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Abstract

The NLP research community widely recog-
nizes numerical reasoning as a core compe-
tency, critical for constructing logically sound
solutions to mathematical queries grounded in
contextual evidence. Most existing methods are
based on the retriever-generator model. How-
ever, this two-stage method still lose impor-
tant information, especially in complex scenar-
ios where longer text and tabular reasoning are
mixed. To solve these problems, we propose
a Heterogeneous Graph Gaussian Generation
model (HG?), which improves the ability of
retriever-generator model to retrieve key facts
and generate correct answers from the perspec-
tive of information augmentation. In the re-
trieval stage, we propose using heterogeneous
graphs to model the relationships between doc-
uments and tables. This approach allows us
to capture the structural attributes of tables,
thereby enhancing the ability of retrieving criti-
cal facts. In the generator stage, we propose a
Gaussian process random function to introduce
context-aware variations into the encoder, in
this way, we can generate high-quality text with
key facts as the core by enriching contextual
representation learning of the model. Experi-
mental results on the FinQA and ConvFinQA
demonstrate the effectiveness of HG3, which
outperforms all the baselines. The code and
datasets of this work will be open-sourced after
acceptance.

1 Introduction

Numerical reasoning is a fundamental task of NLP
technology, which centers on key factual informa-
tion (evidence) and tests the model’s ability to: 1)
extract key facts, and 2) generate answers from key
facts to solve arithmetic problems. With the rise of
large language models (LLMs) like ChatGPT and
GPT-4(Adesso, 2022), researchers are beginning
to explore more challenging numerical reasoning
tasks, such as long-form numerical reasoning. New
benchmarks have been introduced to include longer
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The annual long-term debt maturities (excluding lease obligations and long-term
doe obligations) for debt outstanding as of december 31, 2015, for the next five
years are as follows: amount ( in thousands ). entergy arkansas is the only entergy
company that generated electric power with nuclear fuel prior to that date and
includes the one-time fee, plus accrued interest, in long-term debt. ... entergy new
orleans has obtained long-term financing authorization from the city council that
extends through july 2016 ."....

Table
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‘What is the percent change in annual long-term debt maturities from 2016 to 2017?
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Retriever ] _________________

Table_1I: the 2016 of amount ( in thousands ) is $ 204079
Table_2: the 2017 of amount ( in thousands ) is $ 766451
Text_4: entergy arkansas is the only entergy company that generated electric
power with nuclear fuel prior to that date and includes the one-time fee , plus
accrued interest , in long-term debt.
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Generator ] ..................

Arithmetic expression: subtract( 766451, 204079), divide(#0, 204079)

Figure 1: Retriever-generator framework for financial
numerical reasoning.

textual data and more complex data formats, which
presents significant challenges. For instance, fi-
nancial numerical reasoning datasets now require
models to answer financial analysis questions based
on both table and textual data, as seen in datasets
like FinQA(Chen et al., 2021), ConvFinQA(Chen
et al., 2022), and TAT-QA(Zhu et al., 2021). This
is illustrated in Figure 1.

The typical technology for long-form numeri-
cal reasoning is the retriever-generator framework
proposed by FinQANet (Chen et al., 2021). The
retriever identifies relevant information as critical
facts from the long-form documents and tables, and
the generator takes the critical facts as the input,
generates a sequence consisting of numbers and op-
erators. ELASTIC (Zhang and Moshfeghi, 2022)
proposes an adaptive symbolic compiler and uses
it to generate the expression. DyRRen (Li et al.,



2023) proposes a novel retriever-reranker-generator
framework, and proposes a dynamic rerank method
for location of critical facts. APOLLO (Sun et al.,
2022) proposes using reinforcement learning to as-
sist model training, enhancing model performance
by improving the generated expressions.

Although there are various iterations of the
retriever-generator architecture, these models en-
counter limitations in processing key facts, particu-
larly due to the specificities of the financial domain
and the complexities associated with tabular data,
which lead to the absence of key information and
thus affect the model’s performance.

To solve these problems, we propose a
Heterogeneous Graph Gaussian Generation model
(HG?), which uses the information augmentation to
improve the performance of the retriever-generator
on financial numerical reasoning tasks. For the
retriever, we used heterogeneous graphs to model
the relationships between documents and tables to
achieve structured information augmentation. This
approach not only allows us to capture the struc-
tural attributes of tables, but also to obtain infor-
mation at different granularities, and it also can en-
hance the inferential capability of the retriever and
find critical factual information, thereby improv-
ing retrieval effectiveness. For t he generator, we
use Gaussian process stochastic functions to intro-
duce context-aware controllable variables into the
encoder, resulting in high-quality and diverse text
for controllable information augmentation. The
method can ensure that both cost and time are con-
trollable. This random function introduces changes
only in the encoder and is orthogonal to diversity-
promoting decoding strategies on the decoder side.
By employing different decoding strategies, vari-
ous variations can be obtained, allowing the model
to have more generation possibilities without losing
the key fact, thereby enhancing the performance of
the generator. Experimental results have indicated
that the HG? achieves a great performance on both
FinQA and ConvFinQA.

The contributions of this work are as follows:

* In the retriever, we propose using heteroge-
neous graphs to obtain information at differ-
ent granularities from documents and tables,
while also incorporating the structural infor-
mation of tables. This enhances the model’s
ability to discern details, thereby improving
the effectiveness of the retriever.

* In the generator, we introduce a controllable

information augmentation employing context-
sensitive feature perturbation to achieve dy-
namic diversity scaling. This expands the
model’s multi-dimensional output space, ef-
fectively boosts the model’s generative capa-
bilities and lifts its overall performance.

* We propose the Heterogeneous Graph
Gaussian Generation model (HG?), which
beyond all baselines, and achieves execution
accuracy of 69.04(1 1.05%), and program ac-
curacy of 67.97(1 2.37%) on test set.

2 Methodology

In this section, we describe our approach in detail.
The structure of Heterogeneous Graph Gaussian
Generation model (HG?) as shown in Figure 2.
Taking information augmentation as the core idea,
in the retriever, we utilize Graph Attention Net-
work (GAT) to capture the relationships between
table contents and documents in the retriever to
achieve structured information augmentation (Sec-
tion 2.2.2). In the generator, Gaussian Processes
are employed to enhance the diversity of represen-
tations to realize controllable information augmen-
tation (Section 2.3.2).

2.1 Task Definition

Given a question g along with a numerical table
T containing m rows {t1,ta,...,t,} and a long-
form document D = {dy, ds, ..., d, }, the model is
designed to generate arithmetic expressions that
calculate the corresponding answers to a given
question. However, considering the length of the
document, the task is split into two subtasks. Ini-
tially, the necessary facts relevant to answering the
question are retrieved from the document. Based
on the retrieved facts, the generation process is
subsequently executed.

2.2 Structured Information Augmentation
Retriever

In the retriever, we enhance the structured infor-
mation by using the row and column information
of the table. The model is divided into three parts
as shown below. The data encoder is utilized for
encoding documents and tables, and the hetero-
geneous graph module is designed to model the
interactions between documents and tables as well
as the internal connections within tables, and the
relevance scorer is used to explore facts related to
the questions.
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Figure 2: The Heterogeneous Graph Gaussian Generation model (HG?).

2.2.1 Data Encoder

We first utilize a standardized template to con-
vert table data 7' into text format. This pro-
cess transforms each cell within the table into a
well-structured sentence, resulting in a more ef-
fective and comprehensive representation of the
table content (Li et al., 2023; Chen et al., 2021).
The template is “the column name of row name is
cell value”. The sentence set D’ can ultimately be
expressed as follows:

D = DU{dn+1,dn+2,...,dn+m} (D)
where {dy, 41, dp+2, .., dntm} is the sentence sub-
set converted from rows.

Finally, the representation of documents and
questions is obtained by BERT (Devlin et al.,
2018):

h” = BERT(dy, dy, ..., dyin)

2)
he = BERT(z1, 2, ..., IL"Q|)

2.2.2 Heterogeneous Graph Construction

To model the connections between table contents
and the interactions between tables and documents,
a heterogeneous Graph (hG) is constructed. hG
has three different kinds of nodes: table, document,
and question. Each table node denotes one cell of
the table data. And hG also has some document
nodes that aim to model the document information.
Meanwhile, hG has one question node. We argue

that this node could help the model retrieve the key
facts.
There are four types of edges in hG:

* Intra-Table Edge: The data in the same col-
umn or row is connected with intra-table edge,
which facilitates the modeling of the table’s
structural information.

* Intra-Document Edge: Each sentence is con-
nected with intra-document edges, thereby en-
abling the modeling of interactions between
table content and the document context.

* Question-Document Edge: All sentences are
linked to the question node with question-
document edges.

* Question-Table Edge: Each table cell is con-
nected to the question node with question-
table edges. These connections enable the
question node to aggregate information from
all table cells and establish interactions be-
tween the document context and the table data.

Next, we apply GAT (Velickovic et al., 2018)
on the hG to aggregate features from neighboring
nodes. For a given node u, the aggregation opera-
tion can be defined as follows:

eq(JlJrl) = U(Z Z awakeﬁ, + br) 3)

keK ’UENk(u)
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where K is the number of edge types. W}, and by,
are trainable parameters with edge type k. Ny (u)
denotes neighboring nodes connected to node u
with edges of type k. o is the activation function,
and a " represents the attention parameters.

We argue that different layers of GAT capture
features at varying levels of abstraction. To incorpo-
rate features from all these levels, we concatenate
the hidden states from each layer to form the repre-
sentation of node u, and a pooling layer is used to
obtain the final representation:

h, = Mean([e0 el e? eN]) 6)

ur U Cu? Cttr u

where € is the initial representation of node u, and
N is the number of layers. And we use the mean
representation of the entire sentence to initialize
the node representation.

2.2.3 Relevance Scorer

After obtaining the final representation, we sort
each text paragraph and table column with the cor-
relation confidence of the model output:

Sim(q,d;) = Cos(q, h;) (7

where d; € D and h; € hP.

The top-k evidences is selected as the retrieval
results. Subsequently, these evidences are concate-
nated with the question to form the input for the
generator model.

2.3 Controllable Information Augmentation
Generator

In the generator, we achieve the controllable infor-
mation augmentation by Gaussian process. We use
a seq2seq model as the generator, which comprises
a pre-trained encoder and a decoder. We propose
a novel module for learning rich contextual repre-
sentations by transforming the deterministic hidden
states from the encoder into stochastic hidden states
using stochastic functions.

As mentioned above, the question and top-k re-
trieved facts are concatenated and fed into a BERT
encoder to produce the representation ~¢ and h”.

2.3.1 Stochastic Function

To mitigate information interference during reason-
ing and introduce context-aware variability into the
encoder, we propose a stochastic mapping function
g() that converts deterministic hidden states into
random context variables:

p(zlh) = g(h) + € )

where ¢ ~ N(0,0°I) is a Gaussian noise. Then,
the decoder input z is obtained, which is sampled
from p(z|h). This allows the model to get more in-
ference information from contextual dependencies.

2.3.2 Gaussian process prior

The stochastic mapping function g() is pivotal for
the model’s efficacy. It introduces variability into
the hidden states while retaining their informational
integrity. This mechanism facilitates the introduc-
tion of controllable perturbations, thereby enhanc-
ing inference diversity while maintaining computa-
tional efficiency in both train and inference phases.
As shown in Figure 3, through this controllable
information Augmentation, we have increased the
possibilities of the final expression.

We propose constructing the stochastic mapping
function g() by incorporating a Gaussian process
(GP) as its functional prior. With the GP prior, we
can sample multiple stochastic functions to gener-
ate the final sequence. The stochastic function g()
is defined according to the GP prior:

g(h) ~ GP(m(h), k(h, 1)) 9
m(h) = h
h— h/ 2
k(h7h/) — ,82€$p— || 272 H2

where h is the hidden state, ' indicates the other
contextual hidden states. The parameter (3 controls
the variation intensity between the sampled func-
tion g(h) and the mean function m(h). The param-
eter y controls the covariance among the random
variables. Increasing v will reduce the distinction
between the sampled values.

To ensure that the sampled random states z re-
tain all the information from h, We employ a semi-
parametric GP prior (Murphy, 2012). This ap-
proach endows our model with more diverse inputs.

Then, the decoder takes the embedding z as input
and decodes the numerical reasoning program step
by step:

(10)

p(yt|yi—1, z) = Decoder(yi—1,z)  (11)
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Figure 3: Comparison between HG® and other models.

where y; is the generated token in step t.

2.3.3 Loss Function

To simplify the inference procedure, we use vari-
ational inference to approximate the GP posterior
p(g|h) and use maximum likelihood estimation to
learn other parameters. Specifically, we approx-
imate the true posterior p(z|h,y) with the varia-
tional posterior ¢(z|h,y) by maximizing the evi-
dence lower bound of the marginal log-likelihood
(ELBo):

log p(y|h) >Eq[log p(y|2)]

CKLig(Ah )l

where p(z|h) is obtained by Equation 8. And to
further simplify the approximation of ¢(z|h,y), we
use the mean-field amortized variational approxi-
mation(Kingma and Welling, 2014) to approximate
the parameters:

q(zlh) = | | a(zilhi)

—

.
Il
—

(13)

—.

N(fu(hl)a f02 (h’l))

-
I
—

where f,,() and f,2() represent the mean and co-
variance in the amortized variational inference net-
work, and z only rely on hidden states h.

3 Experiments

In this section, we provide a detailed overview of
the datasets employed for the evaluation of the
reasoning task.

3.1 Datasets

We evaluate our model on FinQA (Chen et al.,
2021) and ConvFinQA (Chen et al., 2022).
FinQA is a numerical reasoning dataset com-
prising 8,281 examples with fully annotated rea-
soning programs, derived from the publicly avail-
able earnings reports of S&P 500 companies over
a decade (Zheng et al., 2021). The data is divided
into train (6,251), dev (883), and test (1147) sets ac-
cording to a split of 75%/10%/15%. Each question
includes a table and a long-form document, with
an average token count of 687.53 and a maximum
of 2,679 tokens. Notably, 53.70% of the examples
contain two or more factual pieces, and 40.90% of
the reasoning programs involve multiple steps.
ConvFinQA is a conversational numerical rea-
soning dataset comprising 3,892 dialogues, which
include a total of 14,115 questions. And the dataset
is split into 3,037/421/434 for train/dev/test sets.

3.2 Metrics
3.2.1 Retriever

In the retriever, we evaluate our model using Re-
call@3 and Recall @5, which evaluate the model
by calculating the percentage of correctly identified
positives among all positive predictions. Since each
sample may have multiple positive predictions, we
assume that the top N predictions in Recall@N are
all positive.

3.2.2 Generator

In the generator, We evaluate our model with Pro-
gram Accuracy (Prog Acc) and Execution Accu-
racy (Exe Acc). Prog Acc assesses the syntactic
equivalence between generated arithmetic expres-



Model

Dev Test
Exe Acc Prog Acc | Exe Acc  Prog Acc

Longformer (Beltagy et al., 2020)
NeRd (Ran et al., 2019)
ELASTIC (Zhang and Moshfeghi, 2022)

23.83 22.56 21.90 20.48
47.53 45.37 48.57 46.76
65.00 61.00 62.16 57.54

BERT

FinQANet (Chen et al., 2021)
DyRRen (Li et al., 2023)
HG? (ours)

4991 47.15 50.00 48.00
61.16 58.32 59.37 57.54
65.62 64.13 64.92 63.96

RoBERTa

FinQANet (Chen et al., 2021)
DyRRen (Li et al., 2023)
APOLLP (Sun et al., 2022)
HG? (ours)

61.22 58.05 61.24 58.86
66.82 63.87 63.30 61.29
69.70 65.91 67.99 65.60
70.96 69.21 69.04 67.97

Human Expert

General Crowd

- - 91.16 87.49
- - 50.68 48.17

Table 1: Comparison of HG? and baselines on FinQA. The pre-trained models that are used in the experiments are

BERT-base-uncased and RoBERTa-large.

Model Dev Test
Exe Acc  Prog Acc | Exe Acc  Prog Acc

T-5 58.38 56.71 58.66 57.05
GPT-2 59.12 57.52 58.19 57.00
RoBERTa

FinQANet 68.32 67.87 68.90 68.24
APOLLO 76.47 74.14 76.00 74.56
HG? (ours) 76.18 74.83 77.86 76.24
Human Expert - - 89.44 86.34
General Crowd - - 46.90 45.52

Table 2: Comparison of HG? and baselines on Con-
vFinQA.

sions and the golden expressions, while Exe Acc
evaluates whether the generated expressions pro-
duce the correct results. Considering multiple valid
solutions, Exe Acc is essential to ensure functional
correctness beyond syntactic similarity.

3.3 Baselines

We compare our model to other publicly avail-
able methods, including: (1) ELASTIC (Zhang
and Moshfeghi, 2022), which utilizes an adap-
tive symbolic compiler to get the expression. (2)
NeRd (Ran et al., 2019), which proposes a novel
expression generator based on a pointer network.
(3) FinQANet (Chen et al., 2021), which first pro-
poses a retriever-generator framework designed to
generate arithmetic expressions from both tabular

and textual data. (4) Longformer (Beltagy et al.,
2020), which processes entire long documents to
generate arithmetic expressions. (5) DyRRen (Li
et al., 2023), which extends the retriever-generator
framework by incorporating dynamic reranking of
retrieved facts to enhance reasoning capabilities.
(6) APOLLO (Sun et al., 2022), which uses re-
inforcement learning to normalize the generated
expressions. (7) Human performance, which in-
cludes both experts and non-experts participants
sourced from the original paper(Chen et al., 2021).

3.4 Implementation Details

Our model is implemented using PyTorch and the
Transformer architecture (Vaswani et al., 2017)
from Huggingface, and evaluated on a single
NVIDIA V100 32GB GPU. In the retriever, we
employ the pre-trained language models BERT-
base-uncased and RoBERTa-large to obtain token
representations. The hyperparameter k is set to
3 to retrieve the Top-3 ranked facts as the output.
Meanwhile, the number of epochs is set to 30, the
batch size is set to 4, and the maximum sequence
length is set to 256. We optimize the retriever us-
ing the Adam optimizer (Kingma and Ba, 2014)
with a learning rate of 2e-5 to update the model
parameters. In the generator, the number of epochs
18 set to 500, the batch size is set to 8 for the en-
coder and decoder. We use Adam with a learning



Model FinQA(Dev) | FinQA(Test) | ConvFinQA(Dev) Model Dev Test

R@3 R@5 | R@3 R@5 | R@3  R@5 ode Exe Acc  Prog Acc | Exe Acc  Prog Acc
BERT

BERT

FinQANet | 88.35 90.96 | 87.24 90.65 | 86.43  89.74 5
DyRRen | 89.74 91.38 | 88.12 90.14 | 8732 90.03 HG 65.62 64.13 64.92 63.96
APOLLP | 9026 91.32 | 88.94 90.45 | 8921  91.71 w/o Graph | 64.34 63.26 63.48 62.20
Ours 9140 9228 | 89.41 91.18 | 9042  92.93 w/o GPSF | 63.94 02.32 62.51 61.24
RoBERTa RoBERTa
FinQANet | 91.30 93.89 | 89.82 9322 | 8895  92.74 HG3 70.96 69.21 69.04 69.97
AVOLLP | 5338 9562|9176 995 | o167 o456 w/o Graph | 6939 67.99 | 6812 69.01
Ours 9479 9647 | 92.89 9498 | 9274  95.83 w/o GPS 68.79 67.06 66.72 67.43

Table 3: The experimental results of retriever Recall
Top-3 and Top-5 in FinQA and ConvFinQA. The test set
on ConvFinQA does not have ground truth for retrieved
facts.

rate of 2e-5 for BERT-base-uncased and le-5 for
RoBERTa-large. The maximum sequence length is
set to 256. We clip the gradients of model parame-
ters to a max norm of 1.0. Additionally, we adopt a
linear warm-up (Targ et al., 2016) for the first 10%
of steps followed by a linear decay to O to prevent
gradient explosion and over-fitting.

3.5 Main Result

Table 1 presents the performance of HG? and base-
lines on FinQA. HG? achieves the best perfor-
mance, with Exe Acc and Prog Acc scores of 70.96
and 69.21 on the dev set, and 69.04 and 67.97 on
the test set, respectively. The results demonstrate
that models utilizing RoOBERTa significantly out-
perform those using BERT. This highlights the im-
portance of incorporating sufficient relevant knowl-
edge to enhance model reasoning capabilities.

Table 2 shows the results on ConvFinQA. Com-
pared with FinQANet, HG? exceeds 0.69% of Prog
Acc on the dev set, 1.86% of Exe Acc and 1.68%
of Prog Acc on the test set. These results indicate
that our model exhibits strong performance and
robustness in multi-turn conversational numerical
reasoning tasks.

HG? outperforms APOLLO both on BERT and
RoBERTa, surpassing 1.26% of Exe Acc and 3.30%
of Prog Acc on the test set, 1.05% of Exe Acc
and 2.37% of Prog Acc on the dev set. This indi-
cates that improving the inferential capability of
the retrieval-generator framework is necessary for
financial numerical inference tasks.

And it can be noted that HG?, whether using
BERT or RoBERTa, has surpassed the level of the
general crowd, but there is still a gap compared to
the human expert.

Table 4: Ablation study on FinQA.

Table 3 reports the retriever performance. Our
model achieves superior results on both FinQA
and ConvFinQA datasets, outperforming APOLLO
across BERT and RoBERTa implementations.
Specifically, on the FinQA test set, our model sur-
passes APOLLO by 1.13% in Top-3 and 1.03%
in Top-5; on the FinQA dev set, it achieves gains
of 1.21% in Top-3 and 0.85% in Top-5 for the
RoBERTa version. It demonstrates that using
graphs to construct table attributes mitigates the
impact of templates on table structure, thereby en-
hancing retrieval effectiveness.

3.6 Ablation Study

Our model comprises two essential components:
the Holistic Graph module and the Gaussian Pro-
cess Stochastic Function module. The variant
w/o Graph replaces our retriever with the orig-
inal retriever. w/o GPSF removes the Gaussian
Process Stochastic Function module, directly gen-
erating arithmetic expressions based on retrieval
facts.

As shown in Table 4, w/o Graph in BERT leads
to a relative drop of Exe Acc and Prog Acc by
1.44%, 1.76% on the test set. The performance
of w/o Graph in RoBERTa exhibits a 0.92% re-
duction in Exe Acc and a 0.96% reduction in Prog
Acc compared to ours. These results underscore
the necessity of using graphs to capture relation-
ships between tables, as the structural attributes of
tables facilitate the retrieval of key facts. Moreover,
the interaction between documents, questions, and
table contents is crucial to filter the final key facts.

Ignoring the Gaussian Process Stochastic Func-
tion module leads to a significant drop in perfor-
mance. In BERT, w/o GPSF performs 2.41%
lower in Exe Acc and 2.72% lower in Prog Acc
than ours in BERT version on the test set. Sim-
ilarly, in RoBERTa version, w/o GPSF results



Model Dev Test

Exe Acc  Prog Acc | Exe Acc  Prog Acc
ours (BERT) | 65.62 64.13 | 64.92 63.96
Type
table-only 75.32 73.84 73.63 71.68
sentence-only 51.06 49.47 55.19 54.31
table-sentence 43.76 40.62 39.84 37.62
Expression Number
1 70.21 68.34 69.48 68.17
2 65.51 62.40 63.18 60.04
> 2 29.44 27.24 33.43 31.99
DyRRen (BERT) ‘ 61.16 58.32 59.37 57.54
Type
table-only 72.51 69.37 68.98 66.71
sentence-only 46.46 44.44 49.47 48.76
table-sentence 38.46 35.66 34.18 32.28
Expression Number
1 66.16 63.67 64.37 63.00
2 60.98 57.49 57.46 54.77
> 2 26.03 23.29 29.76 28.57

Table 5: Fine-grained comparison with our model,
DyRRen on by question type and expression number.

in a performance decrease of 2.32% in Exe Acc
and 2.54% in Prog Acc compared to ours. This
highlights the effectiveness of Gaussian Process
Stochastic Function module. This further indicates
that introducing controlled perturbations to latent
variables enhances the diversity of the generated
results, thereby improving overall performance.

3.7 Fine-Grained Results

As shown in Table 5, the HG? achieves the best
performance in all fine-grained analysis on dev set
and test set. Regarding question types, HG® out-
performs the baselines in all types. For table-only
questions, HG? performs 4.65% higher in Exe Acc
and 4.97% higher in Prog Acc than DyRRen in
BERT version on test set. For sentence-only ques-
tions, HG? in BERT leads to a relative drop of Exe
Acc and Prog Acc by 5.72%, 5.55% on the test
set. For table-sentence questions, HG® performs
5.66% higher in Exe Acc and 5.34% higher in Prog
Acc than DyRRen in BERT version on test set. It
can be seen that our model performs exceptionally
well on sentence-only and table-only questions, in-
dicating that it effectively addresses problems of
individual types. However, a gap remains in han-
dling table-sentence types, indicating that mixed
table and document problems remain challenging.

For expression number, HG® surpasses other
models in all cases. For Expression Number is 1,
HG? performs 5.11% higher in Exe Acc and 5.17%
higher in Prog Acc than DyRRen in BERT version
on test set. For Expression Number is 2, HG? in

BERT leads to a relative drop of Exe Acc and Prog
Acc by 5.71%, 5.27% on the test set. For Expres-
sion Number more than 2, HG? performs 3.67%
higher in Exe Acc and 3.42% higher in Prog Acc
than DyRRen in BERT version on test set. It can
be seen that for problems with fewer than two ex-
pressions, our model already performs well. How-
ever, it can also be seen that our model’s improve-
ment in this type is not as significant as in other
types. This is due to the limitation that the facts in-
put to the generator are fixed. It demonstrates that
only by providing the model with sufficient context
can accurate results be obtained. When the num-
ber of expressions exceeds 2, although our model’s
performance is not as good as for those with fewer
than two expressions, it still shows significant im-
provement compared to other methods. This indi-
cates that our method is effective, and introducing
controlled perturbations to latent variables helps
in generating longer expressions, leading to perfor-
mance enhancement.

4 Conclusion

We propose HG3, comprising two innovative mod-
ules to enhance the performance of the model: 1)
The heterogeneous graph module models the struc-
tural attributes of tables, enhancing the interaction
between documents and tables, thereby improving
retrieval effectiveness. 2) The Gaussian process
stochastic function module provides more diversity
in the generation process, enhancing the model’s
representation capability and thereby improving the
generation effectiveness. Our model outperforms
all baselines on FinQA and ConvFinQA.

Limitations

Our model has some limitations. The number of
key facts passed to the generator is fixed, which
significantly restricts the model’s capabilities. For
problems with more facts, this means that even
humans cannot solve such issues. Additionally, al-
though we have introduced diversity to increase the
model’s upper limit, overly diverse generated re-
sults can lead to errors, such as incorrect operators,
which also affect the model’s performance. In the
future, to address these issues, we will expand our
model to increase its capacity for handling varying
numbers of facts and build an adaptive retriever.
We will also impose restrictions on the generator’s
output to ensure better model performance.
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A Related Works

Math Word Problem (MWP) (Huang et al., 2016)
is a challenging task in numerical reasoning. The
goal of this task is to generate and calculate arith-
metic expressions to answer questions. Based on
MWP question descriptions, researchers have pro-
posed several rule-based methods, such as statis-
tical learning (Hosseini et al., 2014), graph-based
techniques (Wu et al., 2021), and tree-based meth-
ods (Jie et al., 2022). However, as the understand-
ing of these problems has deepened, the descrip-
tions have become longer and more complex, re-
ducing the effectiveness of these methods. The
MathQA (Amini et al., 2019) and Ape210k (Zhao
et al., 2020) datasets demonstrate that MWP ques-
tions consist only of short texts without tables or ad-
ditional sentences, distinguishing them from other
tasks. Additionally, The HybridQA (Chen et al.,
2020) introduces a new task by combining texts
and tables.

Researchers have since shifted their focus to
long-form numerical reasoning tasks involving tab-
ular data, which present greater challenges than
traditional MWP tasks. Datasets like TAT-QA (Zhu
et al., 2021), FinQA (Chen et al., 2021), and Con-
vFinQA (Chen et al., 2022) are examples of such
hybrid datasets derived from financial reports. Un-
like MWP, these tasks require retrieving facts from
extensive documents and tables and then calcu-
lating the answers. (Zhang et al., 2022) propose
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a method that leverages the unique strengths of
various specialized models, combining them to
achieve enhanced performance. Nararatwong et
al.(Nararatwong et al., 2022b) employs a knowl-
edge injection method to address the issue of hard-
to-understand operators and utilizes a GNN to re-
solve the problem of table data structure disrup-
tion. (Nararatwong et al., 2022a).

These methods overlook the structural attributes
of tables, with some even failing to enhance reason-
ing capabilities through retrieval methods, thereby
not adequately addressing the issue. Additionally,
they do not sufficiently focus on the generation
process, which limits their generative capabilities.
To address these limitations, we incorporate the
structural attributes of tables to compensate for the
missing information during retrieval. Simultane-
ously, we introduce controllable perturbations into
the generation process through a Gaussian process,
enabling the generator to produce higher-quality
results.

With the rise of large language models, their
powerful few-shot reasoning capabilities without
fine-tuning have gained increasing attention. Wei et
al.(Wei et al., 2022) proposes the chain-of-thought
approach, enabling LLMs to generate their own rea-
soning processes, which has garnered significant
attention. Further studies have found that large lan-
guage models (LLMs) exhibit varying performance
when generating different types of reasoning pro-
cesses(Jin and Lu, 2023). In addition to LLM:s,
researchers have discovered that fine-tuning small-
scale models using reasoning processes generated
by LLMSs can also improve performance(Ho et al.,
2022). Given the lower computational overhead
and acceptable performance of small-scale models,
this area remains a valuable topic for research.

Despite their impressive performance in numeri-
cal reasoning tasks, the substantial computational
overhead of LLMs limits their practical application.
Therefore, we aim to achieve the performance of
LLMs on these tasks using small-scale models. By
increasing the diversity of the generation, we hope
to enhance the robustness of the models.
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