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ABSTRACT

Diffusion-based image synthesis has attracted extensive attention recently. In
particular, ControlNet that uses image-based prompts exhibits powerful capability
in image tasks such as canny edge detection and generates images well aligned with
these prompts. However, vanilla ControlNet generally requires extensive training of
around 5000 steps to achieve a desirable control for a single task. Recent context-
learning approaches have improved its adaptability, but mainly for edge-based
tasks, and rely on paired examples. Thus, two important open issues are yet to be
addressed to reach the full potential of ControlNet: (i) zero-shot control for certain
tasks and (ii) faster adaptation for non-edge-based tasks. In this paper, we introduce
a novel Meta ControlNet method, which adopts the task-agnostic meta learning
technique and features a new layer freezing design. Meta ControlNet significantly
reduces learning steps to attain control ability from 5000 to 1000. Further, Meta
ControlNet exhibits direct zero-shot adaptability in edge-based tasks without any
finetuning, and achieves control within only 100 finetuning steps in more complex
non-edge tasks such as Human Pose. 1

1 INTRODUCTION

Image synthesis (Dhariwal & Nichol, 2021; Ramesh et al., 2022; Brock et al., 2018) is a rapidly
growing field in computer vision and draws significant interest from various application domains. As a
key approach in this area, Generative Adversarial Networks (GANs) (Brock et al., 2018; Karras et al.,
2019; Goodfellow et al., 2020) employ a discriminator-generator pair, where the generator is trained
to creating enhanced images via sharpening the discriminator. However, such an adversarial approach
typically has difficulty to model more complex distributions. Recently, diffusion models (Dhariwal &
Nichol, 2021; Ramesh et al., 2022) have emerged as a powerful alternative, excelling in high-quality
image generation. These models utilize a series of denoising autoencoders to progressively refine an
image from pure Gaussian noise. Among these, a new model known as Stable Diffusion (Rombach
et al., 2022) has been proposed, which has better computational efficiency. Unlike traditional methods,
Stable Diffusion uses latent representations for image compression, and achieves superior image
quality, which includes advancements in text-to-image synthesis and unconditional image generation.

ControlNet (Zhang et al., 2023) further advances image synthesis with enhanced control over image
content by using conditional control as different tasks. This approach clones the encoder and middle
block of Stable Diffusion, and introduces zero convolution to link with the decoders of Stable
Diffusion. Such a setup allows ControlNet to accept image prompt inputs, such as canny or HED
edge, and can generate images specific to certain tasks, demonstrating improved control from both
image and textual inputs. However, ControlNet’s capability for precise control requires extensive
training. Specifically, learning to control a new task demands about 5000 steps. Recently, Prompt
Diffusion was proposed in (Wang et al., 2023), which leverages in-context learning idea to enhance
ControlNet’s adaptability to new tasks, but requires task-specific example pairs for training.

Although ControlNet and its variants have achieved enhanced the generalizability, several critical
open issues remain unresolved to reach the full power of ControlNet. Firstly, zero-shot capability
of ControlNet has not yet been explored, leaving it as an open question whether it is possible to
control new tasks without finetuning samples. Secondly, while most existing studies have focused on

1Our code is provided at https://anonymous.4open.science/r/meta_controlnet-4E0C
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Figure 1: Trained from stable diffusion initial θSD, the meta learned initial θmeta is used for various
task adaptation.

edge-based tasks, rapid adaptation in more complex scenarios, such as the human pose task, has not
yet been achieved.

Figure 2: Meta ControlNet training pipeline. ControlNet parameter is meta updated via meta tasks
(HED, Segmentation, Depth). Stable Diffusion parameters are fixed and ControlNet middle layers
(Encoder Block 4 and Middle Block) are frozen during the training phase.

In this paper, we propose a novel Meta ControlNet method to address the aforementioned open
issues. Specifically, Meta ControlNet adopts the FO-MAML (Finn et al., 2017) framework with
various image condition types serving as different meta tasks. The inner-loop training of Meta
ControlNet takes finetune steps separately for each task. Then the outer-loop training updates meta
parameters (i.e., the model initial) based on averaged gradients over all training tasks.

(Novel Layer Freezing Design) Meta ControlNet features a new layer freezing design. Typically,
meta learning algorithms such as ANIL (Raghu et al., 2019) freezes the earlier embedding layers
during the inner-loop training. As a sharp difference, Meta ControlNet freezes latter encoder block
and the middle block during meta training. This idea is based on the observation that the initial
encoder blocks are directly linked to the control images of control tasks. It is essential to finetune
these encoder blocks for individual task. On the other hand, the middle and latter encoder blocks,
which capture common and high-level information, can be retained and shared across tasks. Such a
design has been proven to be critical for Meta ControlNet to exhibit desirable performance in our
experiments. Note that for the meta testing phase, we recommend training all layers to achieve the
best possible adaptation performance.

In the following, we highlight the superior experimental performance that Meta ControlNet achieves:

• Fast Learning of Control Ability: Our proposed design significantly enhances the efficiency
of ControlNet’s learning process. Our experiments demonstrate that Meta ControlNet acquires
control abilities within only 1000 steps, a stark improvement over the vanilla ControlNet that
achieves the same ability with 5000 steps. Meanwhile, this efficiency is demonstrated across
three meta training tasks, showcasing the method’s versatility.

• Zero-Shot Adaptation for Edge-based Tasks: Meta ControlNet produces generalizable model
initial, which exhibits exceptional control capabilities in zero-shot settings, especially for edge-

2
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based tasks such as the canny task. This indicates that our model can adapt to new edge-based
tasks without any task-specific finetuning. This is the first achievement of successful zero-shot
adaptation by ControlNet. Our experiments also indicate that few-shot finetuning often further
enhances the fidelity of generated images.

• Fast Adaptation in Non-edge Tasks: For challenging tasks in few-shot contexts, our learned
model initial exhibits a robust adaptation ability. For instance, it can adapt to the human pose
task within merely 100 steps and excel in the more complex human pose mapping task in only
200 steps. These achievements not only surpass all existing benchmarks but also substantially
reduce image sample number required for adaptation.

2 RELATED WORK

2.1 DIFFUSION MODEL AND CONTROLNET

With the recent advancement of score-based generative models (Ho et al., 2020; Song & Ermon,
2019; Song et al., 2020b;a), diffusion models have achieved remarkable performance in text-to-image
synthesis (Dhariwal & Nichol, 2021; Ramesh et al., 2022). Essentially, the diffusion model learns a
time-varying mapping that gradually transforms a random noise into the sample space via a reverse
diffusion process (Ho et al., 2020). Stable Diffusion (SD) (Rombach et al., 2022), as an important
step to achieve high-resolution image generation, utilizes a variational autoencoder to first encode
images into a latent space, and then learns a time-conditioned U-Net to perform the denoising process
on the latent space based on text prompts.

To allow diffusion models to receive more diverse user-specific guidance for image generation,
Composer (Huang et al., 2023), ControlNet (Zhang et al., 2023), GLIGEN (Li et al., 2023b) and T2I-
Adapter (Mou et al., 2023) were proposed as general approaches to introduce additional controlling
signals. Among these, ControlNet (Zhang et al., 2023) stands out by its superior performance in
various downstream tasks ranging from sketch (edge, skeleton) to geometry (depth, normal) guided
generation. Technically, ControlNet freezes the original SD model, while finetuning a duplicate of the
pre-trained SD to integrate additional control signals via zero-initialized convolution modules. Such
an adaptation scheme significantly reduces training costs by re-using the image prior learned in the
pre-trained SD. ControlNet-XS (Rother, 2023) further investigates the size and architectural design
of ControlNet and proposes a more parameter-efficient architecture. As downstream applications, by
leveraging ControlNet, Goel et al. (2023) is able to edit the structure and appearance properties for
each object in the image, and Chu et al. (2023); Wu et al. (2023) enforces temporal consistency for
video generation, Ma et al. (2023); Seo et al. (2023) make pre-trained SD aware of 3D knowledge and
multi-view geometry. However, for each of these tasks, an independent adapter is required for each
condition. The modified version Multi-ControlNet (Zhang et al., 2023) demonstrates the possibility of
composing multiple tasks. Uni-ControlNet (Zhao et al., 2023) proposes a unified framework allowing
for the simultaneous utilization of different local and global controls. Prompt Diffusion (Wang et al.,
2023) trains an open-domain ControlNet in an in-context learning manner. However, none of these
studies are designed for or have been demonstrated to have zero-shot generalization capability for
unseen control tasks.

2.2 META LEARNING

Meta learning focuses on few-shot learning scenarios, aiming to develop algorithms that leverage a
large set of pre-defined tasks to improve performance on unseen instances with only a few or even
zero extra training data samples. In this paper, we focus on “learning-to-initialize” approaches such as
Model-Agnostic Meta Learning (MAML) (Finn et al., 2017), which learns an initialization point from
which models can fast adapt to new tasks. MAML (Finn et al., 2017) algorithm involves two layers of
training, where at each iteration, the inner loop optimizes the parameter for each task independently
starting from the current initialization, whereas the outer loop estimates the gradient with respect
to the inner loop optimization path to update the initialization. Since differentiating through an
optimization algorithm is often computationally expensive, FO-MAML (Finn et al., 2017) proposes to
simplify the outer-loop gradient computation by directly averaging task-specific gradients evaluated
at the outputs of the inner loop. ANIL (Raghu et al., 2019) improves MAML via feature reusing,
where the main feature backbone is frozen and only prediction heads are updated by each task in the

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

inner loop. Reptile (Nichol et al., 2018; Nichol & Schulman, 2018) simplifies the process by aiming
for an initialization that minimizes the expected loss across all tasks, similar to joint training.

In computer vision, a popular application of meta learning is few-shot image classification, where a
network is adapted to new classes using only a small number of labeled instances per class (Finn et al.,
2017; Ravi & Larochelle, 2016; Verma et al., 2020). Li et al. (2018) also adopts MAML-based meth-
ods to improve cross-domain generalization. MetaGAN (Zhang et al., 2018) and MetaDiff (Zhang
& Yu, 2023) combines MAML respectively with GAN (Goodfellow et al., 2020) and diffusion
model (Song & Ermon, 2019; Ho et al., 2020) to facilitate few-shot image classification. More
recently, meta learning has been employed to accelerate implicit neural representation for visual
signals (Sitzmann et al., 2020; Tancik et al., 2021).

3 META CONTROLNET

In this section, we first propose the Meta ControlNet method, and then explain how to select and
structure both training and adaptation tasks.

3.1 ALGORITHM DESIGN

In this section, we propose our algorithm Meta ControlNet, which maintains the Stable Diffusion
network while training its duplicates via the task-agnostic meta learning technique for obtaining
adaptive model initial.

In particular, Meta ControlNet adopts three control tasks (HED, Segmentation, Depth) as the primary
meta tasks. The training of Meta ControlNet takes the double-loop training framework of FO-
MAML (Finn et al., 2017), as depicted in Figure 2, and is described in detail as follows.

The inner-loop training of Meta ControlNet takes finetune steps separately for each task. During each
step t, the meta parameter θt of Meta ControlNet is finetuned independently for each task based on
gradient descent as follows:

(Inner Loop) θtaskt = θt − α∇Ltask(θt),

where task ∈ {HED, Seg, Depth} and α represents the step size. Note that we here update the
parameter only once in the inner loop to enhance efficiency.

The outer-loop training first calculates the meta gradient ∇L(θt) as follows by taking an average of
the gradients across all tasks, based on each task’s finetuned parameters in the inner loop:

∇L(θt) = Avgtask(∇Ltask(θ
task
t )),

where "Avg" denotes the averaging operator over all task gradients. Then the meta parameter θt is
updated using the meta gradient as follows:

(Outer Loop) θt+1 = θt − α∇L(θt),

where α is the step size. This design guides Meta ControlNet to minimize the loss of the finetuned
model for each task, and hence makes the model more responsive to updates and enables fast
adaptability.

Novel Layer Freezing Design: A main novel component that Meta ControlNet features is the design
of freezing layers during training, which turns out to be critical for its superior performance. Typically,
meta learning algorithms such as ANIL (Raghu et al., 2019) freeze the earlier embedding layers
during the inner-loop training. Meta ControlNet has sharp differences in two aspects. Firstly, Meta
ControlNet freezes latter encoder block and the middle block during meta training. This idea is
based on the observation that the initial encoder blocks are directly linked to the control images of
control tasks. Given that our Stable Diffusion initial was used to process Gaussian noise rather than
control task-specific inputs, and different control image styles signify distinct tasks, it is essential to
finetune these initial encoder blocks for individual tasks. On the other hand, the middle and latter
encoder blocks, which capture common and high-level information, can be retained and shared across
tasks. Therefore, during the training process, Meta ControlNet selectively freezes the Encoder Block4
and Middle block of the U-Net, and focuses on training the remaining parameters. The detailed
architecture is available in Appendix. Secondly, unlike ANIL, where freezing occurs only in the
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Lofoten Islands, Norway Suburbanscenes Photograph - Machinist - Back In The Days
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city landscapes in an unusual state.

Figure 3: Validation set samples from each training task (HED, Depth, Segmentation) after 1000
steps of training updates.

inner loop, Meta ControlNet applies layer freezing in both inner and outer loops to achieve better
efficiency by leveraging our network’s initial high-quality image generation capability from Stable
Diffusion.

It is important to note that the meta design and layer freezing are applied only during Meta Control-
Net’s training phase. During the adaptation phase, finetuning uses the standard ControlNet training
protocol without using layer freezing or meta learning methods.

3.2 TASK SELECTION

Training Tasks: During training phase, we choose HED, Segmentation, and Depth map control as
our training tasks. Specifically, we obtain HED map using HED boundary detector proposed by (Xie
& Tu, 2015). We obtain Segmentation map using Uniformer (Li et al., 2023a). We collect Depth map
using Midas (Ranftl et al., 2020).

Adaptation Tasks: Follwoing Wang et al. (2023), we utilize Canny Edge maps and Normal maps
as our adaptation tasks. These tasks, which align the generated image with the control image’s
edges, are categorized as edge-based tasks. Additionally, we introduce two more complex tasks to
demonstrate the versatility of our model: Human Pose (line segments to objects) and Human Pose
Mapping (objects to line segments), referred to as non-edge tasks.

In detail, we collect Canny Edge by using Canny Edge detector (Canny, 1986). We obtain Normal
map by applying Midas (Ranftl et al., 2020). We collect human pose and its reverse human pose
mapping by using Openpose (Cao et al., 2019).

Above the Clouds by Susan Marshall - Landscapes Cloud balloon, 
landscape, balloon Beautiful landscape shot on the italian alps with mountain lakes clouds, landscapes, old, houses, corn, HDR photography Snow Flurries on Michigan Avenue, oil, 30 × 50

“When the West with Evening Glows (Scotland, 1910) Oil on
Farquharson”

Traditional Rorbu cabin reflects in fjord in evening light, Valen, Fesoy, 
Lofoten Islands, Norway “Andrzej Vlodarczyk. Oil painting”, In the summer courtyard art, watercolor, and cityscape image
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Figure 4: Samples from edge-based tasks (Canny, Normal) in zero-shot adaptation.
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Figure 5: Sample comparison between proposed Meta ControlNet and Prompt Diffusion (PD) baseline
for canny task in few-shot finetuning. PD requires example pairs to update and thus is only available
in odd number few-shot setting.
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Figure 6: Samples from the validation set for non-edge tasks (Human Pose, Human Pose Map) in a
finetuning context. Below each image, the number of updates indicates the first iteration achieving
significant control. The validation set is evaluated every two updates.

4 EXPERIMENTAL RESULTS

Dataset: We use the generated CLIP-filtered dataset proposed by InstructPix2Pix (Brooks et al.,
2023) as our training and validation datasets. The CLIP-filtered dataset contains 313k image-prompt
pairs.

Implementations: Meta ControlNet is developed using the ControlNet codebase (Zhang et al., 2023),
and utilizes the Stable Diffusion v1.5 checkpoint for finetuning. We fix learning rate to be 1× 10−4

and batch size to be 256, and accumulate gradients over every 4 batches. Our model is trained on 4
Nvidia A100 GPUs. In our study, both our Meta ControlNet and the baseline of Prompt Diffusion
(PD) (Wang et al., 2023) are evaluated at the 8000-step checkpoint. Note that more finetuning steps
enhance image quality.

Regarding the meta design, the meta training images in the inner loop are reused in the meta
testing phase in the outer loop for each task in order to optimize memory efficiency. Note that the
aforementioned batch size of 256 is the total number of images from all tasks. Namely, we randomly
sample 256 images across all tasks, and organize them into batches respectively for each task. This
strategy ensures that our algorithm does not require additional image sample during the training
phase.

4.1 FAST CONTROL ACQUIRING IN TRAINING

The proposed Meta ControlNet is trained on tasks of HED, segmentation, and depth mapping.
Figure 3 displays the validation results after 1000 steps. Clearly, our Meta ControlNet generates the
images that closely match the control images with high fidelity. While the vanilla ControlNet requires
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5000 steps to exhibit control ability on a single task, our algorithm Meta ControlNet enjoys rapid
learning within only 1000 steps. In fact, for most images, control ability of Meta ControlNet occurs
within 500 steps or even fewer, with additional training serving to enhance image fidelity.

4.2 ZERO-SHOT CAPABILITY FOR EDGE-BASED TASKS

We evaluate Meta ControlNet on edge-based tasks, specifically Canny and Normal tasks. Figure 4
presents the control images alongside the corresponding generated images and text prompts. This
adaptation is assessed in a zero-shot context, and does not require finetuning or additional data.
This is the first ControlNet-type method featuring zero-shot capability. In contrast, the baseline
Prompt Diffusion (PD) method (Wang et al., 2023) relies on example pairs for learning, rendering
it unsuitable for zero-shot settings. The zero-shot results clearly showcase the superior adaptation
capability of Meta ControlNet with strong control ability and high fidelity in both tasks.

Further, we compare our Meta ControlNet and the PD baseline with both finetuned in a few-shot
context, namely, each method is updated with an equal number of few-shot images. Note that the
proposed Meta ControlNet needs only one sample per update step, while PD requires two examples
per step. The results in Figure 5 indicate that image quality by Meta ControlNet is enhanced with
additional shots. Further, our Meta ControlNet clearly outperforms PD, although the fidelity of the
PD gradually improves with more shots. When comparing both methods over the same number of
finetuning steps, such as 10 shots for our proposed method and 21 shots for the PD baseline, our
approach consistently yields higher quality images. Note that PD requires example pairs to update
and thus is only available in odd number few-shot settings.

We highlight that in our experiments, most images generated in zero-shot already exhibit high
fidelity, and thus additional few-shot finetuning is not required and might not result in substantial
improvements.
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Dan McCaw. This reminds me of a 
rainy day, makes me want to book 

with a cat.

Chad S Drygoods Meet The 
Country Gentleman as an 

Astronaut
the chicken by the sea by charles 

amable lenoir
A man standing under the stars 

holding a flower
White coat in merchant square - 

50 × 50cm £2,500 (0094)
Winter Timesby Don Demers Don 

Demers is one of a handful

Figure 7: Validation sample comparison between proposed Meta ControlNet and Prompt Diffusion
(PD) baseline for Human Pose task after 100 steps of finetuning updates.

4.3 FAST ADAPTATION FOR NON-EDGE TASKS

We evaluate the generalizability of Meta ControlNet in non-edge tasks, with focus on human pose and
its reverse mapping. These non-edge tasks, which are typically challenging in few-shot setting, require
a training-like approach for finetuning. To enhance stability, we double the gradient accumulation
from 4 to 8 and keep the batch size to be 256.

For Meta ControlNet, we assess validation at every two steps, and record the first instance when
the generated image is aligned with the control image, as shown in Figure 6. We observe that for
the human pose task, effective control is achieved within 50 steps. The human pose mapping task,
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Figure 8: Validation sample comparison between proposed Meta ControlNet and Prompt Diffusion
(PD) baseline for Human Pose Mapping task after 200 steps of finetuning updates.
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Figure 9: Sample comparison among different freeze methods for edge-based tasks in zero-shot
context. EnN refers to the N th Encoder Block. ’Freeze En4 + Middle’ refers to freezing the 4th

Encoder Block and the Middle Block in U-Net, which is adapted in Meta ControlNet.

which converts human poses into line segments, presents a greater challenge due to the deviation
from the high-quality images typically generated by stable diffusion. Nevertheless, Meta ControlNet
demonstrates control over most samples within approximately 100 steps. We note that in tasks such
as human pose mapping, minor errors can occur, for example, incorrectly depicting a chicken pose
in the third sample pair. This is due to ControlNet’s inherent limitation in distinguishing between
human and animal, a distinction that requires learning from more samples.

To compare our method with the PD baseline in the human pose task, we evaluate 100-step finetuning
in Figure 7. Despite the use of example pairs, PD achieves control but at the cost of reduced fidelity.
In contrast, Meta ControlNet maintains both high control and fidelity. For the more challenging
human pose mapping task, our method achieves comparable results as the PD baseline with the same
200 steps, but with only half number of images used by PD, demonstrating our better efficiency.

We note that the different convergence speeds to reach control between the human pose task and
its mapping counterpart, i.e., 100 versus 200 steps, arise from the inherent characteristics of Stable
Diffusion and our choice of training tasks. Both the standard Stable Diffusion and our selected
tasks are geared towards generating natural images rather than line segments. Consequently, in the
adaptation phase, the model more readily adapts to the human pose task, which involves creating
natural human images, as opposed to learning to generate line segments from human images, a
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Figure 10: Sample comparison among various connection methods for zero-shot edge-based tasks.
DeN refers to the N th Decoder Block.

requirement of the mapping task. Nevertheless, our method still achieves better efficiency than PD,
namely, comparable results but with only half number of images during training.

5 ABLATION STUDY

5.1 LAYER FREEZING

To evaluate the effectiveness of various freezing designs, we conduct an experimental comparison
focusing on the canny and normal tasks in a zero-shot setting. The experiment compares our freezing
strategy (freezing Encoder Block 4 and the Middle block in U-Net) against other methods: freezing
Encoder Blocks 2 to 4 plus the Middle block, freezing Encoder Blocks 1 to 3, and no freezing. The
U-Net architecture is available in Appendix. The comprehensive results are detailed in Figure 9, with
all methods under identical experimental conditions.

Our results indicate that while all freezing designs facilitate control ability, freezing Encoder Block 4
and the Middle block achieves the most accurate alignment with the control image and the highest
image fidelity. This superiority is likely because the first three encoder blocks in U-Net are more
task-specific, as they are more directly connected to the control image. In contrast, the latter encoder
block and the Middle block contribute significantly to the high-quality image output inherent in stable
diffusion, making them ideal candidates for freezing across diverse tasks.

5.2 DECODER CONNECTION

We evaluate our algorithm using different types of connections between the ControlNet decoder and
the pre-trained Stable Diffusion (SD) model decoder. Specifically, we use Meta ControlNet with all
decoder connected by zero convolution as our baseline. We then disconnect Decoder Blocks 4 to 1
from the pre-trained SD model in separate variants (each Decoder Block n corresponds to Encoder
Block n). These variants are trained under the same conditions as the baseline, up to the 8000-step
checkpoint, and are then tested on normal and canny edge tasks. Figure 10 depicts the result and
suggests that disconnecting Decoder Block 4 significantly reduces image fidelity, and often results in
images with repetitive lines or objects with strange shapes. In contrast, disconnecting the other three
blocks produces results similar to our baseline. This indicates that Decoder Block 4 plays a critical
role in ensuring high image fidelity, which is consistent with our design choice of freezing Encoder
Block 4 for this purpose.

6 CONCLUSION

In our study, we propose a novel Meta ControlNet approach, which adopts the meta learning technique
and features novel freezing layer design to learn a generalizable ControlNet initial. This method
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exhibits rapid training convergence, and requires only 1000 steps to effectively control generative
imaging. Further, such a meta initial exhibits remarkable zero-shot adaptability for edge-based tasks,
the first demonstration in this domain. It also excels in more challenging non-edge tasks, and adapts
rapidly within 100 steps for the human pose task and 200 steps for the human pose map task. These
results not only outperform existing baselines in terms of control ability and efficiency but also
represent significant advancement beyond vanilla ControlNet.
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A APPENDIX

A.1 DETAILED META CONTROLNET ARCHITECTURE

In Figure 11, the detailed Meta ControlNet architecture is illustrated. This architecture shows that
during both training and testing phases, the stable diffusion part remain locked, in line with the
ControlNet settings. Specifically, for the ControlNet part, SD Encoder Block4 and SD Middle Block
are frozen during the meta training phase, while other blocks are subject to finetuning. This approach
is chosen because SD Encoder Blocks 1-3 are more closely linked to the control image, necessitating
their adaptation to capture task-specific differences. During the meta testing phase, all blocks within
the ControlNet part are finetuned to optimize performance.

Figure 11: Detailed architecture of Meta ControlNet

14


	Introduction
	Related Work
	Diffusion Model and ControlNet
	Meta Learning

	Meta ControlNet
	Algorithm Design
	Task Selection

	Experimental Results
	Fast Control Acquiring in Training
	Zero-Shot Capability for Edge-Based Tasks
	Fast Adaptation for Non-Edge Tasks

	Ablation Study
	Layer Freezing
	Decoder Connection

	Conclusion
	Appendix
	Detailed Meta ControlNet Architecture


