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Abstract001

The NLP research community widely recog-002
nizes numerical reasoning as a core compe-003
tency, critical for constructing logically sound004
solutions to mathematical queries grounded in005
contextual evidence. Most existing methods are006
based on the retriever-generator model. How-007
ever, this two-stage method still lose impor-008
tant information, especially in complex scenar-009
ios where longer text and tabular reasoning are010
mixed. To solve these problems, we propose011
a Heterogeneous Graph Gaussian Generation012
model (HG3), which improves the ability of013
retriever-generator model to retrieve key facts014
and generate correct answers from the perspec-015
tive of information augmentation. In the re-016
trieval stage, we propose using heterogeneous017
graphs to model the relationships between doc-018
uments and tables. This approach allows us019
to capture the structural attributes of tables,020
thereby enhancing the ability of retrieving criti-021
cal facts. In the generator stage, we propose a022
Gaussian process random function to introduce023
context-aware variations into the encoder, in024
this way, we can generate high-quality text with025
key facts as the core by enriching contextual026
representation learning of the model. Experi-027
mental results on the FinQA and ConvFinQA028
demonstrate the effectiveness of HG3, which029
outperforms all the baselines. The code and030
datasets of this work will be open-sourced after031
acceptance.032

1 Introduction033

Numerical reasoning is a fundamental task of NLP034

technology, which centers on key factual informa-035

tion (evidence) and tests the model’s ability to: 1)036

extract key facts, and 2) generate answers from key037

facts to solve arithmetic problems. With the rise of038

large language models (LLMs) like ChatGPT and039

GPT-4(Adesso, 2022), researchers are beginning040

to explore more challenging numerical reasoning041

tasks, such as long-form numerical reasoning. New042

benchmarks have been introduced to include longer043

2016 2017 ... 2020
$ 204079 $ 766451 ... $ 1631181

Document
The annual long-term debt maturities (excluding lease obligations and long-term 
doe obligations) for debt outstanding as of december 31, 2015, for the next five 
years are as follows: amount ( in thousands ). entergy arkansas is the only entergy 
company that generated electric power with nuclear fuel prior to that date and 
includes the one-time fee, plus accrued interest, in long-term debt. ... entergy new 
orleans has obtained long-term financing authorization from the city council that 
extends through july 2016 ."....

Table

Question  
What is the percent change in annual long-term debt maturities from 2016 to 2017?

Table_1: the 2016 of amount ( in thousands ) is $ 204079
Table_2: the 2017 of amount ( in thousands ) is $ 766451
 Text_4:  entergy arkansas is the only entergy company that generated electric 
power with nuclear fuel prior to that date and includes the one-time fee , plus 
accrued interest , in long-term debt.

Arithmetic expression: subtract( 766451, 204079), divide(#0, 204079)

Retriever

Generator

Figure 1: Retriever-generator framework for financial
numerical reasoning.

textual data and more complex data formats, which 044

presents significant challenges. For instance, fi- 045

nancial numerical reasoning datasets now require 046

models to answer financial analysis questions based 047

on both table and textual data, as seen in datasets 048

like FinQA(Chen et al., 2021), ConvFinQA(Chen 049

et al., 2022), and TAT-QA(Zhu et al., 2021). This 050

is illustrated in Figure 1. 051

The typical technology for long-form numeri- 052

cal reasoning is the retriever-generator framework 053

proposed by FinQANet (Chen et al., 2021). The 054

retriever identifies relevant information as critical 055

facts from the long-form documents and tables, and 056

the generator takes the critical facts as the input, 057

generates a sequence consisting of numbers and op- 058

erators. ELASTIC (Zhang and Moshfeghi, 2022) 059

proposes an adaptive symbolic compiler and uses 060

it to generate the expression. DyRRen (Li et al., 061
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2023) proposes a novel retriever-reranker-generator062

framework, and proposes a dynamic rerank method063

for location of critical facts. APOLLO (Sun et al.,064

2022) proposes using reinforcement learning to as-065

sist model training, enhancing model performance066

by improving the generated expressions.067

Although there are various iterations of the068

retriever-generator architecture, these models en-069

counter limitations in processing key facts, particu-070

larly due to the specificities of the financial domain071

and the complexities associated with tabular data,072

which lead to the absence of key information and073

thus affect the model’s performance.074

To solve these problems, we propose a075

Heterogeneous Graph Gaussian Generation model076

(HG3), which uses the information augmentation to077

improve the performance of the retriever-generator078

on financial numerical reasoning tasks. For the079

retriever, we used heterogeneous graphs to model080

the relationships between documents and tables to081

achieve structured information augmentation. This082

approach not only allows us to capture the struc-083

tural attributes of tables, but also to obtain infor-084

mation at different granularities, and it also can en-085

hance the inferential capability of the retriever and086

find critical factual information, thereby improv-087

ing retrieval effectiveness. For t he generator, we088

use Gaussian process stochastic functions to intro-089

duce context-aware controllable variables into the090

encoder, resulting in high-quality and diverse text091

for controllable information augmentation. The092

method can ensure that both cost and time are con-093

trollable. This random function introduces changes094

only in the encoder and is orthogonal to diversity-095

promoting decoding strategies on the decoder side.096

By employing different decoding strategies, vari-097

ous variations can be obtained, allowing the model098

to have more generation possibilities without losing099

the key fact, thereby enhancing the performance of100

the generator. Experimental results have indicated101

that the HG3 achieves a great performance on both102

FinQA and ConvFinQA.103

The contributions of this work are as follows:104

• In the retriever, we propose using heteroge-105

neous graphs to obtain information at differ-106

ent granularities from documents and tables,107

while also incorporating the structural infor-108

mation of tables. This enhances the model’s109

ability to discern details, thereby improving110

the effectiveness of the retriever.111

• In the generator, we introduce a controllable112

information augmentation employing context- 113

sensitive feature perturbation to achieve dy- 114

namic diversity scaling. This expands the 115

model’s multi-dimensional output space, ef- 116

fectively boosts the model’s generative capa- 117

bilities and lifts its overall performance. 118

• We propose the Heterogeneous Graph 119

Gaussian Generation model (HG3), which 120

beyond all baselines, and achieves execution 121

accuracy of 69.04(↑ 1.05%), and program ac- 122

curacy of 67.97(↑ 2.37%) on test set. 123

2 Methodology 124

In this section, we describe our approach in detail. 125

The structure of Heterogeneous Graph Gaussian 126

Generation model (HG3) as shown in Figure 2. 127

Taking information augmentation as the core idea, 128

in the retriever, we utilize Graph Attention Net- 129

work (GAT) to capture the relationships between 130

table contents and documents in the retriever to 131

achieve structured information augmentation (Sec- 132

tion 2.2.2). In the generator, Gaussian Processes 133

are employed to enhance the diversity of represen- 134

tations to realize controllable information augmen- 135

tation (Section 2.3.2). 136

2.1 Task Definition 137

Given a question q along with a numerical table 138

T containing m rows {t1, t2, ..., tm} and a long- 139

form document D = {d1, d2, ..., dn}, the model is 140

designed to generate arithmetic expressions that 141

calculate the corresponding answers to a given 142

question. However, considering the length of the 143

document, the task is split into two subtasks. Ini- 144

tially, the necessary facts relevant to answering the 145

question are retrieved from the document. Based 146

on the retrieved facts, the generation process is 147

subsequently executed. 148

2.2 Structured Information Augmentation 149

Retriever 150

In the retriever, we enhance the structured infor- 151

mation by using the row and column information 152

of the table. The model is divided into three parts 153

as shown below. The data encoder is utilized for 154

encoding documents and tables, and the hetero- 155

geneous graph module is designed to model the 156

interactions between documents and tables as well 157

as the internal connections within tables, and the 158

relevance scorer is used to explore facts related to 159

the questions. 160
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Figure 2: The Heterogeneous Graph Gaussian Generation model (HG3).

2.2.1 Data Encoder161

We first utilize a standardized template to con-162

vert table data T into text format. This pro-163

cess transforms each cell within the table into a164

well-structured sentence, resulting in a more ef-165

fective and comprehensive representation of the166

table content (Li et al., 2023; Chen et al., 2021).167

The template is “the column name of row name is168

cell value”. The sentence set D′ can ultimately be169

expressed as follows:170

D′ = D ∪ {dn+1, dn+2, ..., dn+m} (1)171

where {dn+1, dn+2, ..., dn+m} is the sentence sub-172

set converted from rows.173

Finally, the representation of documents and174

questions is obtained by BERT (Devlin et al.,175

2018):176

hD = BERT(d1, d2, ..., dm+n)

hQ = BERT(x1, x2, ..., x|Q|)
(2)177

2.2.2 Heterogeneous Graph Construction178

To model the connections between table contents179

and the interactions between tables and documents,180

a heterogeneous Graph (hG) is constructed. hG181

has three different kinds of nodes: table, document,182

and question. Each table node denotes one cell of183

the table data. And hG also has some document184

nodes that aim to model the document information.185

Meanwhile, hG has one question node. We argue186

that this node could help the model retrieve the key 187

facts. 188

There are four types of edges in hG: 189

• Intra-Table Edge: The data in the same col- 190

umn or row is connected with intra-table edge, 191

which facilitates the modeling of the table’s 192

structural information. 193

• Intra-Document Edge: Each sentence is con- 194

nected with intra-document edges, thereby en- 195

abling the modeling of interactions between 196

table content and the document context. 197

• Question-Document Edge: All sentences are 198

linked to the question node with question- 199

document edges. 200

• Question-Table Edge: Each table cell is con- 201

nected to the question node with question- 202

table edges. These connections enable the 203

question node to aggregate information from 204

all table cells and establish interactions be- 205

tween the document context and the table data. 206

Next, we apply GAT (Velickovic et al., 2018) 207

on the hG to aggregate features from neighboring 208

nodes. For a given node u, the aggregation opera- 209

tion can be defined as follows: 210

e(l+1)
u = σ(

∑
k∈K

∑
v∈Nk(u)

αk
uvWke

l
v + bk) (3) 211
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212

evu = LeakyReLU
(
a⊤[ev || eu]

)
(4)213

214

αk
uv =

exp(euv)∑
w∈Nk(u)

exp(euw)
(5)215

where K is the number of edge types. Wk and bk216

are trainable parameters with edge type k. Nk(u)217

denotes neighboring nodes connected to node u218

with edges of type k. σ is the activation function,219

and a⊤ represents the attention parameters.220

We argue that different layers of GAT capture221

features at varying levels of abstraction. To incorpo-222

rate features from all these levels, we concatenate223

the hidden states from each layer to form the repre-224

sentation of node u, and a pooling layer is used to225

obtain the final representation:226

hu = Mean([e0u, e
1
u, e

2
u, ..., e

N
u ]) (6)227

where e0u is the initial representation of node u, and228

N is the number of layers. And we use the mean229

representation of the entire sentence to initialize230

the node representation.231

2.2.3 Relevance Scorer232

After obtaining the final representation, we sort233

each text paragraph and table column with the cor-234

relation confidence of the model output:235

Sim(q,di) = Cos(q,hi) (7)236

where di ∈ D and hi ∈ hD.237

The top-k evidences is selected as the retrieval238

results. Subsequently, these evidences are concate-239

nated with the question to form the input for the240

generator model.241

2.3 Controllable Information Augmentation242

Generator243

In the generator, we achieve the controllable infor-244

mation augmentation by Gaussian process. We use245

a seq2seq model as the generator, which comprises246

a pre-trained encoder and a decoder. We propose247

a novel module for learning rich contextual repre-248

sentations by transforming the deterministic hidden249

states from the encoder into stochastic hidden states250

using stochastic functions.251

As mentioned above, the question and top-k re-252

trieved facts are concatenated and fed into a BERT253

encoder to produce the representation hq and hD.254

2.3.1 Stochastic Function 255

To mitigate information interference during reason- 256

ing and introduce context-aware variability into the 257

encoder, we propose a stochastic mapping function 258

g() that converts deterministic hidden states into 259

random context variables: 260

p(z|h) = g(h) + ϵ (8) 261

where ϵ ∼ N (0, σ2I) is a Gaussian noise. Then, 262

the decoder input z is obtained, which is sampled 263

from p(z|h). This allows the model to get more in- 264

ference information from contextual dependencies. 265

2.3.2 Gaussian process prior 266

The stochastic mapping function g() is pivotal for 267

the model’s efficacy. It introduces variability into 268

the hidden states while retaining their informational 269

integrity. This mechanism facilitates the introduc- 270

tion of controllable perturbations, thereby enhanc- 271

ing inference diversity while maintaining computa- 272

tional efficiency in both train and inference phases. 273

As shown in Figure 3, through this controllable 274

information Augmentation, we have increased the 275

possibilities of the final expression. 276

We propose constructing the stochastic mapping 277

function g() by incorporating a Gaussian process 278

(GP) as its functional prior. With the GP prior, we 279

can sample multiple stochastic functions to gener- 280

ate the final sequence. The stochastic function g() 281

is defined according to the GP prior: 282

g(h) ∼ GP (m(h), k(h, h′)) (9) 283
284

m(h) = h

k(h, h′) = β2exp−∥h− h′∥22
2γ2

(10) 285

where h is the hidden state, h′ indicates the other 286

contextual hidden states. The parameter β controls 287

the variation intensity between the sampled func- 288

tion g(h) and the mean function m(h). The param- 289

eter γ controls the covariance among the random 290

variables. Increasing γ will reduce the distinction 291

between the sampled values. 292

To ensure that the sampled random states z re- 293

tain all the information from h, We employ a semi- 294

parametric GP prior (Murphy, 2012). This ap- 295

proach endows our model with more diverse inputs. 296

Then, the decoder takes the embedding z as input 297

and decodes the numerical reasoning program step 298

by step: 299

p(yt|yt−1, z) = Decoder(yt−1, z) (11) 300
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Figure 3: Comparison between HG3 and other models.

where yt is the generated token in step t.301

2.3.3 Loss Function302

To simplify the inference procedure, we use vari-303

ational inference to approximate the GP posterior304

p(g|h) and use maximum likelihood estimation to305

learn other parameters. Specifically, we approx-306

imate the true posterior p(z|h, y) with the varia-307

tional posterior q(z|h, y) by maximizing the evi-308

dence lower bound of the marginal log-likelihood309

(ELBo):310

log p(y|h) ≥Eq[log p(y|z)]
−KL[q(z|h, y)∥p(z|h)]

(12)311

where p(z|h) is obtained by Equation 8. And to312

further simplify the approximation of q(z|h, y), we313

use the mean-field amortized variational approxi-314

mation(Kingma and Welling, 2014) to approximate315

the parameters:316

q(z|h) ≈
N∏
i=1

q(zi|hi)

=

N∏
i=1

N (fµ(hi), fσ2(hi))

(13)317

where fµ() and fσ2() represent the mean and co-318

variance in the amortized variational inference net-319

work, and z only rely on hidden states h.320

3 Experiments321

In this section, we provide a detailed overview of322

the datasets employed for the evaluation of the323

reasoning task.324

3.1 Datasets 325

We evaluate our model on FinQA (Chen et al., 326

2021) and ConvFinQA (Chen et al., 2022). 327

FinQA is a numerical reasoning dataset com- 328

prising 8,281 examples with fully annotated rea- 329

soning programs, derived from the publicly avail- 330

able earnings reports of S&P 500 companies over 331

a decade (Zheng et al., 2021). The data is divided 332

into train (6,251), dev (883), and test (1147) sets ac- 333

cording to a split of 75%/10%/15%. Each question 334

includes a table and a long-form document, with 335

an average token count of 687.53 and a maximum 336

of 2,679 tokens. Notably, 53.70% of the examples 337

contain two or more factual pieces, and 40.90% of 338

the reasoning programs involve multiple steps. 339

ConvFinQA is a conversational numerical rea- 340

soning dataset comprising 3,892 dialogues, which 341

include a total of 14,115 questions. And the dataset 342

is split into 3,037/421/434 for train/dev/test sets. 343

3.2 Metrics 344

3.2.1 Retriever 345

In the retriever, we evaluate our model using Re- 346

call@3 and Recall@5, which evaluate the model 347

by calculating the percentage of correctly identified 348

positives among all positive predictions. Since each 349

sample may have multiple positive predictions, we 350

assume that the top N predictions in Recall@N are 351

all positive. 352

3.2.2 Generator 353

In the generator, We evaluate our model with Pro- 354

gram Accuracy (Prog Acc) and Execution Accu- 355

racy (Exe Acc). Prog Acc assesses the syntactic 356

equivalence between generated arithmetic expres- 357
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Model Dev Test
Exe Acc Prog Acc Exe Acc Prog Acc

Longformer (Beltagy et al., 2020) 23.83 22.56 21.90 20.48
NeRd (Ran et al., 2019) 47.53 45.37 48.57 46.76
ELASTIC (Zhang and Moshfeghi, 2022) 65.00 61.00 62.16 57.54

BERT
FinQANet (Chen et al., 2021) 49.91 47.15 50.00 48.00
DyRRen (Li et al., 2023) 61.16 58.32 59.37 57.54
HG3 (ours) 65.62 64.13 64.92 63.96

RoBERTa
FinQANet (Chen et al., 2021) 61.22 58.05 61.24 58.86
DyRRen (Li et al., 2023) 66.82 63.87 63.30 61.29
APOLLP (Sun et al., 2022) 69.70 65.91 67.99 65.60
HG3 (ours) 70.96 69.21 69.04 67.97

Human Expert - - 91.16 87.49
General Crowd - - 50.68 48.17

Table 1: Comparison of HG3 and baselines on FinQA. The pre-trained models that are used in the experiments are
BERT-base-uncased and RoBERTa-large.

Model Dev Test
Exe Acc Prog Acc Exe Acc Prog Acc

T-5 58.38 56.71 58.66 57.05
GPT-2 59.12 57.52 58.19 57.00

RoBERTa
FinQANet 68.32 67.87 68.90 68.24
APOLLO 76.47 74.14 76.00 74.56
HG3 (ours) 76.18 74.83 77.86 76.24

Human Expert - - 89.44 86.34
General Crowd - - 46.90 45.52

Table 2: Comparison of HG3 and baselines on Con-
vFinQA.

sions and the golden expressions, while Exe Acc358

evaluates whether the generated expressions pro-359

duce the correct results. Considering multiple valid360

solutions, Exe Acc is essential to ensure functional361

correctness beyond syntactic similarity.362

3.3 Baselines363

We compare our model to other publicly avail-364

able methods, including: (1) ELASTIC (Zhang365

and Moshfeghi, 2022), which utilizes an adap-366

tive symbolic compiler to get the expression. (2)367

NeRd (Ran et al., 2019), which proposes a novel368

expression generator based on a pointer network.369

(3) FinQANet (Chen et al., 2021), which first pro-370

poses a retriever-generator framework designed to371

generate arithmetic expressions from both tabular372

and textual data. (4) Longformer (Beltagy et al., 373

2020), which processes entire long documents to 374

generate arithmetic expressions. (5) DyRRen (Li 375

et al., 2023), which extends the retriever-generator 376

framework by incorporating dynamic reranking of 377

retrieved facts to enhance reasoning capabilities. 378

(6) APOLLO (Sun et al., 2022), which uses re- 379

inforcement learning to normalize the generated 380

expressions. (7) Human performance, which in- 381

cludes both experts and non-experts participants 382

sourced from the original paper(Chen et al., 2021). 383

3.4 Implementation Details 384

Our model is implemented using PyTorch and the 385

Transformer architecture (Vaswani et al., 2017) 386

from Huggingface, and evaluated on a single 387

NVIDIA V100 32GB GPU. In the retriever, we 388

employ the pre-trained language models BERT- 389

base-uncased and RoBERTa-large to obtain token 390

representations. The hyperparameter k is set to 391

3 to retrieve the Top-3 ranked facts as the output. 392

Meanwhile, the number of epochs is set to 30, the 393

batch size is set to 4, and the maximum sequence 394

length is set to 256. We optimize the retriever us- 395

ing the Adam optimizer (Kingma and Ba, 2014) 396

with a learning rate of 2e-5 to update the model 397

parameters. In the generator, the number of epochs 398

is set to 500, the batch size is set to 8 for the en- 399

coder and decoder. We use Adam with a learning 400
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Model FinQA(Dev) FinQA(Test) ConvFinQA(Dev)
R@3 R@5 R@3 R@5 R@3 R@5

BERT
FinQANet 88.35 90.96 87.24 90.65 86.43 89.74
DyRRen 89.74 91.38 88.12 90.14 87.32 90.03
APOLLP 90.26 91.32 88.94 90.45 89.21 91.71
Ours 91.40 92.28 89.41 91.18 90.42 92.93

RoBERTa
FinQANet 91.30 93.89 89.82 93.22 88.95 92.74
DyRRen 92.36 94.61 90.34 93.41 89.72 93.16
APOLLP 93.58 95.62 91.76 93.95 91.67 94.56
Ours 94.79 96.47 92.89 94.98 92.74 95.83

Table 3: The experimental results of retriever Recall
Top-3 and Top-5 in FinQA and ConvFinQA. The test set
on ConvFinQA does not have ground truth for retrieved
facts.

rate of 2e-5 for BERT-base-uncased and 1e-5 for401

RoBERTa-large. The maximum sequence length is402

set to 256. We clip the gradients of model parame-403

ters to a max norm of 1.0. Additionally, we adopt a404

linear warm-up (Targ et al., 2016) for the first 10%405

of steps followed by a linear decay to 0 to prevent406

gradient explosion and over-fitting.407

3.5 Main Result408

Table 1 presents the performance of HG3 and base-409

lines on FinQA. HG3 achieves the best perfor-410

mance, with Exe Acc and Prog Acc scores of 70.96411

and 69.21 on the dev set, and 69.04 and 67.97 on412

the test set, respectively. The results demonstrate413

that models utilizing RoBERTa significantly out-414

perform those using BERT. This highlights the im-415

portance of incorporating sufficient relevant knowl-416

edge to enhance model reasoning capabilities.417

Table 2 shows the results on ConvFinQA. Com-418

pared with FinQANet, HG3 exceeds 0.69% of Prog419

Acc on the dev set, 1.86% of Exe Acc and 1.68%420

of Prog Acc on the test set. These results indicate421

that our model exhibits strong performance and422

robustness in multi-turn conversational numerical423

reasoning tasks.424

HG3 outperforms APOLLO both on BERT and425

RoBERTa, surpassing 1.26% of Exe Acc and 3.30%426

of Prog Acc on the test set, 1.05% of Exe Acc427

and 2.37% of Prog Acc on the dev set. This indi-428

cates that improving the inferential capability of429

the retrieval-generator framework is necessary for430

financial numerical inference tasks.431

And it can be noted that HG3, whether using432

BERT or RoBERTa, has surpassed the level of the433

general crowd, but there is still a gap compared to434

the human expert.435

Model Dev Test
Exe Acc Prog Acc Exe Acc Prog Acc

BERT
HG3 65.62 64.13 64.92 63.96
w/o Graph 64.34 63.26 63.48 62.20
w/o GPSF 63.94 62.32 62.51 61.24

RoBERTa
HG3 70.96 69.21 69.04 69.97
w/o Graph 69.39 67.59 68.12 69.01
w/o GPSF 68.79 67.06 66.72 67.43

Table 4: Ablation study on FinQA.

Table 3 reports the retriever performance. Our 436

model achieves superior results on both FinQA 437

and ConvFinQA datasets, outperforming APOLLO 438

across BERT and RoBERTa implementations. 439

Specifically, on the FinQA test set, our model sur- 440

passes APOLLO by 1.13% in Top-3 and 1.03% 441

in Top-5; on the FinQA dev set, it achieves gains 442

of 1.21% in Top-3 and 0.85% in Top-5 for the 443

RoBERTa version. It demonstrates that using 444

graphs to construct table attributes mitigates the 445

impact of templates on table structure, thereby en- 446

hancing retrieval effectiveness. 447

3.6 Ablation Study 448

Our model comprises two essential components: 449

the Holistic Graph module and the Gaussian Pro- 450

cess Stochastic Function module. The variant 451

w/o Graph replaces our retriever with the orig- 452

inal retriever. w/o GPSF removes the Gaussian 453

Process Stochastic Function module, directly gen- 454

erating arithmetic expressions based on retrieval 455

facts. 456

As shown in Table 4, w/o Graph in BERT leads 457

to a relative drop of Exe Acc and Prog Acc by 458

1.44%, 1.76% on the test set. The performance 459

of w/o Graph in RoBERTa exhibits a 0.92% re- 460

duction in Exe Acc and a 0.96% reduction in Prog 461

Acc compared to ours. These results underscore 462

the necessity of using graphs to capture relation- 463

ships between tables, as the structural attributes of 464

tables facilitate the retrieval of key facts. Moreover, 465

the interaction between documents, questions, and 466

table contents is crucial to filter the final key facts. 467

Ignoring the Gaussian Process Stochastic Func- 468

tion module leads to a significant drop in perfor- 469

mance. In BERT, w/o GPSF performs 2.41% 470

lower in Exe Acc and 2.72% lower in Prog Acc 471

than ours in BERT version on the test set. Sim- 472

ilarly, in RoBERTa version, w/o GPSF results 473
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Model Dev Test
Exe Acc Prog Acc Exe Acc Prog Acc

ours (BERT) 65.62 64.13 64.92 63.96

Type
table-only 75.32 73.84 73.63 71.68
sentence-only 51.06 49.47 55.19 54.31
table-sentence 43.76 40.62 39.84 37.62
Expression Number
1 70.21 68.34 69.48 68.17
2 65.51 62.40 63.18 60.04
> 2 29.44 27.24 33.43 31.99

DyRRen (BERT) 61.16 58.32 59.37 57.54

Type
table-only 72.51 69.37 68.98 66.71
sentence-only 46.46 44.44 49.47 48.76
table-sentence 38.46 35.66 34.18 32.28
Expression Number
1 66.16 63.67 64.37 63.00
2 60.98 57.49 57.46 54.77
> 2 26.03 23.29 29.76 28.57

Table 5: Fine-grained comparison with our model,
DyRRen on by question type and expression number.

in a performance decrease of 2.32% in Exe Acc474

and 2.54% in Prog Acc compared to ours. This475

highlights the effectiveness of Gaussian Process476

Stochastic Function module. This further indicates477

that introducing controlled perturbations to latent478

variables enhances the diversity of the generated479

results, thereby improving overall performance.480

3.7 Fine-Grained Results481

As shown in Table 5, the HG3 achieves the best482

performance in all fine-grained analysis on dev set483

and test set. Regarding question types, HG3 out-484

performs the baselines in all types. For table-only485

questions, HG3 performs 4.65% higher in Exe Acc486

and 4.97% higher in Prog Acc than DyRRen in487

BERT version on test set. For sentence-only ques-488

tions, HG3 in BERT leads to a relative drop of Exe489

Acc and Prog Acc by 5.72%, 5.55% on the test490

set. For table-sentence questions, HG3 performs491

5.66% higher in Exe Acc and 5.34% higher in Prog492

Acc than DyRRen in BERT version on test set. It493

can be seen that our model performs exceptionally494

well on sentence-only and table-only questions, in-495

dicating that it effectively addresses problems of496

individual types. However, a gap remains in han-497

dling table-sentence types, indicating that mixed498

table and document problems remain challenging.499

For expression number, HG3 surpasses other500

models in all cases. For Expression Number is 1,501

HG3 performs 5.11% higher in Exe Acc and 5.17%502

higher in Prog Acc than DyRRen in BERT version503

on test set. For Expression Number is 2, HG3 in504

BERT leads to a relative drop of Exe Acc and Prog 505

Acc by 5.71%, 5.27% on the test set. For Expres- 506

sion Number more than 2, HG3 performs 3.67% 507

higher in Exe Acc and 3.42% higher in Prog Acc 508

than DyRRen in BERT version on test set. It can 509

be seen that for problems with fewer than two ex- 510

pressions, our model already performs well. How- 511

ever, it can also be seen that our model’s improve- 512

ment in this type is not as significant as in other 513

types. This is due to the limitation that the facts in- 514

put to the generator are fixed. It demonstrates that 515

only by providing the model with sufficient context 516

can accurate results be obtained. When the num- 517

ber of expressions exceeds 2, although our model’s 518

performance is not as good as for those with fewer 519

than two expressions, it still shows significant im- 520

provement compared to other methods. This indi- 521

cates that our method is effective, and introducing 522

controlled perturbations to latent variables helps 523

in generating longer expressions, leading to perfor- 524

mance enhancement. 525

4 Conclusion 526

We propose HG3, comprising two innovative mod- 527

ules to enhance the performance of the model: 1) 528

The heterogeneous graph module models the struc- 529

tural attributes of tables, enhancing the interaction 530

between documents and tables, thereby improving 531

retrieval effectiveness. 2) The Gaussian process 532

stochastic function module provides more diversity 533

in the generation process, enhancing the model’s 534

representation capability and thereby improving the 535

generation effectiveness. Our model outperforms 536

all baselines on FinQA and ConvFinQA. 537

Limitations 538

Our model has some limitations. The number of 539

key facts passed to the generator is fixed, which 540

significantly restricts the model’s capabilities. For 541

problems with more facts, this means that even 542

humans cannot solve such issues. Additionally, al- 543

though we have introduced diversity to increase the 544

model’s upper limit, overly diverse generated re- 545

sults can lead to errors, such as incorrect operators, 546

which also affect the model’s performance. In the 547

future, to address these issues, we will expand our 548

model to increase its capacity for handling varying 549

numbers of facts and build an adaptive retriever. 550

We will also impose restrictions on the generator’s 551

output to ensure better model performance. 552
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A Related Works683

Math Word Problem (MWP) (Huang et al., 2016)684

is a challenging task in numerical reasoning. The685

goal of this task is to generate and calculate arith-686

metic expressions to answer questions. Based on687

MWP question descriptions, researchers have pro-688

posed several rule-based methods, such as statis-689

tical learning (Hosseini et al., 2014), graph-based690

techniques (Wu et al., 2021), and tree-based meth-691

ods (Jie et al., 2022). However, as the understand-692

ing of these problems has deepened, the descrip-693

tions have become longer and more complex, re-694

ducing the effectiveness of these methods. The695

MathQA (Amini et al., 2019) and Ape210k (Zhao696

et al., 2020) datasets demonstrate that MWP ques-697

tions consist only of short texts without tables or ad-698

ditional sentences, distinguishing them from other699

tasks. Additionally, The HybridQA (Chen et al.,700

2020) introduces a new task by combining texts701

and tables.702

Researchers have since shifted their focus to703

long-form numerical reasoning tasks involving tab-704

ular data, which present greater challenges than705

traditional MWP tasks. Datasets like TAT-QA (Zhu706

et al., 2021), FinQA (Chen et al., 2021), and Con-707

vFinQA (Chen et al., 2022) are examples of such708

hybrid datasets derived from financial reports. Un-709

like MWP, these tasks require retrieving facts from710

extensive documents and tables and then calcu-711

lating the answers. (Zhang et al., 2022) propose712

a method that leverages the unique strengths of 713

various specialized models, combining them to 714

achieve enhanced performance. Nararatwong et 715

al.(Nararatwong et al., 2022b) employs a knowl- 716

edge injection method to address the issue of hard- 717

to-understand operators and utilizes a GNN to re- 718

solve the problem of table data structure disrup- 719

tion. (Nararatwong et al., 2022a). 720

These methods overlook the structural attributes 721

of tables, with some even failing to enhance reason- 722

ing capabilities through retrieval methods, thereby 723

not adequately addressing the issue. Additionally, 724

they do not sufficiently focus on the generation 725

process, which limits their generative capabilities. 726

To address these limitations, we incorporate the 727

structural attributes of tables to compensate for the 728

missing information during retrieval. Simultane- 729

ously, we introduce controllable perturbations into 730

the generation process through a Gaussian process, 731

enabling the generator to produce higher-quality 732

results. 733

With the rise of large language models, their 734

powerful few-shot reasoning capabilities without 735

fine-tuning have gained increasing attention. Wei et 736

al.(Wei et al., 2022) proposes the chain-of-thought 737

approach, enabling LLMs to generate their own rea- 738

soning processes, which has garnered significant 739

attention. Further studies have found that large lan- 740

guage models (LLMs) exhibit varying performance 741

when generating different types of reasoning pro- 742

cesses(Jin and Lu, 2023). In addition to LLMs, 743

researchers have discovered that fine-tuning small- 744

scale models using reasoning processes generated 745

by LLMs can also improve performance(Ho et al., 746

2022). Given the lower computational overhead 747

and acceptable performance of small-scale models, 748

this area remains a valuable topic for research. 749

Despite their impressive performance in numeri- 750

cal reasoning tasks, the substantial computational 751

overhead of LLMs limits their practical application. 752

Therefore, we aim to achieve the performance of 753

LLMs on these tasks using small-scale models. By 754

increasing the diversity of the generation, we hope 755

to enhance the robustness of the models. 756
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