
Inference Serving System for Stable Diffusion as a
Service

Aritra Ray∗, Lukas Dannull∗, Farshad Firouzi∗, Kyle Lafata∗, Krishnendu Chakrabarty†

∗Duke University †Arizona State University

Abstract—We present a model-less, privacy-preserving, low-
latency inference framework to satisfy user-defined System-Level
Objectives (SLO) for Stable Diffusion as a Service (SDaaS).
Developers of Stable Diffusion (SD) models register their trained
models on our proposed system through a declarative API.
Users, on the other hand, can specify SLOs in terms of the
style of the generated image for their input text, the requested
processing latency, and the minimum requested text-to-image
similarity (CLIP score) for inference through the user API.
Assuming black-box access to the registered models, we profile
them on hardware accelerators to design an inference predictor
module. It heuristically predicts the required number of inference
steps for the user-requested text-to-image CLIP score and the
requested latency, for a specific SD model over a hardware
accelerator, to satisfy the SLO. In combination with the inference
predictor module, we propose a shortest-job first algorithm for
our inference framework. Compared to traditional Deep Neural
Network (DNN) and Large Language Model (LLM) inference
scheduling algorithms, our proposed method outperforms on
average job completion time, and the average number of SLOs
satisfied in a user-defined SLO scenario.

Index Terms—Inference Serving System, Stable Diffusion

I. INTRODUCTION

To serve traditional DNN models in the cloud, the trained
models are deployed on CPUs [1], [2], and one single forward
pass cycle is initiated for every input query to generate a
classification label. The optimizations are thereby focused on
model switching [1], ease-of-use [3], and lower inference
latency [2], to highlight a few. Unlike so, in SD models,
the input text is mapped to the token embeddings as a
representation of the input text, and starting with a random
noisy latent image information array, the diffusion refines the
information array such that the image decoder uses it to decode
the final image. This process happens in a step-by-step fashion,
with each diffusion step adding more relevant information
to the latent array. With generative Artificial Intelligence
(AI) models, particularly SD for text-to-image generation,
being progressively deployed in the cloud [4], [5], and the
striking difference in the inference process compared to DNNs
motivates us to design a model-less, privacy-preserving, low-
latency inference framework for SDaaS.

Developers are incrementally advancing the state-of-the-
art SD models aimed at facilitating text-to-image conversion.
For a variety of pre-trained SD models, each variant exhibits
variations in resource footprints and processing time latencies
across heterogeneous compute resources. In this paper, we
present a model-less, privacy-preserving, low-latency infer-

ence framework to satisfy user-defined SLOs for SDaaS.
Developers of SD models can register their models on our
proposed system through a declarative API. Users, on the
other hand, can specify SLOs in terms of the style of the
generated image, the requested latency, and the minimum
requested CLIP score for inference through the user API.
Our proposed system manages model registration from the
developers, and schedules volumes of user queries aimed to
meet SLOs through an efficient deployment of the models onto
hardware accelerators in the compute cluster.

The rest of the paper is organized as follows. Section II
highlights our key findings to guide our inference framework
development, followed by our proposed system design in
Section III. Section IV delves into our evaluation results, and
section V concludes our paper.

II. MOTIVATION

We evaluate the runtime latencies for a specific prompt
across 9 pre-trained SD models1 for text-to-image genera-
tion. We specifically investigate the performance discrepancy
between CPU and GPU for a single inference step in the
diffusion process. The aggregated findings for a randomly
selected prompt ‘an astronaut riding a cow’, are presented in
Table I, utilizing a floating-point precision of 16 consistently
across all SD models. We used an X86 64, employing 64-bit
processing, powered by an Intel(R) Xeon(R) CPU @ 2.20GHz
with an advertised frequency of 2.2000 GHz, and Tesla V100
as our CPU and GPU respectively. Our analysis reveals that
for all the evaluated SD models, the average inference time
on CPU is 92x higher, on average, compared to a GPU

deployment. 1 This highlights the need for scheduling SD
inferencing workloads on GPU to achieve significantly lower
latency.

From the data presented in Table I, we observe the vari-
ability in inference times, when utilizing the same compute
resource across a variety of SD models, for an identical query.
2 This elucidates that every SD model exhibits significant

variations in their resource requirements.
Next, we subject the identical inference workload for one

SD model, across various hardware accelerators. In Table
II, we present the average inference time for 10 inference
steps, for the SD model ‘dreamlike-art/dreamlike-anime-1.0’,

1https://huggingface.co/

13

2024 IEEE Cloud Summit

979-8-3503-7006-5/24/$31.00 ©2024 IEEE
DOI 10.1109/Cloud-Summit61220.2024.00009

20
24

 IE
EE

 C
lo

ud
 S

um
m

it
|

97
9-

8-
35

03
-7

00
6-

5/
24

/$
31

.0
0

©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
CL

O
U

D-
SU

M
M

IT
61

22
0.

20
24

.0
00

09

Authorized licensed use limited to: Texas A M University. Downloaded on February 03,2025 at 22:11:26 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Single step inference latency for stable diffusion
models on CPU and GPU.

Stable Diffusion Models Inference Time (sec)
CPU GPU

DGSpitzer/Cyberpunk-Anime-Diffusion 22.47 0.317
dreamlike-art/dreamlike-anime-1.0 77.41 0.576

CompVis/stable-diffusion-v1-4 27.21 0.309
stabilityai/stable-diffusion-2-1-base 21.77 0.315

stabilityai/stable-diffusion-2-1 86.64 0.734
SG161222/Realistic Vision V1.4 35.34 0.304

hakurei/waifu-diffusion 24.94 0.328
Nilaier/Waifu-Diffusers 22.58 0.314
kohbanye/pixel-art-style 27.85 0.302

while achieving a CLIP score of 0.37 on ‘ViT-B/32’. 3 This
elucidates the pronounced variability in processing latencies
across hardware accelerators in the compute cluster for SD
models.

To evaluate the influence of floating point precision in SD
models, we present in Table III, the mean inference time
over 10 inference steps, and CLIP score (‘ViT-B/32’) for the
SD model ‘dreamlike-art/dreamlike-anime-1.0’, on the A100
PCIE GPU, for varying inference steps. With a higher floating
point precision, the SD model achieves a marginally higher
CLIP score in fewer inference steps, at the expense of higher

latency per inference steps. 4 This elucidates that there exists
a marginal trade-off between the floating point precision of the
SD model to the associated inference time latency and CLIP
score.

Fig. 1: Inference latency and CLIP Score (‘ViT-B/32’) for
different styles of stable diffusion models, at seed 1024, for
prompt ‘an astronaut riding a cow’.

To illustrate the diversity of styles in the output image, we
present a selection of generated images from 3 SD models:
namely, ‘runwaymlstable-diffusion-v1-5’, ‘kohbanye/pixel-art-
style’, and ‘DGSpitzer/Cyberpunk-Anime-Diffusion’, across

variable inference steps along with their corresponding CLIP
Scores (‘ViT-B/32’), as shown in Fig. 1. Generally, we antici-
pate that as the number of inference steps increases, the quality
of the images will improve, leading to a proportional increase
in the CLIP score. However, it is noteworthy that the variation
in generated features within the latent information array,
in response to the input prompt, leads to a non-monotonic
relationship between the number of inference steps and the
CLIP score.

To second this further, we extract the text captions from
the Flickr8k [6] dataset and feed 10% text prompts into SD
models to evaluate the runtime latency and CLIP score over 3

hardware accelerators. 5 From Fig. 2, we observe a monotonic
increase in inference latency with respect to the inference
steps, but a non-monotonic relationship between the number
of inference steps and the CLIP score.

III. SYSTEM DESIGN

In this section, we present the design of our proposed
model-less, privacy-preserving, low-latency inference frame-
work to satisfy user-centric SLOs for SDaaS. The components
of our proposed system are outlined subsequently.

Design Principles. Developers of SD models can register
their model on our proposed system through a declarative API.
Users, on the other hand, can specify SLOs in terms of the
style of the generated image, the requested latency, and the
minimum requested CLIP score for inference through the user
API. Our proposed system manages model registration from
the developers, and schedules volumes of user queries to meet
SLOs through an efficient deployment of the SD models to
hardware accelerators in the compute cluster.

Model-less interface for inference. The front-end interface
of our proposed system involves model registration from the
developers and the submission of user queries for inferencing
on the registered models.

• Model registration: The developers can register their
models using a declarative API. The API accommodates
a model identifier designated by the developer and the
trained weights of the SD model.

• Query Submission: Users can submit inference queries,
mentioning the requested text prompt tp to generate an
output image, the style of the generated image s, and
specify high-level performance criteria, like the requested
CLIP score (SLOCLIP). The user can also specify a
requested SLO latency (SLOlatency) within which the
request must be processed, alongside SLOCLIP .

Architecture. The controller, depending on the specified s
loads the appropriate model from the model repository, and
forwards the inference query to a worker machine with the
scheduling logic. The workers execute the inference queries
to hardware accelerators and subsequently respond with the
inference results to the user. If the user-defined SLO could
not be satisfied for a particular query, the system returns a
message appropriately to the user.

• Controller The centralized controller handles both model
registration from developers, and SLO-based inference

14

Authorized licensed use limited to: Texas A M University. Downloaded on February 03,2025 at 22:11:26 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Impact of inference latency for stable diffusion models on hardware accelerators.

GPU RTX4090 RTX3090 A100PCIE RTX4080 RTXA6000 RTXA4000 TESLAV100 RTX3060 A40 RTX3080
Inference Time (s) 5.473 5.952 3.684 7.417 5.591 9.601 6.804 13.997 6.214 7.211

Fig. 2: Processing latency for SD models, over (a) Tesla V100, (b) A100, (c) RTX4080 hardware accelerators. (d) Represents
the CLIP score (‘ViT-B/32’) of the SD models as a function of inference steps.

TABLE III: Impact of inference time to CLIP score for floating
point precision in stable diffusion models.

Inference Half-precision (16FP) Single-precision (32FP)
Steps Latency (s) CLIP Score Latency (s) CLIP Score

1 0.123 0.163 0.283 0.165
2 0.195 0.168 0.386 0.175
3 0.241 0.341 0.493 0.348
4 0.293 0.296 0.604 0.309
5 0.339 0.269 0.704 0.295
6 0.376 0.327 0.805 0.334
7 0.411 0.322 0.892 0.329
8 0.447 0.314 0.985 0.324

Fig. 3: Overview of our proposed system architecture.

queries from the users. It comprises of two modules: (a)
scheduler logic block, and (b) model registrar. The sched-
uler logic block consists of the inference time predictor
and the scheduling algorithm. Assuming black-box access
to the models to preserve developer privacy, all regis-
tered models are profiled on the worker nodes (hardware
accelerators) over multiple text-to-image prompts for
varying inference steps. Based on the profiling results, the

inference time predictor heuristically predicts the number
of inference steps, for a user-defined SLACLIP and
SLAlatency, for a specified SD model, over a hardware
accelerator, to satisfy the SLO for the specific query.
The other module, model registrar is responsible for
managing model registration from the developers to the
model repository through an API.

• Worker Worker nodes execute inference queries, follow-
ing the scheduler logic, as directed by the controller, over
the hardware accelerators. Hardware-specific execution
daemons manage the deployment and execution of mod-
els.

• Model Repository The Model Repository functions as a
high-capacity, persistent storage, containing the trained
SD models registered by the developers. The worker
nodes can access this storage to execute SD models on
hardware accelerators based on the user inference query.

• Metadata Store Assuming black-box access to the mod-
els to preserve developer privacy, all registered models are
profiled on the worker nodes over multiple text-to-image
prompts for varying inference steps. The metadata store
includes information concerning available models, and
the profiled attributes of the number of inference steps
to mean CLIP score and mean inference latency. The
inference time predictor accesses this data to heuristically
predict the number of inference steps, for the SLACLIP

and SLAlatency for a specified model, for a hardware
accelerator, to satisfy the SLO for the specific query.

IV. EVALUATION

We evaluated our inferencing framework over 3 SD
models, namely ‘DGSpitzer/Cyberpunk-Anime-Diffusion’,

15

Authorized licensed use limited to: Texas A M University. Downloaded on February 03,2025 at 22:11:26 UTC from IEEE Xplore. Restrictions apply.

‘runwayml/stable-diffusion-v1-5’, and ‘hakurei/waifu-
diffusion’ corresponding to styles (s) anime, regular diffusion,
and waifu respectively. To simulate the text prompts tp in user
queries, we randomly sampled 100 prompts from Flickr8k
dataset [6], with a randomly assigned requested style s (35
tp with s: regular diffusion, 33 tp with s: anime, 32 tp with
s: waifu). The requested CLIP score (SLACLIP) is sampled
from a normal distribution with µ: 0.3, σ: 0.02, while the
requested latency (SLAlatency) is sampled from normal
distribution with µ: 10, σ: 2, in the user query. Due to a
lack of publicly available traces for generative AI workloads,
we opted for increasing workload pattern [7], for the job
arrival rate. We set a job arrival rate of 0.8 jobs/second,
increasing linearly to 0.85 jobs/second over 100 seconds.
All experiments were performed over NVIDIA T4, NVIDIA
A10G, at a fixed floating point precision 16 for SD model.
The CLIP score was estimated with a pre-trained ‘ViT-B/32’
model.

0.5x
1.0x

1.5x
2.0x

Scaling Arrival Times of Jobs in Job Queue

10
20
30
40
50
60
70
80

Av
g.

JCT 54.63

35.08

24.48

18.10

29.78

18.49
13.80

8.45

49.74

41.87

20.76

14.32

84.23

58.99

47.35

35.78

CPSAT
SJF
FIFO
MLFQ

Fig. 4: Variation in job arrival rate to average job completion
time. Our proposed inference time predictor in combination
with SJF has the highest throughput.

0.5x
1.0x

1.5x
2.0x

Scaling Arrival Times of Jobs in Job Queue

0

10

20

30

40

50

of

SL
A M

et

8

37

2

11
13

44

6

37

24

54

18

36

27

51

37
40

CPSAT
SJF
FIFO
MLFQ

Fig. 5: Variation in job arrival rate to the number of SLOs
met. Our proposed inference time predictor in combination
with SJF satisfies the most number of SLOs.

Assuming a black-box access, we extract the meta-data
of the runtime latencies and the associated CLIP score of
the 3 SD models in a privacy-preserving fashion. Utilizing
this data, we design the inference predictor to heuristically
predict the number of inference steps, for a user-defined
SLOCLIP and SLOlatency, for a specific SD model, for
a hardware accelerator, to satisfy the SLO for the specific
query. As a baseline, we use First In First Out (FIFO), no
preemption Multi-Level Feedback Queue (MLFQ) used to
schedule LLMs [8] (without KV-caching), constrained Integer

0.5x
1.0x

1.5x
2.0x

Scaling Requested Latencies of Jobs in Job Queue

0

10

20

30

40

50

of

SL
A M

et

11

35

2

16
13

44

6

37

14

43

20

27

18

49

17

35

CPSAT
SJF
FIFO
MLFQ

Fig. 6: Variation in SLOlatency to the number of SLOs met.
Our proposed inference time predictor in combination with
SJF satisfies the most number of SLOs.

Linear Programming2 (CP-SAT) used to schedule traditional
DNNs (in our case, we utilize the inference predictor to predict
the number of inference steps for processing latency), and our
proposed Shortest Job First (SJF) algorithm in combination
with the inference time predictor.

We first evaluate a scenario wherein the requested job
queries are characterized by tp, SLOCLIP and s. We scale
the job arrival rate to compute the average job completion
time. Our results, as presented in Fig. 4 indicate the highest
system throughput for our proposed inference time predic-
tor module in combination with SJF. Next, we evaluate a
scenario wherein the jobs queries are characterized by tp,
SLOCLIP , SLOlatency and s. On scaling the job arrival rate
and SLOlatency, our results indicate our proposed inference
time predictor in combination with SJF outperforms the base-
line, as presented in Fig. 5, and 6 respectively.

V. CONCLUSION

Our proposed model-less, privacy-preserving, low-latency
inferencing framework for SDaaS outperforms the baseline
inference scheduling approaches. It would be essential to
conduct evaluations on an expanded cloud trace, incorpo-
rating additional model variants and alternative job arrival
patterns [7]. The inference time predictor can be dynamically
updated to adapt to SLO needs.

REFERENCES

[1] J. Zhang et. al, “Model-switching: Dealing with fluctuating workloads in
machine-learning-as-a-service systems,” in USENIX HotCloud 2020.

[2] J. R. Gunasekaran et. al., “Cocktail: A multidimensional optimization for
model serving in cloud,” in USENIX NSDI 2022.

[3] F. Romero et. al., “Infaas: Automated model-less inference serving,” in
USENIX ATC 2021.

[4] OpenAI, “Chatgpt,” Large language model, 2024. [Online]. Available:
https://chat.openai.com

[5] Microsoft, “Microsoft copilot,” AI-powered code completion tool, 2022.
[Online]. Available: https://developer.microsoft.com/en-us/copilot

[6] M. Hodosh et. al., “Framing image description as a ranking task: Data,
models and evaluation metrics,” Journal of Artificial Intelligence Research
2013.

[7] I. K. Kim et. al., “Forecasting cloud application workloads with
cloudinsight for predictive resource management,” IEEE Transactions on
Cloud Computing 2020.

[8] B. a. Wu et. al., “Fast distributed inference serving for large language
models,” arXiv preprint arXiv:2305.05920, 2023.

2https://github.com/google/or-tools

16

Authorized licensed use limited to: Texas A M University. Downloaded on February 03,2025 at 22:11:26 UTC from IEEE Xplore. Restrictions apply.

