,dy,01) = S[1] > First step details

Let (72, da, l2) = S[2] > Second step details

Pintersect < FindIntersection(r1, 72, My,qp) > Find intersection of the first two roads (position
after the first step)
if P tersect 1S valid then > Check if a valid intersection was found
Pgiart pred < MoveAlongRoad(Piptersect, 71, Opposite(di), 11, Mmap) > Backtrack from
intersection to estimate start

else
Psiart_pred < Pstart_gt > Fallback to ground truth start if intersection is indeterminate
end if
end if
Peyrrent < Pstart_pred > Initialize current position
if |S| > 0 then > Simulate the path if steps exist
for each step (r;,d;, ;) in S do
Pyrrent < MoveAlongRoad(Peyrrent, Tis dis iy Mimap) > Update position
end for
end if
Pend pred < Peurrent > The final position is the predicted end position
SD < EuclideanDistance(Pstart_preds Pstart_gt) > Calculate Start Deviation
ED < EuclideanDistance(Pr.yq_preds Pend_gt) > Calculate End Deviation
return (SD, ED) > Return deviations at both start and end points

> Helper Functions:
> - ParsePathDescription(.A): Parses the textual path description A into a structured list S of tuples,
where each tuple is (road_id, direction,length).
> - FindIntersection(r, 7, Mymnqp): Returns the geographic coordinates of the intersection between
road segment 7, and road segment 7}, based on M,,,4,. Returns an invalid/null state if no relevant
intersection exists.
> - MoveAlongRoad( P,y igin, 7, d, l, Myqp): Calculates the coordinates resulting from starting at
P,igin, moving along road r in direction d for distance [, according to M 4.
> - Opposite(d): Returns the direction directly opposite to d (e.g., Opposite(North) = South).
> - EuclideanDistance( Py, P,): Computes the L2 norm (straight-line distance) || P, — Pz||2.
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Algorithm 2 V RP: Valid Road Proportion Calculation

1:

10:
11:

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

R A A i

Input: Ground truth start coordinates P4t g¢, LLM-generated textual path description A, Map
information M,

Output: Valid Road Proportion V RP > Proportion of steps choosing a valid next road
S < ParsePathDescription(.A) > Parse A into sequence of steps S = [(r1,d1,11), ..., (Th, dn, 15)]
if |S| < 2 then

Pstart_pred < Pstart_gt > Use ground truth start if path description has fewer than 2 steps
else

Let (r1,d1, 1) = S[1] > First step details

Let (ro,da,l2) = S[2] > Second step details

Pintersect < FindIntersection(r1, 72, Myy,qp) > Find intersection of the first two roads (position
after the first step)

if P tersect 1S valid then > Check if a valid intersection was found

Pgiart prea < MoveAlongRoad (P tersect, 71, Opposite(di), 11, Mmap) > Backtrack from
intersection to estimate start

else
Psiart_pred < Pstart_gt > Fallback to ground truth start if intersection is indeterminate

end if
end if
Peyrrent < Pstart_pred > Initialize current position
valid_steps < 0 > Initialize counter for valid road choices
total_steps < |S]| > Total number of steps in the described path
if total_steps > 0 then > Simulate the path if steps exist

for each step (r;,d;, ;) in S do
Royatid < GetValidNextRoads(Peyyrent; Mimap) > Get set of valid (road_name, road_direct)

if (73, d;) € Ryqiiq then > Check if the chosen road and direction are valid options
valid_steps < valid_steps + 1 > Increment valid step count
end if
Purrent < MoveAlongRoad(Peyrrent, Tis dis iy Mimap) > Update position
end for
end if
if total_steps == 0 then
VRP + 0 > Define VRP as 0 for empty paths
else
V RP < valid_steps/total_steps > Calculate the proportion of valid steps
end if
return VRP

> Helper Functions:
> - ParsePathDescription(.A): Parses the textual path description A4 into a structured list S of tuples
(road_id, direction,length).
> - MoveAlongRoad(Pyrigin, 7, d, I, Mimqp): Calculates coordinates after moving from Pyy.igir,
along road r in direction d for distance [.
> - Opposite(d): Returns the direction opposite to d.
> - GetValidNextRoads(Ppos, Mmqp): Returns a set of valid next moves as (road_id, direction)
tuples accessible from position F,,,s. This considers connectivity and travel direction rules based on
map data M.
> - EuclideanDistance( Py, P»): Computes the L2 norm ||P; — P||2. (Included for consistency,
though not used in VRP calculation itself).
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