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Abstract

Reconstructing visual stimuli from brain activity is a challenging problem, par-
ticularly when using EEG data, which is more affordable and accessible than
fMRI, though noisier and with lower spatial resolution. In this paper, we present
Hierarchical-ViT, a novel framework designed to improve the quality and precision
of EEG-based image reconstruction by integrating hierarchical visual feature ex-
traction, vision transformer-based EEG (EEG-ViT) processing, and CLIP-based
joint learning. Inspired by the hierarchical nature of the human visual system, our
model progressively captures complex visual features—such as edges, textures,
and shapes—through a multi-stage processing approach. These features align with
EEG signals processed by the EEG-ViT model, allowing for the creation of a shared
latent space that enhances contrastive learning. A StyleGAN is then employed to
generate high-resolution images from these aligned representations. We evaluated
our method on two benchmark datasets, EEGCVPR40 and ThoughtViz, achiev-
ing superior results compared to existing approaches in terms of Inception Score
(IS), Kernel Inception Distance (KID), and Fréchet Inception Distance (FID) for
EEGCVPR, and IS and KID for the ThoughtViz dataset. Through an ablation study,
we underscored the feasibility of hierarchical feature extraction, while multivariate
analysis of variance (MANOVA) test confirmed the distinctiveness of the learned
feature spaces. In conclusion, our results show the feasibility and uniqueness of
using hierarchical filtering of perceived images combined with EEG-ViT-based
features to improve brain decoding from EEG data.

Preprint.



1 Introduction

Visual reconstruction is a critical area of research in both neuroscience and machine learning (ML),
as it provides insights into how the brain processes and represents perceptible information [Takagi
and Nishimoto, a]. In this regard, understanding the neural correlates of visual perception is vital for
decoding brain activity, which has implications for both cognitive science and clinical applications
[Pollen]. Traditionally, visual reconstruction methods have heavily relied on functional magnetic
resonance imaging (fMRI) data, which allows for high spatial resolution images of brain activity
[Rakhimberdina et al.]. However, fMRI-based approaches come with limitations, including high costs,
limited accessibility, and (often) low temporal resolution, making them less practical for continuous
monitoring or real-time applications [Glover, Wilson et al.]. To tackle the challenges mentioned
above, there is a growing interest in EEG-based methods of visual reconstruction, as EEG offers a
balance between temporal resolution and cost-effectiveness [Wilson et al.].

The field of image reconstruction from brain activity has recently advanced noticeably with the
adoption of sophisticated generative models, including generative adversarial networks (GANs) and
diffusion models with the Stable Diffusion [Ozcelik and VanRullen] ability to generate high-resolution
images, showcasing the power of large pre-trained models [Takagi and Nishimoto, b] and offering
new insights into visual processing. Moreover, recent advancements in AI and machine learning have
opened possibilities for effective image reconstruction from EEG signals, addressing the need for
cost-effective and efficient approaches in neuroimaging [Li et al., Guenther et al.]. Joint learning is
one of these recent techniques that enables continuous data of EEG to be paired with other modalities
like perceived images. Such pairing can help to synthesize new aspects of EEG-Image dynamics
for more effective brain decoding [Song et al., Xu et al.]. The CLIP (Contrastive Language-Image
Pretraining) model [Radford et al.] is a joint learning framework where a single model learns visual
and language representations by predicting which caption matches which image. By extending this
capability to EEG data, the model learns shared representations across different modalities, enhancing
the potential for accurate visual reconstructions from EEG signals [Singh et al., a].

Regardless of their feasibility in aligning EEG data with perceived images, multimodal learning
models like CLIP cannot provide a measure of a biologically plausible representation of decoded brain
activity. This may be one important reason that most of the existing models for generating images from
EEG data have primarily excelled in distinguishing between different classes of perceived images,
rather than reconstructing the actual visualized image with high accuracy [Kavasidis et al., Jiang
et al., a, Khare et al., Spampinato et al.]. On the other hand, several researchers have demonstrated
the advantages of biologically inspired computational modeling for both advanced deep learning
models’ performance as well as more feasible biologically-inspired tools [Kim et al., Luppi et al.,
Collins and Shenhav]. Over the last two decades, several models for decoding visual perception
mechanisms have been proposed that support the concept of hierarchical image processing in the
brain, where different layers (e.g., V1, V2, V3, V4 in the visual cortex) process different aspects of
visual stimuli. [Pohl et al., Bracci et al., D’Souza et al.].

In this paper, we propose a model (called here “Hierarchical-ViT”) combining the vision transformer
(ViT), hierarchical visual feature extraction, and contrastive learning to improve visual reconstruction
from EEG signals. We utilized the EEG-ViT [Yang] model for EEG feature extraction, leveraging
their self-attention mechanisms to capture complex temporal and spatial patterns in brain activity.
These EEG features are integrated with hierarchical visual features, inspired by the human visual
system’s layered processing of visual stimuli. The combined EEG and visual features are aligned in a
shared latent space using the CLIP framework, enhancing the model’s ability to accurately reconstruct
images from EEG data. Finally, a StyleGAN [Karras et al.] model is employed for high-resolution
image generation, allowing for greater control and realism in the reconstructed visuals.

The paper is structured as follows: The Related works section reviews existing approaches and
models for image reconstruction from brain activity. Then, the method section details our proposed
approach. The experiment and results section presents the evaluation of the proposed method’s
performance. The discussion section interprets the results and explores their implications for future
research. Finally, the conclusion summarizes the key contributions and potential directions for further
development in EEG-based visual reconstruction.
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2 Related works

Recent improvements in generative AI have encouraged researchers to develop new encode-decoder
frameworks for image reconstruction by VAE, GAN, or latent diffusion models [Huang et al., a, Gong
et al., Ozcelik and VanRullen]. Although the diffusion and VAE models have great advantages in
terms of stability and versatility, GAN models are well-known for their ability to generate realistic
images [Peng]. This can be helpful, especially in the endeavor of generating natural image generation
by brain decoding where metrics like IS, KID, and FID are the major criteria of models’ performance.

Researchers have developed attention-based GAN architectures that can reconstruct complex natural
object images from EEG data, outperforming traditional cross-modality encoder-decoder networks
[Habashi et al.]. These models often incorporate additional components such as perceptual loss
and auxiliary classifiers to improve the quality and relevance of the generated images [Mishra and
Bhavsar]. Other approaches have utilized contrastive learning methods to extract features from EEG
signals, which are then used to condition GANs for image synthesis. These techniques have shown
promise in reconstructing various types of visual stimuli, including objects, digits, and characters,
even when working with small-scale EEG datasets [Hartmann et al.].

While GAN-based image reconstruction methods applied to EEG data have shown promising ad-
vancements, they still face challenges in achieving the same level of quality as similar techniques
applied to fMRI data, particularly in terms of IS and FID [Yang and Modesitt]. Therefore, there
is still room for improvement to elevate the performance of EEG data decoding for natural image
reconstruction.

3 Method

We considered two already-established AI and cognitive science-known facts to enhance image
reconstruction from EEG signals:

1. The self-attention mechanism of transformer models generally excel LSTM methods in
terms of long-term dependencies and flexible context modelings. Moreover, in the case of
EEG data analysis, Vision transformers (ViT) can extract more feasible spatial-temporal
features compared to regular attention-based models [Yang and Modesitt].

2. The human visual system processes information through a hierarchical structure, where
different specialized brain regions manage progressively more complex aspects of visual
stimuli [Lerner et al.].

Based on these two facts, we propose two modifications to existing GAN-based image reconstruction
models:

1. An EEG-ViT [Dosovitskiy et al.] for feature extraction from EEG instead of LSTM and
CNN models to uncover longer-term spatial-temporal dynamics of the brain.

2. Hierarchical feature extraction from images with joint space learning to improve the biologi-
cally plausible signal processing compared to earlier methods.

These modifications form the foundation of our proposed image reconstruction framework, as
illustrated in Fig. 1. While classification accuracy remains important, metrics such as IS, KID, and
FID are more reflective of the quality of the reconstructed images. In this paper, we hypothesize that
leveraging the EEG-ViT model alongside biologically inspired image feature extraction will enhance
these three metrics. Accordingly, our goal is to achieve a joint learned representation of EEG and
image features to improve the quality of reconstructed images. All experiments and models were
trained on a server equipped with one V100 GPU card and 200 GB of RAM. The entire analysis took
approximately 100 hours.

3.1 Notations

We refer to the feature vectors extracted from EEG and image as psi in Fig. 1. The EEG signal
is denoted by X and the image as Y . The EEG signal is in space X ∈ RN×C×T , where N is
the number of EEG trials, C is the number of channels, and T is the number of time points. The
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(a)

(b)

Figure 1: Hierarchical-ViT scheme. (a) Overview of the proposed framework for (training phase of)
the EEG-based visual reconstruction using hierarchical feature extraction and contrastive learning. (b)
The detailed structures of the “Projection head” are drawn in the general scheme. Detailed structures
of the other components are drawn in the subsequent subsections through Fig. 2 and appendix A.

corresponding labels are marked as L. The EEG feature extractor is shown by fθ1(X) and the image
feature extractor as gθ2(X), where θi is the learned weight during the training. The projection head for
gθ and fθ are gγ and fγ . We define the problem as follows: Given a data set of samples of {X,Y, L},
we want to train a deep neural network pipeline to reconstruct Y , given X and L.

3.2 Transformer-based feature extraction from EEG data

Transformer models offer significant advantages over LSTM and CNN-based approaches for EEG
feature extraction [Hu et al.]. By leveraging self-attention, they can capture long-range dependencies
more effectively, improving the understanding of complex temporal patterns in brain activity [Siddhad
et al.]. In this paper, we selected EEG-ViT models for their unique capabilities to effectively and
simultaneously capture both the spatial relationships between EEG channels and the temporal
dynamics of brain activity [Yang and Modesitt, Patel et al.].

During pre-training, the triplet margin loss is used, while Cross Entropy Loss is applied in the CLIP
setting to maximize the similarity between image and EEG pairs. We use the triplet loss for feature
learning with semi-hard triplets. We utilized a Vision transformer (ViT)-based model, EEG-ViT, for
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EEG feature extraction. The Transformer treats the EEG data as image-like inputs, enabling it to
model spatial-temporal relationships more effectively.

The EEG encoder fθ1(X) maps the EEG signals into a feature space ψ1 ∈ RN×256. This encoded
feature representation captures both local and global patterns from the input EEG signals. We apply a
projection head to transform these features into a lower-dimensional latent space ψ′

1 ∈ RN×128. To
optimize this process, we pre-train the EEG encoder using contrastive loss. The triplet margin loss
function is employed to align the EEG features with their corresponding visual representations. The
loss function is given by:

θ = argmin
θ

E
[
||fθ(Xa)− fθ(X

p)||22 − ||fθ(Xa)− fθ(X
n)||22 + δ

]
where Xa, Xp, and Xn represent anchor, positive, and negative samples, respectively. This helps
ensure that the EEG features are closely aligned with the correct visual stimuli in the latent space.

3.3 Hierarchical visual features from the perceived natural images

Hierarchical models of the visual system are considered to correspond to four major feedforward
V1-V4 layers by some neuroscientists [Riesenhuber and Poggio]. In the early processing stage of
model area V1, boundaries and their orientations are detected, followed by a grouping process in
model area V2. Contextual boundary patterns are also processed at a broader spatial level in model
areas V2 and V4, allowing for sensitivity to contour curvature[Angelucci and Bressloff].

In this paper, we took advantage of simple feedforward hierarchical filtering of perceived images to
use for joint learning with EEG features. The four hierarchical filters are as follows:

1. V1 (Edge detection): The Sobel filter computes the gradient magnitude of an image to
detect edges. The gradient magnitude is given by:

G =
√
(S2

x + S2
y)

Where:

• Sx and Sy are the gradient in the x and y direction, respectively.

2. V2 (Texture and contour detection): Local Binary Patterns (LPBs) and contour detection
simulate V2’s role in recognizing textures, contours, and boundary details, processing the
information from the prior layers.

3. V3 (Motion and color processing): The HSV [Smith, 1978] (Hue, Saturation, Value) color
model separates color information into three channels. The saturation channel is extracted
from the converted RGB color space to HSV color space and used as the main component
extracted in V3.
Detailed explanations are discussed in the Supplementary section. The outcomes of V4
were shown heuristically to be redundant in terms of the jointly learned feature space of the
original image. Therefore, we used V1-V3 added to the original image for feature extraction
from the image.
We utilize a pre-trained ViT [Wu et al., Deng et al.], gθ2(Y ) and fine-tune it on our image
data set. Four models are trained on each one of the resulting image data sets after filtering
in V1, V2, and V3 filters and the original images. The objective function is the contrastive
loss. This gives us an embedding space ψ ∈ R256.

3.4 CLIP-based joint learning of image and EEG

Recent studies have explored innovative approaches to bridge the gap between EEG signals and
visual representations. [Palazzo et al., a] employed a contrastive learning strategy with triplet loss to
train an EEG encoder, aligning it with image features generated by a pre-trained image encoder. [Ye
et al.] employed CLIP for joint representation learning by generating image representations via a
GAN before training the EEG encoder using contrastive methods for image retrieval. On the other
hand, Singh et al. [Singh et al., a] directly applied a pre-trained image encoder for EEG-based image
retrieval tasks, streamlining the process and potentially improving efficiency.
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We used the fine-tuned gθ2(Y ) and pre-trained fθ1(X) in the CLIP module to align their embedding
spaces, ψ′

1 ∈ R128 and ψ′
2 ∈ R128. We freeze gθ2 and only allow fθ and gγ and fγ to be updated in

this process, due to the higher accuracy rate that gθ possesses in our framework. This setup allows
the EEG encoder to learn to better align its representation, resulting in better accuracy rates. Fig. 2
depicts the general graphical scheme of joint learning of EEG-Image feature spaces in our work.

Figure 2: Joint learning of image and EEG features. The general scheme of CLIP-based joint
learning in our work. This architecture allows us to align the representations of the EGG signals
and the corresponding images. We trained four different CLIP modules, corresponding to V1, V2,
V3 generated images and the original images. Each one of the CLIP modules is equipped with its
corresponding pre-trained image encoder. Therefore, each EEG encoder learns a different embedding
space.

We trained four different CLIP modules, corresponding to V1, V2, V3 generated images and the
original images. Each one of the CLIP modules is equipped with its corresponding pre-trained image
encoder. Therefore, each EEG encoder learns a different embedding space. The model was originated
from [Shariatnia, 2021].

3.5 Image generation by Style-GAN model

StyleGAN includes several key features that improve image generation. It uses style blending with
hybrid regularization and two random latent codes, giving users control over the style of the images
for greater customization [Huang et al., b]. The model is capable of producing high-resolution
images and managing complex tasks like face and landscape generation, reducing common issues
like blurring and distortion seen in traditional GANs. Additionally, StyleGAN introduces stochastic
variation by adding uncorrelated Gaussian noise to each layer of the network, which helps generate
diverse and varied details. This allows the generated image to have some random variations in detail
while maintaining overall structural consistency, increasing the diversity and realism of the image
[Karras et al.].

We concatenated the resulting EEG features from the CLIP model with a normal vector z ∈ R512,
resulting in a vector R1024. The model is trained to reconstruct the images, corresponding to the EEG
feature vector.

3.6 Unique feature space and ablation study of hierarchical image features

While previous research has shown the biological plausibility of hierarchical feature extraction from
perceived images [Horikawa and Kamitani, DiCarlo et al., Serre et al., Riesenhuber and Poggio], to
the best of our knowledge, the importance of these features for improving brain decoding models
has not been thoroughly explored. For this aim, we first evaluated the uniqueness of the feature
space out of joint learning for V1-V3 extracted features compared to the feature space learned from
the original image. We performed a MANOVA test on the generated feature spaces to evaluate the
uniqueness of each feature space. In the next step, we applied an ablation study to evaluate the effect
of these hierarchical features on the quality and precision of the generated images. An ablation study
is a methodical technique in machine learning research used to analyze the influence of individual
components or features on a model’s performance. The process entails selectively removing or
modifying certain elements of the model, retraining it, and then evaluating the impact of these
alterations on its overall performance [Meyes et al.]. We compared the results of Hierarchical-ViT
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Figure 3: The filtering effect on a sample image

with the CLIP-ViT model in which only features of the original image are utilized for joint learning
with EEG features.

4 Experiment and results

The first part of this section discusses the two datasets. The second part discusses the outcomes
of feature extraction. After that, hierarchical feature extraction is discussed. Joint learning, image
synthesis, generated images, and ablation study results are the next subsequent presented parts of this
section.

4.1 Datasets

EEGCVPR This dataset [Spampinato et al.] is a subset of ImageNet [Deng et al.], including
data of 40 object classes, with 50 images per class, for a total of 2,000 images. We utilized the
version of 5-95 Hz of the EEGCVPR dataset to include the biggest possible bandwidth of frequency
components in the data. The recording protocol presented visual stimuli to users in a block-based
setting, showing images of each class consecutively in a single sequence. Each EEG segment contains
data from 128 channels, recorded for 0.5 seconds at a 1 kHz sampling rate. The resultant EEG signal
consists of 440 time samples, after discarding the first and the last time samples. We used the original
prep-processing proposed by the authors [Spampinato et al.].

ThoughtViz This dataset [Tirupattur et al.] includes 10 different categories of objects. The images
were shown to the participants and were asked to imagine the image that was shown to them. The EEG
signal consists of 14 channels. The sampling frequency of the device is 128 Hz. After pre-processing
that was proposed by [Tirupattur et al.], each epoch has 32 time steps.

4.2 Jointly learned EEG-image features by CLIP

Feature extraction from images is performed using a Sobel filter for edge detection (V1), LBP for
texture features (V2), and color intensity (V3). These images are fed into the 3 different CLIP models,
allowing them to learn different weights and feature spaces. The original image is also fed into
another clip model. In Fig. 3, one example of the effect of each V1-V3 filter on the original image is
depicted.

The EEG-ViT architecture consists of 3 layers. The MLP dimension is set to 64 and the number of
attention heads, and the attention dimension is set to 16. A dropout rate of 0.5 is applied consistently
across models. To further reduce the risk of overfitting, FTsurrogate and smooth time masking are
employed for EEG data augmentation, techniques that have been shown to enhance performance in
BCI tasks involving EEG signals. We used Adam optimizer alongside cosine learning rate scheduler,
ϕ of FTsurrogate equal to 1, and 0.5 probability of data augmentation for both of the data sets.

Fig. 4 depicts the nonlinearly mapped two-dimensional feature space from EEG-ViT by t-SNE
[Maaten and Hinton] for the EEGCVPR dataset. The feature spaces of the ThoughtViz dataset are
also depicted in the Supplementary section.

4.3 Generated images by StyleGAN

A group of images generated for each of the datasets by our model is shown in Fig. 5.
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Figure 4: The result related to effects V1-V3 filtering on the feature space. The figures illustrate
the first two dimensions of the t-SNE map [Maaten and Hinton] (horizontal as the first dimension).
CLIP-based Jointly learned feature space of (a) original image, (b) V1-filtered image, (c) V2-filtered,
and image (d) V3-filtered image.

(a) Real Images (b) Generated Images

Figure 5: Comparison of real perceived images and generated images by Hierarchichal-ViT model
for EEGCVPR [Spampinato et al.] and ThoughtViz [Tirupattur et al.] datasets. The first two rows are
related to EEGCVPR and final row are from ThoughtViz.

Table 1 summarizes the classification accuracy and quality of the generated images among the two
data sets for our method and already established methods in the field of image generation from
EEG. Our Hierarchical-ViT model, combined with StyleGAN, generates high-resolution images from
EEG data for both the EEGCVPR40 and ThoughtViz datasets. The hierarchical extraction of visual
features, aligned with EEG representations, improves the quality of generated images. Results show
superior outcomes in IS, FID, and KID for the EEGCVPR dataset and IS and KID for ThoughtViz.

4.4 Comparison of feature spaces and ablation study

We compared the four feature spaces depicted in Fig. 4 by multivariate analysis of variance
(MANOVA) [Tabachnick and Fidell]. The MANOVA test showed that the V1, V2, and V3 fea-
ture spaces differ from the feature space related to the original image significantly (Pillai’s Trace
= 2.9960, F(384, 13437) = 26053.44, p < 1e-5]). Therefore, each of the V1-V3 feature spaces
had unique feature representations and were not redundantly adding dependent variables to the
Hierarchical-ViT model. The detailed outcomes of MANOVA statistics are mentioned in the Supple-
mentary section. For the ablation study (as mentioned in section 3.6), we evaluated the outcomes of
the IS, FID, and KID by using only a learned representation of the original image. As mentioned in
Table 1, the IS, FID, and KID of our model is 12.17, 122.91, and 0.059, while for the same model,
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these results degraded to 11.17, 126.88, and 0.062. Therefore, this ablation study also shows the
feasibility of adding hierarchical feature extraction for more accurate decoding of visual processing
from brain activity.

Table 1: Between-class discrimination by extracted EEG features and quality of the generated images.
The discriminative metrics are calculated based on accuracy and k-means[Macqueen, 1967]. The
k-means algorithm is applied to the features generated by our model. This table compares various
approaches and loss functions for extracting generated images.

Dataset Reference Discriminative Model Classification Generative Model Quality Metrics
Accuracy K-Means IS ↑ FID ↓ KID ↓

EEG CVPR [Kavasidis et al.] - - - Brain2Image-VAE 4.49 - -
[Palazzo et al., b] - - - Brain2Image-GAN 5.07 - -

[Spampinato et al.] LSTM Encoder 0.829 - - - - -
Jiang et al. [a] DML 0.977 - - - - -
Zheng et al. LSTM-CNN 0.944 - Improved-SNGAN 5.53 - -

Jiang et al. [b] BioLSTM 0.991 - - - - -
Khare et al. NeuroVision 0.988 - - 5.15 - -

Singh et al. [a] EEGLSTM 0.983 0.96 EEGStyleGAN-ADA 10.82 174.13 0.065
EEG-ViT (ours) 0.72 0.70 Hierarchical-ViT (ours) 12.17 122.91 0.059

ThoughtViz [Tirupattur et al.] ThoughtViz 0.729 - ThoughtViz 5.43 - -
Mishra and Bhavsar SiameseCNN 0.741 - NeuroGAN 6.02 - -

Singh et al. [b] EEG2Image 0.55 - EEG2Image 6.78 - -
Singh et al. [a] EEGLSTM 0.741 0.72 EEGStyleGAN-ADA 9.23 109.49 0.039

EEG-ViT (ours) 0.85 0.84 Hierarchical-ViT (ours) 10.20 167.92 0.037

5 Discussion

This paper introduced a new approach for reconstructing images from EEG signals by combining
transformer-based EEG feature extraction, hierarchical visual processing, and joint learning using the
CLIP framework. The method improved the mapping of EEG signals to visual stimuli, leading to
enhancements in the precision and quality of the generated images. On the EEGCVPR40 dataset, our
model achieved an IS of 12.17 and a KID of 0.059, outperforming all the earlier established methods
listed in Table 1. Similarly, with the ThoughtViz dataset, our model achieved an IS of 10.20 and an
KID of 0.037, surpassing the other approaches. In the case of FID, our model outperformed all the
other approaches by the value of 122.91 for the EEGCVPR dataset, while the EEGStyleGAN-ADA
[Singh et al., a] exceeded our FID value (109.42 vs 167.92) for the ThoughtViz dataset. This shows
the superiority of our model in 2 of 3 metrics to all other methods, with even better FID for a longer
duration of the EEG dataset (EEGCVPR compared to ThoughtViz). These outcomes demonstrate the
benefits of integrating hierarchical visual processing with transformer-based EEG feature extraction.

A key aspect of this approach is the use of hierarchical visual features, modeled after the layered
structure of the human visual system. Results from the MANOVA test confirm that the features
generated at each stage (V1, V2, V3) are unique and non-redundant, showing significant differences
from the original image feature space (with p-value<1e-5). This highlights that feature spaces of
hierarchical images are not redundant considering the original images’ feature spaces. Moreover, the
effectiveness of these hierarchical features was further confirmed by the mentioned ablation study
showing lower quality images in terms of IS (11.17 vs. 12.17), FID (126.88 vs. 122.91), and KID
(0.062 vs. 0.059).

One important limitation of our model is the lower classification accuracy for the EEGCVPR dataset
compared to other methods (while our model reached the highest accuracy for ThoughtViz). It is
worth mentioning that our model reached the highest image quality metrics on this dataset while
attaining the lowest between-class discrimination. This can be a starting point for future works on the
possible trade-off between class accuracy vs. precision of generated images in the brain-decoding
field of research. Regardless of the promising results of this study, some challenges remain for
the future steps. The complexity of transformer architectures can increase the risk of overfitting,
especially with smaller datasets. While the hierarchical visual processing approach has proven to
be beneficial, further work is needed to test its generalizability across different EEG datasets and a
broader range of stimuli. Future studies could also explore alternative architectures or more efficient
data augmentation methods to address the balance between model complexity and dataset size.
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Moreover, new studies could also focus on better fine-tuning of Hierarchical-ViT model considering
the length of EEG datasets in case of any relation between FID metric and the model’s parameters.

6 Conclusion

This paper introduced a novel EEG-based image reconstruction method that integrates hierarchical
feature extraction with transformer-based EEG processing and CLIP-inspired joint representation
learning. By mimicking the human visual system’s layered architecture, our approach effectively
captured essential visual features like edges, textures, and contours, enhancing the alignment between
EEG signals and visual representations. Our method outperformed existing techniques on datasets
such as EEGCVPR40 and ThoughtViz, achieving superior Inception Score and Fréchet Inception
Distance. Ablation studies confirmed the significance of hierarchical feature extraction in improving
image quality and model robustness, while MANOVA tests validated the unique contributions of
these features at various stages. Despite these promising results, challenges remain in generalizing
to smaller, diverse datasets. Future research will focus on addressing model complexity and dataset
scalability, alongside exploring efficient data augmentation strategies to enhance performance and
mitigate overfitting.

In conclusion, the combination of hierarchical feature extraction with advanced EEG processing
marks an advancement in EEG-to-image synthesis, while paving the way for more accurate brain
decoding systems.
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A Appendix: supplemental materials

A.1 Hierarchical scheme

In this paper, we took advantage of simple feedforward hierarchical filtering of perceived images to
use for joint learning with EEG features. We observed that heuristically, the simple four layers of
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filtering without feedback work best on the limited benchmarking datasets. The four hierarchical
filters are as follows:

• V1 (Edge detection): Sobel filtering captures the role of V1 in detecting simple edges and
orientation. The Sobel filter computes the gradient magnitude of an image to detect edges.
The gradient magnitude is given by:

G =
√
(S2

x + S2
y)

where:
– Sx is the gradient in the x direction.
– Sy is the gradient in the y direction.

Figure A1: V1 filtering process

• V2 (Texture and contour detection): Local Binary Patterns (LPBs) and contour detection
simulate V2’s role in recognizing textures, contours, and boundary details, processing the
information from the prior layers. The LBP operator describes the local texture of an image
by comparing each pixel with its neighbors. Contours represent the boundaries and edges in
an image, being one of the most important items required to identify objects and shapes.

Figure A2: V2 filtering process

• V3 (Color processing): Color saturation filtering reflects V3’s role in processing dynamic
information and complex color features, processing the information of the perceived sight.
The HSV (Hue, Saturation, Value) color model separates color information into three
channels. The saturation channel is extracted as:

S = Saturation(H,S, V )

where:
– H is the Hue channel.
– S is the Saturation channel.
– V is the Value channel.
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V4 (Curvature and shape detection): V4 is characterized as a mid-tier cortical area in the
ventral visual pathway, positioned between earlier visual areas like V1/V2 and higher-level
areas in inferotemporal cortex. Hough circles and shape detection simulate V4’s involvement
in higher-level shape and form recognition, which is crucial for object identification. The
outcomes of V4 were shown heuristically to be redundant in terms of jointly learned feature
space of the original image. Therefore, we used V1-V3 added to the original image for
feature extraction from the image.

Figure A3: V3 filtering process

A.2 MANOVA Analysis

The results of the MANOVA test can be seen in Table B1. The significance of the difference is
presented as F Value and probabilities. All 4 tests yield high indication of significance. The Wilks’
Lambda for the group is nearly zero. This indicates that nearly all the variability in the EEG features
can be explained by group differences, suggesting very strong separation between the models. The
Pillai’s Trace is also high (2.9960), which confirms that a substantial amount of variance in the
features is explained by the group effect. Hotelling-Lawley and Roy’s Greatest Root are very high.
This supports the idea that the groups are distinct.

Table B1: Multivariate Linear Model Results for EEG Features
Test Statistic Value Num DF Den DF F Value Pr > F

Intercept
Wilks’ Lambda 0.0016 ↓ 128 4477 22338.16 ↑ 0.00001 ↓
Pillai’s Trace 0.9984 ↑ 128 4477 22338.16 ↑ 0.00001 ↓
Hotelling-Lawley 638.6608 ↑ 128 4477 22338.16 ↑ 0.00001 ↓
Roy’s Root 638.6608 ↑ 128 4477 22338.16 ↑ 0.00001 ↓
-V3 and original
Wilks’ Lambda 0.00001 ↓ 384 13430.15 27048.62 ↑ 0.00001 ↓
Pillai’s Trace 2.9960 ↑ 384 13437 26053.44 ↑ 0.00001 ↓
Hotelling-Lawley 2404.6657 ↑ 384 13078.52 28027.41 ↑ 0.00001 ↓
Roy’s Root 1073.1941 ↑ 128 4479 37553.41 ↑ 0.00001 ↓

A.3 ThoughtViz embedding space

We also include the results of the embedding space for ThoughtViz dataset below.
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Figure A4: The t-SNE [Maaten and Hinton] plot for ThoughtViz dataset. The figure illustrates the
first two dimensions of t-SNE map (horizontal as the first dimension).
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