Under review as a conference paper at ICLR 2026

D2CACHE: ACCELERATING DIFFUSION-BASED LLMS
VIA DUAL ADAPTIVE CACHING

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion-based large language models (dLLMs), despite their promising perfor-
mance, still suffer from inferior inference efficiency. This is because dLLMs rely
on bidirectional attention and cannot directly benefit from the standard key-value
(KV) cache as autoregressive models (ARMs) do. To tackle this issue, we intro-
duce Dual aDaptive Cache (d*Cache), which is a training-free approximate KV
cache framework for accelerating dLLM inference. d?Cache features a two-stage
fine-grained selection strategy to identify tokens and adaptively update their KV
states at each decoding step, while caching the KV states of the remaining tokens
for reuse. Furthermore, d?Cache naturally offers a more reliable decoding alterna-
tive, which can enable quasi left-to-right generation and mitigate premature over-
confidence in tokens at the end of the sequence. Extensive experimental results
on two representative dLLMs (i.e., LLaDA and Dream) demonstrate that d>Cache
not only achieves substantial inference speedups, but also yields consistent im-
provements in generation quality. The anonymous evaluation codes are available
athttps://anonymous.4open.science/r/d2Cache-5538.

1 INTRODUCTION

Diffusion models have recently achieved remarkable success in generating continuous data like im-
ages (Yang et al [2023), but text generation—a fundamentally discrete task—has long been dom-
inated by autoregressive models (ARMs) (Touvron et al., 2023} |Achiam et al., [2023} |Guo et al.,
2025). Building on the foundations of ARMs, recent studies have successfully extended diffusion
processes to discrete language modeling and further scaled up these models (Nie et al., 2025} |Ye
et al., 2025; |L1 et al., [2025). These diffusion-based large language models (dLLMs) offer several
key advantages over ARMs, such as mitigating the “reversal curse” (Berglund et al.| 2023) and
capturing high-level global semantic patterns (Nagarajan et al., [2025)).

Despite their potential, recent dLLMs still face substantial efficiency challenges (Wu et al., [2025).
Due to bidirectional attention, dLLMs cannot benefit from the standard key-value (KV) cache as
ARMs do. As shown in Figure [I] (a), ARMs leverage causal attention to sequentially generate new
tokens and append each new token to the end of the sequence. This autoregressive process naturally
enables the reuse of earlier KV states when generating the next token (L1 et al., [2024)). In contrast,
as shown in Figure[I](b), dLLMs feature an iterative decoding process over a fixed-length sequence,
where masked tokens are progressively replaced with decoded tokens. However, under bidirectional
attention, updating even a single masked token changes the context seen by all other tokens (Ye
et al.| 2025} Nie et al.,[2025). As a result, the KV states of the entire sequence must be recomputed
at each decoding step, making dLL.Ms inherently incompatible with the standard KV cache.

To address the above efficiency challenges, recent studies (Ma et al.,[2025; [Wu et al.| 2025} Liu et al.,
2025} Hu et al.,|2025) have explored approximate KV cache to accelerate dLLM inference. These
studies build on the following key observation: for a subset of tokens, their KV states often exhibit
high similarity across consecutive decoding steps. This enables to approximately reuse these KV
states, which can avoid redundant computations and reduce the overall inference cost. In practice,
these studies typically divide the sequence (including prompt tokens, masked tokens, and decoded
tokens) into a static segment, where their KV states can be approximately reused, and a dynamic
segment, where their KV states need to be frequently updated within a fixed window of decoding
steps. However, these studies are coarse-grained and apply the same strategy to all tokens within

https://anonymous.4open.science/r/d2Cache-5538

Under review as a conference paper at ICLR 2026

Masked token New attention interaction Step t
Decoded token Reusable attention interaction @ @ Stage 1: Certainty prior-guided selection from masked tokens
- 88 (colored by certainty magnitude)
Cached token : Q : Selected token to update L %
gl eg 9|9
T E
5]
°oc
1 So
' L?) 5 Stage 2: Attention-aware selection from remaining tokens
Step t oD (colored by attention magnitude)
| o .=
' 58
| =
1
!
Stept +1 '
\Stept +1
i
1
(a) Causal attention (b) Bidirectional attention ' (c) d’Cache: Two-stage fine-grained token selection

Figure 1: (a) In ARMs, causal attention requires each token to interact only with its preceding
tokens. (b) In dLLMs, bidirectional attention requires each token to attend to both its preceding and
subsequent tokens, such that any modification in the subsequent tokens necessitates recomputation
of the entire sequence. (c) The proposed d?Cache adaptively selects a small subset of tokens in
dLLMs and updates their KV states through a two-stage fine-grained process. The KV states of the
remaining tokens can be approximately cached for reuse in subsequent decoding step.

both static and dynamic segments. As a result, they either suffer from limited flexibility or require
complicated tuning. Moreover, since coarse-grained designs cannot capture the fine-grained token-
level dynamics of KV states, they inevitably reuse KV states that should be updated, or update KV
states that can be safely reused, thus limiting the achievable acceleration gains.

To address these limitations, we seek to develop an effective fine-grained approximate KV cache
strategy, which can adaptively select tokens and update their KV states at each decoding step rather
than within a fixed decoding window (Ma et al., 2025} Wu et al, [2025; [Liu et al.| 2025 Hu et al.,
2025])). To this end, we first perform a fine-grained analysis to investigate the KV state dynamics in
dLLMs. Our results show that, for masked tokens, their KV states evolve through three phases: (1)
a gradual-change phase during the early decoding steps, (2) a rapid-change phase in the few steps
immediately preceding their decoding, and (3) a stable phase after being decoded. Notably, we find
that it is sufficient to update the KV states of masked tokens only during the rapid-change phase.

Nonetheless, unlike masked tokens, prompt and decoded tokens exhibit substantially smaller KV
state dynamics across consecutive decoding steps. This makes the above phase-based caching strat-
egy less effective and necessitates another caching alternative for prompt and decoded tokens. In-
spired by prior KV cache research in ARMs (Feng et al [2024; |Cai et al., |2024), which reveals
that attention is unevenly distributed and concentrated on a small subset of tokens—thus allowing
to prune the KV states of less important ones—we investigate whether dLLMs exhibit the same
attention behavior. Our results confirm that attention in dLLM:s is likewise concentrated on a small
subset of tokens, especially prompt and decoded tokens. Therefore, similar to KV cache pruning,
we can adaptively update the KV states of tokens that receive consistently higher attention, whereas
the KV states of the remaining tokens can be safely cached for reuse in subsequent decoding step.

Motivated by the above observations, we propose Dual aDaptive Cache (d?Cache), a training-free
approximate KV cache framework for accelerating dLLM inference, as shown in Figure [I] (c).
Specifically, d2Cache features a two-stage fine-grained selection strategy that identifies tokens and
adaptively updates their KV states at each decoding step, while the KV states of the remaining tokens
can be cached and reused. In the meantime, d2Cache also naturally delivers a more reliable decod-
ing option, which seamlessly enables quasi left-to-right generation and thus mitigates premature
overconfidence in the tokens at the end of the sequence. Extensive experiments on representative
dLLMs (i.e., LLaDA (Nie et al.| [2025) and Dream (Ye et al.l [2025)) demonstrate that d>Cache not
only achieves substantial inference speedups, but also yields consistent improvements in generation
quality. Finally, we summarize our main contributions as follows:

* We present a fine-grained analysis on the KV state dynamics in dLLMs, which explicitly reveals
a three-phase decoding pattern and uneven attention distribution.

* Building on the above findings, we propose a training-free approximate KV cache framework,
namely d?Cache, to accelerate dLLM inference. d?Cache features a two-stage fine-grained selec-

Under review as a conference paper at ICLR 2026

tion strategy to identify tokens and adaptively update their KV states at each decoding step, while
the KV states of the remaining tokens can be cached for reuse in subsequent decoding step.

» Extensive experiments demonstrate that d2Cache can achieve substantial inference speedups while
consistently improving generation quality across various dLLMs and datasets.

2 RELATED WORK

Diffusion-based large language models. Building on the success of diffusion models in continuous
domains, such as image and video generation (Yang et al.l |2023; Ho et al.| [2022), recent studies
have extended diffusion models to discrete language tasks (Sahoo et al., |2024; |Shi et al.| 2024;
Nie et al.| 2024} |Arriola et al.| [2025). Unlike autoregressive models (ARMs) that generate tokens
sequentially (Touvron et al.}|2023;|Achiam et al., 2023} |Guo et al.| [2025)), dLLMs feature an iterative
denoising process over masked sequences, which can enable bidirectional context modeling and
inherently support parallel decoding (Li et al. 2025). More recently, large-scale dLLMs, such as
LLaDA (Nie et al., 2025)) and Dream (Ye et al.,[2025)), have demonstrated competitive performance
on reasoning and instruction-following tasks, establishing themselves as a promising alternative to
ARMs. Despite their promising performance, their reliance on bidirectional attention necessitates
substantial inference overheads, which significantly hinder their practical deployments.

Approximate KV cache for dLLMs. Due to bidirectional attention, dLLMs cannot directly ben-
efit from the standard KV cache (L1 et al.l [2025) as ARMs do. To address this limitation, recent
studies have observed that the KV states in dLLLMs remain highly similar across consecutive de-
coding steps. Building on this observation, several approximate KV caching techniques have re-
cently emerged (Liu et al. [2025; Ma et al., [2025; [Wu et al.| 2025} Hu et al., 2025). Among them,
dLLM-Cache (Liu et al. 2025) partitions the input sequence into two segments—prompt and re-
sponse—and updates their KV states at different frequencies. dKV-Cache (Ma et al, 2025) intro-
duces a one-step delayed KV caching scheme, in which decoded tokens are stored not at the current
decoding step but at the subsequent decoding step. Fast-dLLM (Wu et al.,[2025) features block-wise
semi-autoregressive decoding and caches all KV states except those in the current decoding block.
However, due to the coarse-grained nature, these methods inevitably reuse KV states that should
be actively updated or update KV states that can be safely reused, which thus suffer from inferior
acceleration gains. A comprehensive comparison between our d?Cache and two concurrent similar
works (i.e., dLLM-Cache and Fast-dLLM) is provided in Section [B] of the Appendix.

Token scoring and selection for ARMs. Prior work on KV-cache compression in ARMs typi-
cally couples attention allocation mechanisms with token scoring strategies to estimate token im-
portance and select only a small subset of tokens for inference, thereby reducing memory usage
and improving throughput (Li et al.}|2024). These methods have proven to be effective not only
in unimodal language settings but also in multimodal (Wu et al.l[2023)) and long-context scenar-
ios (Wan et al.;|2024). However, these methods focus on ARMs in a coarse-grained manner and
may ignore the bidirectional attention mechanisms inherent in dLLMs. This further highlights the
need to explore more fine-grained token scoring and selection for dLLMs.

3 PRELIMINARIES

3.1 GENERATION PROCESS OF DLLMsS

As shown in (Nie et al.;|2025)), dLLMs feature an iterative denoising paradigm to generate text over
T discrete decoding steps, where a fully masked initial sequence is progressively transformed into a
fully unmasked final output. Formally, let)V denote the token vocabulary, which includes a special
masked token [MaSK]. The inference process of dLLMs begins with an initial sequence y, of length
L, which is simply constructed by concatenating a prompt segment p with a response segment 7
that consists of n masked tokens. We denote the set of indices corresponding to these masked tokens
as Mo = {|p|,Ip| +1,...,|p| + n — 1}.

At each decoding step ¢ € [0,...,7" — 1], the corresponding sequence y; is first fed into the given
dLLM model as input, which produces a probability distribution p(z} | y+) over the vocabulary for

each masked position xi Based on this distribution, the most confident token predictions X; and

Under review as a conference paper at ICLR 2026

150 10k - -1.0
-
g 90% of all tok

100 o of all tokens
g 8k - s > g -0.8
g' Step 98 ! Cumulative
S 50 Decoded B Frequency —— percentage
o 6k - -06
< 100/
2 0
S Step 255 @]
£ ak-—| 1 -0.4
& 50 ! 507
T
§ 100 — Gra(liual Change 2k - o T Nk vt s e o | 02
3 Step 0 —e— Rapid Change 10 20 30 40 50 60 7080 90 100
n Stable J..:

-150 T T T T T T T 0- 1= i i , ! - 0.0

250 -200 -150 -100 -50 O 50 100 150 010 50 100 150 200 250
First Principal Component Sequence Distance
(@) (b)

Figure 2: (a) PCA of 77th masked token’s trajectory on LLaMA-8B-Instruct with GSM8K (L=328,
n=256, and T'=256). (b) Sequential distances between token pairs decoded in adjacent steps.

their associated confidence scores S; can be derived as follows:

X, = {57; | 5:; = argmaxp(xi = |y), i € M},
. 4 méV{ . (1)
Sy ={si|si=F(p(z; =% |y)), i €M},

where F(-) is a function that measures the token-level prediction confidence score.

Furthermore, the decoding process employs a scheduling function G to generate a set of indices I,
which specifies the masked positions in y, to be replaced with their predicted tokens:

¥ oifiel,
y! otherwise.

I = G(&4, 8¢, yt), where y; , = { 2

In practice, the scheduling is typically performed either by randomly sampling a subset of M; or by
choosing those masked positions with the highest confidence scores (Nie et al., 2025). Subsequently,
the masked index set for the next decoding step is updated as M1 = M, \ I;. After T iterations,
when the condition M7 = () holds, the whole generation process is stopped and we get the final
sequence yr with no remaining masked tokens (Nie et al., | 2025)).

3.2 KV STATE DYNAMICS AND DECODING ORDER IN DLLMS

Recent studies on approximate KV cache in dLLMs have shown that the KV states of certain tokens
exhibit high similarity across adjacent decoding steps (Wu et al.| 2025} Liu et al.|[2025). Leveraging
this redundancy, they first partition the entire sequence into a static segment and a dynamic segment,
after which they cache the KV states of tokens in the static segment for reuse. Despite its efficacy,
this segment-level partitioning scheme is coarse-grained and totally ignores the fine-grained token-
level dynamics. To bridge this gap, we begin with masked tokens and perform experiments on
LLaDA-8B-Instruct with GSMS8K to explore how their KV states evolve during generation.

KYV state dynamics in dLLMs. To analyze the dynamics of KV states for masked tokens, we
employ principal component analysis (PCA) to project their layer-averaged key states into two di-
mensions and visualize their trajectories across decoding steps. As shown in Figure [2] (a), the KV
states of masked tokens evolve through three phases: (1) a gradual-change phase during the early
decoding steps (i.e., steps 0-64), (2) a rapid-change phase in the few steps immediately preceding
their decoding (i.e., steps 64-98), and (3) a stable phase after being decoded (i.e., steps 98-255). We
find that it is sufficient to update the KV states of masked tokens only during the rapid-change phase,
whereas the KV states of masked tokens from the other two phases can be safely cached for reuse.
More importantly, this does not degrade the final generation quality, as shown in Figure[3]

Decoding order in dLLMs. Building on the above findings, a natural question arises: how can we
determine whether a masked token is about to be decoded before its actual decoding—essentially a
“chicken-and-egg” problem? To shed light on this, we leverage LLaDA-8B-Instruct and randomly
sample 64 examples from GSMS8K, in which we analyze the sequential distance between token pairs
decoded in adjacent steps. As shown in Figure [2] (b), LLaDA-8B-Instruct tends to decode the next

Under review as a conference paper at ICLR 2026

hlgh attentlon = Prompt

Bl Decoded
Bl Masked

MIJ il ‘|H||'}| i

f]

100 150 200 250 0 40 80 120 160 200 240

Summed Rollout

N\, Adjecent steps
> have similar
“\rollout values
\

100 |

Decoding Step

200 -

Query Position

300 -

Key Position Decoding Step
(@) (b)

Figure 3: Attention rollout analysis over sequence, where the example and setting are the same as
in Figure[2] (a) Attention rollout visualization at step 126, showing the sum of rollout values over
all key positions (fop) and the pairwise rollout values across different positions (bottom). (b) The
total absolute differences in rollout values between each two adjacent decoding steps.

masked token from positions close to the most recently decoded token, with 90% of tokens falling
within a distance of 10. This reveals an interesting decoding pattern: dLLMs tend to decode masked
tokens located near previously decoded tokens. Therefore, we can estimate whether a masked token
is about to be decoded according to the density of decoded tokens in its local context.

3.3 ATTENTION DISTRIBUTIONS IN DLLMS

Prior research on ARMs has observed that attention is not uniformly distributed but instead con-
centrated on a small subset of salient tokens [2023). This observation has served as
the foundation for various optimization techniques, which apply differentiated strategies to tokens
based on their importance (Feng et al.| 2024} [Cai et al, [2024). This naturally raises the following
question: can the above observation from ARMs generalize to dLLMs? To answer this question, we
conduct experiments on LLaDA-8B-Instruct with GSMS8K to analyze the attention distribution.

Attention salience among tokens. Inspired by prior attention studies on ARMs, we employ at-
tention rollout (Abnar & Zuidema, [2020) to visualize how attention propagates across tokens. The
attention rollout algorithm aggregates cumulative attention by recursively multiplying the attention
matrices across layers, yielding a global attribution map that highlights how information propagates
from input tokens to the final output. More details about the attention rollout algorithm are provided
in Section 2] As shown in Figure [3| (a, bortom), queries consistently attend to a small subset of
key positions in prompt and decoded tokens, revealing that these tokens dominate the attention dis-
tribution compared to other tokens. As shown in Figure|3_"| (a, top), masked tokens receive negligible
attention, which is substantially lower than that allocated to both prompt and decoded tokens.

Similarity of attention allocations in adjacent steps. Building on the above findings, we further
calculate the sum of absolute differences in rollout values across all pairs of decoding steps. As
shown in Figure [3] (b), the attention allocations across adjacent decoding steps are highly similar.
This suggests that the attention allocation of the current decoding step can be used to approximate
that of the next decoding step. In light of this, analogous to KV cache optimization techniques in
ARMs, KV state updates can thus be restricted to tokens that receive higher attention.

4 D?CACHE: DUAL ADAPTIVE CACHE

Motivated by the observations in Section we present Dual aDaptive Cache (d*>Cache), a training-
free approximate KV cache framework for accelerating dLLM inference. Unlike ARMs, which can
naturally reuse previous KV states 2024), dLLMs cannot exploit this mechanism due to
their non-autoregressive decoding nature (Wu et al. , as shown in Figure[I] To bridge this gap,
d?Cache seeks to adaptively identify tokens whose KV states should be actively updated at each
decoding step, while caching the remaining tokens for reuse in subsequent decoding step.

Under review as a conference paper at ICLR 2026

Overview of d2Cache. As seen in (Nie et al.l [2025), tokens in dLLMs can be grouped into three
categories: prompt tokens, masked tokens, and decoded tokens. Based on this categorization, we
introduce a two-stage fine-grained token selection strategy. @ Certainty prior-guided selection
from masked tokens. After each forward pass, d?Cache assigns each masked token a certainty prior,
defined as the product of its prediction confidence and the density of known tokens (i.e., prompt or
decoded tokens) in its local context. d?Cache then adaptively selects a subset of masked tokens with
higher certainty prior. In light of this, d?Cache naturally delivers an alternative decoding scheme:
masked tokens can be decoded according to their certainty prior rather than prediction confidence.
This certainty prior-guided decoding has proven more reliable than the default confidence-based
decoding (see Table . @ Attention-aware selection from remaining tokens. Furthermore, for
the remaining tokens (especially prompt and decoded tokens), d?Cache adaptively selects a subset
of tokens with higher attention activations, which can be identified using attention rollout/Abnar &
Zuidema(2020). Finally, for the tokens selected in these two stages, d2Cache updates their KV states
at each decoding step, while caching the KV states of the remaining tokens for reuse in subsequent
decoding step. An intuitive example of this two-stage token selection is provided in Figure[T] (c).

4.1 STAGE 1: CERTAINTY PRIOR-GUIDED SELECTION

As shown in Figure [2] (b), the decoding order in dLLMs is highly localized: 90% of subsequent
tokens are decoded within a distance of 10 from the most recently decoded token. Building on
this finding, we introduce certainty prior, which quantifies (1) the prediction confidence and (2) the
certainty density of neighboring tokens that are known (i.e., prompt or decoded tokens). For each
masked token, we define its certainty prior as the product of its prediction confidence and the density
of known tokens in its local context. In practice, the certainty prior can capture structural certainty,
where higher value indicates that the masked token is more likely to be decoded sooner.

Formally, at each decoding step t € [0,...,T — 1], the sequence y; is fed into the given dLLM
to generate predictions X, for the masked tokens z, together with their corresponding confidence
scores S With the above in mind, a natural definition of certainty density is the proportion of
known tokens (i.e., prompt or decoded tokens) within a fixed local window. However, this definition
ignores the effect of relative distance among tokens: intuitively, a known token that is closer to a
masked token 2 should impose stronger constraints on z° than another known token that is farther
away. To capture this intuition, we introduce the following position-aware certainty density:

— P a2
(i)=Y o= DTy, st 6(1i - jl) = exp (—'Z J) , ©

202

where 4 denotes the position of the masked token x* and j denotes the position of each known token
in the sequence. In practice, the Gaussian function ¢(-) assigns larger weights to known tokens that
are closer to z* and smoothly diminishes the impact of distant ones, making D(-) a distance-aware
aggregation of certainty from all known tokens. The effect of weighting is further controlled by the
hyperparameter o, which denotes the standard deviation of the Gaussian function ¢(-). A larger o
broadens the positional scope considered by D(4), thereby causing the certainty density of different
2% to converge. Finally, we incorporate D(-) into S to measure the certainty prior and select the
masked tokens with the top-k calibrated scores, with their indices forming the candidate set M *.

M* = argtopi D(i) - s°. 4)
ieM

This formulation ensures that token selection considers both prediction performance and certainty
density, which thus can provide a principled foundation for more reliable token selection.

Q Certainty prior-guided decoding. The above certainty prior delivers a novel decoding alterna-
tive: masked tokens can be decoded according to their certainty prior rather than their prediction
confidence. We demonstrate that the certainty prior-guided decoding can achieve more reliable
decoding performance than the default confidence-based decoding, as shown in Table [2| The in-
tuition here is that the certainty prior-guided decoding can preserve a quasi left-to-right decoding
order, since masked tokens located closer to known tokens exhibit higher structural and predictive
certainty. This quasi left-to-right decoding order effectively mitigates the issue of premature over-
confidence in sequence termination during the early decoding steps (Huang et al.l 2025).

"For the simplicity of notation, we omit the subscript ¢ for the current step in the remainder of this paper.

Under review as a conference paper at ICLR 2026

4.2 STAGE 2: ATTENTION-AWARE SELECTION

In Section[d.T], we present certainty prior-guided selection, which explores masked tokens whose KV
states should be updated at each decoding step. In this section, we extend the selection process to the
remaining tokens. Notably, we observe that attention rollout (Abnar & Zuidemal [2020)—a widely
used attention analysis technique in ARMs—can effectively generalize to dLLMs, particularly for
analyzing prompt and decoded tokens, making it well suited for our subsequent token selection.

As described in (Abnar & Zuidema, 2020), the attention rollout algorithm aggregates cumulative at-
tention by recursively multiplying the attention matrices across layers, yielding a global distribution
map that reveals how information propagates from input tokens to the final output. Formally, let U
denote the indices of the remaining tokens. At the decoding step ¢ + 1, the input of the given dLLM
is no longer the full sequence ¥, 1, but instead a subset of it:

Yir1 = {y§+1 lie M*UU}.)

This formulation does not introduce any hidden-state mismatching: tokens in y;’, ; continue to main-
tain up-to-date hidden states, while others only provide their KV states for attention interactions.

To further derive U, at each decoding step ¢, we first collect the attention scores A() € RH*|v: XL
from each layer I € {1,..., N}, where H and N denote the number of attention heads and layers.
We then average the resulting attention scores across all heads to obtain A%) and expand AY) into a
full-sized attention matrix E() € RF*L as follows:

() g .
E@:{A;? itie M UL, ©

o e; otherwise,

where e; is the one-hot vector with a value of 1 at position ¢. Following (Abnar & Zuidema, |2020),
we further define the per-layer transition matrix W () by combining the expanded attention matrix
EW® with the residual connection (i.e., an identity matrix I) and applying row-wise normalization:

w® = normalize;ow-sum-to-1 (E(l) +1). @)
The cumulative attention rollout matrix C'is then iteratively computed, starting with C(©) = T:
o —wl . ol=1) (8)

The final rollout matrix CN) captures the end-to-end influence between all token pairs. To quantify
the overall contribution of each token, we further derive an influence score c; for each token by

summing the columns of C™) as follows:

L
€= Zi:l Ci(JN)' ©)

Finally, we sort tokens according to their influence scores c; and directly select the indices of the
smallest set whose cumulative probability exceeds the predefined threshold p, thus forming U.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Models, datasets, metrics and hardware. Following recent conventions (Wu et al.,|2025), we eval-
uate d?Cache on the Base and Instruct variants of two representative dLLMs (i.e., LLaDA-8B (Nie
et al.,[2025) and Dream-v0-7B (Ye et al.,[2025))), which are denoted as LLaDA-Base/Inst and Dream-
Base/Inst. Following dLLM-Cache (Liu et al.l[2025)), we evaluate d2Cache on six benchmarks, in-
cluding GSM8K (Cobbe et al.,|2021), MBPP (Austin et al.,|2021)), HumanEval (Chen et al.,|2021)),
Math-500 (Lightman et al.| [2023)), GPQA (Rein et al., 2024), and MMLU-Pro (Wang et al.} 2024) to
assess performance across diverse reasoning, code generation and general tasks. The performance is
reported in terms of task accuracy, which is evaluated using the Im-eval-harness framework (Gao
et al.| [2024). For fair comparisons, we report both inference throughput and latency, where through-
put denotes the average number of tokens generated per second and latency denotes the average
inference time per sample. All experiments are performed on NVIDIA 3090 24GB GPUs.

Under review as a conference paper at ICLR 2026

Table 1: Comprehensive evaluation results on LLaDA-Inst (Nie et al.| [2025) and Dream-Inst (Ye
et al.,[2025). Bold numbers indicate the best results and green texts denote the speedup ratios.

D LLaDA-Inst Dream-Inst
ataset Method
Throughput T Latency(s) | Score? Throughput{ Latency(s)] Score T
GSMSK Vanilla 2.77 (1 .Ox) 110.26 71.6 2.62 (1.0x) 85.94 76.7
Lshot +dLLM-Cache 8.29 (3A(’)><) 30.34 76.8 7.50 (2.9x%) 33.75 74.6
Gen. Len. = 256 + Fast-dLLM 9.64 (3.5%) 26.15 77.0 10.12 (3.9%) 24.88 77.0
T d?Cache 8.56 (3.1x) 2241 79.2 12.25 (4.7x) 21.36 78.2
MBPP Vanilla 2.48 (1.0x) 199.90 14.4 2.73 (1.0x) 182.78 52.0
Sshot +dLLM-Cache 6.97 (2.8%) 71.79 12.8 7.07 (2.6x%) 71.13 524
Gén Len <512 Fast-dLLM 6.80 (2.7x) 73.27 13.8 7.29 (2.7x) 69.47 52.0
T d?Cache 8.67 (3.5%) 43.86 12.4 12.47 (4.6x) 40.32 58.0
HumanEval Vanilla 4.99 (1.0x) 105.76 45.1 4.39 (1.0x) 114.86 56.7
O-shot +dLLM-Cache 8.67 (1.7x) 57.48 44.5 5.35 (1.2%) 94.33 56.5
Gen. Len. =512 .+ Fast-dLLM 7.90 (1.6x) 63.12 43.9 7.89 (1.8x%) 63.84 56.1
T d?Cache 14.00 (2.8x) 35.44 48.2 14.06 (3.2x) 36.61 61.6
Math-500 Vanilla 3.08 (1.0x) 82.51 384 3.51 (1.0x) 71.05 45.2
deshot +dLLM-Cache 6.71 (2.2x) 37.84 38.2 7.19 (2.0x) 35.36 442
Gen. Len. =256 * Fast-dLLM 10.61 (3.4x) 23.79 38.0 10.72 (3.1x%) 23.52 444
T d?Cache 12.02 (3.9x) 20.19 37.9 13.80 (3.9x) 18.80 44.6
GPQA Vanilla 6.14 (1.0x) 43.34 252 6.43 (1.0x) 41.14 30.1
O-shot + dLLM-Cache 11.51 (1.9%) 22.33 27.2 10.91 (1.7x) 23.62 31.0
Gen. Len. = 256 + Fast-dLLM 12.41 (2.0x) 20.66 25.7 11.75 (1.8%) 21.79 34.6
T d2Cache 15.04 (2.4x) 17.08 28.4 14.65 (2.3x) 17.52 31.5
Vanilla 1.76 (1.0x) 152.62 37.5 2.15 (1.0x) 126.31 47.9
?{[%}U-Pro +dLLM-Cache 6.79 (3.9%) 38.29 38.1 7.82 (3.6x%) 34.09 46.5
Gén Len. < 256 + Fast-dLLM 8.91 (5.1x) 29.00 37.1 9.74 (4.5%) 27.69 459
T d?Cache 9.59 (5.4x%) 27.60 33.1 10.12 (4.7x) 25.77 46.8
Vanilla 3.54 (1.0x) 115.73 39.7 3.64 (1.0x) 103.68 514
AVG +dLLM-Cache 8.16 (2.3%) 43.01 39.6 7.64 (2.1x) 48.71 50.9
+ Fast-dLLM 9.38 (2.7x) 39.33 39.3 9.59 (2.6x%) 38.53 51.7
d?Cache 11.31 (3.2x%) 27.76 39.9 12.89 (3.5x%) 26.73 534

Baselines. We consider three baselines, including Vanilla and two representative approximate KV
cache methods (i.e., dLLM-Cache (Liu et al.,[2025) and Fast-dLLM (Wu et al.,[2025))). For Vanilla,
at each decoding step, the masked position with the highest confidence is replaced with its pre-
dicted token. For dLLM-Cache and Fast-dLLM, we employ their default configurations as reported
in (Liu et al., |2025; [Wu et al., 2025). For Instruct variants, all baselines adopt block-wise semi-
autoregressive decoding (semi-AR) with a block size of 32, whereas the Base variants are evaluated
in fully non-autogressive (NAR) manner. More details are provided in Section [C|of the Appendix.

Implementation details. Unless otherwise specified, the standard deviation o of the Gaussian func-
tion is set to 10.0, the number of masked tokens selected per step is fixed at 32, the cumulative
probability threshold p is set to 0.1, and the decoding is performed under the certainty prior.

Table 2: Comparisons of different decoding schemes under the default NAR setting, where Conf
denotes the confidence-based decoding and CP denotes our certainty prior-guided decoding.

Method LLaDA-Inst Dream-Inst

GSMS8K MBPP HumanEval Math-500 AVG GSMS8K MBPP HumanEval Math-500 AVG
Semi-AR (Vanilla) 77.6 144 45.1 38.4 439 76.7 52.0 56.7 45.2 57.6
NAR w/ Conf 57.5 3.0 42.1 26.4 32.7 51.6 34.2 26.8 32 29.0
NAR w/ Only CP 79.0 14.0 44.5 39.0 44.1 78.1 59.2 54.3 43.6 58.8
Semi-AR w/ d?Cache 75.1 13.2 44.5 38.2 42.7 76.0 53.8 56.7 42.0 57.1
NAR w/ d?>Cache 79.2 124 48.2 38.0 44.4 78.2 58.0 61.6 44.6 60.6

5.2 MAIN RESULTS

The evaluation results on LLaDA-Inst and Dream-Inst are summarized in Table m Notably, we ob-
serve that d?Cache achieves the best overall performance on average across all benchmarks, which
delivers the highest throughput, the lowest latency, and the best score, consistently outperforming
Vanilla, dLLM-Cache (Liu et al.| [2025), and Fast-dLLM (Wu et al.| [2025)). Across all models and
datasets, our d2Cache obtains an average 3.2x—3.5x speedup over Vanilla. Taking Dream-Inst on
GSMSK as an example, our d2Cache improves the inference throughput from 2.62 to 12.25 to-

Under review as a conference paper at ICLR 2026

N o=10|[% o=40 18
409 N N 120 mmm Phases 1 &2 Phases 1 & 2
80 4 \\\ \\\ =3 Phase 2 Only Phase 2 Only 16
120 N\ ™ 100
. N 14
160 A M\ N
o N\ N -
@ 200 \\ ‘\ 80 125
D 240 N b: 3
o N h E 10-&
£ 0)
T a0 \\ o=80 \\ NAR S 60 |_ 8 g
o \ A 1
8 s0{ N N £
120 \\ \\ 40 °
\\\ \\\ 4
160 - % A
S N 20
200 | N 2 2
\\ \\
240 4 N N
AR EEEESES 07" GSMBK Math-500 Humankval MBPP °

Token Position Figure 5: Comparisons of different update strate-

Figure 4: Visualization of the decoding order us- gi€s, including updating tokens only during the
ing certainty prior with different o and NAR de- rapld-change phase (Phase 2 Only) and updatlpg
coding. Each dot at (4,) indicates that the token tokens during both the gradual-change and rapid-
at position ¢ is decoded at step ¢. change phases (Phases 1 & 2).

kens per second, leading to 4.7x inference speedup. More importantly, these substantial inference
speedups are achieved without sacrificing accuracy, as the attainable score on average across six
datasets remains comparable to or better than Vanilla. Furthermore, compared to recent representa-
tive approximate KV cache works (Wu et al.l 2025} |Liu et al., 2025)), our d2Cache can also deliver
better performance in terms of both inference efficiency and accuracy. For example, compared to
Fast-dLLM, our d?Cache yields 1.5x inference speedup on Dream-Inst, while maintaining +1.7%
accuracy on average across six datasets. These results clearly demonstrate the efficacy of d?Cache,
which benefits from its two-stage fine-grained selection strategy.

5.3 ABLATIONS AND ANALYSIS

Certainty prior-guided decoding vs. confidence-based decoding. As discussed in Section [4.1]
d?Cache naturally delivers an alternative decoding scheme: masked tokens can be decoded accord-
ing to their certainty prior rather than their prediction confidence. To evaluate its efficacy, we further
compare our certainty prior-guided decoding with the standard confidence-based decoding under the
default NAR setting. As shown in Table 2} our certainty prior-guided decoding delivers more reliable
performance than the confidence-based decoding under the default NAR setting. We also observe
that certainty prior—guided decoding and semi-AR decoding achieve comparable performance (see
Table [I), because both approaches constrain the model to decode in a quasi left-to-right manner.
Although they share a similar intuition, only the combination of certainty prior—guided decoding
and d?Cache delivers the best performance among all evaluated configurations.

Effect of o on decoding order. We visualize the decoding step for each masked position using
LLaDA-Inst on 64 randomly sampled examples from GSM8K. As shown in Figure] we compare
NAR decoding with our certainty prior-guided decoding, where the hyperparameter o (see Equa-
tion @)) is set to 10, 40, and 80. We find that NAR decoding exhibits a distinctive “U-shaped”
trajectory: tokens at both sequence boundaries are first generated, which then converge towards
the center (Huang et al.l 2025). At the first glance, this behavior seems inconsistent with our ear-
lier observation that dLLMs tend to prioritize decoding masked tokens adjacent to known tokens
(i.e., prompt or decoding tokens). This discrepancy, however, stems from the supervised fine-tuning
(SFT) of LLaDA-Inst, where the excessive number of [EOS] tokens in the training data biases the
model towards producing an unnatural number of [EOS] tokens during inference (Nie et al., [2025).
In contrast, our certainty prior-guided decoding yields a more natural and controllable left-to-right
generation order, where a smaller 0 makes the generation closer to autoregressive decoding.

Computational redundancy during the gradual-change phase. As discussed in Section [3.2] the
KYV states of masked tokens evolve through three phases: gradual-change, rapid-change, and stable.
It is thus natural to update the KV states of masked tokens during both the gradual-change and rapid-

Under review as a conference paper at ICLR 2026

66 66

Gen. Len. = 256 Gen. Len. = 512
64 64 —
o ° o
2 S~< VA >
¢ Rt 62 / - @R
~ - 7 "
~~o [8 [_A-- , N,
60 =s. _ 00 [] , RN
b=t [44 :.“."’ Ik 60 2 NS
® --@) Y 4 . @
e [TIzz=- a5 ¢ N
n ° o--—-""""" [/ | e,
] 58 y AN @
Q56 \
56 N
54| @ p=005 —— k=16 - p=005 =-— k=16 \\
p=0.1 k=24 p=0.1 k=24 []
52{ @ p=02 k=32 5471 - p=02 k=32
- p=04 —— k=40 - p=04 —= k=40
50 52
11 12 13 14 15 9 10 11 12 13 14 15 16
Throughput Throughput
(a) (b)
66
66 Gen. Len. = 1024
63
64 7
\
o728 \ 60 MWer et |
o T N e B L
62 o ¢ el
b o [o .\ 57 u -3
@ / ==Je _#----2 e/ A
a 60 T ~
0 @=-—_______ L= \ S | |
© \ ‘.. ° 54 Sso
- ® e
51 RN
g6 & PTO0S —- k=16 1
p=01 k=24 45| - Gen Len = 256
-8 p=02 k=32 M Genlen=512
541 @ p=04 —=— k=40 -l Genlen = 1024
a5

6 7 8 9 10 11 12 13 14 0 10 20 30 40 50 60 70 80
Throughput o

© (@
Figure 6: Hyperparameter sensitivity analysis of p, k, and o on Dream-Inst and HumanEval.

change phases, while caching them for reuse during the stable phase. However, our analysis shows
that it is sufficient to update the KV states of masked tokens only during the rapid-change phase.
To shed light on this, we conduct an ablation on Dream-Inst, in which we compare the full-update
strategy (updating tokens during both the gradual-change and rapid-change phases) with our default
selective-update strategy (updating tokens only during the rapid-change phase). As shown in Fig-
ure 5] our default selective-update strategy (i.e., Phase 2 Only) delivers higher inference throughput
than the full-update strategy (i.e., Phases 1 & 2), while maintaining a comparable or even better
score. This finding reveals a counterintuitive property of dLLMs: increased computation does not
necessarily translate into improved performance. Instead, selectively updating only the most critical
tokens can reduce computational redundancy and, in some cases, even yield better performance.

Hyperparameter sensitivity analysis. To determine the optimal hyperparameters, we conduct sys-
tematic experiments on Dream-Inst and HumanEval with generation lengths of 256, 512 and 1024.
As shown in Figure [f] (a-c), the number of masked tokens updated per step is the dominant factor:
performance improves as k increases but saturates—and may slightly decline—beyond k& = 32,
indicating that k¥ = 32 offers the most stable gains across settings of p and sequence lengths. The
cumulative probability threshold p, which regulates the retained probability mass and thus affects
throughput, does not monotonically improve performance with larger values. We additionally exam-
ine the Gaussian standard deviation o in Equation (3), which governs the locality of certainty-prior
selection. Consistent with LLaDA (Nie et al., [2025), an intermediate setting (0 = 10) achieves the
best overall performance by enabling a stable and quasi-left-to-right decoding order.

6 CONCLUSION

In this paper, we propose Dual aDaptive Cache (d2Cache), a training-free approximate KV cache
framework for accelerating dLLM inference. Through a fine-grained analysis of KV state dynamics,
we uncover two key insights behind dLLMs: (1) the KV states of masked tokens exhibit substantial
changes only in the few steps immediately preceding their decoding, indicating that their KV states
can be reused beyond this phase; and (2) attention distributions are highly skewed towards a small
subset of prompt and decoded tokens, indicating that the KV states of low-attention tokens can be
reused. Building on these insights, d2Cache introduces a two-stage fine-grained selection strategy
that adaptively identifies tokens and updates their KV states at each decoding step, whereas the
KV states of the remaining tokens can be safely cached for reuse in subsequent decoding step,
thus substantially reducing redundant computations and improving inference efficiency. Extensive
experiments on representative dLLMs (i.e., LLaDA and Dream) demonstrate that d2Cache achieves
substantial inference speedups, while also yielding consistent improvements in generation quality.

10

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

This work strictly adheres to the ICLR Code of Ethics. Specifically, this work does not involve
human subjects, personally identifiable information, or proprietary data. All datasets used in this
work, including GSM8K, Math-500, MBPP, and HumanEval, are publicly available. The proposed
method, d?Cache, is a training-free approximate KV cache framework for accelerating the inference
process of diffusion-based large language models. It does not introduce any new capabilities that
could cause harm, nor does it enable misuse beyond the standard capabilities of existing diffusion-
based large language models. We are not aware of any potential risks related to bias, fairness, or
security that arise specifically from the proposed method. Finally, this work has no conflicts of
interest, legal compliance issues, or sponsorship-related influences.

8 REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure the reproducibility of our work. All datasets used in our
experiments are publicly available and properly cited in the main text and appendix. All experi-
mental settings of baselines and our method are described in detail in Section [5.1] and Section [C|of
the Appendix. Theoretical claims, including the formalization of the d2Cache, are formally derived
in Section[d] We will release the full source code to further support reproducibility.

REFERENCES

Samira Abnar and Willem Zuidema. Quantifying attention flow in transformers. arXiv preprint
arXiv:2005.00928, 2020.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Marianne Arriola, Aaron Gokaslan, Justin T Chiu, Zhihan Yang, Zhixuan Qi, Jiagi Han, Sub-
ham Sekhar Sahoo, and Volodymyr Kuleshov. Block diffusion: Interpolating between autore-
gressive and diffusion language models. arXiv preprint arXiv:2503.09573, 2025.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Lukas Berglund, Meg Tong, Max Kaufmann, Mikita Balesni, Asa Cooper Stickland, Tomasz Kor-
bak, and Owain Evans. The reversal curse: Llms trained on” a is b” fail to learn” b is a”. arXiv
preprint arXiv:2309.12288, 2023.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Yucheng Li, Tianyu Liu, Keming Lu, Wayne
Xiong, Yue Dong, Junjie Hu, et al. Pyramidkv: Dynamic kv cache compression based on pyra-
midal information funneling. arXiv preprint arXiv:2406.02069, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code. 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

11

Under review as a conference paper at ICLR 2026

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S Kevin Zhou. Ada-kv: Optimizing kv cache evic-
tion by adaptive budget allocation for efficient llm inference. arXiv preprint arXiv:2407.11550,
2024.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
evaluation harness, 07 2024. URL https://zenodo.org/records/12608602.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J

Fleet. Video diffusion models. Advances in neural information processing systems, 35:8633—
8646, 2022.

Zhanqgiu Hu, Jian Meng, Yash Akhauri, Mohamed S Abdelfattah, Jae-sun Seo, Zhiru Zhang, and
Udit Gupta. Accelerating diffusion language model inference via efficient kv caching and guided
diffusion. arXiv preprint arXiv:2505.21467, 2025.

Pengcheng Huang, Shuhao Liu, Zhenghao Liu, Yukun Yan, Shuo Wang, Zulong Chen, and Tong
Xiao. Pc-sampler: Position-aware calibration of decoding bias in masked diffusion models. arXiv
preprint arXiv:2508.13021, 2025.

Haoyang Li, Yiming Li, Anxin Tian, Tianhao Tang, Zhanchao Xu, Xuejia Chen, Nicole Hu, Wei
Dong, Qing Li, and Lei Chen. A survey on large language model acceleration based on kv cache
management. arXiv preprint arXiv:2412.19442, 2024.

Tianyi Li, Mingda Chen, Bowei Guo, and Zhigiang Shen. A survey on diffusion language models.
arXiv preprint arXiv:2508.10875, 2025.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Zhiyuan Liu, Yicun Yang, Yaojie Zhang, Junjie Chen, Chang Zou, Qingyuan Wei, Shaobo Wang,
and Linfeng Zhang. dllm-cache: Accelerating diffusion large language models with adaptive
caching. arXiv preprint arXiv:2506.06295, 2025.

Xinyin Ma, Runpeng Yu, Gongfan Fang, and Xinchao Wang. dkv-cache: The cache for diffusion
language models. arXiv preprint arXiv:2505.15781, 2025.

Vaishnavh Nagarajan, Chen Henry Wu, Charles Ding, and Aditi Raghunathan. Roll the dice &
look before you leap: Going beyond the creative limits of next-token prediction. arXiv preprint
arXiv:2504.15266, 2025.

Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, and Chongxuan
Li. Scaling up masked diffusion models on text. arXiv preprint arXiv:2410.18514, 2024.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai
Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint
arXiv:2502.09992, 2025.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. In First Conference on Language Modeling, 2024.

Subham Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin Chiu,
Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
models. Advances in Neural Information Processing Systems, 37:130136—-130184, 2024.

12

https://zenodo.org/records/12608602

Under review as a conference paper at ICLR 2026

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis Titsias. Simplified and general-
ized masked diffusion for discrete data. Advances in neural information processing systems, 37:
103131-103167, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Zhongwei Wan, Xinjian Wu, Yu Zhang, Yi Xin, Chaofan Tao, Zhihong Zhu, Xin Wang, Siqi Luo,
Jing Xiong, Longyue Wang, et al. D20: Dynamic discriminative operations for efficient long-
context inference of large language models. arXiv preprint arXiv:2406.13035, 2024.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
task language understanding benchmark. Advances in Neural Information Processing Systems,
37:95266-95290, 2024.

Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion 1lm by enabling kv cache
and parallel decoding. arXiv preprint arXiv:2505.22618, 2025.

Xinjian Wu, Fanhu Zeng, Xiudong Wang, and Xinghao Chen. Ppt: Token pruning and pooling for
efficient vision transformers. arXiv preprint arXiv:2310.01812, 2023.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,
Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and
applications. ACM computing surveys, 56(4):1-39, 2023.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7b: Diffusion large language models. arXiv preprint arXiv:2508.15487, 2025.

13

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS

In this work, we employ large language models (LLMs) as general-purpose auxiliary tools, which
are mainly used in the following two scenarios:

* Writing and editing: LLMs assist in revising the manuscript by enhancing its clarity,
grammar, and stylistic consistency.

* Code generation: LLMs assist in programming tasks, including debugging and generating
illustrative code snippets.

The authors are fully responsible for the entire content of this paper, including sections in which
LLMs provide writing assistance. We note that LLMs are not involved in research ideation, experi-
mental design, or data analysis, and therefore do not meet the criteria for authorship.

B RELATIONSHIPS WITH CONCURRENT WORKS

Prompt Block 1 Block 2 : Prompt Response
r . 1T . 1 — : f . 1T . L
V20 ! L% 2
//%//%% : //%%% % Prompt token
vy 3 3 ! I TR
1 [MASK] token
: ’7 ‘ ‘ —I "\ Cached token
: steps
‘ ‘ ‘ * ‘ ‘ : stl‘:';,s ‘ ‘ * ‘ ‘ ‘ J Decoded token
i \‘ ‘ ‘ ‘ ‘ ‘ === Compute cache
1 Compute only
(a) Prefix cache in Fast-dLLM | (b) dLLM Cache

Figure 7: Illustration of existing approximate KV cache works. (a) In Fast-dLLM, the tokens of the
current block and all subsequent blocks are recomputed. Once a block has been fully decoded, the
KV cache at all positions is refreshed. (b) In dLLM-Cache, the prompt and response update their
corresponding segment cache at intervals of K, and K, steps, respectively. During steps when the
response is not updated, a subset of response tokens is still updated in each layer.

We note two concurrent works on approximate KV cache for dLLMs, including dLLM-Cache (Liu
et al.,|2025) and Fast-dLLM (Wu et al.,[2025)). While both share the same motivations of accelerating
dLLM inference through approximate KV cache, our d2Cache is fundamentally different.

First and foremost, as shown in Figure[7} dLLM-Cache and Fast-dLLM both operate at the coarse-
grained segment level, which partition the input sequence into multiple segments and apply dif-
ferent KV state updates to each segment. For instance, dLLM-Cache divides the input sequence
into two segments—prompt and response—and updates their KV states at different frequencies.
Similarly, Fast-dLLM relies on block-wise semi-autoregressive decoding, which divides the input
sequence into multiple blocks (or segments) and sequentially generates these blocks from left to
right with tailored KV state updates to each block. Nonetheless, due to the coarse-grained nature,
dLLM-Cache and Fast-dLLM inevitably reuse KV states that should be updated or update KV states
that can be reused, thus limiting the achievable inference gains.

In contrast, our d?Cache operates at the fine-grained token level, which adaptively identifies tokens
whose KV states should be updated at each decoding step, while caching the KV states of the
remaining tokens for reuse in subsequent decoding step. Thanks to the fine-grained token selection,
our d?Cache achieves significant inference speedups while maintaining strong generation quality
across different tasks, compared to both dLLM-Cache and Fast-dLLM.

14

Under review as a conference paper at ICLR 2026

C BASELINE HYPERPARAMETERS

In this section, we provide more details about the hyperparameter configurations for the baseline

methods (i.e., Fast-dLLM (Wu et al.| [2025) and dLLM-Cache (Liu et al., [2025)) across different

models and datasets. For Fast-dLLM, we closely follow common practices in prior work and set the
block size to 32 for all models [2025). For dLLM-Cache, we consider its key hyperpa-
rameters K, and K,, where K, denotes the prompt refresh interval and K. denotes the response
refresh interval. To ensure fair comparisons, we employ the default configurations as reported in

(2025), which are also summarized in Table 3]

Table 3: Configurations of dLLM-Cache. K, and K are the refresh interval of prompt and response.

Dataset Model K, K,
LLaDA-8B-Base 25 5
LLaDA-8B-Instruct 50 7

GSMBEK Dream-v0-7B-Base 100 8
Dream-v0-7B-Instruct 25 2
LLaDA-8B-Base 50 5

HumanEval LLaDA-8B-Instruct 25 5
Dream-v0-7B-Base 5 1
Dream-v0-7B-Instruct 50 1
LLaDA-8B-Base 50 8
LLaDA-8B-Instruct 50 1

Math-300 b cam-v0-7B-Base 100 4
Dream-v0-7B-Instruct 50 1
LLaDA-8B-Base 25 4
LLaDA-8B-Instruct 100 5

MBPP Dream-v0-7B-Base 25 8
Dream-v0-7B-Instruct 10 8
LLaDA-8B-Base 100 8
LLaDA-8B-Instruct 50 6

GPQA Dream-v0-7B-Base 100 8
Dream-v0-7B-Instruct 10 8
LLaDA-8B-Base 100 6
LLaDA-8B-Instruct 50 3

MMLU-Pro Dream-v(0-7B-Base 25 2
Dream-v0-7B-Instruct 5 1

D DISCUSSIONS

D.1 MEMORY OVERHEAD OF CACHING

We conduct a thorough analysis and profiling of the memory overhead of caching. Note that the
KV cache used by dLLMs consumes the same amount of memory as that required by an autore-
gressive LLM (ARM) of the same scale. Specifically, for sequence length L, number of layers IV,
and hidden dimension d, an ARM or a dLLM stores 2 x L x N x d floating-point values for the
KV cache. d?Cache additionally stores an attention-rollout matrix of size L x L, which is typically
negligible. We report the peak memory usage on Dream Inst for a generation length of 1024 across
four datasets. As shown in the Table[7] for example on GSM8K, where the average prompt length

is approximately 800—resulting in a sequence length of roughly 1.8k—the additional memory con-
sumption of d?Cache is nearly identical to that of Fast-dLLM (Wu et al.; |2025).

15

Under review as a conference paper at ICLR 2026

<|startoftext|><|start_header_id|>user<|end_header_id|>\n\n

<QUERY 1>\n[BEGIN]\n<SOLUTION 1>\n[DONE]\n\n __- Alarge number of ‘\n’
<QUERY 2>\n[BEGIN]\n<SOLUTION 2>\n[DONE[\n\n x~ L
<QUERY 3>\n[BEGIN]\n<SOLUTION 3>\n[DONE]\n\n I

1

1

1

1

1

1

. 1

You are an expert Python programmer, and here is your task: Write a furrction to find the n-th 1
rectangular number. Your code should pass these tests:\n\n « -~~~ :
find_rect_num(4) == 20\n 1
find_rect_num(5) == 38\n '
find_rect_num(6) == 42\n[BEGIN]\n :
<|start_header_id|>assistant <|end_header_id|>\n\n |

Top-10 Selected Tokens

IS
o
S
S

! i
i To find the n-th rectangular number, we can use the E
! formula for the sum of the first n natural numbers. The n- i
th rectangular number is given by: i
i T, =n(n+1)/2 '

Frequency
N
S
8
8

Frequency

TR L LS ST
2 & e N &
G RNIN &

A & T bé\/ <+

formula:

2
&

1 1
i To find the n-th rectangular number, you can use the ‘
1 1
1 1

Rectangular Number = n X (n + 1)

>/
&
2

Figure 8: A failure case generated by LLaDA-8B-Instruct on MBPP under 3-shot settings.

D.2 DECODING ORDER OF DLLMS

In Section [d.I] we proposed certainty-prior—guided decoding, which forces the model to generate
in a quasi—left-to-right order. A natural question arises: if dLLMs behave more like autoregressive
models (ARMs), does this violate the original intention of enabling parallel, any-order generation?
Here, we argue that the answer is not simply “no”.

Unlike ARMs, which can generate tokens only at the immediately adjacent next position, dLLMs
produce predictions over the entire sequence, which is the source of their any-order generation ca-
pability. However, high-quality predictions are not available at all positions. Thus, selecting which
tokens to decode—that is, determining the decoding order—is crucial for generation quality. As
shown in (2025), LLaDA-Instruct tends to become prematurely overconfident in EOS to-
kens near the end of the sequence, and therefore proposes block-wise semi-autoregressive decoding
(semi-AR), which constrains the model to decode from left to right at the block level while gener-
ating in parallel within each block. Compared with fully non-autoregressive decoding, block-wise
semi-AR preserves the model’s sequential reasoning ability to a large extent, as shown in Table 2]

In our paper, experiments in Section [3.2] show that a dLLM consistently prefers to decode tokens
close to known positions. This observation explains why block-wise semi-AR is effective: enforcing
quasi-left-to-right generation ensures that each token is decoded only when the contextual informa-
tion is sufficiently rich. Our certainty-prior decoding shares the same intuition, but provides a more
conceptual formulation.

Although dLLMs need to decode in a quasi—left-to-right order to maintain sequential reasoning
ability, they still retain substantially greater flexibility during generation. For example, when the
model encounters a position where all next-token candidates have low confidence, an AR model
must commit to one choice. In contrast, a dLLM can decode further positions and delay the decision
until the extended context provides adequate evidence, thereby exploiting its non-AR modeling
capacity. A concrete example is pronoun resolution in ambiguous contexts. Suppose the prompt is:
“Alice thanked Mary because ____had helped with the project”.

At the blank position, an AR model must immediately choose between “she” and “Alice”, even
though the correct antecedent remains unclear without additional context. A dLLM, however, can
tentatively consider both possibilities, continue decoding subsequent positions, and use the extended

16

Under review as a conference paper at ICLR 2026

Table 4: Comparisons of using only the first 5 layers to compute attention rollout (Rollout-5) and
using all layers to compute attention rollout (Full-rollout) on Dream-Inst. Bold numbers indicate
the best scores, and green texts denote the speedup ratios relative to the Vanilla method.

Dataset Method Throughput 1 Score 1
GSMSK Vanilla 2.62(1.0x) 76.7
4-shot Rollout-5 12.61(4.8%) 71.8
Gen. Len. =256 Full-rollout (Ours) 12.25(4.7%) 78.2
MBPP Vanilla 2.73(1.0x) 52.0
3-shot Rollout-5 13.10(4.8x%) 57.2
Gen. Len. =512 Full-rollout (Ours) 12.47(4.6x%) 58.0
HumanEval Vanilla 4.39(1.0x) 56.7
0-shot Rollout-5 14.20(3.2x%) 62.2
Gen. Len. =512 Full-rollout (Ours) 14.06(3.2x) 61.6
Math-500 Vanilla 3.51(1.0x) 45.2
4-shot Rollout-5 13.99(4.0x) 40.2
Gen. Len. =256 Full-rollout (Ours) 13.80(3.9%) 44.6
context to determine whether the sentence is likely to continue as ... she had provided key data”,
or “... Alice needed assistance”, before committing to the final token.

Moreover, even under quasi-AR decoding, each masked token still attends to the entire context
(unlike ARMs, where tokens can only attend to previous positions), so the original advantages of
dLLMs, such as bidirectional modeling and parallel decoding, remain preserved.

D.3 FAILURE CASE ANALYSIS

As shown in Table [I| when applying d?Cache to the MBPP dataset, Dream-Inst consistently out-
performs all baselines, whereas LLaDA-Inst exhibits degraded performance. To identify the root
cause of this failure case, we visualize a representative example in Figure [§] When the input con-
tains numerous whitespace characters (e.g., ‘\n’, * *), the attention-aware selection of d2Cache dis-
proportionately focuses on these tokens. This indicates that whitespace consumes a substantial
fraction of the model’s attention, ultimately leading to incorrect predictions. After collapsing con-
secutive whitespace characters into a single space character, the model is able to concentrate on
task-relevant tokens and subsequently produces the correct output. This observation suggests that,
unlike Fast-dLLM 2025), which refreshes its cache according to a predefined update
schedule, d2Cache relies more heavily on the model’s own internal signals, selecting update subsets
based on attention or confidence scores. This design choice naturally introduces a potential chal-
lenge: when a dLLM performs poorly on a task, its attention or confidence may be unreliable. In
such cases, increasing p or k becomes necessary to compensate for this limitation.

D.4 LIMITATIONS AND FUTURE WORK

Although d?Cache delivers substantial inference speedups across multiple models and datasets while
maintaining comparable performance, several limitations have also emerged. Below we summarize
these limitations and further outline potential directions for future work.

Larger-scale dLLMs. In this work, we closely follow recent representative practices (Wu et al.
2025} [Liu et al. 2025) to evaluate d>Cache on LLaDA-8B (Nie et al., and Dream-7B l
et al.|[2025). We note that, at this moment, LLaDA-8B and Dream-7B are the only publicly available
dense dLLMs. As future dLLMs continue to scale up in depth, width, and context length, their
bidirectional attention patterns will become even more costly to maintain during decoding. This
trend further highlights the importance of more effective caching schemes. We view extending
d?Cache to larger-scale dLLMs—together with more effective caching schemes—as a promising
direction for future work, especially as model sizes and application demands continue to explode.

17

Under review as a conference paper at ICLR 2026

Table 5: Comprehensive evaluation results on LLaDA-Base (Nie et al., 2025)) and Dream-Base

2025). Bold numbers indicate the best results and green texts denote the speedup ratios.

LLaDA-Base

Dream-Base

Dataset Method
Throughput T Latency(s) | Score? Throughput{ Latency(s)] Score T

GSMSK Vanilla 2.31 (1.0x) 112.39 70.4 2.67 (1.0x) 96.29 71.7
dshot +dLLM-Cache 7.72 (3.3%) 33.30 69.3 9.28 (3.5%) 27.88 64.7
Gen. Len. =256 Fast-dLLM 7.62 (3.3%) 33.17 66.7 8.36 (3.1x) 30.14 69.5
B d?Cache 11.25 (4.9%) 22.57 72.1 12.37 (4.6x) 21.74 73.5
MBPP Vanilla 2.52 (1.0x) 195.59 39.2 2.81 (1.0x) 177.14 51.4
3-shot +dLLM-Cache 6.52 (2.6x) 77.20 38.6 7.73 (2.8%) 64.75 49.8
Gen. Len. =512 + Fast-dLLM 5.11 (2.0x) 98.77 39.0 5.30 (1.9%) 95.30 31.2
T d2Cache 8.62 (3.4x%) 43.41 38.0 12.67 (4.5x) 40.10 53.6
HumanEval Vanilla 5.02 (1.0x) 100.54 32.3 5.45 (1.0x) 92.11 51.2
O-shot +dLLM-Cache 9.04 (1.8x) 55.60 31.7 5.47 (1.0x) 91.72 51.8
Gen. Len. =512+ Fast-dLLM 5.78 (1.2x) 87.65 329 5.72 (1.0x) 88.02 53.7
T d2Cache 14.36 (2.9x%) 35.60 335 14.36 (2.6x) 37.18 61.0
Math-500 Vanilla 3.14 (1.0x) 80.44 32.2 3.55 (1.0x) 71.54 39.0
dshot +dLLM-Cache 9.83 (3.1x) 25.94 29.6 9.70 (2.7x) 26.08 35.2
Gén Len <256 Fast-dLLM 8.20 (2.6x) 30.76 29.0 8.74 (2.5x) 28.83 38.0
B d?Cache 10.80 (3.4x) 20.13 30.4 13.86 (3.9%) 18.63 39.6
GPQA Vanilla 6.27 (1.0x) 42.35 30.4 6.54 (1.0x) 40.55 32.8
O-shot + dLLM-Cache 11.32 (1.8x) 22.69 31.0 11.12 (1.7%) 23.10 34.6
Gén Len =256 Fast-dLLM 12.67 (2.0x) 20.24 31.0 11.92 (1.8%) 21.45 315
B d?Cache 15.32 (2.4%) 16.77 30.8 13.02 (2.0x) 18.64 32.6
Vanilla 1.53 (1.0x) 143.45 38.1 2.13 (1.0x) 127.08 46.1
15‘34;[}'1)“’ +dLLM-Cache 6.86 (4.5 37.96 374 745(35%) 34.81 44.6
Gen. Len. =256 Fast-dLLM 8.96 (5.9%) 28.83 40.0 9.42 (4.4%) 27.31 459
B d?Cache 9.58 (6.3%) 27.60 39.1 9.71 (4.6x) 26.73 444
Vanilla 3.47 (1.0x) 112.46 404 3.86 (1.0x) 100.79 48.7
AVG + dLLM-Cache 8.55 (2.5%) 42.12 39.6 8.46 (2.2x) 44.72 46.8
+ Fast-dLLM 8.06 (2.3x) 49.90 39.8 8.24 (2.1x) 48.51 45.0
d2Cache 11.66 (3.4x) 27.68 40.6 12.67 (3.3%) 27.17 50.8

Adaptive token refreshing. As discussed in Section[D.3] when a model’s intrinsic capability is in-
sufficient, its attention or confidence score may become unreliable. Simply increasing p or k would,
however, lead to a considerable rise in inference cost. This motivates the need for mechanisms
that dynamically adjust p and & based on the difficulty or reliability of the current instance (e.g.,
exploring learnable mechanisms to train p and k based on the current context).

Lightweight variants of attention rollout. Although attention rollout is not a performance bot-
tleneck in our d?Cache, its cost can become significant when it is applied to larger-scale models.
More efficient approximations are therefore desirable. We evaluate a lightweight variant that com-
putes rollout using only the first five layers on Dream-Inst and four datasets. As shown in Table [4
reducing the rollout depth from 28 to 5 yields a slight improvement in decoding speed while notice-
ably degrading performance on math reasoning tasks (GSM8K and Math-500); in contrast, code-
generation tasks (HumanEval and MBPP) exhibit minimal performance loss. Designing lightweight
rollout variants that can identify key tokens still remains an important direction for future work.

Alternative scoring functions for contextual contribution. We currently employ a Gaussian func-
tion to characterize how a masked token influences its surrounding context. While this approach
performs well empirically, more context-adaptive formulations may further enhance performance.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 EXPERIMENTAL RESULTS ON THE BASE VARIANTS

In addition to the Instruct variants of LLaDA-8B (Nie et al., [2025) and Dream-v0-7B (Ye et al.,

2025)), we also conduct experiments on their Base variants, which are denoted as LLaDA-Base
and Dream-Base, respectively. As shown in Table |5} our d?Cache consistently outperforms other
approximate KV cache methods in terms of both average inference efficiency and accuracy across

18

Under review as a conference paper at ICLR 2026

Table 6: Comprehensive evaluation results on LLaDA-Inst (Nie et al., 2025) and Dream-Inst
2025)) with semi-AR parallel decoding. Bold numbers indicate the best results and green texts

denote the speedup ratios.

D LLaDA-Inst Dream-Inst
ataset Method
Throughput T Latency(s) | Score? Throughput{ Latency(s)] Score T
Vanilla 2.77 (1.0x) 110.26 77.6 2.62 (1.0x) 85.94 76.7
GSMSK Parallel 8.53 (3.1x) 33.95 77.6 13.93 (5.3%) 21.68 74.2
4-shot +dLLM-Cache 25.62 (9.2x) 10.26 77.0 36.00 (13.7x) 8.21 74.3
Gen. Len. =256 + Fast-dLLM 25.15 (9.1x) 10.65 77.6 32.75 (12.5x%) 8.35 74.1
+ d2Cache 38.16 (13.8%) 7.26 76.9 46.69 (17.8%) 6.13 75.7
Vanilla 2.48 (1.0x) 199.90 14.4 2.73 (1.0x) 182.78 52.0
MBPP Parallel 17.72 (7.1x) 48.16 14.4 38.06 (13.9%) 14.95 51.6
3-shot + dLLM-Cache 39.37 (15.9%) 19.72 7.0 89.31 (32.7%) 6.11 51.8
Gen. Len. =512+ Fast-dLLM 28.54 (11.5%) 22.32 14.0 51.04 (18.7%) 10.40 524
+ d%Cache 67.29 (27.1x) 10.14 13.0 108.39 (39.7x) 5.11 52.8
Vanilla 4.99 (1.0x) 105.76 45.1 4.39 (1.0x) 114.86 56.7
HumanEval Parallel 15.74 (3.2%) 37.63 45.1 39.78 (9.1x) 20.53 51.8
0-shot +dLLM-Cache 27.88 (5.6x) 20.54 48.2 48.50 (11.0x) 14.75 53.7
Gen. Len. =512+ Fast-dLLM 25.14 (5.0%) 21.76 433 48.94 (11.1x) 13.67 57.3
+ d%Cache 48.39 (9.7x%) 11.89 46.6 104.4 (23.8x) 6.30 57.3
Vanilla 3.08 (1.0x) 82.51 384 3.51 (1.0x) 71.05 45.2
Math-500 Parallel 8.80 (2.9%) 31.99 38.4 12.75 (3.6x) 23.99 44 .4
4-shot +dLLM-Cache 17.90 (5.8x) 15.53 37.8 25.16 (7.2%) 12.06 43.0
Gen. Len. =256 + Fast-dLLM 24.49 (8.0x) 11.01 37.4 28.68 (8.2x%) 9.73 434
+ d%Cache 34.69 (11.3%) 8.03 38.6 37.83 (10.8%) 7.74 42.6
Vanilla 6.14 (1.0x) 43.34 25.22 6.43 (1.0x) 41.14 30.13
GPQA Parallel 44.61 (7.3%) 15.98 25.67 128.85 (20.0x) 2.87 31.25
0-shot +dLLM-Cache 50.17 (8.2x) 10.78 28.35 174.83 (27.2%) 2.06 33.25
Gen. Len. =256 + Fast-dLLM 42.66 (7.0x) 10.13 25.89 136.28 (21.2%) 2.31 34.6
+ d%Cache 89.03 (14.5%) 6.89 28.79 162.95 (25.3%) 2.08 32.81
Vanilla 1.76 (1.0x) 152.62 37.5 2.15 (1.0x) 126.31 47.92
MMLU-Pro Parallel 8.82 (5.0x) 58.86 37.21 17.87 (8.3%) 27.12 47.79
5-shot +dLLM-Cache 19.76 (11.2x) 18.95 3521 41.83(19.5%) 8.88 48.92
Gen. Len. =256+ Fast-dLLM 19.46 (11.1x) 16.07 37.14 35.46 (16.5%) 8.94 47.14
+ d%Cache 28.85 (16.4x) 13.24 35.07 54.56 (25.4%) 6.42 46.07
Vanilla 3.54 (1.0x) 115.73 39.70 3.64 (1.0x) 103.68 51.44
Parallel 17.37 (4.9%) 37.76 39.73 41.87 (11.5%) 18.52 50.17
AVG +dLLM-Cache 30.12 (8.5x%) 15.96 3893 69.27 (19.0x) 8.68 50.83
+ Fast-dLLM 27.57 (7.8%) 15.32 39.22 55.53(15.3%) 8.90 51.49
+ d2Cache 51.07 (14.4%) 9.58 39.83 85.80 (23.6x) 5.63 51.21

six datasets. Furthermore, we also note that the performance of Fast-dLLM [2025) is
substantially lower than that of the Vanilla baseline, particularly on Dream-Base with the MBPP
dataset, where it exhibits a decline of about 20 points. This degradation aligns with prior findings
that Base models are ill-suited for block-wise semi-autoregressive decoding 2025). This
further highlights the superiority of d2Cache over Fast-dLLM, as the latter heavily relies on block-
wise semi-autoregressive decoding, which significantly restricts its applicability.

E.2 EXPERIMENTAL RESULTS UNDER PARALLEL DECODING SETTINGS

To enable a fair comparison across all methods and to verify the generalizability of d?Cache under al-
ternative decoding strategies, we evaluate all approaches using the parallel decoding strategy, where
the threshold is set to 0.9 following (2025)). As shown in Table[6l our method achieves up
to 39.7x acceleration over the single-token-per-step baseline while maintaining performance com-
parable to all other baselines, which clearly demonstrates the broad applicability of d?Cache.

E.3 EXPERIMENTAL RESULTS UNDER LONG-CONTEXT SETTINGS
To further assess our method’s performance under long-context settings, we further evaluate our

method on Dream-Inst under with a longer generation length 1024. As shown in Table [7, we observe
that other methods—due to their coarse-grained nature—experience severely degraded acceleration

19

Under review as a conference paper at ICLR 2026

Table 7: Performance comparison on Dream-Inst with a generation length of 1024.

Dataset Method Throughput (tokens/s) T Latency(s) | Score T Memory (GB) |
Vanilla 1.54 (1.0x) 671.35 68.46 19.26
S’ShMtSK Fast dLLM 418 (2.7%) 24529 67.85 19.39
G';n"Len —10p4 ALLM-Cache 3.33 (2.2%) 308.62 68.76 20.28
S d2Cache 8.58 (5.6%) 119.69 66.29 19.35
Vanilla 1.89 (1.0x) 541.04 43.6 19.15
?’[*;Z“;'SOO Fast dLLM 443 (2.3x) 23145 426 1927
G';n"Len _1og4 9ILLM-Cache 2.75 (1.5%) 373.1 40.4 20.2
T d?Cache 9.55 (5.1x) 107.29 41.2 19.28
HumanEval Vanilla 2.62 (1.0%) 393.47 56.71 19.06
o Fast dLLM 4.77 (1.8%) 2145 58.53 19.16
o Len = 1004 ALLM-Cache 3.03 (1.2%) 338.21 60.97 19.79
= d2Cache 11.74 (4.5%) 87.64 64.02 19.14
MBPP Vanilla 1.95 (1.0x) 526.86 52.8 19.12
Paves Fast dLLM 4.45 (2.3x) 229.91 524 19.23
G‘“ "L _jop4 AILLM-Cache 4.59 (2.4x) 223.05 54.2 19.94
en. et = d2Cache 9.76 (5.0x) 105.05 56.4 19.24
Vanilla 2.00 (1.0x) 533.18 55.39 19.15
AVC Fast dLLM 4.46 (2.2x) 230.29 55.35 19.26
dLLM-Cache 3.43 (1.7%) 310.75 56.08 20.05
d2Cache 9.91 (5.0x) 104.92 56.98 19.25

as the context length increases. In contrast, d?Cache maintains substantial speedups without per-
formance loss even in long-context scenarios, owing to its fine-grained two-stage token selection.
These results demonstrate that d>Cache also performs well in long contexts.

E.4 MORE VISUALIZATION RESULTS ON ATTENTION ROLLOUT

In this section, we present additional examples of attention rollout corresponding to the sample used
in Figure[3] As shown in Figure[J] the attention pattern also aligns with our findings in Section 3.3}

E.5 MORE VISUALIZATION RESULTS ON KV STATE DYNAMICS

To substantiate our findings in Section[3.2} we visualize additional KV state dynamics. In Figure[T0]
which visualizes the trajectories of the key and value states of the same masked token during de-
coding, both are closely aligned in both trajectory shape and magnitude, and both exhibit the same
gradual-rapid—stable dynamic pattern. This result suggests that, for both key and value states, it is
sufficient to update them only during the rapid-change phase, where these KV states can be safely
cached for reuse during the other two phases. We hypothesize that this rapid change arises because
tokens are particularly sensitive to changes in their local context. Specifically, at step ¢, if a masked
token ! is located near another masked token z that is decoded, then at step ¢ + 1 the embedding
of] changes from [MASK] to the embedding of a concrete token. This provides x! with additional
contextual information; the smaller the distance |i — j|, the more tightly constrained the context be-
comes, thereby substantially altering the model’s representation of z%. These observations motivate
the introduction of distance-aware decay into the certainty density, as defined in Equation (3).

20

Under review as a conference paper at ICLR 2026

Attention Analysis at Step 54

‘S B Prompt
=O 6- B Decoded
<) Bl Masked
14
33 4 -
3 il
S
?5 100 -
o
2200 -
S
<4 300
5 100 150 200 5
Key Position
(@)

Attention Analysis at Step 128

w 5-
= B Prompt
=O 4 - BN Decoded
<) Bl Masked
¥ 3-
? -
1-
Ly
c [
)
=100 - |
o |
o
2200 -
S
<4 300 | i
100 150 200
Key Position
©

Attention Analysis at Step 127

- 5-
> B Prompt
<=D 4- = Decoded
[} Bl Masked
¥ 3-
8 »-

1
3. i
c
i)
fﬁ 100 -
o
o
200 -
)
S
<4 300 -

5 100 150 200 5
Key Position
(b)
Attention Analysis at Step 219
B Prompt
_ W Decoded

w

Bl Masked

N M.MM

Query Position Summed Rollout

0-
100 -
200 |
300
100 150 200 250
Key Position
(d)

Figure 9: Visualization of attention rollout on LLaDA-Inst (Nie et al.,[2025)) with GSM8K, which is
generated using the same sample and configuration as in Figure@

21

Under review as a conference paper at ICLR 2026

150
-
H 100 - Step 87
c
g
£ 50
o Step 111
=y Decoded
©
2
2 50
E Step 255
o -100 4
5 —e— Gradual Change
8 -150 - —e— Rapid Change
€N —e— Stable
-200

-200 -150 -100 -50 O 50 100 150 200 250 300
First Principal Component

(a) Key state trajectory for the 91st masked token.

200
-
c
o 150
5 Step 154
<%
g 100 Step 173
8 Decoded
— 504
<
2
g o
& Step 255
5 50 °p
g —e— Gradual Change
2 1001 Step 0 —e— Rapid Change
n —e— Stable
-150

-200 -150 -100 -50 O 50 100 150 200 250 300
First Principal Component

(c) Key state trajectory for the 186th masked token.

150
-
& 100 Step 87
g
3 50
o
(] Step 111
s 97 Decoded
2
2 .50
o Step 255
5 -100
5 —e— Gradual Change
8 -150 —e— Rapid Change
@ —e— Stable

-20

0 T T T T T T T T T
-200 -150 -100 -50 0 50 100 150 200 250 300
First Principal Component

(b) Value state trajectory for the 91st masked token.

200
t
2 150 Step 154
2
£ 1007 Step 173
o ecoded
— 504
©
2
g o
=
2 50 Step 255
s —e— Gradual Change
)
S -100 - Step 0 —e— Rapid Change
N —e— Stable
-150 T T T T T T T T T
-300 -250 -200 -150 -100 -50 O 50 100 150 200

First Principal Component
(d) Value state trajectory for the 186th masked token.

Figure 10: Visualization of PCA-projected trajectories of LLaDA-Inst on GSM8K, which are gen-

erated using the same sample and configuration as

in Figure 2 (a).

22

	Introduction
	Related work
	Preliminaries
	Generation process of dLLMs
	KV state dynamics and decoding order in dLLMs
	Attention distributions in dLLMs

	d2Cache: dual adaptive cache
	Stage 1: certainty prior-guided selection
	Stage 2: attention-aware selection

	Experiments
	Experimental setup
	Main results
	Ablations and analysis

	Conclusion
	Ethics statement
	Reproducibility statement
	The use of large language models
	Relationships with concurrent works
	Baseline hyperparameters
	Discussions
	Memory overhead of caching
	Decoding order of dLLMs
	Failure case analysis
	Limitations and future work

	Additional experimental results
	Experimental results on the Base variants
	Experimental results under parallel decoding settings
	Experimental results under long-context settings
	More visualization results on attention rollout
	More visualization results on KV state dynamics

