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Abstract

Concept Bottleneck Models (CBMs) promise interpretable prediction by forcing1

all information to flow through a human-understandable “concept” layer, but this2

interpretability often comes at the cost of reduced accuracy and concept leakage.3

To solve this, we introduce an explicit Information Bottleneck regularizer on the4

concept layer—penalizing I(X;C)—to encourage minimal yet task-relevant con-5

cept representations. We derive two variants of this penalty and integrate them into6

the standard CBM training objective. Across six model families (hard/soft CBMs7

trained jointly or independently, ProbCBM, AR-CBM, and CEM) and three bench-8

mark datasets (CUB, AwA2, aPY), IB-regularized models consistently outperform9

their vanilla counterparts—narrowing and in some cases closing the accuracy gap to10

unconstrained black-box networks. We further quantify concept leakage with two11

metrics (Oracle Impurity and Niche Impurity Scores) and show that IB constraints12

reduce leakage significantly, yielding more disentangled concepts. To assess how13

well concept sets support test-time corrections, we employed two intervention14

metrics (area under the intervention-accuracy curve and average marginal gain15

per intervened concept) demonstrating that IB-regularized CBMs retain higher16

intervention gains even when large fractions of concepts are corrupted. Our results17

reveal that enforcing a minimal-sufficient concept bottleneck improves both predic-18

tive performance and the reliability of concept-level interventions, thereby closing19

the accuracy gap of CBMs while improving their interpretability and ability to20

intervene.21

1 Introduction22

In many real-world settings, from medical diagnosis to autonomous driving, models must do both:23

make accurate predictions and provide explanations that humans can trust. Consequently, explainable24

AI seeks to peel back the curtain on opaque machine learning systems, boosting trust, accountability,25

and safety by exposing hidden biases and errors. We categorize explainable models into four groups.26

Post-hoc techniques explain black-box models after training, using interpretable approximations or27

feature attributions [19]. Model-agnostic methods treat the model as a black box, analyzing inputs and28

outputs. These include local interpretability methods, which explain individual predictions [16, 17],29

and global interpretability methods, which provide broader insights [2, 7]. Finally, self-explainable30

models are inherently interpretable, requiring no additional techniques. This work champions self-31

explainable models because they deliver structured, inherent explanations and seamless debugging,32

making them a promising alternative to other approaches.33

Concept bottleneck models (CBMs) [12] are a self-explainable approach that modifies neural network34

training by introducing intermediate, human-understandable concept labels, enabling predictions35

to be based on these concepts. CBMs aim to explain final decisions through these interpretable36

concepts and allow users to correct concept predictions to refine the model’s outputs. Their advantages37
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include higher robustness to covariate shifts and spurious correlations when predictions rely solely on38

concepts. However, CBMs often underperform compared to black-box models. Additionally, they39

suffer from concept leakage [13, 14], where irrelevant information is encoded in concept activations,40

affecting both interpretability and the effectiveness of test-time interventions.41

Rather than redesigning CBM architectures or enriching concept embeddings as done in previ-42

ous works [8, 10], we take a simpler, information-theoretic approach: we impose an Information43

Bottleneck [1, 20] penalty directly on the concept layer. By penalizing the mutual information44

between inputs and concepts while still maximizing their informativeness about the target, our45

method suppresses spurious signals, closes the accuracy gap to black-box models, and yields more46

reliable, intervenable concepts. We demonstrate that adding this bottleneck to diverse CBM variants47

consistently boosts performance and reduces concept leakage.48

The main contributions of this work are two-fold: (i) a new CBM loss (regularization) that exploits49

the Information Bottleneck (IB) framework providing a significant improvement compared to both50

vanilla and advanced CBMs, and (ii) a demonstration that CBMs that are IB-regularized achieve better51

predictions, show less concept leakage, and are more robust to interventions than their non-regularized52

counterparts.53

2 Related work54

2.1 Concept Bottleneck Models55

CBMs. A CBM [12] is defined as ŷ = f(g(x)), where x ∈ RD, g : RD → Rk is a mapping56

from raw feature space into the lower-dimensional concepts space, and f : RK → R is a mapping57

from the concepts to the target variable. For training this model composition, a dataset of triplets58

{(xi, ci, yi)}Ni=1 is needed, where c(·) stands for the ground-truth concepts labels which should be59

produced by g. The CBM could be trained independently, sequentially, or jointly [12]. Intuitively,60

when training a CBM, one is introducing human-understandable sub-labels (concepts) which are61

more primitive and general than the target, and then builds a model predicting the target based solely62

on those explainable concepts. However, despite these benefits, CBMs often lag behind unconstrained63

“black-box” models in prediction performance.64

To bridge this gap, Concept Embedding Models (CEM) [3] learn two vectors for each concept (“active”65

and “inactive”). Such approach has increased target accuracy, but requires additional regularization66

algorithm called ‘RandInt’ for CEM to be able to effectively utilize test-time interventions. Moreover,67

the analysis of information flow done in CEMs suggests that information between inputs and concepts68

is monotonically increasing without any compression.69

Our proposal, unlike CEM, maintains the original model concept representation space and regularizes70

it through our concept information bottleneck regularization. Since we incorporate mutual information71

constraint into loss function, we can apply our regularization to different models (as demonstrated in72

our experiments).73

Probabilistic CBMs. Probabilistic approaches have been explored recently as well to better model74

the concepts, e.g., ProbCBMs [10] or ECBMs [23], which predict distribution of concepts and use75

anchor points for class mapping. Similarly by introducing inductive biases, previous work [15, 24]76

can extract the concepts without annotations. In this work, we do not utilize these anchor points,77

since they increase inference costs and introduce a new hyper-parameter to tune at fitting stage. We78

do use a variational approximation over our proposed concepts’ information bottleneck to predict79

concepts.80

Post-hoc CBMs. Another line of work investigates the transformation of any pre-trained model into81

a CBM. Side-channel CBMs [8] allow the information to flow through a side concept bottleneck.82

Recurrent CBMs [8] predicts concepts one after the other using information about previous concept83

predictions. However, side-channel CBMs have lower intervenability, and recurrent ones break84

the disentanglement of concepts. Post-Hoc Concept Bottleneck Models (PCBM) [25] use image85

embeddings from a pre-trained CNN’s penultimate layer activations. However, these models perform86

well only after residual connections are added, moreover, concepts classifiers are learned post-hoc on87

top of frozen embeddings, which makes it impossible to alter the pre-concept representations learning88

target. This residual information flow may damage both interpretability and intervenability.89
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Figure 1: Our proposed CIBMs pipeline. The image is encoded through
p(z | x), which in turn encodes the concepts with q(c | z), and the labels
are predicted through q(y | c). These modules are implemented as neural
networks. We introduced the IB regularization as mutual information opti-
mizations over the variables as shown in dashed lines.
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Figure 2: Our generative model
p(y |x)p(c |x)p(z |x)p(x) (solid
lines), and its variational approxi-
mation q(y |c)q(c |z)q(z |x)q(x)
(dashed lines).

Concept Leakage. One problem with CBMs is the leakage of information into the concepts [13, 14],90

regardless of being soft (taking values between [0, 1]) or hard (values clipped to {0, 1}). Margeloiu91

et al. [14] argue that the CBMs desiderata is met for independent training only: for joint and sequential92

a CBM learns more information about the raw data than just that presented in the concepts. Thus,93

concepts are not used as intended. Developing the idea of tracking concepts predictions, Margeloiu94

et al. [14] apply saliency methods to backtrace concepts to input features and find that for neither95

training method of the three derive concepts from something meaningful in the input space. Similarly,96

the Oracle and Niche Impurity Scores [4] were proposed to further understand the level of leakage.97

Conversely, we hypothesize that by compressing the concepts and the data, and, simultaneously,98

maximally expressing the labels and concepts through their respective variables, we could obtain99

better concepts and representations. Our experiments, support this hypothesis by the different100

improvements across a diverse set of tasks.101

2.2 Information Bottleneck102

Tishby et al. [20] introduced the information bottleneck (IB) as the minimization of the functional103

LIB = I(X;Z)− βI(Z;Y ), where I(·; ·) is the mutual information, β is the Lagrange multiplier, X ,104

Y and Z are random variables that represents the data, labels, and latent representations, respectively.105

The motivation behind the bottleneck is to “squeeze” the relevant information about target Y from X106

into a compact representation Z while minimizing the information about input X in Z—so that the107

representations are free of irrelevant information from X . The IB’s authors have also posited that good108

generalization is connected with memorization-compression pattern. This is the behavior in which109

I(Z;Y ) increases during the whole training time, while I(X;Z) increases at first (memorization)110

and then decreases at later iterations (compression).111

Alemi et al. [1] extended the IB framework to deep neural networks by doing a variational approxi-112

mation of latent representation. And, Kawaguchi et al. [9] analyzed the role of IB in estimation of113

generalization gaps for classification task. Their result implies that by incorporating the Information114

Bottleneck into learning objective one may get more generalized and robust network. Unlike this115

previous work that studied the IB for the data and the labels, we introduced another predictive116

variable, the concepts, and derive an upper bound that links common predictors and the ground truth117

into a regularizer that enforces the memorization-compression dynamics. Moreover, we show that118

the concepts’ information bottleneck can be used in common CBM approaches through a mutual119

information estimator as well.120

3 Concepts’ Information Bottleneck121

Concept Bottleneck Models (CBMs) aim for high interpretability by introducing human-122

understandable concepts, C, as an intermediary between latent representations, Z, and the la-123

bels Y . To preserve the interpretability at the heart of CBMs, our objective seeks to minimize124

I(X;C)—the mutual information between inputs and concepts. Thereby, it ensures that concepts125

remain meaningful and free from irrelevant data, while addressing concept leakage by controlling126

the information flow directly at the concept level, rather than at the more abstract latent space, Z.127

Simultaneously, we aim to maximize the expressivity of the concepts about the labels, I(C;Y ),128

as well as the one of the latent representations and the concepts, I(Z;C). Our initial objective is129

max I(Z;C) + I(C;Y ), s.t. I(X;Z) ≤ IC , where IC is an information constraint constant, that130

equivalently is the maximization of the functional of the concepts’ information bottleneck (CIB)131

LCIB = I(Z;C) + I(C;Y )− βI(X;Z), (1)
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where β is a Lagrangian multiplier. This formulation ensures a strong connection between latents, Z,132

and the concepts, C. This means that one wants Z to be maximally useful in shaping the concepts C,133

while also ensuring that the concepts are informative about the target.134

Moreover, in the CBMs formulation, the concepts come from processing the latent representations,135

i.e., c = h(z). Thus, due to the data processing inequality, I(X;C) ≤ I(X;Z), we can bound136

of the concepts’ information bottleneck loss (1) as I(Z;C) + I(C;Y ) − βI(X;C) ≥ I(Z;C) +137

I(C;Y )− βI(X;Z).138

Our objective is to maximize the upper bound of the concepts’ information bottleneck139

LUB-CIB = I(Z;C) + I(C;Y )− βI(X;C).1 (2)

We depict our general framework in Fig. 1. We posit that by compressing the information between the140

data, X , and the concepts, C, instead of the latent representations, Z, we can control the redundant141

information of the data within the concepts. Consequently, we can obtain more interpretable concepts142

instead of first compressing the latents and then obtaining the concepts from them. We hypothesize143

that this compression also prevents data leakage from the data into the concepts that commonly144

happens when the concepts are processed through the latents alone. Another interpretation of145

this process is the compression of the information between the data and the concepts through the146

marginalized latent representations. Thus, we are obtaining a more robust compression since we147

compute it through all possible latent representations that lead to that concept.148

We propose two implementations of our framework by exploring different ways of solving the mutual149

information based on a variational approximation of the data distribution. We show our modeling150

assumptions in Fig. 2.151

3.1 Bounded CIB152

We can consider the upper bound to the concept bottleneck loss (2) in terms of the entropy-based153

definitions of the mutual information. Then, by using a variational approximation of the data154

distribution, we bound it by155

LUB-CIB ≤H(Y ) + (1− β)H(C) +H (p(y | c), q(y | c)) + (1 + β) E
p(z)

H (p(c | z), q(c | z)) , (3)

LUB-CIB ≤(1− β)H(C) + E
p(c)

H (p(y | c), q(y | c)) + (1 + β) E
p(z)

H (p(c | z), q(c | z)) . (4)

We detail this derivation in Appendix A. We can maximize the concepts’ information bottleneck by156

minimizing the cross entropies of the predictive variables, y and c, and their corresponding ground157

truths and by adjusting the entropy of the concepts—cf. Fig. 2. The simplified upper bound of the158

concept information bottleneck is159

LSUB-CIB =(1− β)H(C) + E
p(c)

H (p(y | c), q(y | c)) + (1 + β) E
p(z)

H (p(c | z), q(c | z)) . (5)

We denote the models that were trained using this bounded concept information bottleneck (5) by160

IBB . To implement it, we need to estimate the entropy of the concepts distribution p(c). We give161

details of this estimator in Appendix B.2.162

3.2 Estimator-based CIB163

Another way to obtain a bound over the concept information bottleneck (2) is to only expand the164

conditional entropies that are not marginalized (A.1) to avoid widening the gap in the bound, i.e.,165

LUB-CIB =H(Y ) +H(C) + E
p(c)

H (p(y | c), q(y | c)) + E
p(z)

H (p(c | z), q(c | z))− βI(X;C). (6)

If we treat the entropies of the concepts and the labels as constants, we obtain166

LE-CIB =E
p(c)

H (p(y | c), q(y | c)) + E
p(z)

H (p(c | z), q(c | z)) + β (ρ− I(X;C)) , (7)

where ρ is a constant. We denote the models that use this loss as IBE since it relies on the estimator167

of the mutual information. We detail the estimator we used in our implementation in Appendix B.2.168

1Note that one can obtain the same loss if the optimization problem is constrained over the concepts instead,
i.e., max I(Z;C) + I(C;Y ) s.t. I(X;C) ≤ IC . Nevertheless, we present the relation with the traditional
compression for completeness.
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Table 1: Accuracy results include mean and
std. over 5 runs. We report results of our
proposed regularizer methods, IBB and IBE ,
applied to different CBMs. Black-box is a
gold standard for class prediction that offers
no explainability over the concepts.

Method Concept Class
CUB
Black-box – 0.919±0.002
CBM (HJ) 0.956±0.001 0.650±0.002
CBM (HJ) + IBB 0.955±0.001 0.653±0.003
CBM (HJ) + IBE 0.955±0.001 0.656±0.003
CBM (HI) 0.956±0.001 0.644±0.001
CBM (HI) + IBB 0.957±0.001 0.686±0.000
CBM (HI) + IBE 0.957±0.001 0.686±0.000
CBM (SJ) 0.956±0.001 0.708±0.006
CBM (SJ) + IBB 0.958±0.001 0.725±0.004
CBM (SJ) + IBE 0.959±0.001 0.729±0.003
ProbCBM 0.956±0.001 0.718±0.005
ProbCBM + IBB 0.957±0.001 0.742±0.004
ProbCBM + IBE 0.957±0.001 0.740±0.003
CEM 0.954±0.001 0.759±0.002
CEM + IBB 0.955±0.001 0.776±0.002
CEM + IBE 0.955±0.001 0.776±0.002
AR-CBM 0.956±0.002 0.761±0.010
AR-CBM + IBB 0.956±0.003 0.784±0.006
AR-CBM + IBE 0.956±0.002 0.783±0.005
AwA2
Black-box – 0.893±0.000
CBM (HJ) 0.979±0.000 0.853±0.002
CBM (HJ) + IBB 0.976±0.000 0.850±0.003
CBM (HJ) + IBE 0.979±0.000 0.852±0.003
CBM (HI) 0.979±0.000 0.836±0.001
CBM (HI) + IBB 0.975±0.000 0.831±0.002
CBM (HI) + IBE 0.979±0.000 0.835±0.002
CBM (SJ) 0.979±0.001 0.876±0.001
CBM (SJ) + IBB 0.979±0.002 0.885±0.002
CBM (SJ) + IBE 0.979±0.001 0.883±0.001
ProbCBM 0.979±0.000 0.880±0.003
ProbCBM + IBB 0.979±0.000 0.883±0.001
ProbCBM + IBE 0.979±0.000 0.882±0.001
CEM 0.979±0.000 0.884±0.002
CEM + IBB 0.978±0.000 0.883±0.003
CEM + IBE 0.979±0.000 0.884±0.003
AR-CBM 0.979±0.001 0.884±0.006
AR-CBM + IBB 0.978±0.000 0.885±0.008
AR-CBM + IBE 0.979±0.000 0.885±0.003
aPY
Black-box – 0.866±0.003
CBM (SJ) 0.967±0.000 0.797±0.007
CBM (SJ) + IBB 0.967±0.000 0.856±0.005
CBM (SJ) + IBE 0.967±0.000 0.856±0.004
ProbCBM 0.967±0.000 0.863±0.007
ProbCBM + IBB 0.967±0.000 0.869±0.003
ProbCBM + IBE 0.967±0.000 0.870±0.001
CEM 0.967±0.000 0.869±0.004
CEM + IBB 0.967±0.000 0.872±0.002
CEM + IBE 0.967±0.000 0.876±0.003
AR-CBM 0.967±0.000 0.873±0.004
AR-CBM + IBB 0.967±0.000 0.878±0.004
AR-CBM + IBE 0.967±0.000 0.878±0.002

This loss is similar to the one proposed by Kawaguchi169

et al. [9], LK = Ep(z) H (p(y | z), q(y | z)) + β(ρ −170

I(Z;X)), if one extends the mutual information from the171

labels into the concepts in a similar way. In other words,172

our mutual information estimated loss (7) resembles that173

of Kawaguchi et al.’s [9] proposal with the corresponding174

conditioning changes in the labels and the concepts. Thus,175

it is interesting to see that other optimization approaches176

emerge out of this bound. We highlight that our proposal177

is a generalized framework that encompass a wide range178

of possible implementations.179

Unlike LSUB-CIB (5), which simplifies the mutual informa-180

tion terms into cross-entropy losses, LE-CIB retains an ex-181

plicit control over I(X;C). This allows for more granular182

control over the information flow from inputs to concepts,183

leading to a tighter constraint on concept leakage. As we184

show in the results (Table 1), this additional control trans-185

lates to improved performance in both concept and class186

prediction accuracy, cf. Section 4.187

4 Experiments188

We extend several CBM variants with our IB-regularizers,189

yielding CIBMs. The CIBMs are slight variations of the190

original models as they require a variational approximation191

in order to study and apply the proposed IB-regularizers.192

We train each model from scratch and compare CIBMs to193

their vanilla counterparts of equal capacity, measuring both194

class-prediction accuracy and concept leakage. Our goal is195

to close the accuracy gap to black-box models without sac-196

rificing interpretability or test-time intervenability. Finally,197

we analyze information flows via mutual-information es-198

timates and benchmark intervention performance.199

We benchmark our approach on three datasets: CUB [21],200

AwA2 [22], and aPY [6]. We present all implementation201

details in Appendix B. For our regularizers, we evaluate202

their setups and select the best hyperparameters (cf. Sec-203

tion 4.6). In the following experiments, we use the same204

hyperparameters and setup for our regularizers for fair205

comparisons.206

4.1 Performance across all Datasets207

We present the evaluation results across three datasets in208

Table 1. Our “black-box model” serves as a gold standard,209

representing the highest possible class accuracy achievable210

by a CBM model with a traditional setup that does not211

provide explanations, i.e., trained only to predict class212

labels. We compare against hard (H) and soft (S) CBMs213

trained jointly (J) or independently (I) [8], ProbCBMs [10],214

intervention-aware CEM [3], and AR-CBM [8]. Our main215

objective is to demonstrate that our proposed regularizers216

(IBB and IBE) maintain or improve the target prediction accuracy in comparison to their original217

counterparts while improving the concept prediction accuracy and reducing concept leakage. The218

latter is of particular importance to guarantee the explainability of the results.219

Our proposed methods, IBB and IBE , show an improvement over all methods regarding class predic-220

tion accuracy for the CUB dataset, and always show improved class prediction. These improvements221
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Table 2: Concept leakage evaluation (lower is better).

Complete CS Selective Drop-out CS Random Drop-out CS

Model OIS NIS OIS NIS OIS NIS

CBM (SJ) 4.69± 0.43 66.25± 2.31 16.29 78.39 12.97± 0.78 74.19± 1.04
CBM (SJ) +IBB 2.16± 0.13 61.67± 1.92 13.09 73.40 10.59± 1.48 71.38± 0.89
CEM 8.74± 0.30 75.41± 3.83 20.85 80.19 18.31± 0.09 76.56± 2.00
CEM+IBB 6.11± 0.24 70.02± 2.21 17.22 76.67 14.10± 0.42 72.68± 2.38
AR-CBM 3.90± 0.27 62.30± 1.52 14.16 63.40 12.58± 0.86 60.86± 1.32
AR-CBM+ IBB 2.83± 0.27 59.87± 1.52 10.97 59.72 10.20± 0.55 56.28± 1.33
ProbCBM 4.30± 0.10 64.22± 1.04 16.01 76.92 13.81± 0.21 75.01± 0.86
ProbCBM+ IBB 2.53± 0.46 60.35± 2.01 13.11 72.86 10.34± 0.55 70.96± 1.91

come alongside enhanced concept accuracy (in most cases and with comparable accuracy at worst),222

thus, realizing the fundamental goal of our approach: to simultaneously boost performance and223

interpretability. As for the AwA2 dataset, the class accuracy gain shows less improvement than224

the other datasets but is nevertheless comparable to the original methods. Similarly, the concept225

prediction is also comparable to the unregularized models. We ascribe this to the dataset’s relative226

simplicity, which narrows the room for enhancement. In the more varied real-world classes of the227

aPY dataset, our regularizers significantly outperforms the baseline CBMs in class accuracy. We even228

observed an improvement over the black-box model while providing interpretability comparable to229

the original models, which is paramount in real-world applications where explanations are necessary.230

The rise in class and concept accuracy relative to existing methods highlights the advantages of231

our mutual information regularization. This approach helps stop concept leakage and ensures that232

concepts are both informative and closely tied to the final prediction, see Section 4.2 for details. This233

finding is consistent with our theoretical framework, which advocates that controlling the information234

flow between inputs and concepts through the Information Bottleneck can yield more interpretable235

and significantly meaningful concepts without compromising performance, see Section 4.5 for more236

details.237

4.2 Concept Leakage238

Concept leakage occurs when spurious or task-irrelevant information contaminates concept activations239

eroding both interpretability and the power of test-time interventions [13, 14]. Espinosa Zarlenga240

et al. [4] proposed Oracle Impurity Score (OIS) and the Niche Impurity Score (NIS) to quantify241

impurities localized within individual and distributed across the set of learned concepts, respectively.242

We use these metrics under three scenarios: (i) a complete concept set, (ii) selective dropout where243

we remove the most predictive half of concepts, and (iii) random dropout of half of concepts (for244

control). We highlight that the selective dropout setting has only one possible configuration, thus,245

we do not report standard deviation on it. We chose dropout scenarios because omitting relevant246

concepts can dramatically increase concept leakage [8]. Table 2 reports these results. Crucially, our247

IB-regularizers significantly slash leakage across all scenarios, achieving the lowest OIS and NIS248

even under heavy concept removal. These results confirm that imposing an Information Bottleneck249

on concepts reduces concept leakage and mitigates spurious encoding.250

4.3 Interventions251

A key advantage of CBMs is their ability to perform test-time interventions, allowing users to correct252

predicted concepts and improve the model’s final decisions. To demonstrate test-time intervention253

performance of CIBMs we simulate interventions by replacing predicted concepts with their ground254

truth values. Following prior work, we intervene on groups of concepts rather than individual255

concepts, leveraging this strategy to assess how cumulative corrections impact class prediction256

performance [10, 12]. We, then, plot the prediction performance improvement against number of257

concept groups intervened. The resulting curve is denoted as the interventions curve. We implement258

a random strategy to choose a set of concept groups to intervene on. More specifically, concept259

groups are randomly selected for intervention, and results are averaged over five runs to account for260

variability.261
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Figure 3: Change in target prediction accuracy after intervening on concept groups following the random
strategy as described in Section 4.3. (TTI stands for Test-Time Interventions, and NR for non-regularized.) We
show expanded plots in Fig. C.1.

Table 3: Change in interventions performance with concept set corruption for CBM (SJ) and its regularized
versions with our proposed methods. We show the disaggregated plots in Fig. C.2.

CUB

AUC NAUC

Corrupt CBM +IBB +IBE CBM +IBB +IBE

0 54.374 65.644 64.634 0.001260 0.001481 0.001432
4 53.135 64.519 63.464 0.001198 0.001525 0.001487
8 51.291 53.135 60.202 0.001166 0.001198 0.001444
16 50.694 60.240 59.424 0.001068 0.001388 0.001349
32 46.101 52.956 51.258 0.000863 0.001298 0.001231
64 32.069 30.582 29.271 -0.000339 0.000571 0.000504

AwA2

AUC NAUC

Corrupt CBM +IBB +IBE CBM +IBB +IBE

No 84.753 91.573 92.225 0.002808 0.005350 0.006250
Yes 83.985 90.631 90.879 0.004484 0.005218 0.006474

Figure 3 shows that IB-regularized CBMs deliver a monotonic rise in accuracy as each additional262

concept group is corrected—clear evidence they truly leverage accurate concept signals with minimal263

leakage. This smooth ascent underscores how our bottleneck penalty sharpens the model’s debugga-264

bility, ensuring every intervention yields a consistent performance boost. In contrast, soft-joint CBMs265

suffer pronounced mid-sequence dips—likely a symptom of their leaky representations undermining266

reliability under random group corrections.267

Hard CBMs—with their binary concept slots—can eventually attain high accuracy under large-scale268

interventions (owing to their inherently low leakage), but they start well below CIBMs and climb more269

sluggishly when only a few concepts are corrected—especially on coarser datasets like AwA2. In270

contrast, our IB-regularized models blend low-leakage encodings with adaptive flexibility, producing271

smooth, steady gains and outperforming every CBM variant in both intervention curves and overall272

accuracy (Table 1). For full setup details, see Appendix F. Interestingly, current models, such as273

CEM and AR-CBM, benefit the most from our regularization showing a significant improvement in274

both data sets.275

4.4 Concept Set Goodness Measure276

In CBMs, the quality of the concept set is crucial for accurate downstream task predictions. However,277

there is a lack of effective metrics to reliably assess concept set goodness. Existing metrics, such278

as the Concept Alignment Score, proposed by Espinosa Zarlenga et al. [3], evaluate whether the279

model has captured meaningful concept representations but do not explicitly measure how well these280

concepts improve downstream task performance during interventions. Moreover, this metric is tuned281

for CEM and do not extend beyond it.282
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Similar to previous methods that rely on area under the curve for the interventions [5, 18], we measure283

and compare the concept quality in CIBMs using the following metrics: area under interventions284

curve, and the area under curve of relative improvements. Denote by I(x) the model’s performance285

for x concept groups used in the intervention. Then the Test-Time Interventions (TTI) accuracy is286

AUCTTI =
1

n

n∑
i=1

I(i), (8)

and the normalized version of the TTI accuracy is287

NAUCTTI =
1

n

n∑
i=1

(I(i)− I(i− 1)) . (9)

The idea behind these measures is simple: if a concept set is of high quality, the task accuracy will288

steadily approach 100% as more concept groups are intervened upon, resulting in a large area under289

the curve. Conversely, if the concept set is incomplete or noisy, performance gains will be limited,290

even with multiple interventions, which can indicate concept leakage.291

The latter expression (9) could be simplified to just scaled difference between a model with full292

concept set used for interventions and performance of a model with no interventions, however, the293

meaning it has is how much does the performance change per one group added to the interventions294

pool. To test this, we generate corrupted concept sets by replacing selected concepts with noisy ones.295

Importantly, we maintain the original groupings of concepts.296

Table 3 shows the results of our metrics. We also show the commonly reported disaggregated plots in297

Fig. C.2. The number in the “corrupt” column denotes the number of concepts replaced with random298

ones for CUB, and for AwA2 “No” denotes a clear concept set and “Yes” denotes a concept set with299

one concept changed to corrupt. As expected, performance drops with corrupt concepts, since they300

contain no useful information for the target task. One consequence of our training is that if one has301

two concept annotations for some dataset, then it is possible to use CIBMs performance to determine302

which concept set is better.303

Our results demonstrate that regularizing with IBE is more sensitive to concept quality compared to304

vanilla CBM, making it a better indicator of concept set reliability. Negative values in normalized305

intervention AUC indicate possible concept leakage.306

4.5 Information Plane Dynamics in CBMs and CIBMs307

To further evaluate the proposed regularizers, we examined the information plane dynamics of CBM,308

CEM, and AR-CBM, as shown in Fig. E.1. In general, we expected to observe higher mutual309

information between the concepts and the labels, I(C;Y ), and between the latents and the concepts,310

I(Z;C), while expecting lower mutual information between the data and the concepts, I(X;C), and311

between the data and the latents, I(X;Z). We clearly observed this behavior when applying our312

IBE to CEM, and to a lesser degree with IBB . This pattern was also evident in AR-CBMs, although313

with more noise. However, in certain cases, this pattern deviated. More specifically, we found that314

CBMs exhibit greater compression with respect to the data compared to their regularized counterparts.315

Nevertheless, our CIBMs demonstrate greater expressiveness due to their higher mutual information316

with respect to the labels, Y .317

We think that vanilla CBMs “over-compress” their internal representations—shrinking I(X;C)318

and I(X;Z) so aggressively that they discard useful, task-relevant features. This indiscriminate319

bottleneck explains their lower end-to-end accuracy (Table 1) and higher concept leakage (Table 2).320

By contrast, our CIBMs apply a structured Information Bottleneck: they retain all the signal that321

drives Y (higher I(C;Y )) while shedding only the noise (lower I(X;C)), which both boosts322

predictive performance and cuts leakage. In other words, achieving expressiveness first—then323

selective compression—yields representations that are both robust and interpretable. Appendix E324

presents detailed information-plane trajectories, and our findings echo recent theory on IB in deep325

nets, which warns against blind compression in favor of task-guided pruning [9].326

Overall, we have found that pursuing compression alone is not the solution for obtaining more robust327

representations. Instead, we see that achieving more expressive representations (i.e., higher mutual328

information with respect to the labels) followed by compression (i.e., lower mutual information with329

respect to the data) helps reduce the gaps in predictive tasks (see Table 1) as well as in leakage (see330
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Table 2). However, due to the requirements for expressiveness, the CIBMs do not compress as much,331

since they must retain some useful information. Our findings align with recent theoretical insights332

on the Information Bottleneck principle in deep learning [9], which emphasize that indiscriminately333

minimizing the mutual information between the data and the latent representations, I(X;Z), does not334

guarantee expressive or generalizable representations. Effective models must selectively compress335

task-irrelevant information while retaining essential features for decision-making.336

4.6 Evaluation of our Regularizers’ Hyperparameters337

We evaluated the hyperparameters of our proposed regularizers on a CBM (SJ) to select the values338

that we used for all other experiments. We evaluated our regularizers in a single model to find339

the best setup due to computational constraints. We compare the performance of IBB and IBE on340

concept and class prediction accuracy for the CUB dataset (using β = 0.5) and report the results in341

Table B.1. As shown, IBE , which retains an explicit mutual information term I(X;C), outperforms342

IBB when trained in a fair setup (vanilla) in both metrics. We found that the lack of performance of the343

vanilla IBB regularizer comes from instabilities during training in the latent representations encoder344

p(z | x). We hypothesize that the gradient from the H(C) in the loss (5) damages the feature encoder345

p(z | x) since the entropy is computed w.r.t. the generative concepts p(c) instead of the variational346

approximated ones q(c). To alleviate this problem, we experimented gradient clipping as well as347

stopping the gradient from H(C) into the encoder. We found that the latter performs on par with348

IBE . In the experiments, we use IBB with stop gradient on it. Overall, IBE’s more granular control349

over information flow limits concept leakage, results in better accuracies for concepts and labels in350

comparison to the baselines (cf. Table 1) without changes to its training framework. We also evaluate351

two different values (0.25 and 0.5) for the β constant that controls the mutual information between352

the data and the concepts. We show these results in Table B.2. Since we obtained inconclusive results,353

we selected β = 0.5 for following experiments.354

These results supports our earlier discussion that the direct estimation of I(X;C) leads to more effec-355

tive use of concepts in downstream tasks without further changes to the training regime. Nevertheless,356

with a correctly regularized feature encoder p(z | x), a simple estimation in IBB can achieve similar357

levels of information gain and accuracy.358

5 Limitations359

Our reliance on variational MI estimation can introduce bias and depend sensitively on the choice360

of approximating distributions and estimators used (as shown in our results for our two varia-361

tions of regularizers). In general, like all CBMs, CIBMs assume reliable, comprehensive concept362

annotations—performance and leakage gains may diminish if concept labels are noisy, incomplete,363

or inconsistency defined, though our results have demonstrated that CIBMs are more robust to364

incomplete concepts as compared to their corresponding state of the art variants.365

6 Conclusion366

We present Concepts’ Information Bottleneck Models (CIBMs), a first-principled fusion of Infor-367

mation Bottleneck theory and Concept Bottleneck Models that both explains CBMs’ failure modes368

and prescribes their cure. By penalizing I(X;C) while preserving I(C;Y ), Concept Information369

Bottleneck reveals why vanilla CBMs over-compress and leak spurious signals—and how a surgical,370

task-guided compression can retain exactly what matters. We validate CIBMs across six CBM371

families (hard/soft, joint/independent, ProbCBM, CEM, and AR-CBM) on three benchmarks (CUB,372

AwA2, and aPY), employing concept accuracy, class accuracy, Oracle and Niche Impurity (OIS and373

NIS), and intervention metrics (AUCTTI, NAUCTTI). The result is uniformly higher class accuracy,374

dramatically reduced concept leakage, and equal or better concept-prediction performance—closing375

much of the CBM-black-box gap. Crucially, our findings show that: (a) simple, selective compres-376

sion can unlock robust, interpretable concept representations; and (b) that leakage undermines the377

use of concepts far more than their detection, explaining why near-perfect concept predictors can still378

yield subpar end-to-end performance.379
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A Detailed Derivation of CIB460

In this section we present the detailed derivations to obtained the results described in Section 3.1.461

We can re-write the upper bound of the concepts’ information bottleneck as462

LUB-CIB = H(Y ) + (1− β)H(C)−H(Y | C)−H(C | Z)− βH(C |X) (A.1)

to work with the entropies instead. To find a more suitable form to tackle this bound, we consider an463

approximation of the predictors for the labels and the concepts, q(y | c) and q(c | z), based on two464

variational distributions that will be implemented through neural networks—cf. Fig. 2. Consider, on465

one hand,466

H(Y | C) =

∫∫
dy dc p(y, c) log p(y | c), (A.2a)

=

∫∫
dy dc p(y, c) log

[
p(y | c)q(y | c)

q(y | c)

]
, (A.2b)

=

∫∫
dy dc p(y | c)p(c)

[
log

p(y | c)
q(y | c)

+ log q(y | c)
]
, (A.2c)
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=

∫
dc p(c)

∫
dy p(y | c)

[
log

p(y | c)
q(y | c)

+ log q(y | c)
]
, (A.2d)

= E
p(c)

[
KL
(
p(y | c)

∥∥ q(y | c)
)
−H (p(y | c), q(y | c))

]
. (A.2e)

We introduce the variational distribution q(y | c) to obtain the cross-entropy w.r.t. the ground truth467

and this results on an additional term to make the variational distribution close to the prior. In other468

words, we can interpret the conditional entropy of the labels w.r.t. the concepts as an optimization469

of the variational distribution q(y | c) with the true conditional of the labels given the concepts470

p(y | c) through a Kullback-Leibler divergence (KL) and the cross-entropy between them. This last471

cross-entropy can be interpreted as the traditional prediction loss of the true labels and the predicted472

ones. Similarly,473

H(C | Z) =

∫∫
dc dz p(c, z) log p(c | z), (A.3a)

=

∫∫
dc dz p(c, z) log

[
p(c | z)q(c | z)

q(c | z)

]
, (A.3b)

=

∫∫
dc dz p(c | z)p(z)

[
log

p(c | z)
q(c | z)

+ log q(c | z)
]
, (A.3c)

=

∫
dz p(z)

∫
dc p(c | z)

[
log

p(c | z)
q(c | z)

+ log q(c | z)
]
, (A.3d)

= E
p(z)

[
KL
(
p(c | z)

∥∥ q(c | z)
)
−H (p(c | z), q(c | z))

]
, (A.3e)

were q(c | z) is a variational distribution that predicts the concepts given the latent representations.474

This decomposition of the conditional entropy of the concepts given the representations follows the475

same principles as the conditional of the labels given the concepts (A.2). On the other hand, the476

conditional entropy of the concepts w.r.t. the data is bounded due to the marginalization of the latent477

representations on their dependency. That is,478

H(C |X) =

∫∫
dc dx p(c, x) log p(c | x), (A.4a)

=

∫∫
dc dx p(c, x) log

∫
dz p(c, z | x), (A.4b)

=

∫∫
dc dx p(c, x) log

∫
dz p(c | z)p(z | x), (A.4c)

≤
∫∫

dc dx p(c, x)

∫
dz p(z | x) log p(c | z), (A.4d)

=

∫∫∫
dc dz dx p(c, z, x)

∫
dz p(z | x) log p(c | z), (A.4e)

=

∫∫∫
dc dz dx p(c | z)p(z | x)p(x)

∫
dz p(z | x) log p(c | z), (A.4f)

=

∫
dx p(x)

∫∫∫
dc dz2 p(c | z)p(z | x)2 log p(c | z), (A.4g)

=

∫
dx p(x)

∫∫∫
dc dz2 p(c | z)p(z | x)2 log

[
p(c | z)q(c | z)

q(c | z)

]
, (A.4h)

=

∫
dx p(x)

∫∫
dz2 p(z | x)2

∫
dc p(c | z) log

[
p(c | z)q(c | z)

q(c | z)

]
, (A.4i)

= E
p(x)

E
p(z | x)

∫
dc p(c | z) log

[
p(c | z)q(c | z)

q(c | z)

]
, (A.4j)

= E
p(z | x)p(x)

∫
dc p(c | z)

[
log

p(c | z)
q(c | z)

+ log q(c | z)
]
, (A.4k)

= E
p(z | x)p(x)

[
KL
(
p(c | z)

∥∥ q(c | z)
)
−H (p(c | z), q(c | z))

]
, (A.4l)
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where the bound comes from applying the Jensen’s inequality. Thus, the upper bound to the concept479

bottleneck loss (2), given that we remove the KLs constraints, due to their positivity, from the480

conditional entropies (A.2), (A.3) and (A.4) is481

LUB-CIB ≤ H(Y )+(1−β)H(C)+E
p(c)

H (p(y | c), q(y | c))+(1+β)E
p(z)

H (p(c | z), q(c | z)) . (A.5)

The bound gap can be further reduced by dropping the entropy of the labels as482

LUB-CIB ≤ (1− β)H(C) + E
p(c)

H (p(y | c), q(y | c)) + (1 + β) E
p(z)

H (p(c | z), q(c | z)) , (A.6)

= LSUB-CIB. (A.7)

In other words, we can maximize the concepts’ information bottleneck by minimizing the cross483

entropies of the predictive variables, y and c, and their corresponding ground truths and by adjusting484

the entropy of the concepts.485

B Implementation Details486

B.1 Details on the Models487

To regularize existing models, we take the layer in their architecture that outputs the latent represen-488

tation and insert a variational reparametrization to it. That is, we insert two heads that output the489

mean and standard deviation for our variational approximation based on the architecture, and sample490

the latents from them. In a nutshell for these heads, we add on top of the model’s embedding layer491

(the bottleneck of the model) two 1-layer MLP (i.e., our heads), for mean and standard deviation492

using the reparametrization trick in the variational approximation q(c | z), each of dimensionality493

112—the number of concepts left after filtration identical to one done in Koh et al.’s [12] work. For494

CEMs, we introduce variational approximation for every concept embedding projection. We obtain495

concept logits as C = predµ(x) + predσ(x) · ε, where ε is a random standard Gaussian noise. On top496

of concepts logits, we stack label predictor q(y | c) (also 1-layer MLP). All activations between the497

layers are ReLU. For the CUB dataset, we choose for each original CBM-like model the respective498

image encoding backbone as image embedder p(z | x). For AwA2 and aPY the only difference is that499

we use on pre-computed embeddings from ResNet18 without training the backbone.500

For CEM [3] there are basically two training options: intervention-aware and basic. In the latter, the501

model just optimizes two CE objectives. We implemented and trained the intervention-aware setup502

on CUB, AwA2, and aPY. Then, we measured the interventions performance.503

Our accuracies coincided with those reported by Espinosa Zarlenga et al. [3] in their paper on CUB504

dataset. And intervention performance of this intervention-unaware model variant matched the505

reported behavior from the authors (i.e., no gain from interventions).506

B.2 Estimators Details507

Mutual Information Estimator. Before each gradient update, we compute cross-entropies over the508

current batch Bc, and then randomly sample batch B′
c from the training dataset to estimate I(X;C)509

on this batch.510

Our mutual information estimator follows Kawaguchi et al.’s [9] work. We rely on the fact that511

concepts logits have Gaussian distribution for estimation of log p(c |x). And then, we use the random512

samples B′
c to approximate the marginal of the concepts log p(c). The mutual information I(C;X)513

is then a Monte-Carlo estimate of log p(c | x)− log p(c).514

Entropy Estimator. Since concepts C are distributed normally, we use H(C) = D
2 (1 + log(2π)) +515

1
2 log |Σ|. For simplicity (since the number of concepts D is constant throughout the training and516

inference) we use Ĥ(C) = 1
2 log |Σ| =

∑
log(σi) since Σ is a diagonal matrix in our setup.517

B.3 Training Parameters518

We explained the hyperparameter selection in Section 4.6. We experimented with different setups519

to find the best configuration. We show these results in Tables B.1 and B.2. The other training520
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Table B.1: Accuracies of CBM (SJ) with our proposed regularizers, IBB and IBE , on CUB dataset (avg. 3 runs).

Method Concept Class

IBB (vanilla) 0.934 0.608
(clip norm = 1.0) 0.947 0.660
(clip norm = 0.1) 0.947 0.646
(stop grad. from H(C) into p(z | x)) 0.959 0.726

IBE 0.959 0.729

Table B.2: Evaluation of CBM (SJ) with the proposed regularizers on three datasets with two different values of
β.

β 0.25 0.50

Dataset Method Concept Class Concept Class

CUB IBB 0.958±0.001 0.726±0.003 0.958±0.001 0.725±0.004
IBE 0.958±0.001 0.728±0.005 0.959±0.001 0.729±0.003

AwA2 IBB 0.980±0.000 0.886±0.002 0.979±0.000 0.885±0.002
IBE 0.980±0.000 0.885±0.001 0.979±0.000 0.883±0.001

aPY IBB 0.967±0.000 0.850±0.006 0.967±0.000 0.856±0.005
IBE 0.967±0.000 0.858±0.004 0.967±0.000 0.856±0.004

parameters for the models are as follows. We set batch size to 128 and number of samples for MI521

estimation to 64. For all experiments we used Adam [11] optimizer with lr = 0.003 and wd = 0.001.522

We experimented with gradient clipping, but it led to either slow or divergent training, so we are not523

clipping the gradients in any of the experiments.524

B.4 Datasets525

We benchmark our approach on 3 datasets: CUB [21], AwA2 [22], and aPY [6]. While CUB is a526

recognized dataset for comparing concept-based approaches [3, 10, 12], we add the other two datasets527

for additional evaluations and analysis.528

CUB. Caltech-UCSD Birds dataset [21] is a dataset of birds images totaling in 11788 samples for529

200 species. Following Koh et al.’s [12] work, for reproducibility, we reduce instance-level concept530

annotations to class-level ones with majority voting. We then keep only the concept that are annotated531

as present in 10 classes at least after the described voting, resulting in 112 concepts instead of 312.532

We also employ train/val/test splits provided by Koh et al. [12], operating with 4796 train images,533

1198 val images and 5794 test images. To diversify training data, we augment the images with color534

jittering and horizontal flip, and resize the images to 299× 299 pixels for the InceptionV3 backbone.535

Concept groups are obtained by common prefix clustering.536

AwA2. Animals with attributes dataset [22] is a dataset of 37322 images of 50 animal species. For537

the concepts set, we follow Kim et al.’s [10] work and keep only the 45 concepts which could be538

observed on the image. We use ResNet18 embeddings provided by the dataset authors and train FCN539

on top of them. No additional augmentations are applied to those embeddings.540

aPY. This is a dataset [6] of 32 diverse real-world classes we used for proof of concept. We split541

the dataset into 7362 train, 3068 validation and 4909 test samples stratified on target labels. We542

train FCN on top of ResNet18 embeddings of input images provided by the dataset authors [22]. No543

additional augmentations are applied to those embeddings.544

B.5 Details on Experiments545

The image embedder backbone is only trained for CUB dataset [21], and for AwA2 [22] and aPY [6]546

we use pre-computed image embeddings. The ground truth concept labels are binary across all547

dataset, but concepts predictions passed to label classifier are non-binary: we are training only (and548

comparing only against) models using soft concepts for class prediction.549
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Figure B.1: Losses on the validation set of CUB for CBM (SJ) and its variants regularized with our proposed
methods.

When training models with IBB , we used the LSUB-CIB (5) for better performance. We backpropagate550

the gradients from the cross-entropies over concepts and labels through the entire network—both551

backbone q(c | z) and MLPs on top of the encoder q(y | c). For H(C), however, the situation is552

different: gradients from this part of the loss function are propagated only through the MLPs, q(c | z)553

and q(y | c), but not the image embedder backbone p(z | x). We found that such (partial) “freezing”554

of the encoder with respect to H(C) constraint dramatically improves the quality of both concepts555

and labels prediction. While we do not have access to the ground truth probability distribution for the556

concepts p(c | z), we have access to the ground truth concept labels. Our implementation uses the a557

supervised cross-entropy using the ground truth labels. The concepts’ predictor can be seens as a558

multi-label task classifier. In practice, we compute C logits, then, we compute binary cross-entropy559

(BCE) for each of these logits with binary labels. Finally, we backpropagate them through the means560

of BCEs.561

We show the normalized loss function values on the validation set of CUB in Fig. B.1 to show the562

convergence of CIBMs in comparison to CBM (SJ). Note that visually the concept losses on between563

CBM (SJ) and its variant regularized with IBE and the label losses between CIBMs are similar, but564

they differ slightly.565

C Extended Results on Interventions566

In Fig. C.1, we show the plots of Fig. 3 separated and grouped by the type of method and dataset in567

order to better visualize the trends. We highlight that the fewer points in the results for CEM follows568

the results from Espinosa Zarlenga et al. [3].569

In Fig. C.2, we show additional results about the aggregated interventions that we dicussed in570

Section 4.4 and that we showed in Table 3. We plot the interventions in the traditional way by571

showing the intervened groups and the TTI performance for six different corruption settings.572

D Extended Results on Concept Leakage573

D.1 OIS and NIS metrics574

The Oracle Impurity Score (OIS) [4] quantifies impurities localized within individual concept575

representations. Given a concept encoder g : X 7→ Ĉ ⊆ Rd×k, test samples ΓX , and their576

concept annotations Γ, OIS is defined as:577

OIS(g,ΓX ,Γ) :=
2‖π(g(ΓX),Γ)− π(Γ,Γ)‖F

k
(D.1)

where π(Γ̂,Γ) is a purity matrix whose entries π(Γ̂,Γ)(i,j) contain the AUC-ROC score when578

predicting the ground truth value of concept j given the i-th concept representation. The normalization579

ensures OIS ranges in [0, 1], with 0 indicating perfect alignment between the predictive capacity of580

learned and ground truth concepts.581
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Figure C.1: Expanded results from Fig. 3. Change in target prediction accuracy after intervening on concept
groups following the random strategy as described in Section 4.3. (TTI stands for Test-Time Interventions and
NR for non-regularized.)

The Niche Impurity Score (NIS) [4] captures impurities distributed across multiple concept represen-582

tations. For each concept j, a concept niche Nj(ν, β) is defined as the set of concept indices whose583

representations are highly entangled with concept j according to a concept nicher function ν and584

threshold β. The Niche Impurity (NI) for concept i measures how predictable this concept is from585
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Figure C.2: Change in target prediction accuracy for different number of corrupted concepts. These are the
expanded results of Table 3. (TTI stands for Test-Time Interventions.)

representations outside its niche:586

NIi(f, ν, β) := AUC-ROC({(f |¬Ni(ν,β)(ĉ
(l)
(:,¬Ni(ν,β))

), c
(l)
i )}nl=1). (D.2)

The overall NIS is then calculated by integrating NIs across all concepts and threshold values:587

NIS(f, ν) :=
∫ 1

0

(
k∑

i=1

NIi(f, ν, β)
k

)
dβ. (D.3)

A NIS of 0.5 indicates random performance (no impurity), while a NIS of 1 suggests that concept588

information is dispersed across multiple representations. Together, these metrics effectively evaluate589

concept quality without making unrealistic assumptions about concept independence or representation590

dimensionality.591

D.2 Concept sets reduction592

We employed two different algorithms to cut the concepts set to half the size: selective (information-593

based) and random dropout. In the former, we computed E[I(Y ;Ci)] for all concept groups on a594
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subsample of the training set. Then we dropped out the concepts groups with the highest mutual595

information—that is, we made the “fair” (leakage-free) learning as unprofitable and hard as possible.596

On the other hand, the random dropout selects half of the concepts at random and drops the rest.597

E Information Plane Dynamics598

We analyze the flow of information between inputs, X , latents, Z, concepts, C, and labels, Y , and599

present them in Fig. E.1. The objective of the information plane is to show the mutual information600

on the model variables after training. In particular, we expect to see a model with high I(Z;C) and601

I(C;Y ) such that the corresponding variables are dependent on each other (maximally expressive),602

and simultaneously, low I(X;C) and I(X;Z) to show that the corresponding variables are maximally603

compressive. However, the compression of the variables alone, minimal I(X;C) or I(X;Z), does604

not guarantee that the important parts of the variables are being compressed and retained. Thus, we605

show the other experiments to complement this analysis.606

CEM has a lower mutual information between the inputs and the latent and concept representations,607

I(X;Z) and I(X;C), than CBM (SJ). Interestingly, our regularizers reduce these mutual information608

while maintaining the mutual information w.r.t. the target, I(C;Y ) and I(Z;C). However, for CBM609

(SJ), our methods increase the mutual information w.r.t. the data. This behavior may reflect the fact610

that CIBMs are optimized to retain task-relevant information while removing irrelevant or redundant611

information but not necessarily compressing as much—reflected in the higher I(X;C) and I(X;Z).612

Nevertheless, lower mutual information I(X;C) and I(X;Z) in CBMs does not necessarily indicate613

better compression given its lower predictive accuracy. Instead, it may reflect a failure to capture614

meaningful input features, resulting in noisier or less predictive concepts. Moreover, we note that the615

plots in Fig. E.1(f) for IBB and IBE look similar but they differ in hundredths.616

For AR-CBM, the information flow is more noisy. Despite the noise, we can observe that CIBMs617

obtain higher mutual information w.r.t. the labels than their vanilla counterpart. While the compression618

w.r.t. the data is not as evident, the final mutual information w.r.t. the data is closer between the619

original method and its regularized versions. Nevertheless, we still observed better predictive620

performance (cf. Table 1). Thus, we hypothesize that the regularizer is increasing the expressiveness621

of the representations with a trade-off of the compression as observed with the CBMs but not as622

apparent. On the other hand, the CIBMs obtain better compression-expression patterns for the latent623

representations, see Table E.1(d).624

To demonstrate the effects of the compression patterns, we evaluate the alignment between represen-625

tations and the target I(C;Y ) and show that CIBMs consistently outperform CBMs, and, while noisy,626

they show improvements over CEM, indicating that the retained information is both relevant and627

predictive—cf. Section 4.1. Additionally, CIBMs achieve better interpretability and concept quality,628

reinforcing that the higher mutual information is a reflection of meaningful expressiveness rather629

than leakage—cf. Section 4.3. This is further supported by the proposed intervention-based metrics630

(AUCTTI and NAUCTTI) which highlight the importance of retaining task-relevant information in the631

concepts C. While CBMs exhibit lower mutual information between inputs and representations in632

contrast to the regularized versions, I(X;C) and I(X;Z), their poorer performance on these metrics,633

particularly under concept corruption, suggests that this lower information content stems from a fail-634

ure to capture sufficient relevant features. By contrast, the higher I(X;C) and I(X;Z) in our CIBMs635

reflect the retention of meaningful pieces that contribute to better concept quality and downstream636

task performance. These findings demonstrate that reducing concept leakage requires selectively637

preserving relevant information rather than minimizing mutual information indiscriminately.638

Our findings align with recent theoretical insights on the Information Bottleneck principle in deep639

learning [9], which emphasize that indiscriminately minimizing the mutual information between640

the data and the latent representations, I(X;Z), does not guarantee expressive or generalizable641

representations. Instead, effective models must selectively compress task-irrelevant information642

while retaining essential features for decision-making. Our results (cf. Table 1 and Fig. E.1) support643

this trade-off by demonstrating that CBMs, despite lower I(X;C) and I(X;Z), do not necessarily644

achieve superior concept representations or intervention efficacy in comparison to their IB regularized645

counterparts. In contrast, our IB-based CBMs, which balance information retention and compression,646

lead to improved alignment between concepts and final predictions, reinforcing the importance of647

controlled, task-relevant compression rather than absolute mutual information minimization.648
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Figure E.1: Information plane dynamics (in nats) for (a,b) CEM, (c,d) AR-CBM, (e, f) CBM (SJ) and our
proposed methods, IBB and IBE . Warmer colors denote later steps in training. We show the information plane
of (a, c, e) the variables X , C, and Y ; and (b, d, f) the variables X , Z, and C.
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F Discussion about CBMs setups649

Hard CBMs use hard concept representations, meaning that instead of producing a probabilistic650

output (as in soft concepts in soft CBM), each concept prediction is treated as a discrete binary or651

categorical value. These hard predictions are used as inputs to the downstream task (class prediction),652

making the pipeline interpretable and less expressive, thus less prone to information leakage.653

When compared with soft CBMs and Soft CIBMs:654

• Representation:655

– Hard CBMs: Use discrete hard values for concepts (e.g., 0 or 1 for binary concepts).656

– Soft CBMs: Use continuous values (e.g., logits or probabilities).657

– Soft CIBMs: Similar to soft CBMs but use IB to minimize irrelevant information, reducing658

concept leakage.659

• Information Flow:660

– Hard CBMs: Compress information into discrete concept values, which prevents information661

leakage but risks losing useful details for downstream tasks.662

– Soft CBMs: Retain richer information but are more prone to concept leakage.663

– Soft CIBMs: Balance retaining relevant information while mitigating leakage through the IB664

framework.665

• Interventions:666

– Hard CBMs: Explicitly rely on discrete corrections during interventions, which can have a667

significant impact.668

– Soft CBMs and CIBMs: Treat interventions as updates to probabilities or logits, which is669

more expressive, but could induce noise in concepts.670

Due to their rigidity, without enough interventions, hard CBMs cannot recover from errors or noise in671

the predicted concepts because the discrete pipeline does not allow for soft adjustments.672

But, as more concepts are corrected, the discrete nature of hard CBMs becomes an advantage together673

with its independent training: ground truth, hard values fully override noisy predictions, ensuring674

perfect input for the downstream classifier, which was previously trained also on ground truth concepts675

from train set.676

Soft CBMs and CIBMs, while retaining more information, still rely on probabilistic updates during677

interventions, which may not fully override noisy concept predictions.678

Overall, CIBMs are superior because they combine the advantages of soft representations (expressive-679

ness, better performance) with mechanisms to mitigate concept leakage (robustness, interpretability).680

Hard CBMs, while conceptually cleaner in avoiding leakage, fail to achieve the same level of681

downstream performance and adaptability, particularly in more realistic or challenging scenarios.682
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NeurIPS Paper Checklist683

1. Claims684

Question: Do the main claims made in the abstract and introduction accurately reflect the685

paper’s contributions and scope?686

Answer: [Yes]687

Justification: The claims are the introduction of an Information Bottleneck regularizer for688

CBMs and its demonstration, through experimental results, of its capabilities to improve the689

concept accuracy, reduce leakage, and improve target prediction performance.690

Guidelines:691

• The answer NA means that the abstract and introduction do not include the claims692

made in the paper.693

• The abstract and/or introduction should clearly state the claims made, including the694

contributions made in the paper and important assumptions and limitations. A No or695

NA answer to this question will not be perceived well by the reviewers.696

• The claims made should match theoretical and experimental results, and reflect how697

much the results can be expected to generalize to other settings.698

• It is fine to include aspirational goals as motivation as long as it is clear that these goals699

are not attained by the paper.700

2. Limitations701

Question: Does the paper discuss the limitations of the work performed by the authors?702

Answer: [Yes]703

Justification: Throughout Section 4, while we present our results, we also discuss the704

limitations of the proposal across the different experimental sections. We also have an705

explicit limitations presentation in Section 5.706

Guidelines:707

• The answer NA means that the paper has no limitation while the answer No means that708

the paper has limitations, but those are not discussed in the paper.709

• The authors are encouraged to create a separate ”Limitations” section in their paper.710

• The paper should point out any strong assumptions and how robust the results are to711

violations of these assumptions (e.g., independence assumptions, noiseless settings,712

model well-specification, asymptotic approximations only holding locally). The authors713

should reflect on how these assumptions might be violated in practice and what the714

implications would be.715

• The authors should reflect on the scope of the claims made, e.g., if the approach was716

only tested on a few datasets or with a few runs. In general, empirical results often717

depend on implicit assumptions, which should be articulated.718

• The authors should reflect on the factors that influence the performance of the approach.719

For example, a facial recognition algorithm may perform poorly when image resolution720

is low or images are taken in low lighting. Or a speech-to-text system might not be721

used reliably to provide closed captions for online lectures because it fails to handle722

technical jargon.723

• The authors should discuss the computational efficiency of the proposed algorithms724

and how they scale with dataset size.725

• If applicable, the authors should discuss possible limitations of their approach to726

address problems of privacy and fairness.727

• While the authors might fear that complete honesty about limitations might be used by728

reviewers as grounds for rejection, a worse outcome might be that reviewers discover729

limitations that aren’t acknowledged in the paper. The authors should use their best730

judgment and recognize that individual actions in favor of transparency play an impor-731

tant role in developing norms that preserve the integrity of the community. Reviewers732

will be specifically instructed to not penalize honesty concerning limitations.733

3. Theory assumptions and proofs734
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Question: For each theoretical result, does the paper provide the full set of assumptions and735

a complete (and correct) proof?736

Answer: [Yes]737

Justification: The paper presents a summary of the main results in Section 3, with details738

derivations in Appendix A.739

Guidelines:740

• The answer NA means that the paper does not include theoretical results.741

• All the theorems, formulas, and proofs in the paper should be numbered and cross-742

referenced.743

• All assumptions should be clearly stated or referenced in the statement of any theorems.744

• The proofs can either appear in the main paper or the supplemental material, but if745

they appear in the supplemental material, the authors are encouraged to provide a short746

proof sketch to provide intuition.747

• Inversely, any informal proof provided in the core of the paper should be complemented748

by formal proofs provided in appendix or supplemental material.749

• Theorems and Lemmas that the proof relies upon should be properly referenced.750

4. Experimental result reproducibility751

Question: Does the paper fully disclose all the information needed to reproduce the main ex-752

perimental results of the paper to the extent that it affects the main claims and/or conclusions753

of the paper (regardless of whether the code and data are provided or not)?754

Answer: [Yes]755

Justification: We provide extensive details about the reproducibility of our proposal in the756

Appendices. Moreover, we shared an anonymous Git repository (https://anonymous.4o757

pen.science/r/CIBM-4FE3/) which contains the code for our proposal.758

Guidelines:759

• The answer NA means that the paper does not include experiments.760

• If the paper includes experiments, a No answer to this question will not be perceived761

well by the reviewers: Making the paper reproducible is important, regardless of762

whether the code and data are provided or not.763

• If the contribution is a dataset and/or model, the authors should describe the steps taken764

to make their results reproducible or verifiable.765

• Depending on the contribution, reproducibility can be accomplished in various ways.766

For example, if the contribution is a novel architecture, describing the architecture fully767

might suffice, or if the contribution is a specific model and empirical evaluation, it may768

be necessary to either make it possible for others to replicate the model with the same769

dataset, or provide access to the model. In general. releasing code and data is often770

one good way to accomplish this, but reproducibility can also be provided via detailed771

instructions for how to replicate the results, access to a hosted model (e.g., in the case772

of a large language model), releasing of a model checkpoint, or other means that are773

appropriate to the research performed.774

• While NeurIPS does not require releasing code, the conference does require all submis-775

sions to provide some reasonable avenue for reproducibility, which may depend on the776

nature of the contribution. For example777

(a) If the contribution is primarily a new algorithm, the paper should make it clear how778

to reproduce that algorithm.779

(b) If the contribution is primarily a new model architecture, the paper should describe780

the architecture clearly and fully.781

(c) If the contribution is a new model (e.g., a large language model), then there should782

either be a way to access this model for reproducing the results or a way to reproduce783

the model (e.g., with an open-source dataset or instructions for how to construct784

the dataset).785

(d) We recognize that reproducibility may be tricky in some cases, in which case786

authors are welcome to describe the particular way they provide for reproducibility.787

In the case of closed-source models, it may be that access to the model is limited in788
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some way (e.g., to registered users), but it should be possible for other researchers789

to have some path to reproducing or verifying the results.790

5. Open access to data and code791

Question: Does the paper provide open access to the data and code, with sufficient instruc-792

tions to faithfully reproduce the main experimental results, as described in supplemental793

material?794

Answer: [Yes]795

Justification: We shared an anonymous Git repository (https://anonymous.4open.sc796

ience/r/CIBM-4FE3/) which contains the code for our proposal.797

Guidelines:798

• The answer NA means that paper does not include experiments requiring code.799

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/pu800

blic/guides/CodeSubmissionPolicy) for more details.801

• While we encourage the release of code and data, we understand that this might not be802

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not803

including code, unless this is central to the contribution (e.g., for a new open-source804

benchmark).805

• The instructions should contain the exact command and environment needed to run to806

reproduce the results. See the NeurIPS code and data submission guidelines (https:807

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.808

• The authors should provide instructions on data access and preparation, including how809

to access the raw data, preprocessed data, intermediate data, and generated data, etc.810

• The authors should provide scripts to reproduce all experimental results for the new811

proposed method and baselines. If only a subset of experiments are reproducible, they812

should state which ones are omitted from the script and why.813

• At submission time, to preserve anonymity, the authors should release anonymized814

versions (if applicable).815

• Providing as much information as possible in supplemental material (appended to the816

paper) is recommended, but including URLs to data and code is permitted.817

6. Experimental setting/details818

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-819

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the820

results?821

Answer: [Yes]822

Justification: We detailed the details for our proposed methods in Section 4 and in Appen-823

dices. Moreover, we also detail the protocols we followed from other papers.824

Guidelines:825

• The answer NA means that the paper does not include experiments.826

• The experimental setting should be presented in the core of the paper to a level of detail827

that is necessary to appreciate the results and make sense of them.828

• The full details can be provided either with the code, in appendix, or as supplemental829

material.830

7. Experiment statistical significance831

Question: Does the paper report error bars suitably and correctly defined or other appropriate832

information about the statistical significance of the experiments?833

Answer: [Yes]834

Justification: Yes, we report the standard deviations for the experiments where several runs835

were performed.836

Guidelines:837

• The answer NA means that the paper does not include experiments.838

23

https://anonymous.4open.science/r/CIBM-4FE3/
https://anonymous.4open.science/r/CIBM-4FE3/
https://anonymous.4open.science/r/CIBM-4FE3/
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The authors should answer ”Yes” if the results are accompanied by error bars, confi-839

dence intervals, or statistical significance tests, at least for the experiments that support840

the main claims of the paper.841

• The factors of variability that the error bars are capturing should be clearly stated (for842

example, train/test split, initialization, random drawing of some parameter, or overall843

run with given experimental conditions).844

• The method for calculating the error bars should be explained (closed form formula,845

call to a library function, bootstrap, etc.)846

• The assumptions made should be given (e.g., Normally distributed errors).847

• It should be clear whether the error bar is the standard deviation or the standard error848

of the mean.849

• It is OK to report 1-sigma error bars, but one should state it. The authors should850

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis851

of Normality of errors is not verified.852

• For asymmetric distributions, the authors should be careful not to show in tables or853

figures symmetric error bars that would yield results that are out of range (e.g. negative854

error rates).855

• If error bars are reported in tables or plots, The authors should explain in the text how856

they were calculated and reference the corresponding figures or tables in the text.857

8. Experiments compute resources858

Question: For each experiment, does the paper provide sufficient information on the com-859

puter resources (type of compute workers, memory, time of execution) needed to reproduce860

the experiments?861

Answer: [Yes]862

Justification: All experiments were run on a single A100 GPU, and average runtime of one863

training was 20 hours.864

Guidelines:865

• The answer NA means that the paper does not include experiments.866

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,867

or cloud provider, including relevant memory and storage.868

• The paper should provide the amount of compute required for each of the individual869

experimental runs as well as estimate the total compute.870

• The paper should disclose whether the full research project required more compute871

than the experiments reported in the paper (e.g., preliminary or failed experiments that872

didn’t make it into the paper).873

9. Code of ethics874

Question: Does the research conducted in the paper conform, in every respect, with the875

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?876

Answer: [Yes]877

Justification: We reviewed and followed the NeurIPS Code of Ethics.878

Guidelines:879

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.880

• If the authors answer No, they should explain the special circumstances that require a881

deviation from the Code of Ethics.882

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-883

eration due to laws or regulations in their jurisdiction).884

10. Broader impacts885

Question: Does the paper discuss both potential positive societal impacts and negative886

societal impacts of the work performed?887

Answer: [No]888
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Justification: This paper presents work whose goal is to advance the field of Machine889

Learning. There are many potential societal consequences of our work, none which we feel890

must be specifically highlighted here.891

Guidelines:892

• The answer NA means that there is no societal impact of the work performed.893

• If the authors answer NA or No, they should explain why their work has no societal894

impact or why the paper does not address societal impact.895

• Examples of negative societal impacts include potential malicious or unintended uses896

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations897

(e.g., deployment of technologies that could make decisions that unfairly impact specific898

groups), privacy considerations, and security considerations.899

• The conference expects that many papers will be foundational research and not tied900

to particular applications, let alone deployments. However, if there is a direct path to901

any negative applications, the authors should point it out. For example, it is legitimate902

to point out that an improvement in the quality of generative models could be used to903

generate deepfakes for disinformation. On the other hand, it is not needed to point out904

that a generic algorithm for optimizing neural networks could enable people to train905

models that generate Deepfakes faster.906

• The authors should consider possible harms that could arise when the technology is907

being used as intended and functioning correctly, harms that could arise when the908

technology is being used as intended but gives incorrect results, and harms following909

from (intentional or unintentional) misuse of the technology.910

• If there are negative societal impacts, the authors could also discuss possible mitigation911

strategies (e.g., gated release of models, providing defenses in addition to attacks,912

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from913

feedback over time, improving the efficiency and accessibility of ML).914

11. Safeguards915

Question: Does the paper describe safeguards that have been put in place for responsible916

release of data or models that have a high risk for misuse (e.g., pretrained language models,917

image generators, or scraped datasets)?918

Answer: [NA]919

Justification: The paper doesn’t provide models that have a high risk of misuse.920

Guidelines:921

• The answer NA means that the paper poses no such risks.922

• Released models that have a high risk for misuse or dual-use should be released with923

necessary safeguards to allow for controlled use of the model, for example by requiring924

that users adhere to usage guidelines or restrictions to access the model or implementing925

safety filters.926

• Datasets that have been scraped from the Internet could pose safety risks. The authors927

should describe how they avoided releasing unsafe images.928

• We recognize that providing effective safeguards is challenging, and many papers do929

not require this, but we encourage authors to take this into account and make a best930

faith effort.931

12. Licenses for existing assets932

Question: Are the creators or original owners of assets (e.g., code, data, models), used in933

the paper, properly credited and are the license and terms of use explicitly mentioned and934

properly respected?935

Answer: [Yes]936

Justification: All the used datasets are properly cited. No dataset or assets will be released.937

Guidelines:938

• The answer NA means that the paper does not use existing assets.939

• The authors should cite the original paper that produced the code package or dataset.940
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• The authors should state which version of the asset is used and, if possible, include a941

URL.942

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.943

• For scraped data from a particular source (e.g., website), the copyright and terms of944

service of that source should be provided.945

• If assets are released, the license, copyright information, and terms of use in the package946

should be provided. For popular datasets, paperswithcode.com/datasets has947

curated licenses for some datasets. Their licensing guide can help determine the license948

of a dataset.949

• For existing datasets that are re-packaged, both the original license and the license of950

the derived asset (if it has changed) should be provided.951

• If this information is not available online, the authors are encouraged to reach out to952

the asset’s creators.953

13. New assets954

Question: Are new assets introduced in the paper well documented and is the documentation955

provided alongside the assets?956

Answer: [NA]957

Justification: The paper does not release any new assets.958

Guidelines:959

• The answer NA means that the paper does not release new assets.960

• Researchers should communicate the details of the dataset/code/model as part of their961

submissions via structured templates. This includes details about training, license,962

limitations, etc.963

• The paper should discuss whether and how consent was obtained from people whose964

asset is used.965

• At submission time, remember to anonymize your assets (if applicable). You can either966

create an anonymized URL or include an anonymized zip file.967

14. Crowdsourcing and research with human subjects968

Question: For crowdsourcing experiments and research with human subjects, does the paper969

include the full text of instructions given to participants and screenshots, if applicable, as970

well as details about compensation (if any)?971

Answer: [NA]972

Justification: The paper doesn’t involve crowdsourcing nor research with human subjects.973

Guidelines:974

• The answer NA means that the paper does not involve crowdsourcing nor research with975

human subjects.976

• Including this information in the supplemental material is fine, but if the main contribu-977

tion of the paper involves human subjects, then as much detail as possible should be978

included in the main paper.979

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,980

or other labor should be paid at least the minimum wage in the country of the data981

collector.982

15. Institutional review board (IRB) approvals or equivalent for research with human983

subjects984

Question: Does the paper describe potential risks incurred by study participants, whether985

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)986

approvals (or an equivalent approval/review based on the requirements of your country or987

institution) were obtained?988

Answer: [NA]989

Justification: The paper doesn’t involve crowdsourcing nor research with human subjects.990

Guidelines:991
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• The answer NA means that the paper does not involve crowdsourcing nor research with992

human subjects.993

• Depending on the country in which research is conducted, IRB approval (or equivalent)994

may be required for any human subjects research. If you obtained IRB approval, you995

should clearly state this in the paper.996

• We recognize that the procedures for this may vary significantly between institutions997

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the998

guidelines for their institution.999

• For initial submissions, do not include any information that would break anonymity (if1000

applicable), such as the institution conducting the review.1001

16. Declaration of LLM usage1002

Question: Does the paper describe the usage of LLMs if it is an important, original, or1003

non-standard component of the core methods in this research? Note that if the LLM is used1004

only for writing, editing, or formatting purposes and does not impact the core methodology,1005

scientific rigorousness, or originality of the research, declaration is not required.1006

Answer: [NA]1007

Justification: The paper doesn’t use nor describe LLMs.1008

Guidelines:1009

• The answer NA means that the core method development in this research does not1010

involve LLMs as any important, original, or non-standard components.1011

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1012

for what should or should not be described.1013
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