Under review as submission to TMLR

Action Noise in Off-Policy Deep Reinforcement Learning:
Impact on Exploration and Performance

Anonymous authors
Paper under double-blind review

Abstract

Many Deep Reinforcement Learning (D-RL) algorithms rely on simple forms of exploration
such as the additive action noise often used in continuous control domains. Typically,
the scaling factor of this action noise is chosen as a hyper-parameter and is kept constant
during training. In this paper, we focus on action noise in off-policy deep reinforcement
learning for continuous control. We analyze how the learned policy is impacted by the noise
type, noise scale, and impact scaling factor reduction schedule. We consider the two most
prominent types of action noise, Gaussian and Ornstein-Uhlenbeck noise, and perform a vast
experimental campaign by systematically varying the noise type and scale parameter, and
by measuring variables of interest like the expected return of the policy and the state-space
coverage during exploration. For the latter, we propose a novel state-space coverage measure
Xyrel that is more robust to boundary artifacts than previously-proposed measures. Larger
noise scales generally increase state-space coverage. However, we found that increasing the
space coverage using a larger noise scale is often not beneficial. On the contrary, reducing the
noise scale over the training process reduces the variance and generally improves the learning
performance. We conclude that the best noise type and scale are environment dependent,
and based on our observations derive heuristic rules for guiding the choice of the action
noise as a starting point for further optimization. https://github.com/[anonymized]

1 Introduction

In (deep) reinforcement learning an agent aims to learn a policy to act optimally based on data it collects by
interacting with the environment. In order to learn a well performing policy, data (i.e. state-action-reward
sequences) of sufficiently good behavior need to be collected. A simple and very common method to discover
better data is to induce variation in the data collection by adding noise to the action selection process.
Through this variation, the agent will try a wide range of action sequences and eventually discover useful
information.

Action Noise In off-policy reinforcement learning algorithms applied to continuous control domains, a go-to
approach is to add a randomly-sampled action noise to the action chosen by the policy. Typically the action
noise is sampled from a Gaussian distribution or an Ornstein-Uhlenbeck process, either because algorithms
are proposed using these noise types (Fujimoto et al., 2018; Lillicrap et al., 2016), or because these two types
are provided by reinforcement learning implementations (Liang et al., 2018; Raffin et al., 2021a; Fujita et al.,
2021; Seno and Imai, 2021). While adding action noise is simple, widely used, and surprisingly effective,
the impact of action noise type or scale does not feature very prominently in the reinforcement learning
literature. However, the action noise can have a huge impact on the learning performance as the following
example shows.

A motivating example: Consider the case of the Mountain-Car (Moore, 1990) environment. In this task,
a car starts in a valley between mountains on the left and right and does not have sufficient power to simply
drive up the mountain. It needs repetitive swings to increase its potential and kinetic energy to finally make
it up to the top of the mountain on the right side. The actions apply a force to the car and incur a cost that is

https://github.com/[anonymized]

Under review as submission to TMLR

A motivating example: Mountain-Car

DDPG SAC TD3
noise Ganssian Ornstein- o 1007 100 1 100 7
Type Uhlenbeck E
Q
Scale 0.6 0.5 I e e D
Return -30.2 -30.4 T T T
4 0.1 1.3 0 50000 0 50000 0 50000
: : Training Steps Training Steps Training Steps
—— Gaussian Ornstein-Uhlenbeck

Table 1: Untrained random policies, Gaussian Figure 1: Training with the action noises (Table 1) shows the impact

(0 = 0.6) and Ornstein-Uhlenbeck (o = 0.5) of noise type; Ornstein-Uhlenbeck solves the task, but Gaussian does

achieve similar returns and appear interchange- not. Other algorithm parameters are taken from the tuned param-

able. eters found by Raffin (2020). The lines indicate the medians, the
shaded areas the quartiles of ten independent runs.

quadratic to the amount of force, while reaching the goal yields a final reward of 100. This parameterization
implies a local optimum: not performing any action and achieving a return of zero.

Driving the environment with purely random policies based on the two noise types (Gaussian, o = 0.6,
Ornstein-Uhlenbeck o = 0.5, see Table 1), yields similar returns. However, when we apply the algorithms
DDPG, TD3 and SAC (Lillicrap et al., 2016; Fujimoto et al., 2018; Haarnoja et al., 2019) to this task, the
resulting learning curves (Figure 1) very clearly depict the huge impact the noise configuration has. While
returns of the purely random noise-only policies were similar, we achieve substantially different learning
results. Learning either fails (Gaussian) or leads to success (Ornstein-Uhlenbeck). This shows the huge
importance of the action noise configuration. See Section A for further details.

Relation to e-greedy

A very common strategy in Q-learning algorithms applied to discrete control is to select a random action
with a certain probability €. In this epsilon-greedy strategy, the probability € is often chosen higher in the
beginning of the training process and reduced to a smaller value over course of the training. Although very
common in Q-learning, a comparable strategy has not received a lot of attention for action noise in continuous
control. The most prominent algorithms using action noise, namely DDPG (Lillicrap et al., 2016) and TD3
(Fujimoto et al., 2018), do not mention changing the noise over the training process. Another prominent
algorithm, SAC (Haarnoja et al., 2019), adapts the noise to an entropy target. The entropy target, however,
is kept constant over the training process. In many cases the optimal policy would be deterministic, but
the agent has to behave with similar average action-entropy no matter whether the optimal policy has been
found or not.

Another indication that this has received little attention is that only very few reinforcement learning imple-
mentations, e.g., RLlib (Liang et al., 2018), implement reducing the impact of action noise over the training
progress. Some libraries, like coach (Caspi et al., 2017), only implement a form of continuous epsilon greedy:
sampling the action noise from a uniform distribution with probability . The majority of available imple-
mentations, including stable-baselines (Raffin et al., 2021a), PFRL (Fujita et al., 2021), acme (Hoffman
et al., 2020), and d3rlpy (Seno and Imai, 2021), do not implement any strategies to reduce the impact of
action noise over the training progress.

Contributions

In this paper we analyze the impact of Gaussian and Ornstein-Uhlenbeck noise on the learning process
of DDPG, TD3, SAC and a deterministic SAC variant. Evaluation is performed on multiple popular
environments (Table C.1): Mountain-Car (Brockman et al., 2016) environment from the OpenAl Gym,
Inverted-Pendulum-Swingup, Reacher, Hopper, Walker2D and Half-Cheetah environments implemented us-
ing PyBullet (Coumans and Bai, 2016; Ellenberger, 2018).

Under review as submission to TMLR

e We investigate the relation between exploratory state-space coverage X, returns collected by the
exploratory policy R and learned policy performance P.

e We propose to assess the state-space coverage using our novel measure Xy that is more robust to
approximation artifacts on bounded spaces compared to previously proposed measures.

o We perform a vast experimental study and investigate the question whether one of the two noise
types is generally preferable (Q1), whether a specific scale should be used (Q2), whether there is any
benefit to reducing the scale over the training progress (linearly, logistically) compared to keeping it
constant (Q3), and which of the parameters noise type, noise scale and scheduler is most important

(Q4)-

e We provide a set of heuristics derived from our results to guide the selection of initial action noise
configurations.

Findings We found that the noise configuration, noise type and noise scale, have an important impact and
can be necessary for learning (e.g. Mountain-Car) or can break learning (e.g. Hopper). Larger noise scales
tend to increase state-space coverage, but for the majority of our investigated environments increasing the
state-space coverage is not beneficial. We recommend to select and tune action noise based on the reward
and dynamics structure on a per-environment basis.

We found that across noise configurations, decaying the impact of action noise tends to work better than
keeping the impact constant, in both reducing the variance across seeds and improving the learned policy
performance and can thus make the algorithms more robust to the action noise hyper-parameters scale and
type. We recommend to reduce the action noise scaling factor over the training time.

We found that for all environments investigated in this study noise scale ¢ is the most important parameter,
and some environments (e.g. Mountain-Car) benefit from larger noise scales, while other environments require
very small scales (e.g. Walker2D). We recommend to assess an environment’s action noise scale preference

first.

2 Related Work

By combining Deep Learning with Reinforcement Learning in their DQN method, Mnih et al. (2015) achieved
substantial improvements on the Atari Games RL benchmarks (Bellemare et al., 2013) and sparked lasting
interest in Deep Reinforcement learning (D-RL).

Robotic environments: In robotics, the interest in Deep Reinforcement Learning has also been rising
and common benchmarks are provided by the OpenAI Gym (Brockman et al., 2016), which includes control
classics such as the Mountain-Car environment (Moore, 1990) as well as more complicated (robotics) tasks
based on the Mujoco simulator (Todorov et al., 2012). Another common benchmark is the DM Control
Suite (Tassa et al., 2018), also based on Mujoco. While Mujoco has seen widespread adoption it was, until
recently, not freely available. A second popular simulation engine, that has been freely available, is the Bullet
simulation engine (Coumans and Bai, 2016) and very similar benchmark environments are also available for
the Bullet engine (Coumans and Bai, 2016; Ellenberger, 2018).

Continuous Control: While the Atari games feature large and (approximately) continuous observation
spaces, their action spaces are discrete and relatively small, making Q-learning a viable option. In contrast,
typical robotics tasks require continuous action spaces, implying uncountably many different actions.

A tabular Q-learning approach or a discrete Q-function output for each action are therefore not possible
and maximizing the action over a learned function approximator for Q(s,a) is computationally expensive
(although not impossible as Kalashnikov et al. (2018) have shown). Therefore, in continuous action spaces,
policy search is employed, to directly optimize a function approximator policy, mapping from state to best
performing action (Williams, 1992). To still reap the benefits of reduced sample complexity of TD-methods,
policy search is often combined with learning a value function, a critic, leading to an actor-critic approach
(Sutton et al., 1999).

Under review as submission to TMLR

On- and Off-policy: Current state of the art D-RL algorithms consist of on-policy methods, such as
TRPO (Schulman et al., 2015) or PPO (Schulman et al., 2017), and off-policy methods, such as DDPG (Lil-
licrap et al., 2016), TD3 (Fujimoto et al., 2018) and SAC (Haarnoja et al., 2019). While the on-policy
methods optimize the next iteration of the policy with respect to the data collected by the current iteration,
off-policy methods are, apart from stability issues and requirements on the samples, able to improve policy
performance based on data collected by any arbitrary policy and thus can also re-use older samples.

To improve the policy, variation (exploration) in the collected data is necessary. The most common form
of exploration is based on randomness: in on-policy methods this comes from a stochastic policy (TRPO,
PPO), while in the off-policy case it is possible to use a stochastic policy (SAC) or, to use a deterministic
policy (Silver et al., 2014) with added action noise (DDPG, TD3). Since off-policy algorithms can learn
from data collected by other policies, it is also possible to combine stochastic policies (e.g. SAC) with action
noise.

State-Space Coverage: Often, the reward is associated with reaching certain areas in the state-space.
Thus, in many cases, ezploration is related to state-space coverage. An intuitive method to calculate state
space coverage is based on binning the state-space and counting the percentage of non-empty bins. Since
this requires exponentially many points as the dimensionality increases, other measures are necessary. Zhan
et al. (2019) propose to measure state coverage by drawing a bounding box around the collected data and
measuring the means of the side-lengths, or by measuring the sum of the eigenvalues of the estimated
covariance matrix of the collected data. However, so far, there is no common and widely adopted approach.

Methods of Exploration: The architecture for the stochastic policy in SAC (Haarnoja et al., 2019) consists
of a neural network parameterizing a Gaussian distribution, which is used to sample actions and estimate
action-likelihoods. A similar stochastic policy architecture is also used in TRPO (Schulman et al., 2015) and
PPO (Schulman et al., 2017). While this is the most commonly used type of distribution, more complicated
parameterized stochastic policy distributions based on normalizing flows have been proposed (Mazoure et al.,
2020; Ward et al., 2019). In case of action noise, the noise processes are not limited to uncorrelated Gaussian
(e.g. TD3) and temporally correlated Ornstein-Uhlenbeck noise (e.g. DDPG): a whole family of action noise
types is available under the name of colored noise, which has been successfully used to improve the Cross-
Entropy-Method (Pinneri et al., 2020). A quite different type of random exploration are the parameter
space exploration methods (Mania et al., 2018; Plappert et al., 2017), where noise is not applied to the
resulting action, but instead, the parameters of the policy are varied. As a somewhat intermediate method,
state dependent exploration (Raffin et al., 2021b) has been proposed, where action noise is deterministically
generated by a function based on the state. Here, the function parameters are changed randomly for each
episode, leading to different deterministic “action noise” for each episode. Presumably among the most
intricate methods to generate exploration are the methods that train a policy to achieve exploratory behavior
by rewarding exploratory actions (Burda et al., 2019; Tang et al., 2017; Mutti et al., 2020; Hong et al., 2018;
Pong et al., 2020).

It is however, not clear yet, which exploration method is most beneficial, and when a more complicated
method is actually worth the additional computational cost and complexity. In this work we aim to reduce
this gap, by investigating the most widely used baseline method in more detail: exploration by action noise.

3 Methods

In this section, we describe the action noise types, the schedulers to reduce the scaling factor of the action
noise over time and the evaluation process in more detail. We briefly list the analyzed benchmark environ-
ments and their most important properties. We chose environments of increasing complexity that model
widely used benchmark tasks. We list the used algorithms and then describe how we gather evaluation data
and how it is aggregated. Last, we describe the methods we use for analyzing state-space coverage.

Under review as submission to TMLR

3.1 Noise types: Gaussian and Ornstein-Uhlenbeck

The action noise €,, is added to the action drawn from the policy:

. ~ . Gmax — Gmin Gmax + Qmin
a; = clip [at + B (Chp[sat} L +)} (1)
NPT 2 2

Gmin;0&max

where a; ~ mp(s¢) for stochastic policies or a; = mg(s:) for deterministic policies. We introduce an additional
impact scaling factor 8, which is typically kept constant at the value one. In Section 3.2 we describe how
we change 8 over time to create a noise scheduler. The action noise €,, is drawn from either a Gaussian
distribution or an Ornstein-Uhlenbeck (OU) process. The noise distributions are factorized, i.e. noise samples
are drawn independently for each action dimension. For the generation of action noise samples, the action
space is assumed to be limited to [—1, 1] but then rescaled to the actual limits defined by the environment.

Gaussian noise is temporally uncorrelated and is typically applied on symmetric action spaces (Hill et al.,
2018; Raffin, 2020) with commonly used values of 4 = 0 and o = 0.1 with ¥ = I - 0. Action noise is sampled
according to

sat ~ N(.u’ E) (2)

Ornstein-Uhlenbeck noise is sampled from the following temporal process, with each action dimension
calculated independently of the other dimensions:

€ay = Eay_, T O(p —€q,_,) - dt + a\/(dt) - €4 (3)

€ao =0 € ~N(0,I) (4)

The parameters we use for Ornstein-Uhlenbeck noise are taken from a widely used RL-algorithm implemen-
tation (Hill et al., 2018): § = 0.15, dt =0.01, u =0, 0 =0.1- 1.

Due to the huge number of possible combinations of environments, algorithms, noise type, noise scale and the
necessary repetition with different seeds, we had to limit the number of investigated scales. We set out with
two noise scales o encountered in pre-tuned hyper-parameterization (Raffin, 2020), 0.1,0.5, and continued
with a linear increase, 0.9,1.3,1.7. Much smaller noise scales vanish in the variations induced by learning
and much larger scales lead to Bernoulli trials of the min-max actions without much difference.

Because the action noise is clipped to [—1, 1] before being scaled to the actual action limits, a very large scale,
such as 1.7, implies a larger percentage of on-the-boundary action noise samples and is thus more similar
to bang-bang control actions. This is interesting because bang-bang control has been found surprisingly
effective in many RL benchmarks (Seyde et al., 2021).

Under review as submission to TMLR

3.2 Scheduling strategies to reduce action noise

Noise Schedulers

1.0 A
9 0.8 1
]
<
/A 0.6
o0
£ 0.4
S —— Constant
w2 0.2 1 Logistic
—— Linear
0.0
T T T T T T
0% 20% 40% 60% 80% 100%

Training Steps

Figure 2: action noise is used for exploration. The agent should favor exploration in the beginning but later favor
exploitation. Similar to e-greedy strategies in discrete-action Q-learning, the logistic and linear schedulers reduce the
impact of noise (Scaling Ratio, 8 in (1)) over the course of the training progress.

In (1) we introduce the action noise scaling-ratio 8. In this work we compare a constant-, linear- and logistic-
scheduler for the value of 3. The effective scaling of the action noise by the noise schedulers is illustrated in
Figure 2. The noise types are described in more detail in Section 3.1.

Changing the o (see (3) and (2)) instead of 8 could result in a different shape of the distribution, for
example when values are clipped, or when the ¢ indirectly affects the result as in the Ornstein-Uhlenbeck
process. To keep the action noise distribution shape constant, the action noise schedulers do not change the o
parameter of the noise process but instead scale down the resulting sampled action noise values by changing
the 8 parameter: this means that the effective range of the action noise, before scaling and adjusting to
the environment limits, changes over time from [—1, 1], the maximum range, to 0 for the linear and logistic
schedulers.

3.3 Environments

For evaluation we use various environments of increasing complexity: Mountain-Car, Inverted-Pendulum-
Swingup, Reacher, Hopper, Walker2D, Half-Cheetah. Observation dimensions range from 2 to 26, and action
dimensions range from 1 to 6. See Table C.1 for details, including a rough sketch of the reward. The table
indicates whether the reward is sparse or dense with respect to a goal state, goal region, or a change of the
distance to the goal region. Many environments feature linear or quadratic (energy) penalties on the actions
(e.g. Hopper). Penalties on the state can be sparse (such as joint limits), or dense (such as force or required
power induced by joint states). See Brockman et al. (2016), Coumans and Bai (2016), and Ellenberger (2018)
for further details.

3.4 Performed experiments

We evaluate the effects of action noise on the popular and widely-used algorithms: TD3 (Fujimoto et al.,
2018), DDPG (Lillicrap et al., 2016), SAC (Haarnoja et al., 2019), and a deterministic version of SAC
(DetSAC, Algorithm B.1). Originally SAC was proposed with only exploration from its stochastic policy.
However, since SAC is an off-policy algorithm, it is possible to add additional action noise, a common solution
for environments such as the Mountain Car. The stochastic policy in SAC typically is a parameterized
Gaussian and combining the action noise with the stochasticity of actions sampled from the stochastic policy
could impact the results. Thus, we also compare to our DetSAC version, where action noise is added to the
mean action of the DetSAC policy (Algorithm B.1).

We use the implementations provided by Raffin et al. (2021a), following the hyper-parameterizations provided
by Raffin (2020), but adapting the action noise settings.

Under review as submission to TMLR

too much

good

too little

==L

(d) Xyrel (ours) mea-
(a) Xpin divides the state- (b) Xppm measures the (¢) Xnn measures the sures the symmetric
space into bins and mea- spread by the mean of the spread of the data by the KL-divergence between
sures the ratio of non-empty side-lengths of the bounding sum of the eigenvalues of a prior over the state
bins. box. the covariance of the data. space and the collected

state-space data.

Figure 3: Illustrations of the state-space coverage measures. Xyprer scales to high dimensions (unlike Xpin) and is not
susceptible to boundary artifacts (unlike Xgpm and Xnn).

The experiments consist of testing 6 environments, 4 algorithms, 5 noise scales, 3 schedulers and 2 noise
types. Each experiment is repeated with 20 different seeds, amounting to 14400 experiments in total. On a
single node, AMD Ryzen 2950X equipped with four GeForce RTX 2070 SUPER, 8 GB, running about twenty
experiments in parallel this would amount to a runtime of approximately 244 node-days.

Table G.1 lists the number of independent runs performed for each experimental configuration.

3.5 Measuring Performance

For each experiment (i.e. single seed), we divide the learning process into 100 segments and evaluate the
exploration and learned policy performance once for each of those segments. At the end of each segment, we
perform evaluation rollouts for 100 episodes or 10000 steps, whichever is reached first, using only complete
episodes. This is done for both the deterministic exploitation policy as well as the exploratory (action noise)
policy. The two resulting datasets of evaluation rollouts are used to calculate state-space coverages and
returns. These evaluation rollouts, both exploring and exploiting, are not used for training. We take the
mean over these 100 measurements to aggregate them into a single value. This is equivalent to measuring
the area under the learning curves.

The learning algorithm uses a noisy (exploratory) policy to collect data and exploratory return and state-
space coverage could be assessed based on the replay buffer data. However, to get statistically more robust
estimates of the quality of the exploratory policy (returns and state-space coverage), we perform the above
mentioned exploratory evaluation rollouts and use these rollouts for assessing state-space coverage and ex-
ploratory returns instead of the data in the replay buffer.

3.6 State-Space Coverage

We assess exploration in terms of state-space coverage. We assume that the environment states s are s € R
and that the states have finite upper and lower limits: s € [low, high], low, high € R%. We investigate four
measures: Xpin, Xirel, XBBM; XNN, which are illustrated in Figure 3.

The most intuitive measure for state-space coverage is a histogram-based approach Xy;,, which divides the
state-space into equally many bins along each dimension and measures the ratio of non-empty bins to the

total number of bins.

of non empty bins
Xbin =

5
number of bins)
The number of bins, as the product of divisions along each dimension, grows exponentially with the dimen-
sionality. This means that either the number of bins has to be chosen very low, or, if there are more bins
than data points, the ratio has to be adjusted. We chose to limit the number of bins. For a sample of size m

Under review as submission to TMLR

and dimensionality d the divisions k along each dimension are chosen to allow for at least ¢ points per bin

- |2y

However, for high-dimensional data, the number of bins becomes very small and the measure easily reaches
100% and becomes meaningless, or, the required number of data points becomes prohibitively large very
quickly. Thus, alternatives are necessary.

Zhan et al. (2019) proposed two state-space coverage measures that also work well in high-dimensional spaces:
the bounding box mean Xggwm, and the nuclear norm Xnn. XM measures the spread of the data by a d
dimensional bounding box around the collected data D = {...,s\) ...} and measuring the mean of the side
lengths of this bounding box:

d
1 , ,
XBBM = y Z [mjax sgj) - mjin sgj) (7)

XnNN, the nuclear norm estimates the covariance matrix C of the data and measures data spread by the
trace, the sum of the eigenvalues of the estimated covariance:

Xxn(D) = trace (C(D)) (8)

As we will see, extreme values or values close to the state-space boundaries can lead to over-estimation of the
state-space coverage by these two measures. We therefore propose a measure more closely related to Xy,
but more suitable to higher dimensions: Xye1(D). The Uniform-relative-entropy measure Xye assesses the
uniformity of the collected data, by measuring the state-space coverage as the symmetric divergence between
a uniform prior over the state space U and the data distribution Qp:

Xurel(D) = =Dk (U||Qp) — DkL(Qpl|U) 9)

The inspiration for this measure comes from the observation that the exploration reward for count-based
methods without task reward would be maximized by a uniform distribution. We assume that for robotics
tasks reasonable bounds on the state space can be found. In a bounded state space, the uniform distribution
is the least presumptive (maximum-entropy) distribution. The addition of the Dxkj, (U [|Q D) term helps to
reduce under-estimation of the divergence in areas with low density in @@ p. Note that Qp is only available
through estimation, and the support for @Qp is never zero as the density estimate never goes to zero. To
estimate the relative uniform entropy we evaluated two divergence estimators, a kNN-based (k-Nearest-
Neighbor) estimator and a Nearest-Neighbor-Ratio (NNR) estimator (Noshad et al., 2017) estimator. A
kNN estimator is susceptible to over- / under-estimation artifacts close to the boundaries (support) of the
state space. In contrast, the NNR estimator does not suffer from these artifacts. If not specified explicitly,
Xurel refers to the NNR-based variant.

Xyrel can be estimated using a kNN density estimate §x(s), as described in (Bishop, 2006), where V; denotes
the unit volume of a d-dimensional sphere, Ry (x) is the Euclidean distance to the k-th neighbor of x, and n
is the total number of samples in D:

/2

L(§+1)
k 1 k 1

T VaRi(2)? 0V Ri(x)?)

Va = (10)

qr ()

where I' denotes the gamma function.

Alternatively, Xy can be estimated using NNR, an f-divergence estimator, based on the ratio of the nearest
neighbors around a query point.

For the general case of estimating Dk, (P||Q), we take samples from X ~ @Q and Y ~ P. Let Ry (Y;) denote
the set of the k-nearest neighbors of Y; in the set Z := X UY. N; is the number of points from X NR(Y7),

Under review as submission to TMLR

M; is the number of points from Y NRy(Y;), M is the number of points in Y and N is the number of points
in X, n= % The NNR estimator assumes lower C;, and upper bounds Cy on the densities P and Q.
Assuming all points of a sample of size n are concentrated around a single point, we limit the density to
Cr = % respectively Cy = 7.

DxL(P||Q) =Dy(X,Y) (12)
M

Dy(X,Y) :=max % ;g <A2N+21> ,0 (13)

where §(z) :=max (g9(z), 9(CL/Cuv)) (14)

9(p) :=—logp (15)

3.6.1 Evaluation of Measures on Synthetic Data

To compare the different exploration measures, we assumed a d = 25-dimensional state space, generated
data from two different types of distributions, and compared the exploration measures on these data. The
experiments were repeated 10 times, and the mean and min-max values are plotted in Figure 4. While the
data are d-dimensional, they come from factorial distributions, similarly distributed along each dimension.
Thus, we can gain intuition about the distribution from scatter plots of the first vs. second dimension. This
is depicted at the top of each of the two parts. The bottom part of each comparison shows the different
exploration measures, where the scale parameter is depicted on the z axis and the exploration measure on

the y axis.

Scale: 1% Scale: 17% Scale: 34% Scale: 50% Scale: 67% Scale: 83% Scale: 100% Scale: 116%
1 1 1 1 1] o 1 1 1
0 - 0] 0 . 0 0 % 0 0 0
sz
-1 -1 -1 -1 -1 -1 -1 -1
-10 1 -10 1 -1 0 1 -10 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1
5pt. Bin Coverage Bounding Box Mean Nuclear Norm U-RelEntropy (NNR) U-RelEntropy (kNN)
1.0 p 0 0
=] 10 - -
g = z) El
g = Z] 2 50
205 Al = <y s
—100
0 0

0.0
150

0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150 0 50 100
scale scale scale scale scale

(a) Growing Uniform distribution: evaluation of the state-space coverage measures on synthetic data — for larger scale values

more points are clipped to the state-space boundaries, leading to an expected decrease in state-space coverage for scales larger
than 100%. This behavior is only captured by Xire1 (NNR).

Scale: 1% Scale: 17% Scale: 34% Scale: 50% Scale: 67% Scale: 83% Scale: 100% Scale: 116% Scale: 133% Scale: 150%
1 1 1 1 1 1 1 : 1 ; 1 1
* & * » E 3 t] .] -
0{ 0{ -4 0 &% 0] & 04 o 0 0 0 0 0
- * - » * . i
-1 -1 -1 -1 -1 -1 -1{ ™ -1 -1 —1q{ =
1001 101 101 101 S1001 101 1001 101 1001 1001
5pt. Bin Coverage Bounding Box Mean Nuclear Norm) U-RelEntropy (NNR) U-RelEntropy (kNN)
10 2 20 -2
5 Z z T
E H Z €3
£0.5) 210 5
& & = »
0.0 0 - -
70 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150
scale scale scale scale scale

(b) Growing Distance of Modes of 2-Mixture of Truncated Normal: evaluation of the state-space coverage measures on synthetic
data. For larger scale values, the location of the mixture components is closer to the boundary — leading to an expected reduction
in coverage for larger scale values. Xpin, XgBm, XnN fail to capture this behavior.

Figure 4: state-space coverage measures may not accurately represent the real coverage. Each comparison (a-b)
shows the different exploration measures Xpin, XM, XN~ and Xyre (ours) on synthetic 25 dimensional data. Xpin
becomes constant and Xgpm and Xnn suffer from boundary artifacts. The different data generating distributions
depend on a scale parameter. The distributions are factorial and similarly distributed along each dimension. The
scatter plots in (a-b) depict first vs. second dimension.

Under review as submission to TMLR

(a) Growing Uniform: Figure 5(a) depicts data generated by a uniform distribution, centered around
the middle of the state space, with minimal and maximal values growing relatively to the full state space
according to the scale parameter from 1% to 150%. Since in the latter case, many points would lie outside
the allowed state space; these values are clipped to the state-space boundaries. This loosely corresponds
to an undirectedly exploring agent that overshoots and hits the state-space limits, sliding along the state-
space boundaries. Note how the estimation (kNN vs. NNR) has a great impact on the Xy measure’s
performance here: We would expect a maximum around a scale of 100% and smaller values before and after
(due to clipping). Here the Xyre1 (NNR) measure most closely follows this expectation. The ground-truth
value of the divergence would follow a similar shape. However, since the densities are limited for the NNR
estimator, the ground-truth divergence would show more extreme values.

(b) Bi-Modal Truncated Normal moving locations: Figure 5(b) shows a mixture of two truncated
Gaussian distributions, with equal standard deviations but located further and further apart (depending
on the scale parameter). In this case, the state-space coverage should increase until both distributions
are sufficiently far apart, should then stay the same, and begin to drop as the proximity to the state-
space boundary limits the points to an ever smaller volume. The inspiration for this example distribution
is an agent setting off in two opposite directions and getting stuck at these two opposing limits. While
somewhat contrived and more extreme than the inspiring example, it highlights difficulties in the exploration
measures. Both the bounding-box mean Xppy and the nuclear norm Xyn completely fail to account for
vastly unexplored areas between the extreme points.

Since the Xyl NNR measure is clipped (by definition of NNR) the measure reaches its limits when the
density ratios become extreme, which presumably happens for very small and large scale parameters in this
setting. The Xy kNN approximator is better able to capture the extreme divergence values, however, as
pointed out before, this comes at the cost of under-estimating the divergence for points close to the support
boundary.

The experiments on synthetic data showed that the histogram based measure is not useful in high-dimensional
spaces. The alternatives Xggym and Xnn are susceptible to artifacts on bounded support. This susceptibility
to boundary artifacts is also present in the kNN-based X estimator, because of these results we employ
the NNR-estimator based X1 in the rest of this paper and refer to it as Xy/rel.

4 Results: What action noise to use?

In this section we analyze the data collected in the experiments described in Section 3.4. We first look at the
experiments performed under a constant scale scheduler since this is the most common case in the literature.
In this setting we will look at two aspects: first, is one of the two action noise types generally superior to the
other (Q1)? And secondly, is there a generally preferable action noise scale (@2)? Then, we will compare
across constant, linear and logistic schedulers to see if reducing the noise impact over the training process is
a reasonable thing to do (@3). Finally we compare the relative importance of the scheduler, noise type and
scale (Q4). See Section D for a brief description of the statistical methods used in this paper.

4.1 (Q1) Which action noise type to use? (and what are the impacts)

To compare the impact of the action noise type, we look at the constant S = 1 case, group the aggregated
performance and exploration results (see Section 3.5) by the factors algorithm, environment, and action
noise scale and standardize the results to control for their influence. These standardized results are then
combined for each noise type. Figure 6 illustrates the results. The comparisons are performed by Welch-t-
test, symmetric p-values are listed.

Figure 6 (c) shows that Ornstein-Uhlenbeck noise leads to increased state-space coverage under the ex-
ploratory policy X as measured by Xye. For completeness Figure 6 (d) shows the state-space coverage
of the evaluation policy. Here Ornstein-Uhlenbeck increases coverage which might indicate slightly longer
trajectories for policies trained under Ornstein-Uhlenbeck noise, however whether this is preferable or not is
task dependant. Since exploration likely incurs additional cost (e.g. action penalties) and might move the

10

Under review as submission to TMLR

_ G2 ou ~ G>0U _ G<ou _ G<ou
E p=040 E p<i07® g2 p<107® T p<107Y
= 2.5 i 2.5) 2.5 =) 2.5
E = g %
A 0.0 D 0.0 = 0.0 — 0.0
s 2.5 & 4 g
& -2 & —2.5 15 —2.5 " —25
- G ou ~ G ou G ou S G ou
A~ e <

(a) (b) () ()

Figure 6: Comparison of standardized measures (P, R, X, E), for Gaussian (G) and Ornstein-Uhlenbeck (OU)
noise types, (a-d). Values are standardized to control for and combine algorithm, environment and noise scale: (a)
For learned performance P, measured by evaluation returns, neither of the two noise types is significantly better.
(b) For Returns collected under the exploration policy R, Gaussian noise collects data with slightly better returns
(p < 10721, (c) For State-space coverage of the exploratory policy X Ornstein-Uhlenbeck performs better. (d)
The State-space coverage of evaluation rollouts E is slightly larger for Ornstein-Uhlenbeck noise without significantly
affecting the evaluation returns P. Overall neither of the two noise types is superior.

Environment P pp dp R pr dr X px dx E pE dg
Half-Cheetah - 0.89 - G 0.002 0.22 OU o0.004 0.21 - 0.20 -
Hopper OU <10-3 0.27 G <10~* 0.29 G <1078 0.41 - 071 -
Inverted- - 0.38 - G <10 115 OU <10-%6 1.22 G 0.002 0.22
Pendulum-Swingup

Mountain-Car OU <«10-10 0.47 OU <1071 0.66 OU <1075 0.34 OU <1072t 0.71
Reacher G <1039 0.87 G <10726 0.80 OU <1040 1.01 OU <1072 0.84
Walker2D - 0.039 - G 0.010 0.18 OU <1079 0.46 - 028 -

Table 2: Per environment the noise type is important: Comparison of Evaluation Returns P, Exploratory-Xgyer X,
Exploratory Returns R, and Evaluation-Xyre1 £. Values are standardized to control for and aggregate over algorithm,
and noise scale. The results are compared using a Welch-t-test. Significantly better noise type for each environment
and measure is reported (p < 0.01), as well as two-tailed p-values p(., and Cohen-d effect size d(.,. While overall
neither of the two noise types leads to significantly better performance P (see Figure 6), per environment noise type

difference is significant.

agent away from high-reward-trajectories, exploratory returns R are larger for Gaussian noise and conversely
smaller for Ornstein-Uhlenbeck noise, see Figure 6 (b). The learning process is able to offset some differences
in the data as shown in Figure 6 (a): the significant differences in exploratory returns R and exploratory
state-space coverage X do not translate into significantly-different performance across environments. When
viewed on a per-environment basis, Table 2 (column P) shows that, the preferable noise type depends on the
environment: Ornstein-Uhlenbeck is preferable for Hopper and Mountain-Car, but Gaussian for the Reacher
environment. Table 2 (column X) shows that Ornstein-Uhlenbeck leads to larger state-space coverage, as
before, and Gaussian noise leads to larger exploratory returns (column R). The only exceptions to this are
the Hopper environment, where the Ornstein-Uhlenbeck is more likely to topple the agent and the Mountain-
Car environment, where the returns are very closely related to increasing the state-space coverage and thus
exhibits an improvement of R by Ornstein-Uhlenbeck noise.

These results show that the noise type is important and significantly impacts the performance for some
environments. Neither of the two noise types leads to better performance, evaluation return P, in general.
However Ornstein-Uhlenbeck generally increases state-space coverage. This is likely due to the effect, that
in many cases the environment acts as an integrator over the actions.

11

Under review as submission to TMLR

p(P,o): -0.31 p(R,0): -0.55 p(X,0): 0.56 p(E,o0): 0.05
—~ 4 »n
g g 2 E 2 el 2
3 2 *E =) =)
3 = g %
: 0 D 0 — 0 - 0
£ B '4:'|'+ & g
a -2 &) =2 e)
2 - 5 _
o » = s H
~— 0 [=2] (3] o~ —~ 0 [=2] [ae] o~ — 0 D [22) ~ — 0 (=] ™ o~
S o 3 ~ S 3 S = S S S = o~ S o o =
o o o o
(a) (b) (c) (d)

Figure 7: Across environments larger noise scales o are effective in increasing state-space coverage (c), but reduce
exploratory returns (b). Measures (P, X, R, E) are standardized to control for and aggregate over algorithm,
environment and noise type. (a) Evaluation Performance P is negatively correlated with action noise scale (p =
—0.31). (b) Larger noise scales correlate with smaller exploratory returns R. (c) Increasing the noise scale o increases
exploratory state space coverage X. (d) State-space coverage of evaluation rollouts E: the learned trajectories appear
unaffected by larger noise scale.

Environment p(P,R) p(P,X) p(P 0scate) p(R,X) p(R,0scate) p(X, Oscale)
All 0.57 -0.03 -0.31 -0.30 -0.55 0.56
Half-Cheetah 0.22 -0.28 -0.35 -0.64 -0.74 0.75
Hopper 0.69 0.15 -0.87 0.27 -0.74 -0.17
Inverted-Pendulum-Swingup -0.15 0.23 0.27 -0.88 -0.83 0.77
Mountain-Car 0.94 0.87 0.58 0.76 0.37 0.75
Reacher 0.84 -0.88 -0.56 -0.96 -0.84 0.69
Walker2D 0.76 -0.44 -0.81 -0.52 -0.82 0.63

Table 3: Data quality, measured by exploratory returns R, does not completely determine performance, measured
by evaluation returns P. p denotes Spearman correlation coefficients. Generally R is positively, but surprisingly not
always strongly, correlated with P. For some environments, exploratory state-space coverage X is beneficial, while
generally it is associated with decreased evaluation performance P. Across environments and noise types, increasing
the noise scale increases exploratory state-space coverage X but reduces exploratory returns R.

4.2 (Q2) Which action noise scale to use?

To analyze the impact of action noise scale, we look at the constant (5 = 1) case, and control for the impact
of the factors algorithm, environment and noise type: by grouping the results according to these factors and
standardizing the results. Then results for the same noise scale are combined.

An interesting observation shown in Figure 7 (c) is that state-space coverage of the exploratory policy X
correlates positively with action noise scale o (p Spearman correlation coefficients). The takeaway from this
is that instead of changing the noise type, one might increase state-space coverage by increasing o. This
however leads to a reduction in the exploratory returns R, see Figure 7 (c), (p(R, o) = —0.55). Subsequently,
larger noise scales o are associated with decreased learned performance, i.e. smaller evaluation returns P,
Figure 7 (a), when viewed across environments. Note that for very small noises (¢ = 0.1) the variance of
the results P becomes very large. It appears that, in many cases, less noise is actually better, but too little
noise often does not work well. A good default for o appears to be > 0.1 but < 0.9. The scale o does
not appear to have a strong effect on the evaluation state-space coverage E, Figure 7 (d). When viewed
separately for each environment (Table 3), the association between X and o is consistent. The only exception
is the Hopper task, where a large noise is more likely to topple the agent, making it fail earlier, thereby
reducing state-space coverage. The association between p(R, o) is consistently negative, with the exception
of the Mountain-Car where more state-space coverage directly translates to higher returns, because the

12

Under review as submission to TMLR

Half-Cheetah Hopper Inverted-Pendulum-Swingup

wbe 43t e

Mountain-Car Reacher ‘Walker2D

2 2
Schedulers
0 0 [Constant
5 —2 9 [Linear

[Logistic

Normalized
Performance

(V)

Normalized
Performance
o

Figure 8: In the majority of cases action noise schedulers improve performance. The figure shows the comparison
of the learned policy performance, measured by evaluation returns P, for each environment and scheduler. Data is
standardized to control for influence of algorithm, environment, noise scale o and noise type. In the majority of cases
the linear and logistic schedulers perform better than or comparably to the constant scheduler.

var(P) P
Scheduler < Constant < Linear < Logistic > Constant > Linear > Logistic
Constant 0 0 0 0 1 1
Linear 4 0 1 4 0 2
Logistic 4 1 0 4 1 0

Table 4: In the majority of cases, using a scheduler reduces variance of the performance (evaluation returns) var(P),
and improves expected performance P. The evaluation returns P are standardized to control for the influence of
algorithm, noise scale o and noise type. Levene’s tests are used to assess difference in variance var(P) and a multiple-
comparison Games-Howell test indicates superior performance P. The table shows the number of environments
on which each scheduler (row) is significantly better than the other schedulers (column). See Table F.1 for full
per-environment results.

environment is underactuated and energy needs to be injected into the system. Offline-RL findings indicate
that it is easier to learn from expert data than from data of mixed-quality (Fu et al., 2020). As such, we
would expect a very strong correlation between exploratory returns R as a measure of data quality and
evaluation returns P as a measure of learned performance. Indeed, p(P, R) shows that overall exploratory
returns R and evaluation returns P are mostly positively correlated. However, the correlation is not always
very strong and can even be negative. This is interesting, because this means that exploratory returns are
not the only determining factor for learned performance. For example, in the Inverted-Pendulum-Swingup,
p(P, R) is slightly negative while p(P, X) is positive. The results indicate that, the noise scale o has to be
chosen to achieve a trade-off between either increasing state-space coverage X or returns R as required for
each specific environment.

4.3 (Q3) Should we scale down the noise over the training process?

The previous sections indicated that there is no unique solution for the best noise type and that this choice is
dependent on the environment. The analysis of the noise scale showed an overall preference for smaller noise
scales, but also showed that, in contrast, some environments require more noise to be solved successfully. In
this section we analyze schedulers that reduce the influence of action noise (8) over the training progress.

Figure 8 shows the performance for each environment and each scheduler. The data is normalized by environ-
ment and algorithm before aggregation. The general tendency observed across environments is that, when
the environment reacts negatively to larger action noise scale (Half-Cheetah, Hopper, Reacher, Walker2D;
as shown in Table 3), reducing the noise impact B over time consistently improves performance. The re-

13

Under review as submission to TMLR

Spearman Correlation n? Effect Size
Envname p(Pv X) p(P7 U) p(Pv R) ngcheduler 77”2[‘ype 77?;
All -0.503 -0.120 0.770 0.005 0.000 0.084
Mountain-Car 0.662 0.442 0.959 0.032 0.060 0.261
Inverted-Pendulum-Swingup -0.003 0.123 0.163 0.005 0.009 0.115
Reacher -0.872 -0.382 0.803 0.048 0.181 0.181
Hopper -0.349 -0.599 0.651 0.045 0.022 0.660
Walker2D -0.658 -0.494 0.677 0.014 0.017 0.607
Half-Cheetah -0.581 -0.259 0.745 0.007 0.002 0.148

Table 5: Spearman correlation coefficients and ANOVA 7? effect sizes on P for: scheduler, noise type and noise
scale 0. action noise scale ¢ is associated with the largest effect size for evaluation returns P. Results are shown
across all environments (standardized and controlled for environment and algorithm, first row), and per environment
(standardized and controlled for algorithm). Generally, exploratory returns R and evaluation performance P are
positively associated, while generally larger state-space coverage X appears to impact performance P negatively.

verse effect appears to be less important: for environments benefiting from larger noise scales, the constant
scheduler does not consistently outperform the linear and logistic schedulers.

Table 4 shows summarized results indicating the number of environments where scheduler (1, row) is better
than scheduler (2, column) in terms of variance var(P) and mean performance P. See Table F.1 for full results
on the pairwise comparisons. Performance differences are assessed by a Games-Howell multiple comparisons
test, while variance is compared using Levene’s test.

The tests underlying Table 4 show that the differences observed in Figure 8 are indeed significant. Further-
more, the schedulers (linear, logistic) reduce variance var(P) compared to the constant case in four out of six
cases. Keeping the impact 3 constant has no beneficial effect on variance in any environment. This indicates
that using a scheduler to reduce action noise impact increases consistency in terms of learned performance.

4.4 (Q4) How important are the different parameters?

In the previous sections we looked at each noise configuration parameter independently, first for the constant
B case (Q1, Q2), secondly for scheduled reduction of 5 (Q3). However, the question remains whether all the
parameters are equally important. We standardize results to control for environment and algorithm, and
compare across all noise types, noise scales ¢ and all three schedulers.

Table 5 shows Spearman correlation coefficients p(P, X), p(P, o), p(P, R) across all three schedulers (compare
to Table 3 which showed correlations for the constant 8 = 1 case only). Across environments the schedulers
reduce correlation p(P, o) between learned performance (measured by evaluation returns P) and noise scale
o: from p(P,o) = —0.31 in the constant scheduler case to p(P,0) = —0.12 when compared across all
three types of schedulers. This is a further indication that using a scheduler increases robustness to o.
The correlations between p(P, R) are increased to 0.77 vs. 0.57, presumably because reducing § makes the
exploratory policy more on-policy and thus P and R become more similar. Interestingly, the schedulers also
increase the negative correlation p(P, X) between the performance and the exploratory state-space coverage,
from —0.03 in the constant case to —0.50 when viewed across all schedulers. This could be driven by the
environments reacting positively to reduced state-space coverage, which under the schedulers achieve more
runs high in R but low in X, and thus a stronger negative correlation.

The three columns on the right in Table 5 show 7? effect sizes of a three-way ANOVA on the evaluation
returns P 02 cqulers n%ype, n2. The n? effect sizes measure the percentage-of-total variance explained by
each factor. Only in the Reacher environment, action noise type is very important. Surprisingly, in all cases
the most important factor is action noise scale, while the requirement for a large or small action noise scale
varies for each environment.

14

Under review as submission to TMLR

Envname Scheduler o Type Horizon Recommendation

All lin 0.1/0.5 OU

Mountain-Car log 1.7 ou L large o, OU, sched
Inverted-Pendulum-Swingup con 0.5 Gauss L large o

Reacher lin 0.1 Gauss - small o, Gauss, sched
Hopper lin/log 0.1 ou S small o, sched, OU
Walker2D lin 0.1 ou S small o, OU, sched
Half-Cheetah lin/log 0.5 Gauss/OU S small o

Table 6: Comparison of best-ranked noise type, scale and scheduler across all environments and for each environment
individually. Scheduler, type and scale are investigated separately by standardizing the values to control for environ-
ment, algorithm and the other two respective factors. Horizon indicates whether we expect a long (L) or short (S)
effective planning horizon. Recommendation indicates action noise configuration choices in order of importance as
per Table 5, for options with effect sizes n* > 0.01 (small effect).

5 Discussion & Recommendations

The experiments conducted in this paper showed that the action noise does, depending on the environment,
have a significant impact on the evaluation performance of the learned policy (Q1). Which action noise
type is best unfortunately depends on the environment. For the action noise scale (Q2), our results have
shown that generally a larger noise scale increases state-space coverage. But since for many environments,
learning performance is negatively associated with larger state-space coverage, a large noise scale does not
generally have a preferable impact. Similarly, very small scales also appear not to have a preferable impact,
as they appear to increase variance of the evaluation performance (Figure 7). However, overall, reducing the
action noise scaling factor over time (Q3) mostly has positive effects. Finally we also looked at all factors
concurrently (Q4) and found that for most environments noise scale is the most important factor.

It is difficult to draw general conclusions from a limited set of environments and extending the evaluation
is limited by the prohibitively large computational costs. However, we would like to provide heuristics
derived from our observations that may guide the search for the right action noise. Table 6 shows the best-
ranking scheduler, scale and type configurations for each, and across environments. The ranking is based on
the count of significantly better comparisons (pairwise Games-Howell test on difference, p < 0.01, positive
test statistic). For each of scheduler, type and scale we standardize to control for the other two factors.
Intuitively, the locomotion environments require only a short actual planning horizon: the reward in the
environments is based on the distance moved and is relevant as soon as the locomotion pattern is repeated;
for example a 30-step horizon is enough for similar locomotion benchmarks (Pinneri et al., 2020). In contrast,
the Mountain-Car environment only provides informative reward at the end of a successful episode and thus,
the planning horizon needs to be long enough to span a complete successful trajectory (e.g. closer to 100
steps). Similar, the Inverted-Pendulum-Swingup uses a shaped reward that does not account for spurious
local optima: to swing up and increase system energy, the distance to the goal has to be increased again.
These observations are indicated in the column Horizon. Finally, the recommendation column interprets the
best-ranked results under the observed importance (Q4) reported in Table 5. Given these results, we provide
the following intuitions as a starting point for optimizing the action noise parameters (read as: to address
this > do that):

Environment is under-actuated > increase state-space coverage We found that in the case of the
Mountain-Car and the Inverted-Pendulum-Swingup, both of which are underactuated tasks and require a
swinging up phase, larger state-space coverages or larger action noise scales appear beneficial (Table 3 and
Table 5). Intuitively, under-actuation implies harder-to-reach state-space areas.

Reward is misleading > increase state-space coverage Actions are penalized in the Mountain Car by
an action-energy penalty, which means not performing any action forms a local optimum. In the case of the
Inverted-Pendulum-Swingup, the distance to the goal forms a shaped reward. However, when swinging up,
increasing the distance to the goal is necessary. Thus, the shaped reward can be misleading and optimizing

15

Under review as submission to TMLR

for the reward too greedily moves the agent away from taking necessary steps. Optimizing for a spurious
local optimum implies not reaching areas of the state space where the actual goal would be found, thus the
state-space coverage needs to be increased to find these areas.

Horizon is short > reduce state-space coverage The environments Hopper, Reacher, Walker2D model
locomotion tasks with repetitive movement sequences. In the Mountain-Car, positive reward is only achieved
at the successful end of the episode, where as in the locomotion tasks positive reward is received after each
successful cycle of the locomotion pattern. Thus effectively the required planning horizon is shorter compared
to tasks such as the Mountain-Car. Consistently with the previous point, if the effective horizon is shorter,
the rewards are shaped more efficiently, we see negative correlations with the state-space coverage and the
noise scale: if the planning horizon is shorter, the reward can be optimized more greedily, meaning the
state-space coverage can be more focused and thus smaller.

Need more state-space coverage > increase scale Our analysis showed that, to increase state-space
coverage, one way is to increase the scale of the action noise. This leads to a higher probability of taking
larger actions. In continuous control domains, actions are typically related to position-, velocity- or torque-
control. In position-control, larger actions are directly related to more extreme positions in the state space.
In velocity control, larger actions lead to moving away from the initial state more quickly. In torque control,
larger torques lead to more energy in the system and larger velocities. Currently most policies in D-RL
are either uni-modal stochastic policies, or deterministic policies. In both cases, larger action noise leads
to a broader selection of actions and, by the aforementioned mechanism, to a broader state-space coverage.
Note that while this is the general effect we observed, it is also possible that a too large action can have a
detrimental effect, e.g. the Hopper falling, and the premature end of the episode will lead to a reduction of
the state-space coverage.

Need more state-space coverage > try Ornstein-Uhlenbeck Depending on the environment dynam-
ics, correlated noise (Ornstein-Uhlenbeck) can increase the state-space coverage: for example, if the environ-
ment shows integrative behavior over the actions, temporally uncorrelated noise (Gaussian) leads to more
actions that “undo” previous progress and thus less coverage. Thus correlated Ornstein-Uhlenbeck noise
helps to increase state-space coverage.

Need less state-space coverage or on-policy data > reduce scale | use scheduler to decrease 8
If the policy is already sufficiently good, or the reward is shaped well enough, exploration should focus
around good trajectories. This can be achieved using a small noise scale 0. However, if the environment
requires more exploration to find a reward signal, it makes to sense to use a larger action noise scale ¢ in
the beginning while gradually reducing the impact of the noise (Q3). The collected data then gradually
becomes “more on-policy”.

In general > use a scheduler We found that using schedulers to reduce the impact of action noise over
time, decreases variance of the performance, and thus makes the learning more robust, while also generally
increasing the evaluation performance overall. Presumably because, once a trajectory to the goal is found,
more fine grained exploration around the trajectory is better able to improve performance.

6 Conclusion

In this paper we present an extensive empirical study on the impact of action noise configurations. We
compared the two most prominent action noise types: Gaussian and Ornstein-Uhlenbeck, different scale
parameters (0.1,0.5,0.9,1.3,1.7), proposed a scheduled reduction of the impact § of the action noise over the
training progress and proposed the state-space coverage measure Xy to assess the achieved exploration in
terms of state-space coverage. We compared DDPG, TD3, SAC, and its deterministic variant detSAC on the
benchmarks Mountain-Car, Inverted-Pendulum-Swingup, Reacher, Hopper, Walker2D, and Half-Cheetah.

We found that (Q1) neither of the two noise types (Gaussian, Ornstein-Uhlenbeck) is generally superior
across environments, but that the impact of noise type on learned performance can be significant when
viewed separately for each environment: the noise type needs to be chosen to fit the environment. We found
that (Q2) increasing action noise scale, across environments, increases state-space coverage but tends to
reduce learned performance. Again, whether state-space coverage and performance are positively correlated,

16

Under review as submission to TMLR

and thus a larger scale is desired, depends on the environment. The positive or negative correlation should
guide the selection of action noise. Reducing the impact (/3) of action noise over training time (Q3), improves
performance in the majority of cases and decreases variance in performance and thus increases robustness to
the action noise choice. Surprisingly, we found (Q4) that the most important factor appears to be the action
noise scale o: if less state-space coverage is required, the scale can be reduced. More state-space coverage
can be achieved by increasing the action noise scale. This approach is successful even for Gaussian noise
on the Mountain-Car. We synthesized our results into a set of heuristics on how to choose the action noise
based on the properties of the environment. Finally we recommend a scheduled reduction of the action noise
impact factor 8 of over the training progress to improve robustness to the action noise configuration.

17

Under review as submission to TMLR

References

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing Function Approximation Error in Actor-
Critic Methods. In International Conference on Machine Learning, pages 1587-1596. PMLR, October
2018.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Proc. 4th Int. Conf.
Learning Representations, (ICLR), 2016.

Eric Liang, Richard Liaw, Philipp Moritz, Robert Nishihara, Roy Fox, Ken Goldberg, Joseph E. Gonza-
lez, Michael I. Jordan, and Ion Stoica. RLlib: Abstractions for Distributed Reinforcement Learning.
arXiw:1712.09381 [cs], June 2018.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dormann.
Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine Learning Re-
search, 22(268):1-8, 2021a.

Yasuhiro Fujita, Prabhat Nagarajan, Toshiki Kataoka, and Takahiro Ishikawa. ChainerRL: A Deep Rein-
forcement Learning Library. Journal of Machine Learning Research, 22(77):1-14, 2021. ISSN 1533-7928.

Takuma Seno and Michita Imai. D3rlpy: An Offline Deep Reinforcement Learning Library. arXiv:2111.03788
[es], November 2021.

Andrew William Moore. Efficient memory-based learning for robot control. 1990.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash Ku-
mar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic Algorithms and
Applications. arXiv:1812.05905 [cs, stat], January 2019.

Antonin Raffin. RL baselines3 zoo. GitHub repository, 2020.

Itai Caspi, Gal Leibovich, Shadi Endrawis, and Gal Novik. Reinforcement Learning Coach. Zenodo, Decem-
ber 2017.

Matt Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron, Feryal Behbahani, Tamara Nor-
man, Abbas Abdolmaleki, Albin Cassirer, Fan Yang, Kate Baumli, Sarah Henderson, Alex Novikov,
Sergio Gémez Colmenarejo, Serkan Cabi, Caglar Gulcehre, Tom Le Paine, Andrew Cowie, Ziyu Wang,
Bilal Piot, and Nando de Freitas. Acme: A Research Framework for Distributed Reinforcement Learning.
arXiv:2006.00979 [cs], June 2020.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech
Zaremba. OpenAl Gym. arXiw:1606.01540 [cs], June 2016.

Erwin Coumans and Yunfei Bai. PyBullet, a Python module for physics simulation for games, robotics and
machine learning. 2016.

Benjamin Ellenberger. PyBullet gymperium. GitHub repository, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex
Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir
Sadik, Toannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis
Hassabis. Human-level control through deep reinforcement learning. Nature, 518(7540):529-533, February
2015. ISSN 0028-0836, 1476-4687. doi: 10.1038 /nature14236.

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253-279, 2013.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026-5033, October 2012.
doi: 10.1109/TR0OS.2012.6386109.

18

Under review as submission to TMLR

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden, Abbas
Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin Riedmiller. DeepMind Control
Suite. arXiv:1801.00690 [cs], January 2018.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre Quillen,
Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey Levine. QT-Opt: Scalable Deep
Reinforcement Learning for Vision-Based Robotic Manipulation. June 2018.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine learning, 8(3-4):229-256, 1992.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy Gradient Methods for
Reinforcement Learning with Function Approximation. In Advances in Neural Information Processing
Systems, volume 12. MIT Press, 1999.

John Schulman, Sergey Levine, Philipp Moritz, Michael Jordan, and Pieter Abbeel. Trust Region Policy Op-
timization. In Proceedings of the 82Nd International Conference on International Conference on Machine
Learning - Volume 37, ICML’15, pages 1889-1897, Lille, France, 2015. JMLR.org.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy Opti-
mization Algorithms. CoRR, abs/1707.06347, 2017.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. Determin-
istic policy gradient algorithms. In ICML, 2014.

Zeping Zhan, Batu Aytemiz, and Adam M Smith. Taking the scenic route: Automatic exploration for
videogames. In KEG@ AAAI 2019.

Bogdan Mazoure, Thang Doan, Audrey Durand, Joelle Pineau, and R. Devon Hjelm. Leveraging exploration
in off-policy algorithms via normalizing flows. In Conference on Robot Learning, pages 430-444. PMLR,
May 2020.

Patrick Nadeem Ward, Ariella Smofsky, and Avishek Joey Bose. Improving Exploration in Soft-Actor-Critic
with Normalizing Flows Policies. arXiv:1906.02771 [cs, stat], June 2019.

Cristina Pinneri, Shambhuraj Sawant, Sebastian Blaes, Jan Achterhold, Joerg Stueckler, Michal Rolinek,
and Georg Martius. Sample-efficient Cross-Entropy Method for Real-time Planning. arXiv:2008.06389
[es, stat], August 2020.

Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search provides a competitive approach to
reinforcement learning. arXiv:1803.07055 [cs, math, stat], March 2018.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y. Chen, Xi Chen, Tamim
Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise for exploration. CoRR,
abs/1706.01905, 2017.

Antonin Raffin, Jens Kober, and Freek Stulp. Smooth Exploration for Robotic Reinforcement Learning.
arXiw:2005.05719 [cs, stat], June 2021b.

Yuri Burda, Harrison Edwards, Amos J. Storkey, and Oleg Klimov. Exploration by random network distil-
lation. In 7th International Conference on Learning Representations, ICLR, 2019.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAl Xi Chen, Yan Duan, John Schulman, Filip
DeTurck, and Pieter Abbeel. #Exploration: A Study of Count-Based Exploration for Deep Reinforcement
Learning. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems 30, pages 2753-2762. Curran Associates, Inc.,
2017.

Mirco Mutti, Lorenzo Pratissoli, and Marcello Restelli. A Policy Gradient Method for Task-Agnostic Explo-
ration. arXiw:2007.04640 [cs, stat], July 2020.

19

Under review as submission to TMLR

Zhang-Wei Hong, Tzu-Yun Shann, Shih-Yang Su, Yi-Hsiang Chang, Tsu-Jui Fu, and Chun-Yi Lee. Diversity-
driven exploration strategy for deep reinforcement learning. In Advances in Neural Information Processing
Systems, pages 10489-10500, 2018.

Vitchyr Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine. Skew-fit: State-
covering self-supervised reinforcement learning. In Proceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Virtual FEvent, volume 119 of Proceedings of Machine
Learning Research, pages 7783-7792. PMLR, 2020.

Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Rene Traore, Prafulla Dhariwal, Christo-
pher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford, John Schulman, Szymon Sidor,
and Yuhuai Wu. Stable Baselines. GitHub repository, 2018.

Tim Seyde, Igor Gilitschenski, Wilko Schwarting, Bartolomeo Stellato, Martin Riedmiller, Markus
Waulfmeier, and Daniela Rus. Is Bang-Bang Control All You Need? Solving Continuous Control with
Bernoulli Policies. arXiv:2111.02552 [cs], November 2021.

Morteza Noshad, Kevin R. Moon, Salimeh Yasaei Sekeh, and Alfred O. Hero. Direct estimation of information
divergence using nearest neighbor ratios. In 2017 IEEE International Symposium on Information Theory
(ISIT), pages 903-907, June 2017. doi: 10.1109/ISIT.2017.8006659.

Christopher M. Bishop. Pattern recognition. Machine Learning, 128:1-58, 2006.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets for Deep
Data-Driven Reinforcement Learning. arXiv:2004.07219 [cs, stat], June 2020.

Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for Python, 2001.

Raphael Vallat. Pingouin: Statistics in Python. Journal of Open Source Software, 3(31):1026, November
2018. ISSN 2475-9066. doi: 10.21105/jo0ss.01026.

Derek C. Sauder and Christine E. DeMars. An Updated Recommendation for Multiple Comparisons. Ad-
vances in Methods and Practices in Psychological Science, 2(1):26-44, March 2019. ISSN 2515-2459. doi:
10.1177/2515245918808784.

Morton B Brown and Alan B Forsythe. Robust Tests for the Equality of Variances. page 5, 2022.

20

Under review as submission to TMLR Appendix

Appendices

A A motivating example

The action is generated as a; ~ mg(sy), ar = a + €4,, where £,, denotes the action noise. We calibrate the
noise scale to achieve similar returns for both noise types. To calibrate the action noise scale, we assume a
constant-zero-action policy upon which the action noise is added and effectively use a; = €,, as the action
sequence. We find that a scale of about 0.6 for Gaussian action noise and a scale of about 0.5 for Ornstein-
Uhlenbeck noise lead to a mean return of about —30. This is shown in Table 1. A successful solution
to the Mountain-Car environment yields a positive return 0 < > r; < 100. We then use these two noise
configurations and perform learning with DDPG, SAC and TD3. The resulting learning curves are shown
in Figure 1 and very clearly depict the huge impact the noise configuration has: with similar returns of the
only policies, we achieve substantially different learning results, either leading to failure or success on the
task.

To achieve a swing-up, the actions must not change direction too rapidly but rather need to change direction
with the right frequency. Ornstein-Uhlenbeck noise is temporally correlated and thus helps solving the
environment successfully with a smaller scale ¢. In this environment, the algorithms tend to converge either
to the successful solution of the environment by swinging up, or to a passive zero-action solution which incurs
no penalty.

B Deterministic SAC

Algorithm B.1 (Deterministic) Soft Actor-Critic

Initialize parameter vectors v, ¥, 6, ¢.
for each iteration do
for each environment step do

e, 0t = fo(se)

ge~ A > A... action noise process
ay = fiy + € > DetSAC
> SAC

Se41 ~ P(Se1lse, ar)
D+ DU {(St, ag, 'I’(St7 at), St+1)}
end for
for each gradient step do
. original SAC update (Haarnoja et al., 2019)
end for
end for

21

Under review as submission to TMLR Appendix

C Benchmark Environments

ENVIRONMENT ILLUSTRATION dim(Ofim(AREWARD
Mountain-Car 2 1 1(ss,8¢) —las)3
Inverted-

Pendulum-Swingup ‘ 5 1 lo(st) — eah

Reacher 9 2 Vst —sale —le(se)ls — 1(e(se), primic) —lach
Hopper)‘ 5 3 Volsi—sali —le(s)3 — 1(e(se), prmie) —lach
Walker2D > 22 6 Vst —sah —le(s)ls — 1e(se), frimie) —lach
Half-Cheetah ')—(26 6 V7lst — sah —|<P(St)|§ — 1(p(s¢), Primit) —lath

Table C.1: Benchmarks environments used in our evaluation in increasing order of complexity. |O| denotes Observa-
tion space dimensions. |.A| denotes Action space dimensions. Explanation of Reward components: 1(b,¢) indicator
function (sparse reward or penalty) of b w.r.t. to the set ¢; |b|» n-norm of b; ¢(s¢) angular component of state;
Vb finite-difference reduction of b between time-steps; @pmax joint limit; s¢ goal state; |g0(st)\§ denotes an angular-
power-penalty. Factors in the reward are omitted. Distances e.g. |s¢ — sq|» may refer to a subspace of the vector s;.
Section 3.3

D Statistical methods
We use statistical methods implemented in (Jones et al., 2001; Vallat, 2018) as well as our own implemen-
tations.

Welch t-test : does not assume equal variance. Reporting two-tailed p-value. Significant for one-tailed
when & < a.

Games-Howell test Performing multiple comparisons with a t-test increases the risk of Type I errors. To
control for Type I errors, the Games-Howell test, a multiple-comparison test applicable to heteroscedastic
cases, should be used (Sauder and DeMars, 2019).

The test statistic ¢ is distributed according to Tukey’s studentized range ¢ and the test statistic ¢ is defined
as

22

Under review as submission to TMLR Appendix

(16)
(17)
(18)
(19)
The p-value is then calculated for k sample-groups as
4y.\/2 k. df (20)

ANOVA We perform a balanced N-way ANOVA, i.e. with N independent factors, each with multiple levels
(categorical values). Since the study design is balanced this is equivalent to a type-I ANOVA in which the
order of terms does not matter (because the design is balanced).

Eta squared 12 The effect size eta squared n? denotes the relative variance explained by a factor to the

total variance observed: n? = %
DF Sum of Squares F PR(>F)
Cy) 9.0 4167.583 478.576 0
C(x) 9.0 91.118 10.463 1.7e-15
C(y):C(x) 810 81.172 1.036 0.397
Residual 901.0 871.798
Total 5211.672

Table D.1: ANOVA example. The partial 1> for a factor is calculated as the sum of squares, variance explained by
that factor, divided by the sum of the variance explained plus the unexplained residual variance.

Effect sizes are interpreted as:

n* >0.01 small effect (
n? > 0.06 medium effect (22
n? > 0.14 large effect (

(

23

Under review as submission to TMLR Appendix

Levene’s Test assesses (un)equality of group variances.

zij =|Yij — Uyl (25)
Nop Yo A (26)
p—1 30 (25— 7)?
di=p—1 (27)
dy =N —p (28)
1 &
Zj=— Z Zij (29)
[
1 p Ny
j=1i=1

where p is the number of groups, n; is the size of group j and N is the total number of observations. §;
is the median of group j, z;; denotes sample ¢ in group j. The F' statistic follows the F-distribution with

degrees of freedom dq, ds.
This variant of Levene’s test, §; median instead of mean, is also called Brown-Forsythe test (Brown and

Forsythe, 2022) and is more robust to non-normal distributions.

Cohen-d effect size : Cohen-d is illustrated in Figure D.1 and measures the distance of the means of two
sample groups normalized to the pooled variance:

d = 0.80 Large

PDF(x)
PDF (x)
PDF(x)

PDF(x)
PDF(x)
PDF(x)

Figure D.1: Illustration of Cohen-d effect size: the Cohen-d measures the standardized difference between the means
of two groups, equivalent to a z-score. Effect sizes d > 0.2 are called small, d > 0.5 medium, d > 0.8 large effects.
Under equal-variance Gaussian assumption this can be interpreted as n-percent of group A below the mean of group

B. Illustrated as the shaded area.

) [Mean Group A] — [Mean Group B|
Eff = 1
ect size Pooled Std Deviation (31)
1 — o
d="_"% 32
_ (32)

o \/(m —1)s?+ (ng —1)s3 (33)

ny+mng —2

24

Under review as submission to TMLR Appendix

E (Q1) Noise Type difference per environment

Half-Cheetah Hopper
Z c®ou Z csou T G<ou T c®ou % ae<ou Z csou 7 G>o0U 7 G%ou
2 p=009 £ p<0? 2 p=0001 £ p=008) £ p<i0® . g p< 107 2 p<i0t A £ p=070 N
= —t— 00 = :L;] B o = 0 o 0 = 00 S e) $=¢= s 0 gu
é G ou 5 G ou e o ° g < v ? g o ou 2 ¢ ou ° 4 a ou 2 ¢ ou
"W = w e " 5w = o e)
Inverted-Pendulum-Swingup Mountain-Car
T Gsou 3 G<ou s c®ou % G<ou 3 G<ou 3 G<ou
2 op<w® S op<l07® S p=0020 Z p<a0r £ p<10” S op<i0”
L Pl 0 e B iEEEE o rEEEE L IggEE
k3 G ou 4 ¢ ou a ¢ ou 8 ¢ ou 2 ¢ ou 2 ¢ ou
= > = a = & =
(b) (c) (d) (a) (b) (¢) (d)
Reacher Walker2D
u E G >“?}st g ¢ <U$H % ae<ou T c™ou 3 G<ou Z G>o0U
5 P< o p< ! 5 2 <107® ~ Z p=o0011 S op<io®® 5 p<107®
ant I A s Botee—m B S lemmma e
;;l/ G ou h->< G ou = G ou L:] G ou é G ou \D_J/ G ou 1) G ou
o = “ Iy pee “ =
(a) (b) (c) (a) (b) (c) (d)
Figure E.1: Separate results for constant scheduler; comparison of noise type on P, R, X, E.
F Impact of Scheduler on Variance and Learned Performance
var(P) P
< Constant < Linear < Logistic > Constant > Linear > Logistic
Scheduler Envname
Half-Cheetah No No No No
Hopper No No No No
Inverted-Pendulum-Swingup No No No Yes p < 107°
Constant , . -6
Mountain-Car No No Yes p < 10 No
Reacher No No No No
Walker2D No No No No
Half-Cheetah Yes p < 1073 No Yes p < 1076 No
Hopper Yes p < 106 No Yes p < 10~6 No
Linear Inverted-Pendulum-Swingup No No No No
Mountain-Car No No No No
Reacher Yes p < 10729 Yes p < 10715 Yes p < 1076 Yes p < 1076
Walker2D Yes p < 1074 No Yes p < 1076 Yes p < 1076
Half-Cheetah Yes p < 1074 No Yes p < 1076 No
Hopper Yes p < 1078 No Yes p < 1076 No
Logistic Inverted-Pendulum-Swingup No No No No
s Mountain-Car No Yes p = 0.002 Yes p<107® Yes p < 1076
Reacher Yes p < 1074 No No No
Walker2D Yes p < 1076 No Yes p < 1074 No
Constant Sum 0 0 0 0 1 1
Linear Sum 4 0 1 4 0 2
Logistic Sum 4 1 0 4 1 0

Table F.1: In the majority of cases, using a scheduler reduces variance var(P) of the performance (evaluation returns),
and improves expected performance P. The rows shows whether “Scheduler” is significantly better than the scheduler
indicated in the columns var(P) and P. The evaluation returns P are standardized to control for the influence of
algorithm, noise scale o and noise type. Levene’s test is used to assess difference in variance var(P) and a multiple-
comparison Games-Howell test indicates superior performance P.

25

Under review as submission to TMLR

Appendix

G Performed experiments

run

noise-scale 0.1 0.5 0.9 1.3 1.7 01 05 09 13 1.7
noise_type gauss gauss gauss gauss gauss ou ou ou ou ou

algorithm envname noise-scheduler
ddpg HalfCheetahPyBullet Env-v0 constant__schedule 20 20 20 20 20 20 20 20 20 20
linear__schedule 20 20 20 20 20 20 20 20 20 20
istic_ schedule 20 20 20 20 20 20 20 20 20 20
HopperPyBulletEnv-v0 constant__schedule 20 20 20 20 20 20 20 20 20 20
linear__schedule 20 20 20 20 20 20 20 20 20 20
logistic__schedule 20 20 20 20 20 20 20 20 20 20
InvertedPendulumSwingupPyBulletEnv-v0 constant_schedule 20 20 20 20 20 20 20 20 20 20
linear schedule 20 20 20 20 20 20 20 20 20 20
logistic__schedule 20 20 20 20 20 20 20 20 20 20
MountainCarContinuous-v0 constant__schedule 20 20 20 20 20 20 20 20 20 20
linear_ schedule 20 20 20 20 20 20 20 20 20 20
logistic_schedule 20 20 20 20 20 20 20 20 20 20
ReacherPyBulletEnv-v0 constant__schedule 20 20 20 20 20 20 20 20 20 20
linear__schedule 20 20 20 20 20 20 20 20 20 20
logistic__schedule 20 20 20 20 20 20 20 20 20 20
‘Walker2DBulletEnv-v0 constant__schedule 20 20 20 20 20 20 20 20 20 20
linear _schedule 20 20 20 20 20 20 20 20 20 20
logistic__schedule 20 20 20 20 20 20 20 20 20 20
detsac HalfCheetahPyBulletEnv-v0 constant__schedule 20 20 20 20 20 20 20 20 20 20
linear_ schedule 20 20 20 20 20 20 20 20 20 20
logistic_schedule 20 20 20 20 20 20 20 20 20 20
HopperPyBulletEnv-v0 constant__schedule 20 20 20 20 20 20 20 20 20 20
linear__schedule 20 20 20 20 20 20 20 20 20 20
logistic__schedule 20 20 20 20 20 20 20 20 20 20
InvertedPendulumSwingupPyBulletEnv-v0 constant_schedule 20 20 20 20 20 20 20 20 20 20
linear__schedule 20 20 20 20 20 20 20 20 20 20
logistic__schedule 20 20 20 20 20 20 20 20 20 20
MountainCarContinuous-v0 constant__schedule 20 20 20 20 20 20 20 20 20 20
linear_schedule 20 20 20 20 20 20 20 20 20 20
logistic_schedule 20 20 20 20 20 20 20 20 20 20
ReacherPyBulletEnv-v0 constant__schedule 20 20 20 20 20 20 20 20 20 20
linear_schedule 20 20 20 20 20 20 20 20 20 20
logistic__schedule 20 20 20 20 20 20 20 20 20 20
‘Walker2DBulletEnv-v0 constant__schedule 20 20 20 20 20 20 20 20 20 20
linear__schedule 20 20 20 20 20 20 20 20 20 20
logistic__schedule 20 20 20 20 20 20 20 20 20 20
sac HalfCheetahPyBulletEnv-v0 constant__schedule 20 20 20 20 20 20 20 20 20 20
linear_schedule 20 20 20 20 20 20 20 20 20 20
logistic_schedule 20 20 20 20 20 20 20 20 20 20
HopperPyBulletEnv-v0 constant__schedule 20 20 20 20 20 20 20 20 20 20
linear__schedule 20 20 20 20 20 20 20 20 20 20
logistic_schedule 20 20 20 20 20 20 20 20 20 20
InvertedPendulumSwingupPyBulletEnv-v0 constant_schedule 20 20 20 20 20 20 20 20 20 20
linear_schedule 20 20 20 20 20 20 20 20 20 20
logistic__schedule 20 20 20 20 20 20 20 20 20 20
MountainCarContinuous-v0 constant__schedule 20 20 20 20 20 20 20 20 20 20
linear_schedule 20 20 20 20 20 20 20 20 20 20
logistic_schedule 20 20 20 20 20 20 20 20 20 20
ReacherPyBulletEnv-v0 constant__schedule 20 20 20 20 20 20 20 20 20 20
linear__schedule 20 20 20 20 20 20 20 20 20 20
logistic__schedule 20 20 20 20 20 20 20 20 20 20
‘Walker2DBulletEnv-v0 constant__schedule 20 20 20 20 20 20 20 20 20 20
linear schedule 20 20 20 20 20 20 20 20 20 20
logistic__schedule 20 20 20 20 20 20 20 20 20 20
td3 HalfCheetahPyBulletEnv-v0 constant__schedule 20 20 20 20 20 20 20 20 20 20
linear schedule 20 20 20 20 20 20 20 20 20 20
logistic__schedule 20 20 20 20 20 20 20 20 20 20
HopperPyBulletEnv-v0 constant__schedule 20 20 20 20 20 20 20 20 20 20
linear__schedule 20 20 20 20 20 20 20 20 20 20
logistic__schedule 20 20 20 20 20 20 20 20 20 20
InvertedPendulumSwingupPyBulletEnv-v0 constant_schedule 20 20 20 20 20 20 20 20 20 20
linear__schedule 20 20 20 20 20 20 20 20 20 20
logistic_ schedule 20 20 20 20 20 20 20 20 20 20
MountainCarContinuous-v0 constant__schedule 20 20 20 20 20 20 20 20 20 20
linear schedule 20 20 20 20 20 20 20 20 20 20
logistic__schedule 20 20 20 20 20 20 20 20 20 20
ReacherPyBulletEnv-v0 constant__schedule 20 20 20 20 20 20 20 20 20 20
linear__schedule 20 20 20 20 20 20 20 20 20 20
logistic_schedule 20 20 20 20 20 20 20 20 20 20
Walker2DBulletEnv-v0 constant__schedule 20 20 20 20 20 20 20 20 20 20
linear schedule 20 20 20 20 20 20 20 20 20 20
logistic_ schedule 20 20 20 20 20 20 20 20 20 20

Table G.1: This table shows the number and configurations of independent learning experiments with different noise

settings we use in this paper. Each run is performed from an independently, randomly drawn seed.

26

Under review as submission to TMLR

Appendix

H Hyperparameters

Environment MountainCarContinuous-v0 InvertedPendulumSwingupPyBulletEnv-v0 ~ ReacherPyBulletEnv-v0 HopperPyBulletEnv-v0 ~ Walker2DBulletEnv-v0 ~ HalfCheetahPyBulletEnv-v0
policy MipPolicy MipPolicy MipPolicy MipPolicy MipPolicy MipPolicy
timesteps 60000.0 1000000.0 1000000.0 2000000.0 2000000.0 2000000.0
env_ wrapper TimeFeatureWrapper TimeFeatureWrapper TimeFeatureWrapper
gamma 0.99 0.99 0.99 0.99 0.99 0.98
buffer_size 50000.0 1000000.0 1000000.0 1000000.0 1000000.0 1000000.0
learning starts 0.0 1000.0 1000.0 1000.0 1000.0 10000.0
gradient_steps 1.0 -1.0 -1.0 -1.0 -1.0 -1.0
train_ freq 1 (1, episode) (1, episode) (1, episode) (1, episode) (1, episode)
learning_rate 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003
batch_size 64.0 64.0 64.0 256.0 256.0 256.0
ent_ coef auto 0.01 0.01 0.01 0.01 auto
tau 0.005 0.005 0.005 0.005 0.005 0.01

a SAC/DetSAC Hyperparameters
Environment MountainCarContinuous-v0 InvertedPendulumSwingupPyBulletEnv-v0 ReacherPyBulletEnv-v0 HopperPyBulletEnv-v0 ~ Walker2DBulletEnv-v0 HalfCheetahPyBulletEnv-v0
policy MipPolicy MipPolicy MipPolicy MipPolicy MipPolicy MipPolicy
timesteps 300000.0 300000.0 300000.0 1000000.0 1000000.0 1000000.0
env_ wrapper TimeFeatureWrapper TimeFeatureWrapper TimeFeatureWrapper TimeFeatureWrapper TimeFeatureWrapper
gamma 0.99 0.98 0.98 0. 0. 0.98
buffer _size 1000000 200000.0 200000.0 200000.0 200000.0 200000.0
learning_starts 100 10000.0 10000.0 10000.0 10000.0 10000.0
gradient_steps -1 -1.0 -1.0 -1.0 -1.0 -1.0
train_ freq (1, "episode’) (1, episode) (1, episode) (1, episode) (1, episode) (1, episode)
learning_rate 0.001 0.001 0.001 .001 0.001 0.001
policy kwargs None {'net_arch’: 400, 300]} {'net_arch’: [400, 300]} {'net_arch’: [400, 300]} {'net_arch’: [400, 300]} {'net_arch’: [400, 300]}

b TD3 Hyperparameters

Environment MountainCarContinuous-v0 InvertedPendulumSwingupPyBulletEnv-v0 ReacherPyBulletEnv-v0 HopperPyBulletEnv-v0 ~ Walker2DBulletEnv-v0 HalfCheetahPyBulletEnv-v0
policy MipPolicy MipPolicy MipPolicy MipPolicy MipPolicy MipPolicy

timesteps 300000.0 300000.0 300000.0 1000000.0 1000000.0 1000000.0

env_ wrapper TimeFeatureWrapper TimeFeatureWrapper ~ TimeFeatureWrapper TimeFeatureWrapper — TimeFeatureWrapper
gamma 0.99 0.98 0.98 0. 0.98 0.98

buffer_size 1000000 200000.0 200000.0 1000000.0 1000000.0 200000.0

learning starts 100 10000.0 10000.0 10000.0 10000.0 10000.0
gradient_steps -1 1.0 -1 1.0 1.0 1.0

train_freq (1, "episode’) (1, episode) 1 (1, episode) (1, episode) (1, episode)
learning_rate 0.001 0.001 0.001 0.0007 0.0007 0.001

policy kwargs ~ None {net_arch’: [400, 300]} {met_arch: [400, 300} {met_arch’: [400, 300]} {met arch’: [400, 300]} {net_arch’: [400, 300]}
batch_size 100 100 100 256.0 256.0 100

Table H.1
in (Raffin

¢ DDPG Hyperparameters

: Hyperparameters for SAC, TD3 and DDPG are taken from (Raffin, 2020) or left at default values defined

et al., 2021a).

I Environment Limits

Environment MountainCarContinuous-v0 InvertedPendulumSwingupPyBulletEnv-v0 ReacherPyBulletEnv-v0 HopperPyBulletEnv-v0 ~ Walker2DBulletEnv-v0 HalfCheetahPyBulletEnv-v0
s -1.2000. ... 0.6000 .099: 0.2700 -1.2433...0.8614 -1.2316...0.1270
s -0.0700....0.0700 1276 0.2700 -0.0000.. .. 0.0000 -0.0000.. .. 0.0000
s -1.0000. . . 1.0000 ..0.4798 -1.0000. .. 1.0000 -1.0000.. .. 1.0000
5(3) -1.0000. ... 1.0000 ..0.4795 -5.0000. .. 3.4373 -3.5129...1.8573
s -21.9001...21.2146 ..1.0000 -0.0000. ... 0.0000 -0.0000. ... 0.0000
5 ... 1.0000 -5.0000...1.6368 -3.6400.. ..0.7000
50 ..10.0000 -3.1416...3.1416 -3.1416.....0.0000
s .2745...1.2701 -1.5708...1.5342 -1.5708...1.0625
s®) -10.0000.. .. 10.0000 -1.3921...2.1682 -2.2274...1.5482
59 -5.0000. .. 5.0000
510 -1.3917...1.8215
s -5.0000. .. 5.0000
s(12) -3.2458...2.1586
s03) -5.0000. .. 5.0000
s -0.0000. .. 1.0000 .. 1.2062
505 ..4.1318
5(10) .. 17902
s ...4.2734
5018 ..1.5315
s(19) .. 2.7369
520 .. 1.0000
52D ..1.0000
8(22)
.5‘(23) L1
520 ..1.0000
5(26) .. 1.0000

Table I.1: The calculation of Xye1 requires defined state space limits for each environments. However, some en-
vironments define the limits as (—oo,00). In these cases we collected state space samples and defined the limits

empirically.

27

	Introduction
	Related Work
	Methods
	Noise types: Gaussian and Ornstein-Uhlenbeck
	Scheduling strategies to reduce action noise
	Environments
	Performed experiments
	Measuring Performance
	State-Space Coverage
	Evaluation of Measures on Synthetic Data

	Results: What action noise to use?
	(Q1) Which action noise type to use? (and what are the impacts)
	(Q2) Which action noise scale to use?
	(Q3) Should we scale down the noise over the training process?
	(Q4) How important are the different parameters?

	Discussion & Recommendations
	Conclusion
	A motivating example
	Deterministic SAC
	Benchmark Environments
	Statistical methods
	(Q1) Noise Type difference per environment
	Impact of Scheduler on Variance and Learned Performance
	Performed experiments
	Hyperparameters
	Environment Limits

