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ABSTRACT

While researchers have made significant progress in enabling large language mod-
els (LLMs) to perform multi-step planning, LLMs struggle to ensure that those
plans align with high-level user intent and satisfy symbolic constraints, especially
in complex, multi-step domains. Existing reasoning approaches such as Chain-
of-Thought (CoT), Tree-of-Thought (ToT), and verifier-augmented methods, ex-
pand the search space but often yield infeasible actions or hallucinated steps. To
overcome these limitations, we propose Constraints-of-Thought (Const-o-T), a
framework that provides a structured prior that enables Monte Carlo Tree Search
(MCTS) focus search on semantically meaningful paths. Each reasoning step
is represented as an ⟨intent, constraint⟩ pair, which serves both to compress the
search space and enforce validity. Unlike prior methods that merely generate rea-
soning traces or validate outputs post hoc, Const-o-T uses ⟨intent, constraint⟩ pairs
to actively focus the search toward feasible and meaningful plans. We integrate
Const-o-T into MCTS using a structured representation of intent–constraint pairs:
constraints prune infeasible branches and guide exploration toward semantically
valid actions, improving planning efficiency and verifiable decision-making. We
demonstrate across three domains: Risk game, CAD code generation , and arith-
metic reasoning that our approach outperforms baselines, yielding higher accuracy
and stronger structural alignment. Our contribution is to demonstrate that Const-
of-T offers a generalizable foundation for constraint-guided reasoning, enabling
more efficient, constraint-aligned, and domain-adaptable planning with LLMs.

1 INTRODUCTION

Planning is a fundamental challenge in AI, particularly in domains requiring natural language un-
derstanding and complex, multi-step reasoning (Russell et al., 1995; Ghallab et al., 2004). LLMs,
such as GPT (OpenAI, 2023) and LLaMA Touvron et al. (2023), have demonstrated impressive ca-
pabilities in generating plans from textual descriptions, yet they struggle to ensure these plans align
with user intent and satisfy domain-specific constraints (Zhou et al., 2024; Turpin et al., 2023).

LLM-based approaches to planning, such as those that leverage Chain-of-Thought (CoT) reason-
ing Wei et al. (2022), appear to “think through” the space of possible plans. However, in prac-
tice, these approaches frequently hallucinate infeasible steps. These weaknesses are exacerbated
in NP-hard domains, e.g. strategy games Silver et al. (2017); Guan et al. (2024) and program syn-
thesis Madaan et al. (2022). Even in polynomial-time domains like multi-step arithmetic reason-
ing Cobbe et al. (2021), strict validity constraints present key difficulties for LLM-based planning.

Consider this example arithmetic reasoning problem: “A factory packs 12 pencils into each box and
18 boxes into each carton. If the factory produces 10 cartons, and 240 pencils are found defective,
how many non-defective pencils remain?” A typical CoT reasoning might generate: ‘10 cartons
× 12 pencils = 120 pencils; subtract 240 defective = -120 pencils.” Without any mechanisms to
validate the intermediate reasoning-steps, the reasoning-trace ignores critical problem constraints.
For example, multiplying by the number of boxes per carton (18) is missing. As a result, the rea-
soning produces an answer that is not only numerically incorrect but also semantically invalid. CoT
aims to reason step by step, but without mechanisms for grounding or constraint enforcement, it
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This strategy was much more difficult, since most of
the territories, which would be best for attacking

were surrounded by strong enemy troops, so I did
not want to risk getting attacked over the fact that I

was near an important territory. I decided to put
most of my troops on Green. Specifically Green_D
and Green_ E, since the territories nearest to me
have a small troop count, which would make them

outnumbered with their 1-1 defense. This also gives
me access to Purple and Red, without putting me in

a lot of danger. Blue also seemed like an easy
continent to take over, which is why I chose to put

my troops there too.

Language strategy

Phase 1: Initial Prompt

Environment

Phase 2: Constraints-of-Thought

 Step 1:
    "Intent": "Strengthen Green_D to secure the 

continent's entry point and outnumber adjacent
weak defenses.",

    "Constraint": "Place 5 armies on Green_D",
 Step 2:
    "Intent": "Reinforce Green_E to protect the 
      continent’s eastern border and maintain access 
      to Purple.",
    "Constraint": "Place 4 armies on Green_E",
 Step 3:
    "Intent": "Establish presence in Blue_A to support 
      an easy takeover of the Blue continent.",
    "Constraint": "Place 3 armies on Blue_A",

Phase 3: Constraint-Guided Search

MCTS

State feedback from the environment

Constraint-Guided

Constraints are validated against the environment
and checked for alignment with the user’s intent

Figure 1: Const-of-T empowers LLMs to (i) infer intent statements, and (ii) extract a corresponding
constraint from a high-level strategy, guiding MCTS toward optimal, rule-compliant actions.

often generates solutions that contradict the problem structure or violate basic logical consistency.
Instead, a good solution should produce grounded, constraint-aware reasoning that aligns with both
the problem state and the high-level task description.

We propose Constraints-of-Thought (Const-o-T), a reasoning framework that translates uncon-
strained natural language strategies into structured, verifiable constraints. Rather than producing
free-form reasoning traces, Const-o-T decomposes each step into: (i) an intent statement describing
the high-level strategic goal, and (ii) a corresponding constraint that can be symbolically verified.
This structured representation bridges user guidance with downstream symbolic verification.

While Const-o-T is useful in isolation, we demonstrate its full potential by integrating it with Monte
Carlo Tree Search (MCTS) for constraint-guided planning. In this combined system, an LLM first
produces a sequence of 〈intent, constraint〉 pairs based on the user’s strategic input. These con-
straints then act as symbolic controllers during MCTS rollouts: pruning infeasible actions, reducing
the branching factor, and focusing search on semantically valid paths. This modular integration en-
ables more efficient planning and tighter alignment with user intent. Const-o-T was evaluated across
three domains with distinct challenges where it consistently outperformed baselines. These results
demonstrate that structured intermediate representations help align outputs with user intent, reduce
search space, and enable symbolic verification. Our work presents four key contributions:

1. Constraints-of-Thought (Const-o-T). We propose a novel reasoning framework that de-
composes high-level strategies into paired ⟨intent, constraint⟩ representations, enabling
symbolic verification and alignment with user intent.

2. Constraint-Guided MCTS. We integrate Const-o-T with MCTS, pruning infeasible
branches and steering search toward semantically meaningful actions, which improves
planning efficiency and goal alignment.

3. Computational Evaluation. We validate Const-o-T across three domains (§ 3), demon-
strating improved performance under diverse and challenging domains.

4. Human Evaluation. Through a user study on the board game Risk, we show that our
approach supports planning with reasoning that is more transparent, aligned, and usable
than alternative methods (p < 0.05).

2 METHOD: CONSTRAINTS-OF-THOUGHT FRAMEWORK GUIDED SEARCH

We address task planning in complex domains where translating natural language strategies into
executable plans remains challenging. Directly mapping user instructions to actions often results
in errors, ambiguity, and infeasible exploration. We introduce Const-o-T, a structured reasoning
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framework that guides MCTS toward semantically meaningful and constraint-satisfying paths. We
address task planning in complex domains where translating natural language strategies into exe-
cutable plans remains challenging. Directly mapping user instructions to actions often results in
errors, ambiguity, and exploration of infeasible paths. We introduce Const-o-T, a structured reason-
ing framework that guides MCTS toward semantically meaningful and constraint-satisfying paths.

2.1 TASK PLANNING

We frame task planning as a Partially Observable Markov Decision Process (POMDP)
(S,A, T, r,Ω, γ,H), where the agent must generate a finite-horizon action sequence based on par-
tial observations and domain knowledge. At each step, the agent selects a sequence of actions
(a0, . . . , aH−1) to maximize a reward function. The state space, S, captures all relevant information
about the environment . The action space, A, contains all actions available to the agent in a given
state. A history trajectory, ht, is defined as the sequence of observations and actions up to time t−1,
i.e., ht = (o0, a0, o1, a1, . . . , ot−1, at−1).

The transition dynamics, T , determine how states evolve in response to actions, varying by do-
main, i.e. they may be stochastic or deterministic depending on the dynamics of the domain. The
evaluation function or reward, r, serves as an evaluation measure of the generated output’s utility,
which can be derived from a state-based fitness function or from external evaluators.. In contrast, for
CAD and arithmetic domains, r, is approximated using LLM evaluations of code validity or solution
correctness. The discount factor, γ, balances immediate and future rewards.

Rather than solving for an optimal policy π∗, we approach planning as an online search problem,
where the agent aims to construct an action sequence (a0, . . . , aH−1) that maximizes cumulative
reward given by Eq. 1-3, where, 1{·}, is an indicator function that equals 1 if the generated action
satisfies the constraints and 0 otherwise, and, F (s, a), is a task-specific evaluation function.

Rtotal =

H−1∑
t=0

γtr(st, at) (1)

r(s, a) = 1{constraint satisfied}+ F (s, a) (2)

F (s, a) =


z1(s, a), Risk (fitness function, see § A.6)
z2(s, a), CAD code (LLM-as-a-Judge)
z3(s, a), Math arithmetic (LLM-as-a-Judge)

(3)

2.2 CONSTRAINTS-OF-THOUGHT

We introduce Constraints-of-Thought (Const-o-T), a framework that represents structured reasoning
steps guiding the agent’s decision-making process. Const-o-T encodes each reasoning step as a
pair: a high-level strategic intent and a corresponding formal constraint. Let the environment state
at time t be st ∈ S , and let the available action space be A(st). A Const-o-T step is defined
as a tuple, ct = ⟨Intent it,Constraint ct⟩, where Intent it ∈ I: A natural language description
of the strategic reasoning (e.g., “Reinforce a border to deter enemy”) and Constraint ct ∈ C: A
machine-executable symbolic instruction (e.g., “Place 5 troops on Territory A”) Once extracted,
these ⟨Intent it,Constraint ct⟩ pairs serve a dual role in planning. The intent provides a human-
interpretable explanation of the agent’s reasoning, while the constraint restricts the feasible action
space by pruning actions that violate domain rules. Formally, given a state st, the constraint defines
a reduced action set, A′(st) ⊆ A(st), containing only actions consistent with Constraintt. This
structured representation enables the agent to generate plans that are both aligned with the user’s
high-level strategy and executable within the environment.

2.3 CONSTRAINT-GUIDED MONTE CARLO TREE SEARCH

We integrate Const-o-T with MCTS to generate plans that align with user strategic intent. Stan-
dard MCTS often fails to reflect user preferences in complex environments due to vast, unstructured
search spaces. Our constraint-guided approach addresses this limitation by using extracted con-
straints to direct each phase of the MCTS process.

Algorithm Overview: Given a natural language strategy, we first extract a sequence of 〈intent, con-
straint〉 pairs using a language model. These extracted constraints subsequently guide the MCTS

3
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exploration process to generate strategy-aligned actions. The complete algorithmic details are pro-
vided in Appendix (§A.2).

Selection Phase: Starting from the root, MCTS recursively selects child nodes using a modified Up-
per Confidence Bound (UCB) criterion that balances exploration and exploitation with the LLM’s
confidence, as given by Eq. 4, where λ represents the log-probability weight from the LLM’s
constraint-guided action prediction.

UCB(v, a) = Q(v, a) + cuct

√
ln(1 +N(v))

1 +N(v, a)
+ λ · logPLM(a | state, constraint) (4)

Constraint-Guided Search. Our key innovation uses the total number of extracted constraints to
determine the MCTS rollout budget, ensuring that search effort scales with strategy complexity.
Each rollout is guided by one constraint, restricting exploration to paths consistent with user intent.

Expansion and Evaluation. At leaf nodes, LLMs generate candidate actions given the current state,
active constraint, and user strategy. We filter candidates for legality (e.g., game rules) and constraint
satisfaction before expansion. Each resulting child node is evaluated using a domain-specific fitness
function measuring strategic objective achievement and constraint adherence.

3 TASKS

We evaluate our proposed Const-o-T framework across three diverse domains that present distinct
yet complementary challenges for structured reasoning and planning: (i) strategic gameplay (Risk),
where players must translate natural language strategies into troop placements on a combinatorially
rich territory map; (ii) CAD code generation, which requires grounding natural language descrip-
tions into executable parametric code that yield valid 3D models; and (iii) arithmetic reasoning,
which demands step-by-step symbolic manipulation to perform numerical operations. These do-
mains offer a comprehensive validation of the utility of Const-o-T towards improving performance
and correctness on tasks demanding topological, geometric, and symbolic reasoning..

3.1 GAME STRATEGY: RISK GAME

Task Description. Risk is a strategy board game played on a world map of 21 territories grouped
into six continents. While the full game involves sequential phases of reinforcement, attack, and
fortification across many turns, our focus is restricted to the very first phase of the first turn: the
initial troop placement studied in prior work (Tambwekar et al., 2023; Dodeja et al., 2024) (see
Appendix §A.8 for illustrative example).

In this setting, each player begins with an equal number of troops and must allocate them to un-
occupied territories. The strategic challenge lies in distributing troops across the map to balance
continental control, defensive positioning, and flexibility for future expansion. Because no battles
or fortifications occur during this initial phase, the task reduces to predicting players’ placement de-
cisions given their stated natural language strategies. This controlled setting offers a clear window
into how LLMs handle constraint-guided strategic decision-making (Guan et al., 2024; Xu et al.,
2025; , FAIR), providing insights into their broader reasoning abilities beyond text generation.

Dataset. We use the Commander’s Intent (CI) dataset introduced by (Tambwekar et al., 2023),
which contains 1, 053 examples of natural language strategies paired with corresponding ground-
truth territories for troop placement. The dataset provides no ground-truth annotations for attack,
reinforcement, or free movement phases. Therefore, we evaluate these additional phases separately
through a user study.

3.2 CAD CODE GENERATION

Task Description. CAD code generation involves translating natural language descriptions of
3D objects into parametric Computer-Aided Design (CAD) scripts (e.g., using CADQuery), which
can be directly compiled into executable 3D models. The task is challenging because generated
code must ensure both syntactic correctness and semantic fidelity, accurately reflecting the intended
geometric and structural properties. These dual demands make CAD code generation a compelling
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testbed for reasoning frameworks like Const-o-T, where explicit constraints can help models produce
outputs that are not only valid but also verifiably aligned with user intent.

Dataset. We evaluate LLMs using the CADPrompt benchmark Alrashedy et al. (2025), a dataset
containing 200 3D design examples, each paired with a natural language description written by a
novice human and a corresponding Python script written by a CAD design expert (Figure 10).

3.3 ARITHMETIC REASONING

Task Description. Arithmetic reasoning requires solving multi-step mathematical word problems
by correctly mapping natural language descriptions into symbolic equations and step-by-step cal-
culations. This makes the domain a strong testbed for evaluating whether reasoning frameworks
can generate logically consistent intermediate steps that lead to the correct numerical answer. For
LLMs, the challenge lies in grounding natural language into the correct mathematical formulation,
maintaining coherence across steps, and avoiding spurious reasoning paths.

Dataset. We evaluate LLMs using the GSM8K benchmark (Cobbe et al., 2021), which contains
8.5K high-quality math word problems, split into approximately 7.5K training and 1K test instances.
Following standard zero-shot evaluation protocol, we use only the test set in our experiments to
assess the performance of our proposed Const-o-T approach. GSM8K is widely regarded as a robust
dataset for benchmarking multi-step math problem solving in LLMs.

4 EXPERIMENTS

Our experiments are designed to evaluate the following key hypotheses: (1) Accuracy and Align-
ment: Const-o-T yields higher accuracy and stronger structural alignment with user intent than
unconstrained baselines (Direct Prompt, CoT, ToT, or vanilla MCTS). (2) Hallucination Reduc-
tion: Constraint-guided reasoning decreases invalid or over-generated outputs, producing plans that
more closely match ground truth in length and feasibility. (3) Human Understanding: The use of
〈intent, constraint〉 pairs provides clearer and more aligned intermediate reasoning steps than raw
CoT traces, supporting human understanding and evaluation across domains.

4.1 GAME STRATEGY: RISK GAME

Baselines. We compare Const-o-T against a diverse set of baselines capturing both prompting-only
and search-integrated methods. (1) Direct Prompt provides answers without a reasoning structure,
while CoT introduces free-form step-by-step reasoning but lacks grounding in constraints. (2) ToT
extends CoT by exploring multiple reasoning paths, and (3) CoT + Rejection Sampling (RS) filters
out inconsistent outputs post hoc. We also include LLMFP (Hao et al., 2025), a recent framework
that translates natural language problems into formal optimization constraints and solves them with
external solvers. From the search perspective, we evaluate standard MCTS without reasoning guid-
ance and MCTS with CoT, which leverages free-form reasoning within search. As an additional
baseline, we used classical constraint optimization guided by an LLM to supply active constraints;
see Appendix § A.9 for details.

Metrics. For troop placement, we measure accuracy (proportion of correctly predicted placements)
and F1-score (balancing precision and recall for territory prediction quality). Additional game
phases (e.g. the attack, reinforcement, and free movement) are evaluated qualitatively through expert
user studies, as no ground truth annotations exist for these tasks.

Results. The results in Table 1 show that constraint-guided reasoning provides consistent gains
over unconstrained baselines. Direct prompting and CoT achieve reasonable performance but fre-
quently lack specificity and structural validity, while CoT + RS and ToT offer only marginal im-
provements. We also include LLMFP which achieves competitive accuracy on GPT-4 (84%), but its
F1-scores remain substantially lower across all models. This gap highlighted the lack of alignment
with territory-level predictions. On the search side, MCTS with Const-o-T delivers the best overall
performance, surpassing both vanilla MCTS and MCTS with CoT, achieving up to 86% accuracy
and 0.78 F1-score. These results confirm that explicitly grounding reasoning in constraints not only
reduces invalid outputs but also guides search toward plans that more reliably align with user intent.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Accuracy and F1-score for strategic game (Risk) troop placement plans.

Method LLaMA-3.3-70B GPT-4 DeepSeeK-R1 GPT-OSS-120B GPT-OSS-20B
Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

Direct Prompt 78% 0.74 79% 0.75 70% 0.68 79% 0.75 77% 0.73
CoT 74% 0.69 81% 0.79 67% 0.64 77% 0.74 78% 0.73
CoT + RS 78% 0.73 77% 0.77 68% 0.69 79% 0.75 76% 0.72
LLMFP 78% 0.59 84% 0.70 69% 0.56 63% 0.53 74% 0.62
Const-o-T 81% 0.72 83% 0.76 78% 0.67 86% 0.75 81% 0.73
ToT 79% 0.59 83% 0.70 80% 0.62 78% 0.62 82% 0.61
MCTS 80% 0.67 84% 0.71 79% 0.61 82% 0.65 82% 0.64
MCTS with CoT 81% 0.65 84% 0.70 82% 0.59 79% 0.67 82% 0.64
MCTS with Const-o-T 83% 0.72 86% 0.78 77% 0.70 85% 0.76 81% 0.71

Error Analysis. To better understand the qualitative be-
havior of the search strategies, we analyze the distribution
of generated plan lengths relative to the ground truth. Fig-
ure 2 presents the percentage of outputs that are shorter,
equal in length, or longer than the ground truth across
the three methods. Standard MCTS and MCTS with CoT
show a clear tendency to over-generate, with more than
55% of plans exceeding the GT length. In contrast, MCTS
with Const-o-T substantially reduces this bias: nearly half
of the generated plans, 46.8%, match the ground truth
length, while the proportion of longer plans decreases to
44.2%. This shift indicates that constraint-guided search
not only improves structural alignment but also mitigates
length overestimation, producing outputs that are more
consistent with the average length of the target outputs.

MCTS MCTS with CoT MCTS with Const-o-T
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Same
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Figure 2: Distribution of plan lengths
relative to ground truth for GPT-4.

User study. We conducted a within-subjects user study with n = 18 participants under an Internal
Review Board (IRB) approved protocol to test whether our Constraint-Guided MCTS can support
users in playing the boardgame, Risk. Users provide unstructured natural language describing their
“commander’s intent,” and our method would synthesize a corresponding plan. Unlike the compu-
tational results in Table 1, which focus only on the initial troop placement phase, this user study
evaluates AI support across all three game phases (i.e., Reinforce, Attack, and Freemove) over mul-
tiple complete turns of the game.

Our experiment had one independent variable, interaction mode, with three levels: (1) Aligned,
where the system follows the user’s instructions; (2) Agnostic, where it seeks only to win; and (3)
Adversarial, where it intentionally acts against the user’s intent. This adversarial condition was
included to address the potential confound inherent in adaptive approaches . We measured four
dependent variables using 7-point Likert scales: Transparency Silva et al. (2023), Usability Lewis
(2018), Trust, and Alignment. Details of the study and scales used are provided in Appendix § A.4.

Figure 3: User study ratings across three interaction modes: alignment, agnostic, and adversarial.
Statistical significance is indicated by asterisks (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001).
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We performed a one-way ANOVA for transparency and usability and the Kruskal-Wallis test for
trust and alignment. We found statistically significant differences in transparency (F (2, 51) = 7.78,
p < 0.01), usability (F (2, 51) = 10.23, p < 0.001), trust (H(2) = 19.80, p < 0.001), and
alignment (H(2) = 23.75, p < 0.001) across interaction modes, as shown in Fig. 3. Pair-wise
comparisons using a Tukey’s HSD test and Dunn’s test showed that the aligned interaction mode
(i.e., our approach) was viewed statistically significantly better than the agnostic and adversarial.

These results demonstrate statistically significantly that our approach was able to better support
users in playing the boardgame Risk than an LLM-based decision support system (DSS) that merely
ignored the user and sought to win (i.e., agnostic) or an LLM-based DSS that was still adaptive but
did not capture user intent (i.e., adversarial).

4.2 CAD CODE GENERATION

Baseline. We evaluate CoT, ToT, Const-o-T, MCTS, and MCTS with CoT. These baselines represent
different levels of reasoning structure and search integration, from unguided code generation to
exploration guided by unconstrained reasoning. They are included to isolate the contributions of
explicit constraint grounding and search-space pruning in CAD design.

Metrics. Following the evaluation protocol from Alrashedy et al. (2025), we assess: (i) the ge-
ometric alignment between generated and ground-truth objects using the Hausdorff distance (after
optimal rotation alignment using the Iterative Closest Point (ICP) algorithm) (Besl & McKay, 1992);
and (ii) the success rate, defined as the percentage of code generations that compile and render a valid
3D object. For failed generations, we penalize with a maximum Hausdorff distance of

√
3, which

corresponds to the longest possible diagonal in a unit cube.

Results. The results in Table 2 demonstrate that MCTS with Const-o-T achieves the best perfor-
mance across both LLaMA and GPT-4, with the lowest Hausdorff distances (0.343 and 0.302) and
the highest success rate of 95.5% for GPT-4. It consistently outperforms standalone CoT, ToT, and
MCTS with CoT, highlighting the advantage of combining constraint-based reasoning with tree-
based search for CAD code generation.

Table 2: For CAD code generation, we report median Hausdorff distance with IQR and success rate.
For math arithmetic, we report accuracy.

Method
CAD Code Generation (CADPrompt) Math Arithmetic (GSM8K)

LLaMA-3.3-70B GPT-4 LLaMA-3.3-70B GPT-4
Hausdorff Dist. Success Rate Hausdorff Dist. Success Rate Accuracy Accuracy

CoT 0.369 (0.553) 88.5% 0.322 (0.442) 92.0% 91.9% 95.1%
CoT + RS 0.388 (0.504) 91.5% 0.327 (0.471) 92.5% 92.4% 93.1%
Const-o-T 0.385 (0.518) 89.5% 0.332 (0.457) 94.5% 92.5% 96.1%

ToT 0.359 (0.500) 94.0% 0.314 (0.439) 92.0% 92.6% 93.7%
MCTS 0.388 (0.534) 89.5% 0.332 (0.457) 94.5% 92.9% 95.0%
MCTS with CoT 0.357 (0.498) 90.5% 0.316 (0.423) 93.0% 91.8% 95.1%
MCTS with Const-o-T 0.343 (0.465) 92.0% 0.302 (0.479) 95.5% 93.4% 96.2%

4.3 MATH ARITHMETIC

Baseline. We compare CoT, Const-o-T, ToT, MCTS, and MCTS with CoT against MCTS with
Const-o-T. This set covers approaches ranging from raw answer prediction to multi-step reasoning
and search-based exploration without constraint checks. They are included to highlight the impor-
tance of combining structured constraints with search for accurate multi-step arithmetic.

Metrics. We evaluate this task using accuracy alone, since each problem has a single correct answer
that is always an integer. A prediction is marked correct only if the model’s final output exactly
matches the ground truth integer.

Results. The results on Table 2 shows that integrating structured reasoning significantly improves
accuracy across models. The best performance is achieved by MCTS with Const-o-T, reaching
93.4% accuracy with LLaMA-3.3-70B and 96.2% with GPT-4. This outperforms simpler base-
lines like standalone CoT and CoT+RS, suggesting that combining constraint-guided reasoning with
search-based selection is highly effective for arithmetic reasoning. Notably, Const-o-T also performs
competitively on its own.

7
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5 ANALYSIS

Search-Space Reduction. A key advantage of Const-o-T lies in its ability to reduce the effective
branching factor of tree search. We empirically measured the average branching factor across search
steps for GPT and LLaMA for the Risk domain. Figure 4 demonstrates the results. For GPT-4, the
branching factor begins above 140 and gradually decreases for all the approaches, however, MCTS
with Const-o-T notably decreases the branching factor by more than 20 compared to MCTS and
MCTS with CoT in the first six steps, which rapidly prunes the search space. Similarly, for LLaMA,
MCTS with Const-o-T lowers the branching factor by more than 25 between steps three and five.
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Figure 4: Branching factor with error bars across search steps for GPT-4 (left) and LLaMA-3 (right).

Efficiency Gains from Constraint-Guided Search. Fig-
ure 5 presents the average wall-clock time per example
for GPT-4 and LLaMA 3.3 across three search variants:
MCTS, MCTS with CoT, and MCTS with Const-o-T. Al-
though CoT enhances reasoning quality, it comes at a sub-
stantial computational cost—for instance, GPT-4’s infer-
ence time increases dramatically from 20.92s (MCTS) to
53.68s (MCTS with CoT). Const-o-T, however, delivers
competitive performance while markedly reducing run-
time, decreasing GPT-4’s latency to 29.90s and LLaMA
3.3’s to merely 9.41s. These findings demonstrate Const-
o-T’s effectiveness in performing more efficient explo-
ration, resulting in faster and more scalable planning while
preserving solution quality.

Figure 5: Average inference time per
example for GPT-4 and LLaMA 3.3
across three approaches.

Statistical Analysis. We conducted one-way ANOVA tests evaluating how performance varies
across different experimental settings for GPT-4. For search methods (MCTS, CoT, and Const-
o-T), we observe a significant effect on both accuracy (F (2, 3139) = 4.23, p = 0.0147, d = 0.052)
and F1-score (F (2, 3139) = 34.7, p < 0.001, d = 0.148), indicating that the choice of search
strategy substantially influences model performance, particularly with respect to F1-score. In con-
trast, prompting strategies show a significant effect on accuracy (F (2, 3156) = 11.9, p < 0.001,
d = 0.087) but not on F1-score (F (2, 3156) = 1.09, p = 0.335, d = 0.026), suggesting that while
different prompting approaches can shift accuracy, they do not lead to meaningful differences in pre-
cision–recall balance. Overall, these results highlight that constraint-guided search plays a stronger
role in shaping model quality than prompting variation.

6 DISCUSSION

From Rationales to Controllers: Distinguishing Const-o-T from CoT. While CoT provides un-
constrained reasoning traces that serve primarily as explanatory rationales, Const-o-T reinterprets
these intermediate steps as actionable controllers that directly constrain the search process. CoT
expands reasoning linearly, often leading to exploration of redundant or infeasible paths, whereas
Const-o-T prescribes a feasible solution space by pruning actions inconsistent with symbolic con-
straints. This shift reframes reasoning from being descriptive to prescriptive: instead of narrating a

8
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possible trajectory, the model commits to verifiable constraints that guide planning toward semanti-
cally valid outcomes. This distinction is summarized in Table 7, which directly compares Const-o-T
against CoT across representation, purpose, efficiency, and robustness.

Cross-Domain Generalization. Our findings show that constraint-guided reasoning consistently
improves task performance across diverse domains. In the Risk game, constraints shrink the com-
binatorial action space by discarding infeasible paths; in CAD code generation, geometric rules
ensure that each step respects structural feasibility; and in arithmetic reasoning, constraints enforce
equation-level correctness. Together, these results highlight that Const-o-T can act as a domain-
agnostic structural prior, providing both the theoretical foundation (See § 5) and empirical improve-
ments (See § 4) observed in our study. Beyond these evaluated settings, the approach holds promise
for safety-critical applications such as medical treatment planning and autonomous systems, where
reducing hallucinations and guaranteeing valid outcomes are paramount.

Limitations. Const-o-T’s effectiveness depends heavily on the quality of initial constraint extrac-
tion, which remains a key challenge for future work. When LLMs misinterpret user input or generate
incomplete symbolic constraints, subsequent search can be misdirected toward suboptimal solutions.
Additionally, the framework assumes users can articulate intent in natural language; however, for
complex scenarios, users may struggle to express nuanced preferences, potentially leading to con-
straint extraction failures and human-AI alignment issues.

7 RELATED WORK

Planning and Decision Making. Classical AI planning relies on heuristic search (Pearl,
1984), probabilistic models such as MDPs (Puterman, 2014), and simulation-based methods like
MCTS (Browne et al., 2012), but these approaches require explicit domain modeling (Chakraborti
et al., 2020). Recent work explores LLMs as flexible planners, leveraging pretrained knowledge to
generate reasoning traces and actions in open-ended settings. Examples include enhancing plan-
ning with tree search (Light et al., 2025), combining heuristic reasoning with symbolic search (Saha
et al., 2024), and using episodic memory for long-horizon strategies (Zhu et al., 2024). These efforts
motivate hybrid frameworks integrating LLMs with classical search, as we do with MCTS.

Reasoning with LLMs. LLMs improve performance by reasoning before answering. CoT (Wei
et al., 2022) and ToT (Yao et al., 2023) generate step-by-step traces that aid tasks such as arith-
metic (Cobbe et al., 2021), commonsense (Zhou et al., 2020), and decision-making (Huang et al.,
2022). However, these traces mainly provide rationales without enforcing constraints, often drifting
from intent in combinatorial spaces. Our Const-o-T framework addresses this gap by guiding search,
enforcing validity, and reducing hallucinations in complex planning tasks.

Constraint-Guided Reasoning. Constraints have long ensured feasibility in symbolic plan-
ning (Russell et al., 1995), and recent work extends this to LLMs through structured prompting
in program synthesis (Austin et al., 2021), CAD generation (Alrashedy et al., 2025), and intent-
to-constraint translation (Tambwekar et al., 2023). Other studies show constraints reduce halluci-
nations in reinforcement learning and neural planning (Garcia & Fernández, 2012). LLMFP (Hao
et al., 2025) further formalizes prompts into verifiable representations. Collectively, these works
highlight the importance of constraints for building grounded, trustworthy LLM-based planners.

8 CONCLUSION

We introduced Constraints-of-Thought (Const-o-T), a framework that transforms unconstrained nat-
ural language reasoning into structured, verifiable constraints for guiding language model planning.
By representing each reasoning step as an ⟨intent, constraint⟩ pair, our approach provides action-
able control over the search process rather than merely explanatory rationales. Our integration with
MCTS demonstrates how constraints can effectively prune infeasible branches, reduce branching
factors, and direct exploration toward semantically meaningful actions. Comprehensive evaluation
across strategic game (Risk), CAD code generation, and arithmetic reasoning shows consistent im-
provements in accuracy, structural alignment, and hallucination reduction. These findings suggest
that structured constraint extraction represents a promising direction for improving LLM reliability
in complex planning tasks.
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A.1 RISK GAME ENVIRONMENT

Risk is a strategy-based game originally developed as a board game. Our online adaptation faithfully
preserves its core rules, challenging players in diplomacy, territorial conquest, and conflict resolu-
tion. The objective is to achieve world domination across a custom-designed map composed of 5
continents and 21 regions. Players take turns deploying troops and attempting to capture territories
from their opponents, with combat outcomes determined by dice rolls.

In our setup, the participant plays as the White player, while two heuristic agents control the Black
and Grey factions. The game begins with the participant allocating troops to preferred regions by
interacting through an AI-powered chat interface. An AI planner then generates a proposed plan
that aligns with the participant’s stated intent. The participant can either accept this plan or provide
feedback to refine it, as illustrated in Fig. 6.

Figure 6: Risk game – Turn 0, showing the initial troop placement by the player.

Once the participant lays down their troops, the opponents make their moves. Once the turn circles
back to the participant, as seen in Fig.7, they can either use the same strategy as before or give a new
one to the planner.
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Figure 7: Risk game: Post–Turn 0, as the Black and Gray players make their moves.

This is when the actual turns begin. The participant can choose to Reinforce, Attack, or Freemove
(as shown in Fig. 8). At the start of each turn, the player receives reinforcement armies proportional
to the number of territories they control, with additional bonus armies granted for holding entire
continents. These reinforcements can be used to strengthen key strongholds.

Players may attack adjacent or connected opponent territories—those linked by unidirectional ar-
rows. The outcomes of attacks are determined by dice rolls, with each roll resulting in the loss of a
certain number of troops by either the attacker or defender. The more troops committed to an attack,
the higher the chances of success. A battle continues until the attacker chooses to stop, runs out of
armies to attack with, or successfully eliminates the last defending unit—at which point they take
over the territory by moving armies into it.

At the end of the turn, the player may perform a Freemove, redistributing armies between their own
connected territories. This cycle repeats until one player achieves world domination.

Figure 8: Risk game: Turn 1, where the player proceeds through the reinforcement, attack, and
freemove phases.
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A.2 CONSTRAINT-GUIDED MCTS

The algorithm takes as input the user description D, the initial state s0, the map M , and a constraint
sequence ct = ⟨intentt, constraintt⟩ extracted from Alg. 2. The output is the most optimal path from
the root node. In line 3, the total number of MCTS rollouts is set equal to the number of extracted
constraints. Each constraint is used to guide one rollout: during this rollout, the language model
generates the next candidate action, and MCTS leverages the corresponding constraint for both
selection and evaluation (see line 5). During the selection phase (lines 8–10), the most promising
node is selected using the Upper Confidence Bound (UCB) formula. In the expansion phase (lines
12–15), the language model proposes several potential next actions, and MCTS filters them by
checking legality and constraint satisfaction. The evaluation phase (line 17) employs a domain-
specific fitness function (See the detail in Section A.6) to assess the quality of each node. In the
Risk game, this function quantifies alignment with the user’s strategic intent, satisfaction of symbolic
constraints, and progress toward territorial objectives. For CAD code generation and mathematical
reasoning, we leverage LLMs to evaluate whether the generated outputs are consistent with the
intended design or correct solution. Finally, in the backpropagation step, the evaluation scores are
propagated along the selected path back to the root to inform future rollouts.

Algorithm 1 Constraint-Guided MCTS (CG MCTS)

Require: User description D; Initial state s0; map M ; constraint sequence C =[
(intenti, constrainti)

]K
i=1

from Alg. 2;
Ensure: Plan π or root action a⋆

1: function CG MCTS(s0,M, C)
2: Create root node v0 with state s0;
3: R← |C| ≡ K ▷ number of rollouts equals number of constraints
4: for k = 1 to R do
5: c← C[k] ▷ use the k-th constraint to guide this rollout
6: v ← v0; path← [ ]
7: while not TERMINAL(v) do ▷ Selection

8: a← arg max
a∈A(v)

[
Q(v, a) + cuct + λ ·

√
ln(1+N(v))
1+N(v,a)

]
9: path← path ∪ {(v, a)}

10: v ← CHILD(v, a)
11: end while
12: Ã ∼ TOPK(PLM (· | state(v), c,D), Kgen) ▷ Expansion
13: Alegal ← {a ∈ Ã ∩ A(v) : Ic(a | v) = 1}
14: if Alegal = then Alegal ← {a ∈ A(v) : Ic(a | v) = 1} else keep top Kexpand
15: For each a ∈ Alegal:
16: v′ ← CREATECHILD(v, a, NextState(v, a))
17: v ← EVALUATION(v) ▷ Evaluation
18: BACKUP(path, V (v)) ▷ Backpropagation
19: end for
20: return a⋆

21: end function

A.3 CONSTRAINTS-OF-THOUGHT (CONST-O-T) ALGORITHMS

The key idea behind Const-o-T is to extract both the intent and the associated constraints from
the user’s input, and then leverage them to guide large language models (LLMs) or tree search al-
gorithms such as MCTS. These extracted constraints serve two main purposes: (i) they steer the
generation process to align with the user’s high-level intent, and (ii) they provide a means to verify
whether the generated output satisfies domain-specific requirements—such as game legality rules or
geometric constraints in CAD generation. This feedback mechanism also enables iterative refine-
ment of the output.
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Algorithm 2 illustrates this process: in line 2, the LLM receives the input and generates the corre-
sponding intent-constraint pairs. From lines 4 to 10, the algorithm verifies each extracted constraint,
ensuring that downstream reasoning or planning steps adhere to the specified rules.

Algorithm 2 Constraints-of-Thought (Const-o-T) Extraction from user input

Require: User description D; map state M ; prompt template T
Ensure: Sequence C =

[
(intenti, constrainti)

]K
i=1

; total count K

1: function CONSTCOT EXTRACT(D,M, T )
2: Ĉ ← LM(D,M, T )
3: C ← [ ]

4: for all c ∈ Ĉ do
5: if VALIDATE(c) then
6: C ← C ∪ [c]
7: end if
8: end for
9: K ← |C|

10: return (C,K)
11: end function

12: function VALIDATE(c)
13: require fields present: step id, intent (natural language), constraint (formal/actionable)
14: require intent length within bounds; constraint matches grammar G or schema S
15: require constraint feasibility under X ′ if available (e.g., legal action, resource limits)
16: return true if all checks pass; else false
17: end function

A.4 USER STUDY

The user study was conducted with 18 participants in total with 5 female and 13 male participants.
All participants over the age of 18 were welcome but the average age of the participants was 21.7.
Participants had varying levels of experience with AI systems, gaming, strategy-based games and
Risk. Trust scale items were adapted from validated measures of trust in automation (Jian et al.,
2000; Kizilcec, 2016) and technology acceptance (Davis, 1989), with wording contextualized to
the Risk domain (e.g., “I trust the system’s troop placement/plan suggestions”). Usability scale
items were also contextualized to the Risk domain (e.g., ”I could easily predict how changes in
my strategy description would affect the system’s decisions.”) taking reference from (Liao et al.,
2020). The reliability of each metric was calculated using Chronbach’s Alpha and reported in Table
3. Normality and heteroskedasticity assumptions were checked using a Shapiro-Wilk test and a
Levene’s test respectively. Transparency and usability metrics passed these tests. The results of
the one way ANOVA test and post-hoc Tukey’s HSD test for transparency and usability and the
Kruskal-Wallis test and post-hoc Dunn’s test for trust and alignment are reported in Table 4 and
Table 5 respectively.

A.5 ABLATION STUDY.

To better understand the contributions of constraint settings and search strategies, we conducted an
ablation study on a randomly selected subset of 150 examples using GPT-4. First, we compared
soft versus hard constraint enforcement. In the soft setting, the model receives the constraint as
optional guidance and may ignore it during generation. In contrast, hard constraints are strictly
enforced by rejecting and regenerating outputs until they satisfy the constraint. This shift from
lenient to enforced constraint handling improved accuracy from 76% to 87% and F1-score from 0.70
to 0.78. Second, we evaluated the effect of constraint-guided search depth. Allowing unconstrained
expansion yielded 82% accuracy and 0.72 F1-score, whereas limiting tree depth to the number of
constraints improved performance to 87% accuracy and 0.78 F1-score (See Table 6).
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Table 3: Reliability analysis by metric and mode. Alpha > 0.9 has excellent reliability, Alpha > 0.8
has good reliability and Alpha > 0.7 has acceptable reliability

Metric Mode Alpha Reliability

Transparency
Mode 1 0.95 Excellent
Mode 2 0.93 Excellent
Mode 3 0.95 Excellent

Usability
Mode 1 0.81 Good
Mode 2 0.76 Acceptable
Mode 3 0.78 Acceptable

Trust
Mode 1 0.79 Acceptable
Mode 2 0.93 Excellent
Mode 3 0.90 Excellent

Table 4: ANOVA and post-hoc results for transparency and usability

Transparency Usability
APA F (2, 51) = 7.78, p < 0.01 F (2, 51) = 10.23, p < 0.001
Shapiro p 0.427 0.971
Levene p 0.996 0.843
Eta2 0.234 0.286
Power 0.951 0.987

Tukey HSD pairwise comparisons
Comparison Transparency (mean diff, p) Usability (mean diff, p)
Mode 1 vs Mode 2 -1.21, p = 0.001 ** -1.83, p = 0.0001 ***
Mode 1 vs Mode 3 -0.84, p = 0.026 * -1.07, p = 0.030 *
Mode 2 vs Mode 3 +0.36, p = 0.481 n.s. +0.76, p = 0.156 n.s.

Cohen’s d (pairwise effect sizes; d > 0.8 signifies large effect size)
Comparison Transparency Usability
Mode 1 vs Mode 2 1.29 1.52
Mode 1 vs Mode 3 0.90 0.89
Mode 2 vs Mode 3 -0.39 -0.61

A.6 FITNESS FUNCTION

For the game of Risk, during the troop deployment phase, we evaluate a candidate deployment state
v using a fitness function that balances goal satisfaction against constraint violations. The overall
fitness is defined as

V (v) =

6∑
i=1

wi gi(v) − λ

9∑
m=1

cm(v), (5)

where gi(v) are normalized goal scores, wi are non-negative weights that encode the relative impor-
tance of each goal, and cm(v) are binary indicators of constraint violations. The penalty coefficient
λ is set sufficiently large to ensure that any violation dominates the weighted sum of goals, thereby
prioritizing feasible deployments over infeasible ones.
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Table 5: Kruskal-Wallis and post-hoc results for transparency and usability

Trust Alignment
APA H(2) = 19.80, p < 0.001 H(2) = 23.75, p < 0.001

Dunn pairwise comparisons (adjusted p)
Comparison Trust Alignment
Mode 1 vs Mode 2 p = 0.0001 *** p < 0.00001 ***
Mode 1 vs Mode 3 p = 0.0014 ** p = 0.0011 **
Mode 2 vs Mode 3 p = 1.000 n.s. p = 0.814 n.s.

Cohen’s d (pairwise effect sizes; d > 0.8 signifies large effect size)
Comparison Trust Alignment
Mode 1 vs Mode 2 1.76 2.19
Mode 1 vs Mode 3 1.51 1.67
Mode 2 vs Mode 3 -0.26 -0.43

Table 6: Ablation study results.

Method Experiment Acc. F1

Constraint Soft 76% 0.70
Hard 87% 0.78

Search Unconstrained 82% 0.72
Guided (Depth) 87% 0.78

Goals. The goal functions gi(v) measure how well the player’s configuration v satisfies strategic
objectives:

g1(v) =
#{occupied territories adjacent to enemy}
#{occupiable territories adjacent to enemy} , (6)

g2(v) =
#{countries controlled}
#{countries occupiable} , (7)

g3(v) = 1− 1

|T (v)|
(
|T (v)| − 1

) ∑
u,w∈T (v)

u̸=w

d(u,w)

dmax
, (8)

g4(v) =
#{troops adjacent to enemy}

#{total troops} , (9)

g5(v) =
#{border troops on controlled continents}

#{troops on controlled continents} , (10)

g6(v) = 1− #{unique enemy players adjacent}
#{maximum enemies} . (11)

Descriptions. g1: surround enemy territories; g2: maximize territorial control; g3: minimize average
pairwise troop distance (uses graph distance d(·, ·), normalized by dmax); g4: maximize battles
throughout the game; g5: fortify borders of continents you control; g6: limit exposure to many
enemies.
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Constraints. Constraints are formulated as binary functions that equal 1 when violated and 0
otherwise:

c1(v) = ⊮[no troop on required continent], c2(v) = ⊮[troop placed on forbidden continent],
(12)

c3(v) = ⊮[cannot reach continent in one move], c4(v) = ⊮[border of continent not defended],
(13)

c5(v) = ⊮[insufficient troops to defend continent], c6(v) = ⊮[fewer than required countries],
(14)

c7(v) = ⊮[troops on fewer than required continents], c8(v) = ⊮[fewer than required troops per country],
(15)

c9(v) = ⊮[troops on more than allowed continents]. (16)

Together, these definitions create a fitness landscape in which higher scores correspond to strategi-
cally advantageous and constraint-compliant configurations. The weighting scheme allows tailoring
the optimization toward different strategic preferences while ensuring that hard constraints remain
non-negotiable.

A.7 COMPARISON OF CHAIN-OF-THOUGHT (COT) AND CONSTRAINTS-OF-THOUGHT
(CONST-O-T)

CoT relies on unconstrained natural language reasoning that helps describe the thought process
but lacks verifiability and control over the search process. It’s best suited for single-step QA or
explanation tasks, but often leads to large search spaces and hallucinations.

In contrast, Const-o-T converts strategies into structured symbolic constraints, which can be for-
mally verified and used to guide or prune search (e.g., in MCTS). This results in more efficient,
robust, and goal-aligned planning, making it especially effective for multi-step tasks like strategy
games and CAD design.

Table 7: Comparison of Between Chain-of-Thought (CoT) and Constraints-of-Thought (Const-o-T).

Aspect Chain-of-Thought (CoT) Constraints-of-Thought (Const-o-T)

Representation unconstrained natural reasoning trace Structured symbolic constraints (equations,
rules)

Purpose Describes reasoning steps Prescribes feasible solution space

Search Interaction Linear expansion; may increase branching Guides/prunes expansions; controls horizon
and branching factor

Verification No formal mechanism; correctness by final
output

Constraints checkable via solvers/game rules

Efficiency Larger search space; redundant paths pos-
sible

Compressed space; faster convergence

Robustness Prone to hallucinations and drift Enforces consistency; fewer invalid solutions

Use Case Fit Best for single-step QA/explanation Suited for multi-step planning, strategy,
CAD/game tasks

Novelty Thoughts as rationales Thoughts as controllers (constraints for sym-
bolic search)

A.8 EXAMPLED OF COMMANDER’S INTENT DATASET.

This example from the Commander’s Intent dataset highlights the complex strategic reasoning re-
quired in a Risk board game scenario (See Figure 9). The natural language strategy demonstrates
multi-step task planning, where the player first analyzes the current board state and then formulates
a plan. The accompanying map depicts the actual game state, with the ground truth showing optimal
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troop placements of seven units each in Red B and Red C. These placements align with the strategic
focus on securing the Red continent, as outlined in the textual strategy.

Language strategy.

This one was difficult but I determined that controlling red would allow me the greatest
chance of success as it provides a good base for defense while also granting large movement
opportunities to attack most of the board. Green will be the biggest challenge as they have
the most number of troops with 20 that they can move around, so the strategy would be
to gain control of red as quickly as possible before moving in on yellow while leaving the
borders of red as strong as possible. Gaining control of yellow and red would allow me
to keep green on the defense from opposite sides, but give me access to work control of
blue as green will most likely make moves to gain purple as a stronghold. The trick will be
playing a long game to maintain control of the split continents while green will ultimately
control the center of the board until I can attempt to force them down into the purple region
and attack from several sides.

Figure 9: An example from the Commander’s Intent dataset. Top: a natural language strategy de-
scription. Bottom: the corresponding map scenario. The ground truth troop placements are Country
= Red B with 7 troops and Country = Red C with 7 troops.

A.9 CONSTRAINT-OPTIMIZATION BASELINE FOR TROOP PLACEMENT

We also implemented a constraint optimization based baseline. It is a two-step strategy. In the first
step, the commander’s intent is provided to a large language model (we use ChatGPT 4.0 mini) to
identify the set of active constraints. These constraints are then enforced using Google’s OR-Tools
library (Google LLC, 2025) to trim the search space and obtain a feasible set of troop deployments.
If the constraints predicted by the LLM yield no feasible solutions, we retain the largest subset of
constraints that produces a feasible solution.

In the second step, we evaluate all deployments in the feasible set using only the goal component of
the fitness function:

V (v) =

6∑
i=1

wi gi(v), (17)
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where the weights wi are provided by the LLM, derived from the commander’s intent expressed in
natural language, to reflect strategic priorities. The deployment with the highest value of V (v) is
then selected as the baseline solution.

Method F1 (%) Accuracy (%)
Constraint-Optimization
Baseline 57.0 62.8

Table 8: Results of the constraint-optimization base-
line.

The performance of the constraint-
optimization baseline is shown in Table 8.
Even though it leverages constraint-based
optimization, its performance compared to
human provided troop placement ground-
truth is significantly worse than our method
(see Section 4). In addition, it is not
very flexible: each new domain requires hand-crafting a constraint model and solver formulation,
whereas our approach transfers more easily and remains flexible across a wide range of applications.

A.10 EXAMPLES OF CAD CODE GENERATION FROM CADCODEPROMPT DATASET.

This subsection presents representative example from CADCodePrompt dataset to illustrate the nat-
ural language descriptions paired with their corresponding CAD code implementations (See Figure
10). The example demonstrates how natural language of CAD design can be translated into exe-
cutable Python code using CADQuery.
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Write Python code using CADQuery to create a triangular 3D object. First, draw a sketch
of an equilateral triangle, pointing downwards. Next, cutout a semicircle from the bottom
corner of the triangle. The diameter of this semicircular cutout should be approximately
2/3rd of the length of each side of the triangle. Finally, extrude this sketch to create a 3D
object.

(a) The natural language descriptions of the 3D object.

(b) CAD object

(c) Python Code

Figure 10: An example from the CADPrompt dataset, showing (a) the prompt, (b) the corresponding
CAD object, and (c) the human-annotated Python code used to generate the CAD object.
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Constraints-of-Thought Prompt for Strategic Planning in the Risk Game

You are a strategic assistant for the Risk board game. Your task is to immediately allocate all troops according to the
Commander’s intent, using step-by-step reasoning based on Constraints-of-Thought (Const-o-T) and Monte Carlo Tree Search
(MCTS) decision-making.

Input Provided:

• A natural language description of the Commander’s intent for this turn’s troop placement (e.g., ”Fortify the Green
continent and strengthen borders.”).

• The current map status (countries, ownership, and unoccupied territories).

Your Output:

• Generate a sequential and complete plan for troop placement for this turn only.

For each step, provide:

• A concise, natural-language intent (why the troop is being placed in that country)

• A formal placement constraint (e.g., “Place 3 troops on Green C”)

• The exact country and number of troops as: ["Green C", 3]

• The Placement must include a valid country and a numeric troop count; the troop count cannot be None, empty, or
non-numeric. Only output a numeric value for the number of troops.

Example Constraints:

• Place ‘n’ troops on Country ‘X’

• Attack Country ‘X’ from Country ‘Y’ with ‘n’ troops

• Move ‘n’ troops to Country ‘X’ from Country ‘Y’

• Add ‘n’ troops to reinforce Country ’X’

Game Environment:
Risk is a board game in which an army commander tries to take over the world by defeating all enemy troops and controlling all
countries. Risk is a simplified version of real conflict, and has rules to reflect this:

• Players control countries by having troops in them.

• The more countries and continents a player controls, the more resources they get.

• Players win countries from other players by battling with their troops.

• The more troops a player has when battling, the more likely they are to win.

• Players can only attack or be attacked by countries that are next to them.

• Some map connections are one-way only.

Our modified RISK Map contains 5 continents - Red, Green, Purple, Yellow and Blue. Each continent is made up of countries.
Red continent has 3 countries, Green has 5 countries, Purple has 5 countries, Yellow has 4 countries and Blue has 4 countries.
Green A, Yellow B, Blue C, etc. are referred to as countries or territories Green, Yellow, Blue, Red, Purple are referred to as
continents. Continents also have different connections between them through which the troops can move. These connections
are one way i.e troops from the source country can only move to the destination country and not the other way round. The
map has the following connections - Yellow D is connected to Green A, Greed D is connected to Red A, Red A is connected to
Green D, Red B is connected to Purple E, Red C is connected to Yellow B, Red C is connected to Blue B, Blue A is connected
to Yellow C, Yellow C is connected to Blue D, Blue C is connected to Purple A, Purple A is connected to Green E and Green E
is connected to Purple A.

INPUT
Commander’s Intent: {Strategy_Description}
The Map Status: {mapStatus}
You may place troops only in countries that are unoccupied according to the current map status.

OUTPUT FORMAT (JSON-like):

Constraint-of-thoughts [
{

"step_id": 1,
"intent": "Reinforce Green_C to protect the continent’s border.",
"constraint": "Place 5 troops on Green_C",
"placement": ["Green_C", 5]

}
]

INSTRUCTIONS

• Focus only on troop placement this turn. Do not suggest attacks, moves, or future planning.

• Use formal placement constraints for each action.

• Do not select the same country more than once.

• Be concise and ensure placements clearly support the Commander’s current intent.

• Output the full CoT sequence in the specified format.

Now, reason step-by-step and output your immediate troop placement sequence.

Figure 11: Prompt Template: Constraints-of-Thought for Risk Game Troop Placement
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Constraints-of-Thought Prompt for CAD code generation

You are a symbolic CAD modeling assistant. Your task is to generate a 3D CAD object by reasoning step-by-step using
Constraints-of-Thought (Const-o-T) — a structured form of geometric planning based on user instructions.

You will be given:

• A natural language description of a 3D object

Your output must consist of a sequence of steps, where each step includes:

1. A short natural-language intent (what to do and why)

2. A plain-English geometric constraint (e.g., “The base should be a box with width 1.0, depth 0.75, and height 0.25”,
or “The hole should be centered on the base, with radius 0.1, and aligned along the Z-axis”)

Each step must logically build upon previous ones.

INPUT:
Natural Language Description: {language_description}
Output format (JSON-like):

{Constraints-of-Thought[
{"Step_id": 1,
"Intent": "Create the base plate.",
"Constraint": "Make a rectangular box with width 1.0 units,
depth 0.75 units, and height 0.25 units."},
{"Step_id": 2,
"Intent": "Add a centered hole.",
"Constraint": "Drill a circular hole with radius 0.1 units at the center of the base,
oriented along the Z-axis."}

]}

INSTRUCTIONS:

• Think like a constraint solver: extract clear symbolic relationships but describe them in English.

• Use plain sentences that can be easily mapped to CAD operations.

• Be concise. Avoid unnecessary primitives.

• The final object must follow all described constraints.

Now reason step-by-step and output the full Constraints-of-Thought (Const-o-T) sequence.

Figure 12: Prompt for symbolic 3D CAD modeling using Constraints-of-Thought (Const-o-T).

Evaluation Prompt for Math Arithmetic Step

You are an evaluation agent tasked with assessing whether a reasoning step effectively contributes to solving a math problem.

Your job is to evaluate a single step in the problem-solving process and return a score between 0 and 1, where:

• - 1 means the step is highly useful and directly helps solve the problem,

• - 0 means the step is irrelevant, misleading, or incorrect,

• - Intermediate values (e.g., 0.5) indicate partial usefulness or vague contribution.

INPUT:

• Problem: {question}

• Step to evaluate: {Step}

Output format (JSON):

{"score": float between 0 and 1}

Now assess the step and output the score.

Figure 13: Prompt for evaluating math arithmetic step in MCTS.
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Evaluation Prompt for CAD code Step

You are an evaluation agent tasked with assessing whether a **generated CAD modeling code snippet** effectively contributes to
building the intended 3D model.

Your job is to evaluate a single step of **CAD code** within the Constraints-of-Thought pipeline and return a score between 0
and 1, where:

• - 1 means the code is highly useful, precise, and directly implements the intended modeling operation,

• - 0 means the code is irrelevant, incorrect, or harmful to the design,

• - Intermediate values (e.g., 0.5) indicate partial correctness, vague implementation, or incomplete alignment with the
intended step.

INPUT:

• CAD Object Description: {question}

• CAD Code to evaluate: {Step}

Output format (JSON):

{"score": float between 0 and 1}

Now assess the step and output the score.

Figure 14: Prompt for evaluating CAD code step in MCTS.

Constraints-of-Thought Prompt for math arithmetic

You are a symbolic math solver. Your task is to solve a math word problem by reasoning step-by-step using Constraints-of-
Thought (Const-o-T) — a structured form of logical planning.

You will be given:

• A natural language word problem involving arithmetic reasoning.

Your output must consist of a sequence of steps, where each step includes:

1. A short natural-language Intent (what is being computed and why).

2. A precise Constraint using symbolic math expressions (e.g., x = 2 * y, total = cost per egg *
eggs sold).

INPUT:
Word Problem: {question}
OUTPUT FORMAT (JSON-like):

json{Constraint-of-thoughts [
{

"Step_id": 1,
"Intent": "Determine the number of bolts of blue fiber needed for one robe.",
"Constraint": "blue_bolts = 2"

},
{

"Step_id": 2,
"Intent": "Calculate the number of bolts of white fiber needed,
which is half as much as blue fiber.",
"Constraint": "white_bolts = blue_bolts / 2"

},
{

"Step_id": 3,
"Intent": "Add the number of blue and white bolts to find
the total number of bolts needed.",
"Constraint": "total_bolts = blue_bolts + white_bolts"

}
]}

INSTRUCTIONS:

• Use precise arithmetic operations for each step (addition, subtraction, multiplication, division).

• Define and name variables explicitly to reflect the quantities being calculated (e.g., total bolts, num apples,
cost per item).

• Each step should logically follow from the previous one, building upon the calculations.

• Only use the information given in the problem — no assumptions or outside knowledge.

• Your solution must contain no more than 7 steps. Merge or skip trivial operations when appropriate.

Figure 15: Prompt for math arithmetic using Constraints-of-Thought (Const-o-T).

26


	INTRODUCTION
	Method: Constraints-of-Thought Framework guided search
	Task Planning
	Constraints-of-Thought
	Constraint-Guided Monte Carlo Tree Search

	Tasks
	GAME STRATEGY: Risk Game
	CAD code generation
	arithmetic reasoning

	Experiments
	game strategy: Risk Game
	CAD Code generation
	Math Arithmetic

	Analysis
	Discussion
	Related Work
	Conclusion
	Appendix
	Appendix
	Risk Game environment
	Constraint-Guided MCTS
	Constraints-of-Thought (Const-o-T) Algorithms
	User Study
	Ablation Study.
	Fitness Function
	Comparison of Chain-of-Thought (CoT) and Constraints-of-Thought (Const-o-T)
	Exampled of Commander's intent dataset.
	Constraint-Optimization Baseline for Troop Placement
	Examples of CAD code generation from CADCodePrompt dataset.



