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Abstract

Mean-field Langevin dynamics (MFLD) is an optimiza-
tion method derived by taking the mean-field limit of
noisy gradient descent for two-layer neural networks
in the mean-field regime. Recently, the propagation
of chaos (PoC) for MFLD has gained attention as it
provides a quantitative characterization of the optimiza-
tion complexity in terms of the number of particles and
iterations. A remarkable progress by Chen et al. (2022)
showed that the approximation error due to finite par-
ticles remains uniform in time and diminishes as the
number of particles increases. In this paper, by refining
the defective log-Sobolev inequality—a key result from
that earlier work—under the neural network training
setting, we establish an improved PoC result for MFLD,
which removes the exponential dependence on the reg-
ularization coefficient from the particle approximation
term of the optimization complexity. As an application,
we propose a PoC-based model ensemble strategy with
theoretical guarantees.

1 Introduction
A two layer mean-field neural network (MFNN) with N
neurons is defined as an empirical average of N func-
tions: EX∼ρx [h (X, ·)] = 1

N

∑N
i=1 h(x

i, ·), where each
h(xi, ·) represents a single neuron with parameter xi and
ρx = 1

N

∑N
i=1 δxi

is an empirical distribution. As the num-
ber of neurons get infinitely large (N →∞), the mean-field
limit is attained: ρx → µ, leading to MFNN having an
infinite number of particles: EX∼µ [h(X, ·)]. Since a distri-
bution µ parameterizes the model in this mean-field limit,
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training can now be formulated as the optimization over the
space of probability distributions (Nitanda & Suzuki, 2017).
Gradient descent for MFNNs exhibits global convergence
(Chizat & Bach, 2018; Mei et al., 2018) and adaptivity (Yang
& Hu, 2020; Ba et al., 2022). To improve stability during
training, one may consider noisy gradient training by adding
Gaussian noise, giving rise to mean-field Langevin dynamics
(MFLD) (Mei et al., 2018; Hu et al., 2019). MFLD, with
N = ∞, also achieves global convergence to the optimal
solution (Hu et al., 2019; Jabir et al., 2019), with an ex-
ponential convergence rate under the uniform log-Sobolev
inequality (LSI) (Nitanda et al., 2022; Chizat, 2022) in the
continuous-time setting.

However, the mean-field limit attained at N = ∞ can-
not be accurately replicated in real-life scenarios. When
employing a finite-particle system ρx, the approximation
error that arises has been studied in the literature on prop-
agation of chaos (PoC) (Sznitman, 1991). In the con-
text of MFLD, Chen et al. (2022); Suzuki et al. (2023a)
proved the uniform-in-time PoC for the trajectory of MFLD.
In particular, in the long-time limit, they established the
bounds L(N)(µ

(N)
∗ ) − L(µ∗) = O

(
λ

αN

)
, where α ≳

exp
(
−Θ

(
1
λ

))
is the LSI constant on proximal Gibbs distri-

butions, λ is the regularization coefficient, and L(N)(µ
(N)
∗ )

and L(µ∗) are the optimal values in finite- and infinite-
particle systems. Subsequently, Nitanda (2024) improved
upon this result by removing α from the above bound, result-
ing in O

(
1
N

)
. This refinement of the bound is significant

as previously, the LSI constant could become exponentially
small as λ→ 0. While Nitanda (2024) also established PoC
for the MFLD trajectory by incorporating the uniform-in-N
LSI (Chewi et al., 2024): L(N)(µ

(N)
t )→ L(N)(µ

(N)
∗ ), this

approach is indirect for showing convergence to the mean-
field limit L(µ∗) and results in a slower convergence rate
over time.

In this work, we further aim to improve PoC for MFLD
by demonstrating a faster convergence rate in time, while
maintaining the final approximation error O

(
1
N

)
attained at

t =∞. We then utilize our result to propose a PoC-based
ensemble technique by demonstrating how finite particle
systems can converge towards the mean-field limit when
merging MFNNs trained in parallel.
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1.1 Contributions

The PoC for MFLD (Chen et al., 2022; Suzuki et al., 2023a)
consists of particle approximation error O

(
λ

αN

)
due to

finite-N -particles and optimization error exp(−Θ(λαt)).
This result basically builds upon the defective LSI: ∃δ > 0,

1

N
L(N)(µ(N))− L(µ∗) ≤

δ

N
+

λ

2αN
FI(µ(N)∥µ(N)

∗ )

implicitly established by Chen et al. (2022) under the uni-
form LSI condition (Nitanda et al., 2022; Chizat, 2022),
where FI is Fisher information. The dependence on LSI-
constant α in O

(
λ

αN

)
of PoC is basically inherited from δ.

In our work, we first remove the dependence on α from δ
by introducing uniform directional LSI (Assumption 3.2) in
training MFNNs setting. Based on this defective LSI, we
then derive an improved PoC for MFLD where the particle
approximation error is O

(
1
N

)
. Similar to Nitanda (2024),

this improvement exponentially reduces the required num-
ber of particles since the constant α ≳ exp

(
−Θ( 1λ )

)
can

exponentially decrease as λ → ∞. Moreover, our result
demonstrates a faster optimization speed compared to Ni-
tanda (2024); Chewi et al. (2024) due to a different exponent
α in the optimization error terms: exp(−Θ(λαt)). In our
analysis, α is a constant of the uniform directional LSI,
which is larger than the LSI constant on µ

(N)
∗ appearing in

the optimization error in Nitanda (2024); Chewi et al. (2024)
(see the discussion following Theorem 3.7).

Next, we translate the PoC result regarding objective
gap into the point-wise and uniform model approxima-
tion errors: |EX∼ρx [h(X, z)] − EX∼µ∗ [h(X, z)]| and
∥EX∼ρx [h(X, ·)] − EX∼µ∗ [h(X, ·)]∥∞ useful for obtain-
ing generalization error bound on classification task (Suzuki
et al., 2023b; Nitanda et al., 2024). Again, the bound con-
sists of the sum of particle approximation and optimiza-
tion error terms. Compared to the previous results (Suzuki
et al., 2023a;b), our bound is tighter since the particle ap-
proximation term is independent of the LSI-constant. This
improvement directly eliminates the requirement for an ex-
ponential number of neurons with respect to dimension d in
their learning setup (e.g., k-parity problems (Suzuki et al.,
2023b)). We also propose a PoC-based model ensemble
method to further reduce the model approximation error and
empirically verify its performance on synthetic datasets. To
our knowledge, our study is the first to provide a theoretical
guarantee for model ensembling of MFNNs using PoC re-
sults. Going beyond the scope of the theory, we examine the
applicability of our method to merging LoRA parameters
for language models.

• We demonstrate an improved PoC for MFLD (Theorem
3.7) under uniform directional LSI condition (Assump-
tion 3.2). This improvement removes the dependence
on LSI constant α ≳ exp

(
−Θ

(
1
λ

))
from the parti-

cle approximation error in Chen et al. (2022); Suzuki
et al. (2023a) and accelerates the optimization speed in
Nitanda (2024); Chewi et al. (2024).

• We translate the PoC result regarding objective gap
into point-wise and uniform model approximation er-
rors (Theorems 4.3, 4.4, and 4.7). These results also
remove the dependence on the LSI constant from the
particle approximation terms in the previous model
approximation errors (Suzuki et al., 2023a;b).

• We propose an ensembling method for MFNNs trained
in parallel to reduce approximation error, providing the-
oretical guarantees (Theorem 4.4, 4.7) and empirical
verification on synthetic datasets. Moreover, going be-
yond the theoretical framework, we apply our method
to merge multiple LoRA parameters of language mod-
els and observe improved prediction performance.

1.2 Notations

We use lowercase letters such as x for vectors and up-
percase letters such as X for random variables Rd, re-
spectively. The boldface is used for tuples of them like
x = (x1, . . . , xN ) ∈ RNd and X = (X1, . . . , XN ). Given
x = (xi)Ni=1, x−i denotes (x1, . . . , xi−1, xi+1, . . . , xN ).
∥ · ∥2 denotes the Euclidean norm. P2(Rd) denotes the
set of probability distributions with finite second moment
on Rd. For probability distributions µ, ν ∈ P2(Rd), we
define Kullback-Leibler (KL) divergence (a.k.a. relative en-
tropy) by KL(µ∥ν) =

∫
dµ(x) log dµ

dν (x) and define Fisher
information by FI(µ∥ν) =

∫
dµ(x)∥∇ log dµ

dν (x)∥
2
2. Ent

denotes the negative entropy: Ent(µ) =
∫
µ(dx) log dµ

dx (x).
We denote ⟨f,m⟩ =

∫
f(x)m(dx) for a (signed) mea-

sure m and integrable function f on Rd. Given x =
(x1, . . . , xN ) ∈ RNd, we write an empirical distribution
supported on x as ρx = 1

N

∑N
i=1 δxi .

2 Preliminaries
In this section, we explain the problem setting and give a
brief literature review of MFLD and PoC. See Appendix C
for additional background information.

2.1 Problem setting

For a functional G : P2(Rd) → R, we say G is differen-
tiable when there exists a functional (referred to as a first
variation): δG

δµ : P2(Rd)× Rd ∋ (µ, x) 7→ δG(µ)
δµ (x) ∈ R

such that for any µ, µ′ ∈ P2(Rd),

dG(µ+ ϵ(µ′ − µ))

dϵ

∣∣∣∣
ϵ=0

=

∫
δG(µ)

δµ
(x)(µ′ − µ)(dx),

2
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and say G is linearly convex when for any µ, µ′ ∈ P2(Rd),

G(µ′) ≥ G(µ) +

∫
δG(µ)

δµ
(x)(µ′ − µ)(dx). (1)

Given a differentiable and linearly convex functional F0 :
P2(Rd) → R and λ > 0, we consider the minimization
problem of an entropy-regularized convex functional:

min
µ∈P2(Rd)

{L(µ) = F0(µ) + EX∼µ[r(X)] + λEnt(µ)} ,

(2)
where r : Rd → R is a λ′-strongly convex function (e.g.,
r(x) = λ′∥x∥22 (λ′ > 0)). We set F (µ) = F0(µ) +
Eµ[r(X)]. A typical example of F0 is an empirical risk
of the two-layer mean-field neural network (see Example
3.5). Throughout the paper, we assume that the solution
µ∗ ∈ P2(Rd) of the problem (2) exists and make the fol-
lowing regularity assumption (Chizat, 2022; Nitanda et al.,
2022; Chen et al., 2023) under which µ∗ is unique and satis-
fies the optimality condition: µ∗ ∝ exp

(
− 1

λ
δF (µ∗)

δµ

)
(see

Hu et al. (2019); Chizat (2022) for the details).

Assumption 2.1. There exists C1, C2 > 0 such that for
any µ ∈ P2(Rd), x ∈ Rd,

∣∣∣∇ δF0(µ)
δµ (x)

∣∣∣ ≤ C1 and for any

µ, µ′ ∈ P2(Rd), x, x′ ∈ Rd,∥∥∥∥∇δF0(µ)

δµ
(x)−∇δF0(µ

′)

δµ
(x′)

∥∥∥∥
2

≤ C2 (W2(µ, µ
′) + ∥x− x′∥2) ,

where W2 is the 2-Wasserstein distance.

2.2 Mean-field Langevin dynamics and
uniform-in-time propagation of chaos

First, consider the finite-particle setting ρx = 1
N

∑N
i=1 δxi

for x = (xi)Ni=1 ∈ RdN and the following noisy gradient de-
scent for F (ρx). Given k-th iteration Xk = (X1

k , . . . , X
N
k ),

for each i ∈ {1, 2, . . . , N}, we perform

Xi
k+1 = Xi

k − η∇δF (ρXk
)

δµ
(Xi

k) +
√
2ληξik, (3)

where ξik ∼ N (0, Id) (i ∈ {1, 2, . . . , N}) are i.i.d. stan-
dard normal random variables and the gradient in the RHS
is taken for the function: δF (ρXt )

δµ (·) : Rd → R. The
continuous-time representation of Eq. (3) is given by the
N -tuple of SDEs {Xt}t≥0 = {(X1

t , . . . , X
N
t )}t≥0:

dXi
t = −∇

δF (ρXt
)

δµ
(Xi

t)dt+
√
2λdW i

t , (4)

where {W i
t }t≥0, (i ∈ {1, . . . , N}) are independent stan-

dard Brownian motions. Note that Eq. (4) is equivalent
to the Langevin dynamics dXt = −N∇XF (ρXt)dt +

√
2λdWt on RdN , where {Wt}t≥0 is the standard Brow-

nian motion on RdN since N∇xiF (ρx) = ∇ δF (µx)
δµ (xi)

(Chizat, 2022). Therefore, µ(N)
t = Law(Xt) converges to

the Gibbs distribution

dµ
(N)
∗

dx
(x) ∝ exp

(
−N

λ
F (ρx)

)
.

which minimizes the following entropy-regularized linear
functional defined on P2(RdN ): for µ(N) ∈ P2(RdN ),

L(N)(µ(N)) = NEX∼µ(N) [F (ρX)] + λEnt(µ(N)). (5)

Next, we take the mean-field limit: N → ∞ under which
Eq. (4) converges to the MFLD that solves the problem
Eq. (2);

dXt = −∇
δF

δµ
(µt)(Xt)dt+

√
2λdWt, µt = Law(Xt),

(6)
where {Wt}t≥0 is the d-dimensional standard Brownian
motion with W0 = 0. Under the log-Sobolev inequality
on the proximal Gibbs distribution µ̂ ∝ exp

(
− 1

λ
δF
δµ

)
, Ni-

tanda et al. (2022); Chizat (2022) showed the exponential
convergence of the objective gap L(µt) − L(µ∗), where
µ∗ = argminµ∈P2(Rd) L(µ).

Therefore, 1
NL

(N)(µ
(N)
k ), where µ

(N)
k = Law(Xk), is ex-

pected to approximate L(µ∗) through the time and mean-
field limit k →∞, N →∞, leading to the natual question:

What is the convergence rate of 1
NL

(N)(µ
(N)
k ) to L(µ∗)?

This approximation error has been studied in the literature
of PoC. Recently, Suzuki et al. (2023a) proved the following
uniform-in-time PoC for Eq. (3) by using the techniques in
Chen et al. (2022):

1

N
L(N)(µ

(N)
k )− L(µ∗) ≤ exp (−λαηk/2)∆(N)

0 + δη,N ,

(7)

where ∆
(N)
0 = 1

NL
(N)(µ

(N)
0 ) − L(µ∗) is the initial gap

and δη,N = (λη+η2)D1

λα + λD2

αN (∃D1, D2 > 0) is the dis-
cretization error in time and space. The continuous-time
counterpart (η → 0) was proved by Chen et al. (2022).
The typical estimation of LSI-constant α ≳ exp(−Θ(1/λ))
(e.g., Theorem 1 in Suzuki et al. (2023a)) using Holley and
Stroock argument (Holley & Stroock, 1987) or Miclo’s trick
(Bardet et al., 2018)) suggests the exponential blow-up of
the particle approximation error λD2

αN in Eq. (7) as λ→ 0.

Afterward, this exponential dependence was removed by
Nitanda (2024); Chewi et al. (2024) that evaluate the particle
approximation error at the solution: 1

NL
(N)(µ

(N)
∗ )−L(µ∗)
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and optimization error: 1
N

(
L(N)(µ

(N)
k )− L(N)(µ

(N)
∗ )

)
,

respectively. In the risk minimization problem setting,
Nitanda (2024) proved 1

NL
(N)(µ

(N)
∗ ) − L(µ∗) ≤ C

N
(∃C > 0) and Chewi et al. (2024) proved uniform-in-
N LSI on µ

(N)
∗ ∈ RdN with the constant estimation

ᾱ ≳ λ′

λ exp
(
−O

(
1
λ′ +

1
λλ′ +

1
λ2λ′3

))
, leading to the N -

independent convergence rate of 1
NL

(N)(µ
(N)
k ) − L(µ∗)

up to the particle approximation error C/N plus time-
discretization error.

3 Main Result I: Improved Propagation of
Chaos for Mean-field Neural Network

In this section, we present an improved propagation-of-
chaos for the mean-field Langevin dynamics under the uni-
form directional LSI introduced below.

Definition 3.1. For x−i = (x1, . . . , xi−1, xi+1, . . . , xN )
(i ∈ {1, 2, . . . , N}), we define a conditional Gibbs distribu-
tion νi|−i(·|x−i) on Rd by

dνi|−i

dx
(x|x−i) =

exp
(
−N

λ F (ρx∪x−i)
)∫

exp
(
−N

λ F (ρx̃∪x−i)
)
dx̃

,

where ρx∪x−i = 1
N

∑
j ̸=i δxj + 1

N δx.

Assumption 3.2 (Uniform directional LSI). There exists
a constant α > 0 such that for any x ∈ RdN and i ∈
{1, 2, . . . , N}, νi|−i(·|x−i) satisfies the LSI with the con-
stant α; for all µ ∈ P2(Rd) absolutely continuous w.r.t.
νi|−i(· | x−i), it follows that

KL(µ∥νi|−i(·|x−i)) ≤ 1

2α
FI(µ∥νi|−i(·|x−i)).

Remark. Wang (2024) also introduced the conditional
Gibbs distribution and imposed a Poincaré inequality on it.

We also make the following assumptions.

Assumption 3.3. A functional F0(µ) is differentiable and
linearly convex.

The nonlinearity of F0 is the key to the PoC analysis for
mean-field models, thereby motivating the use of the Breg-
man divergence associated with F0 (Nitanda, 2024); for
distributions µ, µ′ ∈ P2(Rd),

BF0(µ, µ
′) = F0(µ)− F0(µ

′)−
〈
δF0(µ

′)

δµ
, µ− µ′

〉
.

Assumption 3.4. There exists a constant B > 0 such that
for any x ∈ RdN , x ∈ Rd, and i ∈ {1, 2, . . . , N},

BF0
(ρx∪x−i , ρx) ≤

B

N2
.

We give an example of training MFNNs, which satisfies
Assumptions 3.2, 3.3, and 3.4.

Example 3.5 (Training MFNN). Let Y ⊂ R be a label
space, Z ⊂ Rd′

be an input data space, h(x, ·) : Z →
R be a function parameterized by x ∈ Rd, and ℓ(·, ·) :
R × R → R is a loss function. Given training examples
{(zj , yj)}nj=1 ⊂ Z × Y , we consider the empirical risk:

F0(µ) =
1

n

n∑
j=1

ℓ (EX∼µ[h(X, zj)], yj) ,

and L2-regularizaton r(x) = λ′∥x∥22. We assume that
supx∈Rd,z∈Z |h(x, z)| ≤ R and that for any y ∈ R,
ℓ(·, y) is convex and L-smooth; there exists L > 0 such
that for any a, b ∈ R, ℓ(b, y) ≤ ℓ(a, y) + ∂ℓ(a,y)

∂a (b −
a) + L

2 |b − a|2. Applying this L-smoothness with a =
Eρx [h(X, zj)], b = Eρx∪x−i [h(X, zj)], y = yj and taking
average over j ∈ {1, 2, . . . , n}, we get BF0(ρx∪x−i , ρx) ≤
L
2n

∑n
j=1

∣∣∣h(xi,zj)
N

∣∣∣2 ≤ LR2

2N2 . Moreover, we assume
sup|a|≤R,y∈Y,x∈Rd,z∈Z ∥∂1ℓ(a, y)∂xh(x, z)∥ ≤ R′. Then,
by the contraction principle (Proposition 5.4.3 in Bakry et al.
(2014)) with Theorem 1.4 in Brigati & Pedrotti (2024), As-
sumption 3.2 holds with α = 2λ′

λ exp
(
− R′2

2λλ′ − 4R′
√
2λλ′

)
(see also Lemma 6 in Chewi et al. (2024)).

The defective LSI developed by Chen et al. (2022) is the
key condition to study MFLD in finite-particle setting. We
here derive an improved variant by exploiting the problem
structure and uniform directional LSI. The proof can be
found in Appendix A.1.

Lemma 3.6 (Defective LSI). Suppose Assumptions 3.2, 3.3,
and 3.4 hold. Then, it follows that for any µ(N) ∈ P2(RdN ),

λ

N
KL(µ(N)∥µ⊗N

∗ ) + EX∼µ(N) [BF0(ρX, µ∗)]

=
1

N
L(N)(µ(N))− L(µ∗) ≤

B

N
+

λ

2αN
FI(µ(N)∥µ(N)

∗ ).

Lemma 3.6 gives an approximation error bound between
µ(N) and µ⊗N

∗ , which shrinks up to B/N error as µ(N) →
µ
(N)
∗ and shrinks to zero by additionally taking N → ∞,

meaning that each particle of the system (X1, . . . , XN ) ∼
µ(N) becomes independent to each other. Compared to
the original result (Chen et al., 2022), the particle approxi-
mation term B/N is independent of α, similar to Nitanda
(2024). Note that whereas Nitanda (2024) only consider the
case of µ(N) = µ

(N)
∗ , our result allows for any distribution

µ(N) at the cost of the Fisher information FI(µ(N)∥µ(N)
∗ ).

Lemma 3.6 can be indeed regarded as an extended LSI on
the finite-particle system and nonlinear mean-field objective,
where Fisher information is lower bounded by the optimal-
ity gap up to B/N error. In particular, when F0 is the linear

4
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functional: F0(µ) = Eµ[f ] (∃f : Rd → R), the lemma
reproduces the standard LSI on µ

(N)
∗ :

KL(µ(N)∥µ(N)
∗ ) ≤ 1

2α
FI(µ(N)∥µ(N)

∗ )

because µ
(N)
∗ = µ⊗N

∗ , BF0
= 0, and B = 0 in this case.

Therefore, Lemma 3.6 is instrumental in the computational
complexity analysis of MFLD in the finite-particle set-
ting as shown in the following theorem. We set ∆(N)

0 =
1
NL

(N)(µ
(N)
0 )− L(µ∗).

Theorem 3.7 (Propagation chaos for MFLD). Suppose As-
sumptions 2.1, 3.2, 3.3, and 3.4 hold and consider the L2-
regularization: r(x) = λ′∥x∥22 (λ′ > 0). Then,

1. MFLD in the continuous-time (4) satisfies

1

N
L(N)(µ

(N)
t )− L(µ∗) ≤

B

N
+ exp(−2αλt)∆(N)

0 .

2. MFLD in the discrete-time (3) with ηλ′ < 1/2 satisfies

1

N
L(N)(µ

(N)
k )−L(µ∗) ≤

B

N
+

δη
αλ

+exp(−αληk)∆(N)
0 ,

where δη = 8η(C2
2 + λ′2)(ηC2

1 + λd) + 32η2λ′2(C2
2 +

λ′2)

(
E[∥X0∥2

2]
N + 1

λ′

(
C2

1

4λ′ + λd
))

.

Proof. We here demonstrate the convergence in the
continuous-time setting. The distribution µ

(N)
t = Law(Xt)

of Eq. (4) satisfies the following Fokker-Planck equation:

∂µ
(N)
t

∂t
= λ∇ ·

(
µ
(N)
t log

dµ
(N)
t

dµ
(N)
∗

)
.

By the standard argument of Langevin dynamics (e.g., Vem-
pala & Wibisono (2019)) and Lemma 3.6, we get

d

dt
(L(N)(µ

(N)
t )−NL(µ∗)−B) = −λ2FI(µ

(N)
t ∥µ(N)

∗ )

≤ −2αλ(L(N)(µ
(N)
t )−NL(µ∗)−B).

Then, the statement follows from a direct application of
the Grönwall’s inequality. The convergence in the discrete-
time is also proved by incorporating one-step iterpolation
argument. See Appendix A.1.

From this result, we see that MFLD indeed induces the
PoC regarding KL-divergence. In fact, the following in-
equality, which is a direct consequence of Lemma 3.6 with
Theorem 3.7 in the continuous-time, shows that the parti-
cles (Xi

t)
N
i=1 ∼ µ

(N)
t become independent as t → ∞ and

N →∞:

1

N
KL(µ

(N)
t ∥µ⊗N

∗ ) ≤ B

λN
+ exp(−2αλt)∆

(N)
0

λ
. (8)

We note that the particle approximation term B/N in The-
orem 3.7 is independent of LSI-constants, whereas the er-
ror O( λ

α′N ) obtained in Suzuki et al. (2023a) scales in-
versely with an LSI constant α′ on the proximal Gibbs
distribution which can be exponentially small as λ → 0.
Whereas the term B/N is comparable to Nitanda (2024);
Chewi et al. (2024), our convergence rate exp(−2αλt)
in optimization is faster since their results rely on the
LSI constant ᾱ on µ

(N)
∗ which is smaller than α =

λ′

λ exp
(
−R′2

λλ′ − 4R′
√
λλ′

)
(Example 3.5) in general1. For

instance, Chewi et al. (2024) estimated the LSI constant
ᾱ ≳ λ′

λ exp
(
−O

(
1
λ′ +

1
λλ′ +

1
λ2λ′3

))
.

4 Main Result II: Model Approximation
Error and PoC-based Model Ensemble

In this section, we study how MFNNs trained with MFLD
approximate the mean-field limit: EX∼µ∗ [h(X, z)]. More-
over, we present a PoC-based model ensemble method
that further reduces the error. Throughout this section,
we focus on training MFNNs (Example 3.5) and suppose
supx∈Rd,z∈Z |h(x, z)| ≤ R.

4.1 Point-wise model approximation error

We consider point-wise model approximation error
between EX∼ρX

[h(X, z)] = 1
N

∑N
i=1 h(X

i, z) and
EX∼µ∗ [h(X, z)] on each point z ∈ Z , where X =
(X1, . . . , XN ) ∼ µ(N). The error usually consists of the
bias and variance terms where the bias means the difference
between µ(N) and µ⊗N

∗ and the variance is due to finite-N
particles. In general, it is not straightforward to show the
variance reduction as N → ∞ since Xi (i = 1, 2, . . . , N)
are not independent, and hence can exhibit positive corre-
lation. However, in our setting, PoC helps to reduce the
correlation among particles, resulting in better approxima-
tion error via the variance reduction.

Since we are concerned with the correlation between each
pair of particles, we reinterpret KL(µ(N)∥µ⊗N

∗ ) as the gap
between their marginal distributions. For each index subset
S ⊂ {1, . . . , N}, we denote by µ

(N)
S the marginal distri-

bution of µ(N) on S and write µ
(N)
1:s = µ

(N)
{1,...,s}, µ(N)

i =

µ
(N)
{i} , µ

(N)
i,j = µ

(N)
{i,j} for simplicity. We say the distribution

µ(N) is exchangeable if the laws of (Xσ(1), . . . , Xσ(N))
and (X1, . . . , XN ) are identical for all permutation σ :
{1, 2, . . . , N} → {1, 2, . . . , N}.

Lemma 4.1. For any integers s,N ∈ N such that s ≤ N ,

1However, we note PoC result obtained by Chewi et al. (2024)
is applicable to non-bounded activation functions such as ReLU.

5



Propagation of Chaos for Mean-Field Langevin Dynamics

it follows that

N

s
(
N
s

) ∑
|S|=s

KL(µ
(N)
S ∥µ⊗s

∗ ) ≤ KL(µ(N)∥µ⊗N
∗ ).

In particular, if µ(N) is exchangeable, we get

N

s
KL(µ

(N)
1:s ∥µ⊗s

∗ ) ≤ KL(µ(N)∥µ⊗N
∗ ).

Proof. The assertion holds by the direct application of Han’s
inequality. See Appendix A.2.

We here give the model approximation bound using
KL(µ(N)∥µ⊗N

∗ ) with the proof to show how the above
lemma helps to control the correlation across particles.

Proposition 4.2. Suppose µ(N) is exchangeable. Then, it
follows that for any z ∈ Z ,

EX∼µ(N)

[
(EX∼ρX

[h(X, z)]− EX∼µ∗ [h(X, z)])
2
]

≤ 4R2

N
+ 8R2

√
KL(µ(N)∥µ⊗N

∗ )

N
.

Proof. We here decompose the error as follows.

EX∼µ(N)

[
(EX∼ρX

[h(X, z)]− EX∼µ∗ [h(X, z)])
2
]

=
1

N2
EX∼µ(N)

[
N∑
i=1

(h(Xi, z)− EX∼µ∗ [h(X, z)])
2

]

+
1

N2
EX∼µ(N)

[∑
i ̸=j

(h(Xi, z)− EX∼µ∗ [h(X, z)])

· (h(Xj , z)− EX∼µ∗ [h(X, z)])

]
.

Using the boundedness of h, the first term can be upper
bounded by 4R2/N . The second term can be evaluated as
follows. Set H(Xi) = h(Xi, z)− EX∼µ∗ [h(X, z)]. Then,

EX∼µ(N) [H(Xi)H(Xj)]

= E
(Xi,Xj)∼µ

(N)
i,j

[H(Xi)H(Xj)]

= E(Xi,Xj)∼µ⊗2
∗

[H(Xi)H(Xj)]

+ (E
(Xi,Xj)∼µ

(N)
i,j
− E(Xi,Xj)∼µ⊗2

∗
) [H(Xi)H(Xj)]

≤ 8R2TV(µ
(N)
1,2 , µ⊗2

∗ )

≤ 4R2
√
2KL(µ

(N)
1,2 ∥µ

⊗2
∗ ),

where TV is the TV-norm and we used Pinsker’s inequality.
Applying Lemma 4.1 with s = 2, we finish the proof.

In the proof, we see that KL-divergence controls the cross
term by absorbing the difference between marginal distribu-
tions µ(N)

i,j and µ⊗2. By combining this result with the PoC
for MFLD (Theorem 3.7), we arrive at the model approxi-
mation error achieved by MFLD.

Theorem 4.3. Under the same conditions as in Theorem
3.7, we run MFLD in the discrete-time, with ηλ′ < 1/2 and
X0 ∼ µ⊗N

0 . Then we get

E
X∼µ

(N)
k

[
(EX∼ρX

[h(X, z)]− EX∼µ∗ [h(X, z)])
2
]

≤ 4R2

N
+ 8R2

√
B

λN
+

δη
αλ2

+ exp (−αληk) ∆
(N)
0

λ
.

Note that exchangeability of µ(N)
k is satisfied at all itera-

tions because of the symmetric structure of problem and
initialization with respect to particles.

Model Ensemble We introduce the PoC-based model en-
semble to further reduce the approximation error. We first
train M MFNNs of N -neurons in parallel with the same
settings and obtain sets of optimized particles Xj (j =
1, 2, . . . ,M) where each Xj = (X1

j . . . , X
N
j ) represents

each network and they are independent to each other. We
then integrate them into a single network of MN -neurons
as follows:

1

M

M∑
j=1

EX∼ρXj
[h(X, z)] =

1

MN

M∑
j=1

N∑
i=1

h(Xi
j , z). (9)

Because of the independence of networks {Xj}Mj=1, vari-
ance reduction occurs, resulting in the improved approx-
imation error. Indeed, by extending Proposition 4.2 into
an ensemble setting (see Proposition A.1) and using PoC
(Theorem 3.7), we get the following bound. The proof is
deferred to Appendix A.2.

Theorem 4.4. Under the same conditions as in Theorem 3.7,
we run M -parallel MFLD in the discrete time independently,
with ηλ′ < 1/2 and Xj,0 ∼ µ⊗N

0 (j = 1, 2, . . . ,M). Then

E{Xj,k}M
j=1


 1

M

M∑
j=1

EρXj,k
[h(X, z)]− Eµ∗ [h(X, z)]

2


≤ 4R2

MN
+

8R2

M

√
B

λN
+

δη
αλ2

+ exp(−αληk)∆
(N)
0

λ

+ 2R2

(
B

λN
+

δη
αλ2

+ exp(−αλk)∆
(N)
0

λ

)
,

where Xj,k is the particles at k-iteration for j-th network.
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For simplicity, we consider the bound 4R2

MN + 8R2

M

√
B
λN +

2R2B
λN obtained in the limit k → ∞, η → 0. This bound

indicates that increasing M offers better scalability than
increasing N , as long as the second term dominates. In fact,
under the constraint MN = Θ(K), where K denotes the
total number of neurons, the bound suggests a non-trivial
choice for the number of networks M . Rewriting the bound
using M and K, we obtain O

(
1
K + 1√

λMK
+ M

λK

)
. This

shows that M induces a trade-off, and the bound achieves
its minimum value of O

(
1

(λK)2/3

)
when M = λ1/3K1/3.

This phenomenon arises because training multiple networks
enhances the independence among particles.

Remark. Our result can extend to randomly pruned net-
works. That is, we consider randomly pruning (N − s)-
neurons after training the MFNN of N -neurons. Then, we
get the counterpart of Proposition 4.2 as follows.

E
X∼µ

(N)
1:s

[
(EX∼ρX

[h(X, z)]− EX∼µ∗ [h(X, z)])
2
]

≤ 4R2

s
+ 8R2

√
KL(µ(N)∥µ⊗N

∗ )

N
,

where µ
(N)
1:s is the distribution of remaining neurons. More-

over, Theorem 4.4 can also extend to the ensemble model
of randomly pruned networks in the same way.

4.2 Uniform model approximation error

We here consider uniform model approximation error over
z ∈ Z , which is more useful than point-wise evaluation
in the machine learning scenario such as generalization
analysis. The uniform bound essentially requires complexity
evaluation of the model, and hence we make the additional
assumption to control the complexity.

Assumption 4.5.

• The data domain is bounded: Z ⊂ [−1, 1]d ⊂ Rd

• There exists β > 0 such that for any x ∈ Rd, z, z′ ∈ Z ,

|h(x, z)− h(x, z′)| ≤ β∥x∥2∥z − z′∥2.

For example, h(x, z) = R
3 (tanh(x

1⊤z + x2) +
2 tanh(x3)), (x1 ∈ Rd, (x2, x3) ∈ R2), used in Suzuki
et al. (2023b) satisfies the above assumption with β = R

3
due to 1-Lipschitz continuity of tanh.

Given random variables {Xj}Mj=1, (Xj = (X1
j , . . . , X

N
j )),

we consider the empirical Rademacher complexity of the
function class F = {x 7→ h(x, z) | z ∈ Z}:

R̂N,M (F) = Eσ

sup
f∈F

∣∣∣∣∣∣ 1

MN

M∑
j=1

N∑
i=1

σi
jf(X

i
j)

∣∣∣∣∣∣
 ,

where the expectation is taken over the Rademacher random
variables σ = (σi

j) which are i.i.d. with the probability
P[σi

j = 1] = P[σi
j = −1] = 1. Here, we utilize the uniform

laws of large numbers to evaluate the approximation error
of an ensemble model defined by µ⊗N

∗ ; note that the result
for a single model is obtained as a special case M = 1.
Lemma 4.6. Let Xj ∼ µ⊗N

∗ (j = 1, 2, . . . ,M) be indepen-
dent random variables. For δ ∈ (0, 1), it follows that with
high probability 1− δ,∥∥∥∥∥∥ 1

M

M∑
j=1

EρXj
[h(X, ·)]− Eµ∗ [h(X, ·)]

∥∥∥∥∥∥
∞

≤ 2E{Xj}M
j=1

[
R̂N,M (F)

]
+R

√
2 log(1/δ)

MN
.

Proof. The lemma follows directly by applying the uniform
law of large numbers to the function class F (see, for in-
stance, Mohri et al. (2012).

The complexity E{Xj}M
j=1

[
R̂N,M (F)

]
can be then eval-

uated by Dudley’s entropy integral (Lemma A.2) under
Assumption 4.5 and the boundedness |h(x, z)| ≤ R. By
using the variational formulation of KL-divergence (e.g.,
Corollary 4.15 in Boucheron et al. (2013)), we translate
the result of Lemma 4.6 into the approximation error of
an ensemble model obtained by M independent parallel
iterates Xj,k ∼ µ

(N)
k (j = 1, 2, . . . ,M) of MFLDs. Com-

bining these techniques with Theorem 3.7, we conclude the
following theorem.
Theorem 4.7. Suppose Assumption 4.5 and the same con-
ditions as in Theorem 3.7 hold. Run M -parallel MFLD
in the discrete time independently, with ηλ′ < 1/2 and
Xj,0 ∼ µ⊗N

0 (j = 1, 2, . . . ,M). Then we get

E{Xj,k}

∥∥∥∥∥∥ 1

M

M∑
j=1

EX∼ρxj,k
[h(X, ·)]− EX∼µ∗ [h(X, ·)]

∥∥∥∥∥∥
∞


= Õ

(
R

√
d

MN
+

dB

λN
+

dλ

MN(λ+MB)

)

+O

(
R

√
dλMN

λ+MB

(
δη
αλ2

+
1

λ
exp(−αληk)∆(N)

0

))
.

Here, the Õ-notation hides logarithmic factors. As for
the concrete bound and proofs, see Appendix A.3. The
term

√
d

MN + B
λN + dλ

MN(λ+MB) represents the particle
approximation error due to finite N particles, and even
when M = 1, they improve upon the bound in Suzuki
et al. (2023a;b) by removing the LSI constant α from the
corresponding term. And the upper bound shows the im-
provement as M increases.
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Table 1. Accuracy comparison of LoRA and PoC-based merging for finetuning Llama models.
Model Method SIQA PIQA WinoGrande OBQA ARC-c ARC-e BoolQ HellaSwag Ave.

Llama2
7B

LoRA (32, best) 79.48 82.43 81.77 80.60 67.75 80.47 70.37 86.67 78.69
LoRA (256) 69.95 69.69 69.61 61.40 47.44 61.15 63.73 47.27 61.28
PoC merge 81.17 84.60 85.16 86.60 72.53 86.62 72.45 92.79 82.74

Llama3
8B

LoRA (32, best) 81.22 89.50 86.74 86.00 79.86 90.53 72.91 95.34 85.26
LoRA (256) 81.06 87.60 87.61 84.60 78.92 90.06 75.11 94.98 84.99
PoC merge 82.04 89.39 89.27 89.20 83.28 92.30 76.33 96.58 87.30

5 Experiments
We verify the validity of our theoretical results, by conduct-
ing numerical experiments on synthetic data in both clas-
sification and regression settings using mean-field neural
networks. Finally, we further substantiate the applicability
of our method on LoRA training of language models.

5.1 Mean-field neural networks

To demonstrate Theorem 4.7, we compute the log sup norm
between the ouptuts of an (approximately) infinite width
network and a merged network, both trained using noisy
gradient descent. A finite-width approximation of the mean-
field neural network is employed with N = N∞ while
the merged network is obtained by merging M different
networks of N neurons each. This is repeated across various
values of N and M . See Appendix B.1 for more details
about our methodology.

Classification setting We consider the binary classifica-
tion of n data points generated along the perimeters of two
concentric circles with radius rinner and router, where labels
are assigned according to the circle a data point belongs to.

Regression setting We consider regression on the k multi-
index problem. Each input sample zi =

(
z1i , . . . , z

d
i

)
∈ Rd

is generated uniformly within a d-dimensional hypersphere
of radius r. Let g : Rd → R be a link function, then
yi = g(zi) =

1
k

∑k
j=1 tanh(z

j
i ) ∈ R, where k ≤ d, k ∈ R.

From Figure 1, we see that the merged networks converge
towards the mean-field limit as M and N increase. This
aligns with our theoretical findings which suggests that the
sup norm of the approximation error decreases when more
particles are added (ensembling in our experimental set-
up) or increasing the ensemble size. See Appendix B.2 for
supplementary experiments.

5.2 LoRA for finetuning language models

Beyond the scope of the theory, we empirically verify the
applicability of our ensemble technique to finetuning lan-
guage models using LoRA. Given a pre-trained parameter
W0 ∈ Rk×d of a linear layer, LoRA introduces low-rank

Figure 1. Heat maps of sup norm (in log-scale) between N∞ and
merged networks when varying M and N .

matrices A ∈ RN×d and B ∈ Rk×N , and represents the
fine-tuned parameter as W0+γ∆W = W0+γBA (γ > 0).
Then, only A and B are optimized, leaving W0 frozen. Us-
ing the expression A⊤ = (a1, . . . , aN ) (ai ∈ Rd) and
B = (b1, . . . , bN ) (bi ∈ Rk), we can reformalize LoRA
parameter γBA with γ = 1/N as the MFNN: Rd ∋ z →
1
N

∑N
i=1 h((a

i, bi), z) ∈ Rk where h((ai, bi), z) = biai⊤z.
Therefore, we can apply PoC-based model ensemble for
LoRA parameters. Note that the ensemble model is reduced
to a single (k×d)-matrix ∆W due to the linearity of the ac-
tivation function, and therefore it does not require additional
memory and time for inference.

We use commonsense reasoning datasets (Hu et al.,
2023): SIQA, PIQA, WinoGrande, OBQA, ARC-c, ARC-
e, BoolQ, and HellaSwag, and use language models:
Llama2-7B (Touvron et al., 2023) and Llama3-8B (Dubey
et al., 2024). We first optimize the multiple LoRA
parameters {(Aj ,Bj)}Mj=1 using noisy AdamW where√
2ληkξk (step-size ηk, standard Gaussian noise ξk) is

added to each parameter update of AdamW (Loshchilov
& Hutter, 2019). Then, we merge them into ∆W =

1
MN

∑
i,j b

i
ja

i⊤
j ∈ Rk×d. Hyperparameters are set to

N = 32,M = 8, λ = 10−5 and the number of epochs
is 3. In Table 1, we compare the accuracy of the merged
parameter with the base parmeters of LoRA. For LoRA, the
row “LoRA (32, best)” presents the best result achieved
among eight different LoRA parameters based on the av-
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erage accuracy across all datasets. For both models, we
observed that PoC-based model merging significantly im-
proves the finetuning performance. For comparison under
the same computational budget MN = 256, we report the
results obtained by LoRA with M = 1 and N = 256 in the
row “LoRA (256)”. We also verify the performance using
one-epoch training to examine the effect of Gaussian noise
in parameter updates. See Appendix B.3 for more details.

Conclusion and Discussion
We established an improved PoC for MFLD that accelerates
optimization speed in Nitanda (2024); Chewi et al. (2024)
while achieving the same particle complexity O(1/N). We
then translated this result into model approximation error
bounds, and derived a PoC-based model ensemble method
with an empirical verification. Moreover, we substantiated
its applicability to fine-tuning language models using LoRA.

One limitation of our theory is that it cannot explain the
asymptotic behavior as λ→ 0. This is also the case in pre-
vious work since the optimization speed essentially slows
down exponentially, which is inevitable in general as dis-
cussed in the literature. However, there might be room to
tighten the particle approximation term B

λN with respect
to λ in the model approximation bounds. This term arises
from the KL-divergence, which essentially controls the cor-
relation among particles, as seen in the proof of Proposition
4.2. However, KL-divergence may be excessive for this
purpose. Therefore, one interesting future direction is to
utilize a PoC with respect to a smaller metric that alleviates
the dependence on λ.

Acknowledgements
This research is supported by the National Research Founda-
tion, Singapore, Infocomm Media Development Authority
under its Trust Tech Funding Initiative, and the Ministry of
Digital Development and Information under the AI Visiting
Professorship Programme (award number AIVP-2024-004).
Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do
not reflect the views of National Research Foundation, Sin-
gapore, Infocomm Media Development Authority, and the
Ministry of Digital Development and Information. TS was
partially supported by JSPS KAKENHI (24K02905) and
JST CREST (JPMJCR2115).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Ba, J., Erdogdu, M. A., Suzuki, T., Wang, Z., Wu, D., and

Yang, G. High-dimensional asymptotics of feature learn-
ing: How one gradient step improves the representation.
In Advances in Neural Information Processing Systems
35, 2022.

Bakry, D., Gentil, I., and Ledoux, M. Analysis and geometry
of Markov diffusion operators, volume 348. 2014.

Bardet, J.-B., Gozlan, N., Malrieu, F., and Zitt, P.-A. Func-
tional inequalities for gaussian convolutions of compactly
supported measures: Explicit bounds and dimension de-
pendence. Bernoulli, 24(1):333 – 353, 2018.

Boucheron, S., Lugosi, G., and Massart, P. Concentration
inequalities: a non asymptotic theory of independence,
2013.

Breiman, L. Bagging predictors. Machine Learning, 24:
123–140, 1996.

Brigati, G. and Pedrotti, F. Heat flow, log-concavity, and lip-
schitz transport maps. arXiv preprint arXiv:2404.15205,
2024.

Chen, F., Ren, Z., and Wang, S. Uniform-in-time propaga-
tion of chaos for mean field langevin dynamics. arXiv
preprint arXiv:2212.03050, 2022.

Chen, F., Ren, Z., and Wang, S. Entropic fictitious play for
mean field optimization problem. Journal of Machine
Learning Research, 24(211):1–36, 2023.

Cheng, J., Bibaut, A., and van der Laan, M. The relative
performance of ensemble methods with deep convolu-
tional neural networks for image classification. Journal
of Applied Statistics, 45(15):2800–2818, 2018.

Chewi, S., Nitanda, A., and Zhang, M. S. Uniform-in-n log-
sobolev inequality for the mean-field langevin dynamics
with convex energy. arXiv preprint arXiv:2409.10440,
2024.

Chizat, L. Mean-field langevin dynamics: Exponential
convergence and annealing. Transactions on Machine
Learning Research, 2022.

Chizat, L. and Bach, F. On the global convergence of gradi-
ent descent for over-parameterized models using optimal
transport. In Advances in Neural Information Processing
Systems 31, pp. 3040–3050, 2018.

Chronopoulou, A., Peters, M. E., Fraser, A., and Dodge,
J. Adaptersoup: Weight averaging to improve general-
ization of pretrained language models. In Findings of
the Association for Computational Linguistics 61, pp.
2054–2063, 2023.

9



Propagation of Chaos for Mean-Field Langevin Dynamics

Davari, M. R. and Belilovsky. Model breadcrumbs: Scaling
multi-task model merging with sparse masks. In Euro-
pean Conference on Computer Vision 18, 2024.

Dembo, A., Cover, T. M., and Thomas, J. A. Information
theoretic inequalities. IEEE Transactions on Information
theory, 37(6):1501–1518, 1991.

Dietterich, T. G. Ensemble methods in machine learning.
In International workshop on multiple classifier systems,
pp. 1–15, 2000.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Frankle, J., Dziugaite, G. K., Roy, D., and Carbin, M. Linear
mode connectivity and the lottery ticket hypothesis. In
International Conference on Machine Learning, pp. 3259–
3269, 2020.

Ganaie, M., Hu, M., Malik, A., Tanveer, M., and Suganthan,
P. Ensemble deep learning: A review. Engineering Appli-
cations of Artificial Intelligence, 115:105–151, 2022.

Gauthier-Caron, T., Siriwardhana, S., Stein, E., Ehghaghi,
M., Goddard, C., McQuade, M., Solawetz, J., and
Labonne, M. Merging in a bottle: Differentiable adaptive
merging (dam) and the path from averaging to automation.
arXiv preprint arXiv:2410.08371, 2024.

Goddard, C., Siriwardhana, S., Ehghaghi, M., Meyers, L.,
Karpukhin, V., Benedict, B., McQuade, M., and Solawetz,
J. Arcee’s mergekit: A toolkit for merging large language
models. arXiv preprint arXiv:2403.13257, 2024.

Hansen, L. K. and Salamon, P. Neural network ensembles.
In Proceedings of the IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, volume 12, pp. 993–1001,
1990.

Hardt, M., Recht, B., and Singer, Y. Train faster, gen-
eralize better: Stability of stochastic gradient descent.
In Proceedings of International Conference on Machine
Learning 33, pp. 1225–1234, 2016.

Holley, R. and Stroock, D. Logarithmic sobolev inequalities
and stochastic ising models. Journal of statistical physics,
46(5-6):1159–1194, 1987.

Hu, K., Ren, Z., Siska, D., and Szpruch, L. Mean-field
langevin dynamics and energy landscape of neural net-
works. arXiv preprint arXiv:1905.07769, 2019.

Hu, Z., Wang, L., Lan, Y., Xu, W., Lim, E.-P., Bing, L.,
Xu, X., Poria, S., and Lee, R. Llm-adapters: An adapter
family for parameter-efficient fine-tuning of large lan-
guage models. In Proceedings of the 2023 Conference on

Empirical Methods in Natural Language Processing, pp.
5254–5276, 2023.

Ilharco, G., Wortsman, M., Gadre, S. Y., Song, S., Korn-
blith, S., Farhadi, A., and Schmidt, L. Patching open-
vocabulary models by interpolating weights. In Advances
in Neural Information Processing Systems 35, 2022.

Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., and
Wilson, A. G. Averaging weights lead to wider optima
and better generalization. In Conference on Uncertainty
in Artificial Intelligence 34, pp. 876–885, 2018.
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A Proofs

A.1 Propagation of chaos for MFLD (Section 3)

Proof of Lemma 3.6. The first equality of the assertion was proved by Nitanda (2024). We here prove the inequality by
utilizing the argument of conditional and marginal distribution of µ(N) (Chen et al., 2022).

For X ∼ µ(N), we denote by µ
(N)
i|−i(·|x

−i) and µ
(N)
−i the conditional distribution of Xi conditioned by X−i = x−i and the

marginal distribution of X−i, respectively. It holds that

Ex∼µ(N)

∥∥∥∥∥∇ log
dµ(N)

dµ
(N)
∗

(X)

∥∥∥∥∥
2

2


=

N∑
i=1

Ex∼µ(N)

[∥∥∥∥∇xi log
dµ(N)

dx
(X) +

N

λ
∇xiF (µx)

∥∥∥∥2
2

]

=

N∑
i=1

E
X−i∼µ

(N)
−i

[
E
Xi∼µ

(N)

i|−i
(·|X−i)

[∥∥∥∥∇xi log
dµ(N)

dx
(X) +

N

λ
∇xiF (µx)

∥∥∥∥2
2

]]
. (10)

We write p−i(x
−i) =

dµ
(N)
−i

dx−i (x
−i) and pi|−i(x|x−i) =

dµ
(N)

i|−i
(·|x−i)

dx (x). Since dµ(N)

dx (x) = p−i(x
−i)pi|−i(x

i|x−i), we get
the following equation:

∇xi log
dµ(N)

dx
(x) =

∇xi(p−i(x
−i)pi|−i(x

i|x−i))

p−i(x−i)pi|−i(xi|x−i)
=
∇xipi|−i(x

i|x−i)

pi|−i(xi|x−i)
= ∇ log pi|−i(x

i|x−i).

Hence, Eq. (10) can be further bounded by the LSI on the conditional Gibbs distribution (Assumption 3.2) as follows:

N∑
i=1

E
X−i∼µ

(N)
−i

[
E
Xi∼µ

(N)

i|−i
(·|X−i)

[∥∥∥∥∇ log pi|−i(X
i|X−i) +

N

λ
∇xiF (µx)

∥∥∥∥2
2

]]

=

N∑
i=1

E
X−i∼µ

(N)
−i

EXi∼µ
(N)

i|−i
(·|X−i)


∥∥∥∥∥∥∇ log

dµ
(N)
i|−i

dνi|−i
(Xi|X−i)

∥∥∥∥∥∥
2

2




≥ 2α

N∑
i=1

E
X−i∼µ

(N)
−i

[
KL(µ

(N)
i|−i(·|X

−i)∥νi|−i(·|X−i))
]
. (11)

Let ν be the probability distribution on Rd with the density dν
dx (x) ∝ exp(−r(x)/λ). Here, notice that the conditional Gibbs

distribution νi|−i(·|x−i) is the minimizer of the following objective: for x−i

νi|−i(·|x−i) = argmin
µ∈P2(Rd)

{∫
NF0(ρx∪x−i)µ(dx) + EX∼µ[r(X)] + λEnt(µ)

}
= argmin

µ∈P2(Rd)

{∫
NF0(ρx∪x−i)µ(dx) + λKL(µ∥ν)

}
.

Because of the optimality of the conditional Gibbs distribution, we have

λKL(µ
(N)
i|−i(·|X

−i)∥νi|−i(·|X−i))

= λEnt(µ
(N)
i|−i(·|X

−i)) +

∫
NF (ρx∪X−i)µ

(N)
i|−i(dx|X

−i) + λ log

∫
exp

(
−N

λ
F (ρx∪X−i)

)
dx

= λKL
(
µ
(N)
i|−i(·|X

−i)∥ν
)
+

∫
NF0(ρx∪X−i)

(
µ
(N)
i|−i(dx|X

−i)− νi|−i(dx|X−i)(dx)
)
− λKL

(
νi|−i(·|X−i)∥ν

)
≥ λKL

(
µ
(N)
i|−i(·|X

−i)∥ν
)
+

∫
NF0(ρx∪X−i)

(
µ
(N)
i|−i(dx|X

−i)− µ∗(dx)
)
− λKL (µ∗∥ν) . (12)
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The expectation of the second term of the right-hand side can be futher evaluated as

N

N∑
i=1

EX∼µ(N)

[∫
F0(ρx∪X−i)

(
µ
(N)
i|−i(dx|X

−i)− µ∗(dx)
)]

= N

N∑
i=1

EX∼µ(N)

[
F0(ρX)−

∫
F0(ρx∪X−i)µ∗(dx)

]

= −N
N∑
i=1

EX∼µ(N)

[∫ {
BF0

(ρx∪X−i , ρX) +

〈
δF0(ρX)

δµ
, ρx∪X−i − ρX

〉}
µ∗(dx)

]

= −N
N∑
i=1

EX∼µ(N)

[∫
BF0

(ρx∪X−i , ρX)µ∗(dx)

]

+

N∑
i=1

EX∼µ(N)

[∫ {
δF0(ρX)

δµ
(Xi)− δF0(ρX)

δµ
(x)

}
µ∗(dx)

]

= −N
N∑
i=1

EX∼µ(N)

[∫
BF0

(ρx∪X−i , ρX)µ∗(dx)

]
+NEX∼µ(N)

[∫
δF0(ρX)

δµ
(x) (ρX(dx)− µ∗(dx))

]
≥ −B +N

(
EX∼µ(N) [F0(ρX)]− F0(µ∗)

)
, (13)

where the last inequality is due to the convexity of F0 and Assumption 3.4.

By the information inequality (Lemma 5.1 of Chen et al. (2022)), the first term of Eq. (12) of the right-hand side can be
evaluated as

N∑
i=1

EX∼µ(N)

[
KL
(
µ
(N)
i|−i(·|X

−i)∥ν
)]
≥ KL(µ(N)∥ν⊗N ). (14)

Combining all of them, we get

Ex∼µ(N)

∥∥∥∥∥∇ log
dµ(N)

dµ
(N)
∗

(X)

∥∥∥∥∥
2

2


≥ 2α

λ

{
−B +NEX∼µ(N) [F0(ρX)] + λKL(µ(N)∥ν⊗N )−N(F0(µ∗) + λKL (µ∗∥ν))

}
=

2α

λ

{
−B +NEX∼µ(N) [F (ρX)] + λEnt(µ(N))−N(F (µ∗) + λEnt(µ∗))

}
=

2α

λ

(
−B + L(N)(µ(N))−NL(µ∗)

)
.

This concludes the proof.

Proof of Theorem 3.7. We here prove the convergence of MFLD in the discrete-time by using the one-step interpolation
argument (Nitanda, 2024; Suzuki et al., 2023a).

We construct the one-step interpolation for k-th iteration: Xi
k+1 = Xi

k − η∇ δF (ρXk
)

δµ (Xi
k) +

√
2ληξik, (i ∈ {1, 2, . . . , d}).

as follows: for i ∈ {1, 2, . . . , d},

dY i
t = −∇δF (ρY0

)

δµ
(Y i

0 )dt+
√
2λdWt, (15)

where Y0 = (Y 1
0 , . . . , Y

d
0 ) = (X1

k , . . . , X
d
k ) and Wt is the standard Brownian motion in Rd with W0 = 0. We denote by νt

the distributions of Yt. Then, ν0 = µ
(N)
k (= Law(Xk)), νη = µ

(N)
k+1(= Law(Xk+1)) (i.e., Yη

d
= Xk+1). In this proof, we
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identify the probability distribution with its density function with respect to the Lebesgure measure for notational simplicity.
For instance, we denote by µ

(N)
∗ (y) the density of µ(N)

∗ .

By the proof of Theorem 2 in Nitanda (2024), we see for t ∈ [0, η],

dL(N)

dt
(νt) ≤ −

λ2

2

∫
νt(y)

∥∥∥∥∥∇ log
νt

µ
(N)
∗

(y)

∥∥∥∥∥
2

2

dy +Nδη, (16)

where δη = 8η(C2
2 + λ′2)(ηC2

1 + λd) + 32η2λ′2(C2
2 + λ′2)

(
1
NE

[
∥X0∥22

]
+ 1

λ′

(
C2

1

4λ′ + λd
))

.

Combining Lemma 3.6 with the above inequality, we get

dL(N)

dt
(νt) ≤ −αλ

(
L(N)(νt)−NL(µ∗)−B

)
+Nδη.

⇐⇒ d

dt

(
L(N)(νt)−NL(µ∗)−B − Nδη

αλ

)
≤ −αλ

(
L(N)(νt)−NL(µ∗)−B − Nδη

αλ

)
.

Noting νη = µ
(N)
k+1 and ν0 = µ

(N)
k , the Grönwall’s inequality leads to

L(N)(µ
(N)
k+1)−NL(µ∗)−B − Nδ

(N)
η

αλ
≤ exp(−αλη)

(
L(N)(µ

(N)
k )−NL(µ∗)−B − Nδ

(N)
η

αλ

)
.

This inequality holds at every iteration of (15). Hence, we arrive at the desired result,

1

N
L(N)(µ

(N)
k )− L(µ∗) ≤

B

N
+

δ
(N)
η

αλ
+ exp(−αληk)

(
1

N
L(N)(µ

(N)
0 )− L(µ∗)−

B

N
− δ

(N)
η

αλ

)

≤ B

N
+

δ
(N)
η

αλ
+ exp(−αληk)

(
1

N
L(N)(µ

(N)
0 )− L(µ∗)

)
.

A.2 Point-wise model approximation error (Section 4.1)

Proof of Lemma 4.1. It follows that by Han’s inequality (Dembo et al., 1991),

1

s
(
N
s

) ∑
|S|=s

∫
µ
(N)
S (dxS) log

dµ
(N)
S

dxS
(xS) ≤

1

N

∫
µ(N)(dx) log

dµ(N)

dx
(x).

Moreover, we see ∑
|S|=s

∫
µ
(N)
S (dxS) log

dµ⊗k
∗

dxS
(xS) =

∑
|S|=s

∑
i∈S

∫
µ
(N)
i (dxi) log

dµ∗

dx
(xi)

=

(
N − 1

s− 1

) N∑
i=1

∫
µ
(N)
i (dxi) log

dµ∗

dx
(xi)

=

(
N − 1

s− 1

)∫
µ(N)(dx) log

dµ⊗N
∗
dx

(x).

Noticing
(
N−1
s−1

)
= s

N

(
N
s

)
, we conclude the first statement which immediately implies the second statement.

Proposition A.1. Suppose µ(N) is exchangeable and Xj ∼ µ⊗N (j = 1, 2, . . . ,M). Then, it follows that for any z ∈ Z ,

E{Xj}M
j=1


 1

M

M∑
j=1

EρXj
[h(X, z)]− Eµ∗ [h(X, z)]

2
 ≤ 4R2

NM
+

8R2

M

√
KL(µ(N)∥µ⊗N

∗ )

N
+

2R2KL(µ(N)∥µ⊗N
∗ )

N
.
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Proof of Proposition A.1.

E{Xj}M
j=1


 1

M

M∑
j=1

EX∼ρXj
[h(X, z)]− EX∼µ∗ [h(X, z)]

2


=
1

M2
E{Xj}M

j=1

 M∑
j=1

(
EX∼ρXj

[h(X, z)]− EX∼µ∗ [h(X, z)]
)2

+
1

M2
E{Xj}M

j=1

∑
j ̸=k

(
EX∼ρXj

[h(X, z)]− EX∼µ∗ [h(X, z)]
)(

EX∼ρXk
[h(X, z)]− EX∼µ∗ [h(X, z)]

) .

Using Proposition 4.2, we can upper bound the first term by 4R2

Ms′ +
8R2

M

√
KL(µ(N)∥µ⊗N

∗ )
N . The second term can be evaluated

as follows. Set H(Xj) = EX∼µXj
[h(X, z)]− EX∼µ∗ [h(X, z)]. Then for j ̸= k,

E{Xj}M
j=1

[H(Xj)H(Xk)] =
(
EXj [H(Xj)]

)2
=

EXj

 1

s′

s′∑
i=1

h(Xi
j , z)

− EX∼µ∗ [h(X, z)]

2

=
(
E
X∼µ

(N)
1

[h(X, z)]− EX∼µ∗ [h(X, z)]
)2

≤ 4R2TV2(µ
(N)
1 , µ∗)

≤ 2R2KL(µ
(N)
1 ∥µ∗)

≤ 2R2

N
KL(µ(N)∥µ⊗N

∗ ).

This concludes the proof.

A.3 Uniform model approximation error (Section 4.2)

We evaluate the empirical Rademacher complexity R̂N,M (F) by using Dudley’s entropy integral. We define the metric

∥f∥N,M,2 =
√

1
MN

∑M
j=1

∑N
i=1 |f(Xi

j)|2. We denote by N (F , ϵ, ∥ · ∥N,M,2) the ϵ-covering number of F with respect to
the ∥ · ∥N,M,2-norm.

Lemma A.2 (Dudley’s entropy integral). Given a function class F on Rd, we suppose R = supf∈F ∥f∥N,M,2 <∞. Then,

R̂N,M (F) ≤ inf
δ>0

{
4δ +

12√
MN

∫ R

δ

√
log 2N (F , ϵ, ∥ · ∥N,M,2)dϵ

}
.

Proposition A.3. Suppose Assumption 4.5 holds and Xj ∼ µ(N) (j = 1, 2, . . . ,M) are independent. Then, we get

E{Xj}M
j=1

[
R̂N,M (F)

]
≤ 4R

√
d

MN
+ 12R

√
1

MN

(
log 2 + d log

(
1 + 2βMR−1

√
MNd−1EX∼µ(N) [∥X∥2]

))
.

Proof. Since ∥f∥N,M,2 ≤ ∥f∥N,M,∞ = maxi,j |f(Xi
j)|, it is sufficient evaluate the ϵ-covering number of F with respect

to ∥ · ∥N,M,∞. We write r = maxi,j ∥Xi
j∥2. By Assumption 4.5, for any z, z′ ∈ Z ,

max
i,j
|h(Xi

j , z)− h(Xi
j , z

′)| ≤ max
i,j

β∥Xi
j∥2∥z − z′∥2 = βr∥z − z′∥2,

we see N (F , ϵ, ∥ · ∥N,M,∞) ≤ N (Z, ϵ/(βr), ∥ · ∥2) =
(
1 + 2βr

ϵ

)d
.

15



Propagation of Chaos for Mean-Field Langevin Dynamics

Therefore, by Lemma A.2 with δ = R
√
d(MN)−1, we get

R̂N,M (F) ≤ 4R

√
d

MN
+ 12R

√
1

MN
log 2N (F , R

√
d(MN)−1, ∥ · ∥N,M,∞)

= 4R

√
d

MN
+ 12R

√
1

MN

(
log 2 + d log

(
1 + 2βrR−1

√
MNd−1

))

≤ 4R

√
d

MN
+ 12R

√√√√√ 1

MN

log 2 + d log

1 + 2βR−1
√
MNd−1

M∑
j=1

∥Xj∥2

,

where we used r ≤
∑M

j=1 ∥Xj∥2. Finally, Jensen’s inequality yields

E{Xj}M
j=1

[
R̂N,M (F)

]
≤ 4R

√
d

MN
+ 12R

√
1

MN

(
log 2 + d log

(
1 + 2βMR−1

√
MNd−1EX∼µ(N) [∥X∥2]

))
.

Here, we give the complete version of the uniform model approximation bound.

Theorem A.4 (Complete version of Theorem 4.7). Suppose Assumption 4.5 and the same conditions as in Theorem 3.7
hold. Run M -parallel MFLD in the discrete time independently, with ηλ′ < 1/2 and Xj,0 ∼ µ⊗N

0 (j = 1, 2, . . . ,M). Then,

E{Xj,k}

∥∥∥∥∥∥ 1

M

M∑
j=1

EX∼ρxj,k
[h(X, ·)]− EX∼µ∗ [h(X, ·)]

∥∥∥∥∥∥
∞


≤ 5CR

4

√
d

MN
+

dB

λN
+ CR

√
dλ

MN(λ+MB)
log

(
C ′
√
(λ+MB)

π

λ

)
+ CR

√
dλMN

λ+MB

(
δη
αλ2

+
1

λ
exp(−αληk)∆(N)

0

)
,

where C ′ = 1 + 2βMR−1
√
MNd−1EX∼µ⊗N

∗
[∥X∥2].

Proof. For x1, . . . ,xM ∈ RdN , we set g(x1, . . . ,xM ) = supz∈Z

∣∣∣ 1
M

∑M
j=1 EX∼ρxj

[h(X, z)]− EX∼µ∗ [h(X, z)]
∣∣∣. By

the variational formulation of KL-divergence (e.g., Corollary 4.15 in Boucheron et al. (2013)), we get

Eµ(N)⊗M [g] ≤ 1

γ
logEµ⊗NM

∗
[exp(γg)] +

KL(µ(N)⊗M∥µ⊗NM
∗ )

γ

≤ 1

γ
logEµ⊗NM

∗
[exp(γg)] +

MKL(µ(N)∥µ⊗N
∗ )

γ
(17)

For independent random variables Xj ∼ µ⊗N
∗ (j = 1, 2, . . . ,M), by Lemma 4.6 and A.3, it follows that with high

probability 1− δ,

g(X1, . . . ,XM )

≤ 2E{Xj}M
j=1

[
R̂N,M (F)

]
+R

√
2 log(1/δ)

MN

≤ 8R

√
d

MN
+ 24R

√
1

MN

(
log 2 + d log

(
1 + 2βMR−1

√
MNd−1EX∼µ⊗N

∗
[∥X∥2]

))
+R

√
2 log(1/δ)

MN

≤ CR

√
d log(C ′/δ)

MN
,
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where C is a uniform constant and C ′ = 1 + 2βMR−1
√
MNd−1EX∼µ⊗N

∗
[∥X∥2]. This means

Pµ⊗NM
∗

[
g(X1, . . . ,XM ) > CR

√
d log(C ′/δ)

MN

]
≤ δ

⇐⇒ Pµ⊗NM
∗

[g(X1, . . . ,XM ) > t] ≤ C ′ exp

(
−MNt2

dC2R2

)
⇐⇒ Pµ⊗NM

∗

[
g(X1, . . . ,XM ) >

1

γ
log t

]
≤ C ′ exp

(
−MN(log t)2

dC2R2γ2

)
.

Using this tail bound,

Eµ⊗NM
∗

[exp(γg)] =

∫ ∞

0

Pµ⊗NM
∗

[exp(γg(X1, . . . ,XM )) > t] dt

=

∫ ∞

0

Pµ⊗NM
∗

[
g(X1, . . . ,XM ) >

1

γ
log t

]
dt

=

∫ ∞

0

C ′ exp

(
−MN(log t)2

dC2R2γ2

)
dt

= C ′CRγ

√
πd

MN
exp

(
dC2R2γ2

4MN

)
.

Therefore, we get

Eµ(N)⊗M [g] ≤ dC2R2γ

4MN
+

1

γ
log

(
C ′CRγ

√
πd

MN

)
+

MKL(µ(N)∥µ⊗N
∗ )

γ
.

Moreover, by applying Lemma 3.6 Theorem 3.7 to Eq. (17), we get

E{Xj,k}

∥∥∥∥∥∥ 1

M

M∑
j=1

EX∼ρxj,k
[h(X, ·)]− EX∼µ∗ [h(X, ·)]

∥∥∥∥∥∥
∞


≤ dC2R2γ

4MN
+

1

γ
log

(
C ′CRγ

√
πd

MN

)
+

M

γ

(
B

λ
+

Nδη
αλ2

+
N

λ
exp(−αληk)∆(N)

0

)
.

Finally, by seting γ = 1
CR

√
MN
d

(
1 + MB

λ

)
, we get

E{Xj,k}

∥∥∥∥∥∥ 1

M

M∑
j=1

EX∼ρxj,k
[h(X, ·)]− EX∼µ∗ [h(X, ·)]

∥∥∥∥∥∥
∞


≤ 5CR

4

√
d

MN
+

dB

λN
+ CR

√
dλ

MN(λ+MB)
log

(
C ′
√
(λ+MB)

π

λ

)
+ CR

√
dλMN

λ+MB

(
δη
αλ2

+
1

λ
exp(−αληk)∆(N)

0

)
.
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B Experiments
The code used in this work will be made publicly available later.

B.1 Pseudocode and training settings for mean-field experiments

For experiments concerning MFNNs, the output of a neuron in a two-layer MFNN is modelled by: h(xi, zi) =
R tanh(x3

i ) tanh(x
1⊤
i zi + x2

i ), where xi = (x1
i , x

2
i , x

3
i ) ∈ Rd+1+1 is its parameter, zi is the given input and R is a

scaling constant. The tanh activation function is placed on the second layer as boundedness of the model is crucial for
our analysis. Noisy gradient descent is then used to train neural networks for T epochs each. We omit the pseudocode for
training MFNNs with MFLD since it is identical to the backpropagation with noisy gradient descent algorithm.

Algorithm 1 Generate the double circle data: D = (zi, yi)
n
i=1, zi ∈ R2, yi ∈ R before splitting it into Dtrain and Dtest. We

set n = 200, rinner = 1, router = 2 and use an 80-20 train-test split for the data.

Algorithm 2 Generate the k multi-index data: D = (zi, yi)
n
i=1, zi ∈ Rd, yi ∈ R. A key step is normalizing and projecting

zi to the inside of a d-dimensional hypersphere. We set n = 500, d = 100, r = 5, k = 100 and R̄ = 100.

Algorithm 3 Describes how we obtain and test the performance of merged MFNNs against (an approximation to) the
mean-field limit by computing the sup-norm between both outputs. The relevant results are stored into a dictionary for
plotting the heatmaps. The training procedure is identical for both the classification and regression problem. Let Mmax = 20
and Nlist = {50, 100, . . . , 500} denote the maximum number of networks to merge and list of neuron settings to train in
parallel respectively. We set the hyperparameters for training as follows:

• Classification: R = 10, N∞ = 10000, η = 0.1, λ′ = 0.1, λ = 0.01, T = 200 and loss function: logistic loss

• Regression: R = 10, N∞ = 10000, η = 0.01, λ′ = 0.1, λ = 0.01, T = 100 and loss function: mean squared error

Algorithm 1 Generate data points along cocentric 2D circles

Require: n, rinner, router
Ensure: Dataset D = {(zi, yi)}ni=1

1: Initialize D ← ∅
2: for i = 1 to n do
3: Sample θ ∼ Uniform(0, 2π)
4: Sample ξ1, ξ2 ∼ Normal(0, 0.1)
5: if i < n/2 then
6: r ← rinner
7: yi ← −1
8: else
9: r ← router

10: yi ← +1
11: end if
12: Compute Cartesian coordinates: zi = (r cos(θ) + ξ1, r sin(θ) + ξ2)
13: Add (zi, yi) to D
14: end for
15: Randomly shuffle D
16: Split D into Dtrain (80%) and Dtest (20%)
17: return Dtrain,Dtest
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Algorithm 2 Generate k multi-index data

Require: n, d, r, k, R̄
Ensure: Dataset D = {(zi, yi)}ni=1

1: Initialize D ← ∅
2: for i = 1 to n do
3: Sample ζ ∼ Normal(0, 1)
4: ζ ← ζ(1/d) × r {Get scaling constant}
5: Sample z ∼ Normal (0, Id)
6: zi ← z/|z| {Normalize}
7: zi ← zi × ζ {Project}
8: yi ← 0
9: for j = 1 to k do

10: yi ← yi + tanh
(
zji

)
11: end for
12: yi ← yi × (R̄/k)
13: Add (zi, yi) to D
14: end for
15: Split D into Dtrain (80%) and Dtest (20%)
16: return Dtrain,Dtest

Algorithm 3 Training and merging MFNNs

Require: Dtrain,Dtest = (ztest, ytest), N∞, Nlist, Mmax
Ensure: Dictionary sup norm dic maps N to the average sup norm

h∞ ← Train a MFNN with N∞ neurons on Dtrain
ŷ∞ ←Use h∞ to predict on Dtest
Initialize sup norm dic← {}
for N ∈ Nlist do
{h1

N , h2
N , . . . hMmax

N } ←Train Mmax MFNNs with N neurons on Dtrain
Initialize sup norm lst← []
for M ∈ {1, 2, . . .Mmax} do

sup norm total← 0
for 50 iterations do

Randomly sample M networks from
{
h1
N , h2

N , . . . , hMmax
N

}
hMN ←Merge the M networks to form a new neural network
ŷ ←Use hMN to predict on Dtest
sup norm← max (|ŷ − ŷ∞|)
sup norm total← sup norm total + sup norm

end for
Append sup norm total/ 50 to sup norm lst

end for
sup norm dic[N]← sup norm lst

end for
return sup norm dic
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B.2 Additional MFNN experiments

Beyond examining the effect of both M and N on sup norm, we also compare the convergence rate of MFNNs using different
λ ∈ {10−1, 10−2, 10−3, 10−4} on the multi-index regression problem. Since the training dataset is small and we intend to
investigate high λ, we have to consider the low epoch setting to prevent deterioration of generalization capabilities. We
train 20 networks in parallel and average the MSE (in log-scale) at each epoch, repeating this for N ∈ {300, 400, . . . , 800}.
Figure 2 shows that higher λ improves the convergence speed of particles and makes training more stable. Finally, we
merge networks with the same hyperparameters for comparison across different λ. A similar trend is observed in Table 2,
highlighting the efficacy of PoC-based ensembling when training for fewer epochs with a high λ.

Figure 2. Averaged test ln(MSE) of singular MFNNs, across different N and λ for 5 epochs

Table 2. MSE comparison between merging M = 20 networks across different N and λ after 5 epochs.
N

λ 300 400 500 600 700 800

10−1 0.9132253 0.9040508 0.9075238 0.9044338 0.9030165 0.9022377
10−2 1.2325489 1.2229528 1.2166352 1.1978958 1.1921849 1.1654898
10−3 1.5718020 1.5668763 1.5607907 1.5581368 1.5282313 1.5234329
10−4 1.6987042 1.6887244 1.6631799 1.6135653 1.5860944 1.5821924
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B.3 LoRA for finetuning language models

To examine the effect of λ, we perform LoRA and PoC-based merging by varying λ ∈ {0, 10−5, 10−4} with one-epoch
training. We optimize eight LoRA parameters of rank N = 32 in parallel using noisy AdamW with the speficied λ. Table 3
summarizes the results. For LoRA, the table lists the best result among the eight LoRA parameters based on the average
accuracy across all datasets and also provides the average accuracies of the eight parameters for each dataset. We observed
that for Llama2-7B with λ = 0 and λ = 10−5, the chances of the optimization converging are very low. Consequently, both
the average accuracy of eight LoRAs and the accuracy of PoC-based merging are also low. This is because the regularization
strength λ controls the optimization speed as seen in Theorem 3.7. On the other hand, by using a high constant λ = 10−4

the average performance was improved, and PoC-based merging achieved quite high accuracy even with only one-epoch of
training. This result suggests using high λ to reduce the training costs, provided it does not negatively affect generalization
error. For Llama3-8B, one-epoch training is sufficient to converge, and while LoRA performed well and PoC-based merging
further improved the accuracies.

Table 3. Accuracy comparison of LoRA and PoC-based merging for finetuning Llama models (1 epoch).
Model Method λ SIQA PIQA WinoGrande OBQA ARC-c ARC-e BoolQ HellaSwag Ave.

Llama2
7B

LoRA (best) 0 80.55 82.86 83.19 81.60 71.08 84.51 71.90 90.21 80.74
LoRA (ave.) 0 64.73 76.31 77.76 68.70 57.02 69.02 69.04 70.63 69.15
PoC merge 0 32.29 62.57 83.58 22.20 28.41 29.42 61.53 28.50 43.56

LoRA (best) 10−5 80.14 82.37 83.43 80.40 68.86 83.42 71.68 89.94 80.03
LoRA (ave.) 10−5 74.37 74.12 80.55 67.50 58.34 71.98 69.43 66.25 70.32
PoC merge 10−5 74.56 83.84 85.16 60.00 63.14 78.37 68.72 92.77 75.82

LoRA (best) 10−4 78.20 80.90 81.22 78.40 65.19 79.00 69.97 86.50 77.42
LoRA (ave.) 10−4 74.42 77.70 76.08 75.93 60.93 76.25 65.68 66.71 71.71
PoC merge 10−4 80.76 82.15 84.85 84.80 71.25 85.35 72.26 91.65 81.63

Llama3
8B

LoRA (best) 0 80.45 88.47 86.82 87.60 82.25 90.87 73.85 95.78 85.76
LoRA (ave.) 0 80.51 88.87 86.85 87.00 80.78 90.98 73.71 95.84 85.57
PoC merge 0 81.73 88.96 87.77 88.00 81.40 91.71 74.46 96.45 86.31

LoRA (best) 10−5 80.50 88.68 86.98 86.80 81.48 91.12 75.14 95.97 85.83
LoRA (ave.) 10−5 80.83 88.64 86.85 87.05 80.39 90.76 71.54 95.87 85.24
PoC merge 10−5 81.53 89.45 87.92 87.80 82.25 91.79 75.54 96.44 86.59

LoRA (best) 10−4 80.30 88.57 86.42 87.20 78.07 89.81 73.61 95.14 84.89
LoRA (ave.) 10−4 80.00 88.20 85.69 86.23 78.86 89.48 73.08 95.05 84.57
PoC merge 10−4 80.71 89.72 88.08 89.00 82.17 91.79 74.56 96.36 86.55
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C Additional Background Information
This section provides supplementary information about past works that are relevant to the paper. While not essential to
the primary narrative, it will provide readers with a deeper understanding of previously established MFNN concepts and
motivations behind our PoC-based model ensemble strategy.

C.1 Mean field optimization

Two layer mean-field neural networks provide a tractable analytical framework for studying infinitely wide neural networks.
As N →∞, the optimization dynamics is captured by a partial differential equation (PDE) of the parameter distribution,
where convexity can be exploited to show convergence to the global optimal solution (Chizat & Bach, 2018; Mei et al.,
2018; Rotskoff et al., 2019). If Gaussian noise is added to the gradient, we get MFLD which achieves global convergence to
the optimal solution (Mei et al., 2018; Hu et al., 2019). Under the uniform LSI, Nitanda et al. (2022); Chizat (2022) show
that MFLD converges at an exponential rate by using the proximal Gibbs distribution associated with the dynamics. MFLD
has attracted significant attention because of its feature learning capabilities (Suzuki et al., 2023b; Mousavi-Hosseini et al.,
2024).

As the assumption that N =∞ is not applicable to real-world scenarios, a discrete-time finite particle system would align
closer to an implementable MFLD i.e. noisy gradient descent. Nitanda et al. (2022) provides a global convergence rate
analysis for the discrete-time update by extending the one-step interpolation argument for Langevin dynamics (Vempala
& Wibisono, 2019). Meanwhile, the approximation error of the finite particle setting is studied in propagation of chaos
literature (Sznitman, 1991). For finite MFLD setting, Mei et al. (2018) first suggested that approximation error grows
exponentially with time before Chen et al. (2022); Suzuki et al. (2023a) proved the uniform-in-time propagation of chaos
with error bound: O

(
α
λN

)
, suggesting that the difference between the finite N -particle system and mean-field limit shrinks

as N → ∞. However, this also means that particle approximation error blows-up exponentially as λ → 0 due to the
exponential relationship between α and λ (Nitanda et al., 2022; Chizat, 2022; Suzuki et al., 2023a). Suzuki et al. (2023b)
proposes an annealing procedure for classification tasks to remove this exponential dependence in LSI, wihch requires that
λ be gradually reduced over time and will not work for fixed regularization parameters. Nitanda (2024); Chewi et al. (2024)
then proved a refined propagation of chaos independent of α at the solution as described in Section 1.1.

C.2 Ensembling and model merging

In recent years, efforts to improve predictive capabilities and computational efficiency in machine learning have revived
interest in techniques such as ensembling (Ganaie et al., 2022; Mohammed & Mohammed, 2023) and model merging
(Yang et al., 2024; Goddard et al., 2024). Ensemble methods improve predictive performance by combining the outputs of
multiple models during inference (Hansen & Salamon, 1990; Dietterich, 2000). Although several fusion variants exist (Kim
et al., 2003; Soares et al., 2004), Cheng et al. (2018) shows that simple average voting (Breiman, 1996) does not perform
significantly worse while still being highly efficient, with uses in several deep learning applications (Cheng et al., 2018;
Vazquez-Romero & Gallardo-Antolin, 2020).

In contrast, model merging consolidates multiple models into a single one by combining individual parameters, showing
success particularly in the optimization of LLMs (Ilharco et al., 2022; Jin et al., 2023; Davari & Belilovsky, 2024). An
approach to merging models is to simply average the weights across multiple models (Utans, 1996). Taking the average
of weights along a single optimization trajectory has been demonstrated to achieve better generalization (Izmailov et al.,
2018; Frankle et al., 2020). Moreover, interpolating any two random weights from models that lie in the same loss basins
could produce even more optimal solutions that are closer to the centre of the basin (Neyshabur et al., 2020). These works
then form the foundation of model soups in Wortsman et al. (2022) which refers to averaging the weights of independently
fine-tuned models. Similarly, Gauthier-Caron et al. (2024) showed that basic weight averaging methods can perform
competitively if constituent models are similar, despite the emergence of novel LLM merging strategies (Ramé et al., 2023;
Chronopoulou et al., 2023; Yu et al., 2024).

Despite the widespread use of model merging in the current research landscape, theoretical results concerning the merging of
fully trained neural networks are limited. For models trained with stochastic gradient descent, averaging the model weights
during different iterations of a single run improves stability bounds (Hardt et al., 2016) and variance (Jain et al., 2018) under
convex assumptions. Stability bounds in the non-convex settings are then addressed by Wang et al. (2024). Ortiz-Jimenez
et al. (2023) studied weight interpolation techniques for task arithmetic in vision-language models, demonstrating that
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linearized models under the neural tangent kernel regime can outperform non-linear counterparts.
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