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Abstract

We consider a robust reinforcement learning problem, where a learning agent learns
from a simulated training environment. To account for the model misspecification
between this training environment and the real environment due to lack of data,
we adopt a formulation of Bayesian risk MDP (BRMDP) with infinite horizon,
which uses Bayesian posterior to estimate the transition model and impose a
risk measure to account for the model uncertainty. Observations from the real
environment that are out of the agent’s control arrive periodically and are utilized
by the agent to update the Bayesian posterior to reduce model uncertainty. We
theoretically demonstrate that BRMDP balances the trade-off between robustness
and conservativeness, and we further develop a multi-stage Bayesian risk-averse
Q-learning algorithm to solve BRMDP with streaming observations from real
environment. The proposed algorithm learns a risk-averse yet optimal policy that
depends on the availability of real-world observations. We provide a theoretical
guarantee of strong convergence for the proposed algorithm.

1 Introduction

Markov Decision Process (MDP) is widely applied in the Reinforcement Learning (RL) community
to model sequential decision-making, where the underlying transition process is a Markov Process
for a given policy. The Q-learning algorithm, which was first proposed in [28], learns the optimal
Q-function of the infinite-horizon MDP. The Q-function is a function in terms of the state and action
pair (s, a), which denotes the expected reward when action a is taken at the initial state s and optimal
action is taken at subsequent stages. In a Q-learning algorithm, the decision maker updates the value
of the Q-function by constantly interacting with the training environment and observing the reward
and transition each time. The training environment is often the estimate of the real environment
(where the policy is actually implemented) through past observed data. Implementing the policy
learned from the training environment in the real environment directly can be risky, because of model
misspecification, which is caused by the lack of historical data and possible environment shift. For
example, in an inventory management problem where the demand follows some unknown distribution,
we have limited observations of past demand realizations or only partially observed data if unfulfilled
lost orders are not observed.

One common approach is to consider a distributionally robust formulation, where one assumes the
embedding unknown distribution belongs to some ambiguity set. This ambiguity set is usually chosen
as a neighborhood of the reference distribution (estimated from data). For example, [23] considered
the distributionally robust policy learning for the contextual bandit problems, and [32, 17, 30] studied
the distributionally robust policy learning for the discounted RL setting. In particular, [14] and [15]
considered Q-learning methods for distributionally robust RL with a discounted reward, where [14]
constructed the ambiguity set using the Kullback-Leibler (KL) divergence whereas [15] used the
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Wasserstein distance; Both works designed the Q-learning algorithm by reformulating the robust
Bellman equation in its dual form, and thus, transforming the optimization over the distributions to
the optimization over a scalar.

While distributionally robust formulation accounts for model misspecification and provides a robust
policy that has relatively good performance over all possible distributions in the ambiguity set, it is also
argued to be conservative as a price for robustness, especially when the worst-case scenario is unlikely
to happen in reality. This motivates us to take a more flexible risk quantification criterion instead
of only considering the worst-case performance. [31, 29] proposed a Bayesian risk optimization
(BRO) framework, which adopts the Bayesian posterior distribution, as opposed to an ambiguity
set, to quantify distributional parameter uncertainty. With this quantification, a risk measure, which
represents the user’s attitude towards risk, is imposed on the objective with respect to the posterior
distribution. In this paper, we take this Bayesian risk perspective and formulate the infinite-horizon
Bayesian risk MDP (BRMDP) with discounted reward.

BRMDP was first proposed in [13], where they model the unknown parameter of the MDP via a
Bayesian posterior distribution. The posterior distribution is absorbed as an augmented state, together
with the original physical state, and is updated at each stage through the realization of the reward and
transition at that stage. A risk measure is imposed on the future reward at each stage taken with respect
to the posterior distribution at that stage. Before [13], using the Bayesian technique in MDP was
considered in [8] to deal with parameter uncertainty, where they simply took expectation on the total
reward with respect to the posterior distribution and referred to this MDP model as Bayes-adaptive
MDP (BAMDP). Based on BAMDP, there is a stream of work on model-based Bayesian RL (e.g.,
[25, 7, 27, 18, 3, 20, 4, 16]). Other model-free Bayesian RL methods include Gaussian process
temporal difference learning [9], Bayesian policy gradient methods [11], and Bayesian actor-critic
methods [26]. We referred to [12] for a comprehensive overview of Bayesian RL. More recently,
[22] and [19] considered risk-sensitive BAMDP by imposing the risk measure on the total reward. In
addition, [5] considered a percentile criterion and formulated a second-order cone programming by
assuming a Gaussian random reward. All three works mentioned above took a non-nested formulation
i.e., only one risk measure is imposed on the total reward. As pointed out in [13], one benefit of
the nested formulation (i.e., a risk measure is imposed at each stage) is that the resulting optimal
policy is time consistent, meaning the policy solved at the initial stage remains optimal at any later
stage. In contrast, the non-nested formulation does not have this property (see [21]). In this paper,
we considered the nested formulation as in [13]. Notably, [13] as well as most works of BAMDP
considered the planning problem over a finite horizon. The problem can be solved efficiently only
when the number of horizons is small since the number of augmented states, i.e., possible posterior
distributions, increases exponentially as the time horizon increases. In this paper, we formulate the
infinite-horizon BRMDP whose state space only contains the physical states. As a result, this enables
us to find the stationary (time-invariant) optimal policy. We develop a Q-learning algorithm to learn
this stationary optimal policy, which is quite different from the dynamic programming approach taken
by [13].

On a related note, risk measures are also widely applied in the literature on safe RL (see [10] for a
recent survey). In safe RL, risk measures are used to ensure that the learned policy not only performs
well but also avoids dangerous states or actions that can cause large one-stage costs. risk measures
are typically applied to deal with the intrinsic uncertainty of the MDP, taking into account the known
transition probability or reward distribution. In contrast, our work uses risk measures to account for
parametric uncertainty in the transition probability, which can prevent finding the optimal policy.
Moreover, in safe RL, the risk measure is usually imposed on some cost function to satisfy some
safety constraint, while we impose it on the reward objective. Although both areas use risk measures,
they have different goals and frameworks.

To summarize, all the pre-mentioned work on robust RL has focused on offline learning where the
agent does not interact with the real environment, but only has access to data from the training
environment. In contrast, our work utilizes real-world data to update the Bayesian posterior in the
offline learning process to reduce the parametric uncertainty. We also differ from Bayesian online
learning, where the Bayesian posterior is updated periodically, and another optimal policy is then
re-solved (regardless of computational cost) and deployed. Our approach is off-policy learning, where
the learning agent receives streaming real-world observations from some behavior policy, and we
focus on designing a Q-learning algorithm for the varying BRMDP that possesses statistical validity
rather than simply assuming optimality is obtained after each posterior update.
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2 Preliminary and Problem Statement

2.1 Standard Reinforcement Learning

Consider an RL environmentMc = (S,A,Pc, r, γ), where S is a finite state space, A is a finite
action space, r : S × A × S → R is the reward function bounded by R̄ = maxs,a,s′ |r(s, a, s′)|,
Pc = {pcs,a(·)}(s,a)∈S×A is the transition probabilities, and γ is the discount factor. The standard
reinforcement learning aims to find a (deterministic) optimal policy π : S → A satisfying

V π(s) = Es′∼pc
s,π(s)

[r(s, π(s), s′) + γV π(s′)] = sup
a∈A

{
Es′∼pc

s,a
[r(s, a, s′) + γV π(s′)]

}
.

2.2 Bayesian Risk Markov Decision Process (BRMDP)

The true transition probabilities, Pc, are usually unknown in real problems, and we need to estimate
them using observations from the real world. However, as discussed before, model misspecification
due to lack of data can impair the performance of learned policy when deployed in the real environ-
ment. Hence, we take a Bayesian approach to estimate the environment and impose a risk measure on
the objective with respect to the Bayesian posterior to account for this model (parametric) uncertainty.
With finite state and action spaces, we can impose a Dirichlet conjugate prior ϕs,a on the transition
model of each state-action (s, a) pair and update the Bayesian posterior once we observe a transition
from state s to s′ by taking action a. We defer the details of updating the Dirichlet posterior on (s, a)
to the supplementary material.

The Bayesian posterior provides a quantification of uncertainty about the transition model, which a
risk-sensitive decision maker seeks to address by making robust decisions using the current model
estimate. This can be done by imposing a risk measure on the future reward at each stage, which
maps a random variable to a real value and reflects different attitudes toward risk. Given a Dirichlet
posterior ϕ = {ϕs,a}s,a and a risk measure ρξ(f(ξ)) that maps a function f of the random vector ξ
to a real value, the value function of BRMDP under a policy π is defined as

V ϕ,π(s0) =Ed0∼π(s0){ρp1∼ϕs0,d0
(Es1∼p1

[r(s0, d0, s1)+

γEd1∼π(s1){ρp2∼ϕs1,d1
(Es2∼p2

[r(s1, d1, s2)+

γEd2∼π(s2){ρp3∼ϕs2,d2
(Es3∼p3 [r(s2, d2, s3) + · · ·

(1)

We assume the risk measure ρ satisfies the following assumption.
Assumption 2.3. Let ξ ∈ P(Rn) denote a random vector taking values in Rn, and let fi : Rn →
R, i = 1, 2 denote two measurable functions. The risk measure satisfies the following conditions:

1. ρξ(γf1(ξ)) = γρ(f1(ξ)) for all γ ≥ 0.

2. ρξ(f1(ξ)) ≥ ρξ(f2(ξ)) if f1(ξ) ≥ f2(ξ) almost surely.

3. ρξ(f1(ξ) + C) = ρξ(f1(ξ)) + C for all constant C.

risk measures satisfying Assumption 2.3 are similar to the coherent risk measures (see [1]), except
that the sub-additivity is not required. We relax the assumption of coherent risk measure to include
the risk measure VaR, which does not admit the sub-additivity.

Notice (1) takes a nested formulation, where the risk measure is imposed on the future reward at each
stage as opposed to the non-nested formulation where the risk measure is only imposed once on the
total reward, i.e., the value function of the classic MDP. One advantage of the nested formulation is
that (1) can be expressed in a recursive form:

V ϕ,π(s) = Ea∼π(s){ρp∼ϕs,a

(
Es′∼p[r(s, a, s

′) + γV ϕ,π(s′)]
)
}.

This enables us to define the Bellman operator to find the time-invariant optimal policy. Let π∗ denote
the optimal policy such that V ϕ,∗ := V ϕ,π∗

satisfying

V ϕ,∗(s0) = sup
π∈Π

{
Ed0∼π(s0){ρp1∼ϕs0,d0

(Es1∼p1 [r(s0, d0, s1)+

γEd1∼π(s1){ρp2∼ϕs1,d1
(Es2∼p2

[r(s1, d1, s2)+

γEd2∼π(s2){ρp3∼ϕs2,d2
(Es3∼p3 [r(s2, d2, s3) + · · ·
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where Π contains all randomized (and deterministic) policies. Let Lϕ be the Bellman operator such
that

LϕV (s) = max
a∈A

ρp∼ϕs,a(Es′∼p[r(s, a, s
′) + γV (s′)]).

The following theorem ensures that Lϕ is a contraction mapping and BRMDP admits an optimal
value function which is the unique fixed point of Lϕ. Its proof is in the supplementary material.
Theorem 2.4. BRMDPs possess the following properties:

1. Lϕ is a contraction mapping with ||LϕV − LϕU ||∞ ≤ γ||V − U ||∞, where || · ||∞ is the
sup norm in R|S|.

2. There exists a unique V ϕ,∗ such that LϕV ϕ,∗ = V ϕ,∗. Moreover,

V ϕ,∗(s0) = sup
π∈Π
{Ed0∼π(s0)[ρp1∼ϕs0,d0

(Es1∼p1 [r(s0, d0, s1)+

γEd1∼π(s1)[ρp2∼ϕs1,d1
(Es2∼p2

[r(s1, d1, s2)+

γEd2∼π(s2)[ρp3∼ϕs2,d2
(Es3∼p3

[r(s2, d2, s3) + . . .

2.5 BRMDP with VaR and CVaR

Among choices of risk measures that satisfy Assumption 2.3, we adopt two of the most commonly
used risk measures, VaR and CVaR. For a random variable X properly defined on some probability
space, VaRα is the α-quantitle of X , VaRα(X) = inf{z|P(X ≤ z) ≥ α}, and CVaRα normally is
defined as the mean of α-tail distribution of X . However, since we are imposing the risk measure
on the reward (regarded as the negative of loss) rather than the loss, we define CVaRα(X) =
1
α

∫ VaRα(X)

−∞ xP(dx), which is the conditional expectation for X ≤ VaRα.

Before discussing solving the BRMDP, a natural question is how this risk-averse formulation is
related to the original risk-neutral objective. Let V c,π denote the value function of policy π under the
true MDPMc. the difference between V ϕ,π and V c,π is bounded by the following theorem.
Theorem 2.6. Suppose the Bayesian prior ϕ0

s,a(s
′) = 1,∀s, a, s′ and ρ is either VaRα or CVaRα. Let

π be a deterministic policy. Let Ō = mins∈S Os,π(s) and Os,a be the number of observed transitions
from s with action π(s) in the dataset. Assuming Os,a > 0 for all (s, a), then with probability at least

1− Ō− 1
3

√
|S|
α ,

∥V ϕ,π − V c,π∥∞ ≤ Ō− 1
3

√
|S|
α

5|S|R̄
(1− γ)2

,

In particular, let O = mins∈S,a∈A Os,a, then with probability at least 1−O− 1
3

√
|S|
α ,

∥V ϕ,∗ − V c,∗∥∞ ≤ O− 1
3

√
|S|
α

5|S|R̄
(1− γ)2

where V c,∗ is the optimal value function forMc.

Theorem 2.6 implies our reformulated BRMDP coincides with the risk-neutral MDP as more obser-
vations are available. In particular, the discrepancy is characterized in terms of the minimal number
of observations for any state-action pair with the order at least O− 1

3 . This indicates the BRMDP
automatically balances the trade-off between robustness and conservativeness with varying numbers
of observations. We defer the proof to the supplementary material due to the space limit.

2.7 Q-Learning for BRMDP

Section 2.2 ensures BRMDP is well-formulated, that is, it admits an optimal value function which
can be found as the fixed point of its Bellman operator Lϕ. This allows us to derive a Q-Learning
algorithm to learn the optimal policy and value function of BRMDP. Recall that an optimal Q-function
is defined as

Qϕ,∗(s, a) = ρp∼ϕs,a
(Es′∼p[r(s, a, s

′) + γV ϕ,∗(s′)]) = ρp∼ϕs,a
(Es′∼p[r(s, a, s

′) + γmax
b∈A

Qϕ,∗(s′, b)]).
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Let T ϕ denote the Bellman operator for the Q-function. That is,

T ϕQ(s, a) = ρp∼ϕs,a
(Es′∼p[r(s, a, s

′) + γmax
b∈A

Q(s′, b)]).

The optimal Q-function Qϕ,∗(s, a) then satisfies

Qϕ,∗(s, a) = (1− λ)Qϕ,∗(s, a) + λT ϕQϕ,∗(s, a),

where λ ∈ (0, 1). In a Q-learning algorithm, given a sequence of learning rates {λt}t and an estimator
of the Bellman operator T̂ ϕ, we have the Q-learning update rule

Qt+1(s, a) = (1− λt)Qt(s, a) + λtT̂ ϕQt(s, a).

2.8 Bayesian Risk-Averse Q-Learning with Streaming Data

Notice that in Section 2.2 and 2.7, the posterior distribution ϕ is fixed across stages. As in many
previous works, the embedding model is estimated with a fixed set of past observations before
solving the problem. However, this one-time estimation of the transition model does not take into
consideration utilizing the new data that arrive later, which helps reduce the model uncertainty as
well as the conservativeness caused by risk measure, as indicated by Theorem 2.6. This motivates us
to consider a data-driven framework where we dynamically update the estimate of the model. For
this purpose, we consider a multi-stage Bayesian Q-learning algorithm.

Suppose at the beginning of stage t, a batch of observations in the form of three-tuple (si, ai, s′i) with
batch size n(t) is available. The observation can be regarded as generated by some policy that is
actually deployed in the real world, which does not depend on the learning process. The decision
maker incorporates these new data to update the posterior ϕt, with which we obtain a BRMDP model
Mt. We then cary out m(t) steps of the Q-learning update, where the initial Q-function in stage t is
inherited from the previous stage t− 1. This framework is shown in Figure 1.
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Figure 1: Multi-stage Bayesian risk-averse Q-learning

3 Estimator for Bellman Operator

In Figure 1, a key step is to design a proper estimator T̂ ϕ for the Bellman operator to ensure the
convergence of the Q-function. In most of the existing literature on Q-learning, convergence relies
on an unbiased estimator of the Bellman operator. While this is usually easy to obtain with the
expectation operator which is linear, in BRMDP unbiased estimator for the Bellman operator is
difficult if not impossible to obtain, because of (i) the non-linearity of risk measure (VaR and CVaR)
and (ii) varying posterior distributions. Unbiased estimators for nonlinear functionals have been
studied in [2]; however, their method cannot be directly applied here since the variance of the
estimator is uncontrollable in the existence of varying posteriors. Instead, we use the Monto Carlo
simulation to obtain an estimator with almost surely diminishing bias. We show in Theorem 4.3 and
4.4 that the Monto Carlo estimator is sufficient to guarantee the convergence of the Q-function.
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3.1 Monto Carlo Estimator for VaR and CVaR with Varying Sample Size

Denote by

f(p|s, a,Q) = Es′∼p[r(s, a, s
′) + γmax

b∈A
Q(s′, b)] =

∑
s′∈S

p(s′)[r(s, a, s′) + γmax
b∈A

Q(s′, b)]. (2)

Given a posterior ϕ and a Q-function Q, we want to estimate

T ϕQ(s, a) = ρp∼ϕs,a
(f(p|s, a,Q)),

where ρ is either VaRα or CVaRα and α ∈ (0, 1) denotes the risk level. A Monto Carlo estimator for
VaRα(f(p|s, a,Q)) and CVaRα(f(p|s, a,Q)) with sample size N can be obtained by first drawing
independent and identically distributed (i.i.d.) samples p1, p2, . . . , pN ∼ ϕs,a. Denote by Xi :=
f(pi|s, a,Q), i = 1, 2, . . . , N . Then

T̂ ϕ
NQ(s, a) =


V̂aR

ϕs,a

α,N (f(p|s, a,Q)) := X⌈Nα⌉:N if ρ is VaRα,

ĈVaR
ϕs,a

α,N (f(p|s, a,Q)) :=
1

⌈Nα⌉

⌈Nα⌉∑
k=1

Xk:N if ρ is CVaRα,
(3)

where Xk:N is the kth order statistic out of N samples. Both estimators are biased with a constant
sample size. Increasing the sample size reduces the bias but can be computationally inefficient. As the
posterior distribution concentrates more on the true model, even estimators with small sample sizes
can have reduced bias. We use a varying sample size that adapts to the updated posterior distribution.
Initially, we set Ns,a as a fixed minimal sample size N , and decrease or increase Ns,a by 1 at the
beginning of each stage based on whether a new observation improves or not the estimate for the
transition model on (s, a). The multi-stage Bayesian Risk-averse Q-Learning algorithms with VaR
(BRQL-VaR) and CVaR (BRQL-CVaR) are presented in Algorithm 1.

4 Convergence Analysis

In this section, we give the theoretical guarantee of our proposed multi-stage Bayesian risk-averse
Q-learning algorithm, which ensures the asymptotic convergence of the learned Q-function to the
“optimal" Q-function. We define the random observations from the real environment and all algorithm-
related random quantities with respect to a probability space (Ω,F ,P).
Recall that the real-world transition observations are assumed to be obtained from some behavior
policy that is not controlled by the agents. This may possibly bring a definition problem of “optimal"
Q-function. Indeed, if all streaming data are generated by some greedy policy, then the number of
transition observations from some state-action pair can remain small, in which case the Bayesian
posterior does not converge and the learned policy is risk-averse yet random since it depends on the
Bayesian posterior. As in the offline RL, where the policy is learned based on the initial fixed data
set, we also define the optimal Q-function as depending on the given real-world data but differs from
pure offline RL in that the given data is streaming and random.
Definition 4.1. (Data-conditional optimal Q-function)
Given an observation process ω =

{
(st,i, at,i, s

′
t,i)|t = 1, 2, . . . , i = 1, 2, . . . , n(t)

}
, let

O∞
s,a,s′(ω) =

∑∞
t=1

∑n(t)
i=1 1{(st,i, at,i, s′t,i) = (s, a, s′)} and O∞

s,a(ω) = (O∞
s,a,s′(ω))s′∈S denote

the number of transition observations under ω. For each (s, a) ∈ S ×A, define the limiting posterior
as

ϕω
s,a =

{
δpc

s,a
(·) if ||O∞

s,a(ω)|| =∞,

Dirichlet
(
ϕ0
s,a +O∞

s,a(ω)
)

otherwise,

where δpc
s,a

(·) is the Dirac measure centered at true transition probability pcs,a = (pcs,a(s
′))s′∈S .

Qω,∗ is the optimal solution to BRMDP with “posterior" ϕω , which satisfies Qω,∗ = T ϕω

Qω,∗. The
data-optimal Q-function Qω,∗ is a random vector since the observation process is random.

With this data-conditional optimal criterion, we can now prove the convergence of the multi-stage
Bayesian risk-averse Q-learning algorithm. A list of notations for different Q-functions can be found
in Table 1 of the supplementary material.
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Algorithm 1 Multi-stage Bayesian risk-averse Q-learning
Input: State space S, action space A, reward function r, termination stage T , Q-learning update
step size {m(t)}Tt=1, learning rate {λℓ}ℓ, prior distribution {ϕ0

s,a}s∈S,a∈A, minimal sample size
N , risk measure ρ ∈ {VaRα, CVaRα} with risk level α.
Initialize ϕ← ϕ0, Q(s, a)← 0, Ns,a ← N ∀s, a .
for t = 1 to T do

Obtain n(t) observations (si, ai, s′i) i = 1, . . . , n(t).
for i = 1 to n(t) do

for all (s, a) ∈ S ×A do
ϕt
s,a(s

′)← ϕt−1
s,a (s′) + #{(si, ai, s′i) = (s, a, s′)}

if ϕt
s,a = ϕt−1

s,a then
Ns,a ← Ns,a + 1

else
Ns,a ← max{Ns,a − 1, N}

end if
end for

end for
for ℓ = 1 to m(t) do

M ←
∑t−1

τ=1 m(t), λt,l ← λM+ℓ

for all (s, a) ∈ S ×A do
Generate p1, . . . , pNs,a

∼ ϕt
s,a

Xi ← f(pi|s, a,Q), i = 1, 2, . . . , Ns,a

Q′(s, a)← (1− λt,ℓ)Q(s, a) + λt,ℓT̂
ϕt

Ns,a
Q(s, a) using (3).

end for
Q(s, a)← Q′(s, a) ∀(s, a) ∈ S ×A

end for
end for
Output: Q-function {Q(s, a)}(s,a)

To prove the convergence of Qt, we prove (i) the convergence of Qϕt,∗ which depends on the
convergence of the posterior distribution, and (ii) the convergence of the estimator for the Bellman
operator. We summarize two important results in Proposition 4.2 and Theorem 4.3. Due to the page
limit, all the proofs are deferred to the supplementary material.

Proposition 4.2. (Convergence of Qϕt,∗) Let Qω,∗ be defined as in Definition 4.1 and ϕt be the
posterior distribution obtained at stage t. Then the optimal Q-function under posterior distribution
ϕt converges to Qω,∗ almost surely. That is,

lim
t→∞

||Qϕt,∗ −Qω,∗||∞ = 0 almost surely,

where || · ||∞ is the entry-wise sup norm.

Compared with Theorem 2.6 which characterizes the difference between the BRMDP and the original
MDP by computing a concentration bound, Proposition 4.2 ensures the strong convergence of the
BRMDP model to the data-conditional optimal Q-function. The next Theorem 4.3 ensures that the
bias of the proposed estimator for the Bellman operator with varying sample sizes converges to zero
uniformly in Q.
Theorem 4.3. (Diminishing bias for Bellman estimator) Denote by (k) the kth iteration of the
Q-learning update. Let tk be the stage such that

∑tk−1
t=1 m(t) < k ≤

∑tk
t=1 m(t). Let N (k)

s,a denote
the sample size in iteration k and ωtk denote all the past observations until stage tk. Denote by
T̂ (k)Q(s, a) = T̂ ϕtk

N
(k)
s,a

Q(s, a) as defined in (3). Then, we have almost surely,

lim
k→∞

sup
||Q||∞≤ R̄

1−γ

∣∣∣E[T̂ (k)Q(s, a)− T ϕtk
Q(s, a)|ωtk ]

∣∣∣ = 0.

Theorem 4.3 provides a uniform convergence of the estimated Bellman estimator, which is crucial to
prove Theorem 4.4. Notably, with both streaming data and risk measure, proof of Theorem 4.3 is
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much more challenging than existing work on distributionally robust Q-learning, where randomness
only comes from the learning process, which refers to the random data generated by the simulator.
In our setting, we have mixed randomness coming from both the observation process and learning
process, which complicates the analysis and differs from that of pure offline Q-learning. Also, the
analysis is different from online Bayesian Q-learning, where the sample complexity results are usually
constructed assuming an optimal policy is resolved and deployed instantly in each period. In contrast,
we aim to prove the convergence of Q-learning in order to obtain the optimal policy.

Together with Proposition 4.2 and Theorem 4.3, we establish the convergence of Algorithm 1 in
Theorem 4.4.

Theorem 4.4. Denote by Qt the Q-function given by Algorithm 1 at the end of stage t. Assume
T = ∞, and the learning rate {λℓ}∞ℓ=1 satisfies

∑∞
ℓ=1 λℓ = ∞,

∑∞
ℓ=1 λ

2
ℓ < ∞. Then, we have

almost surely,
lim
t→∞

||Qt −Qω,∗||∞ = 0.

Corollary 4.5. Let Qt be defined as in Theorem 4.4 and O∞
s,a be defined as in Definition 4.1. Assume

T =∞ and ||O∞
s,a||∞ =∞,∀s ∈ S, a ∈ A almost surely. Then

lim
t→∞

||Qt −Qc,∗||∞ = 0 almost surely ,

where
Qc,∗(s, a) =

∑
s′∈S

pcs,a(s
′)[r(s, a, s′) + max

b∈A
Qc,∗(s′, b)]

is the true optimal Q-function.

Corollary 4.5 is straightforward from Theorem 4.4, which ensures Algorithm 1 will eventually learn
the true optimal Q-function if we can obtain an infinite number of observations for each state-action
pair.

5 Numerical Experiments

5.1 Comparison Baselines:

• BRQL-VaR: our proposed multi-stage Bayesian risk-averse Q-learning algorithm with risk
measure VaR;

• BRQL-CVaR: our proposed multi-stage Bayesian risk-averse Q-learning algorithm with risk
measure CvaR;

• BRQL-mean: the risk-neutral Bayesian Q-learning function. That is, the risk measure is the
expectation taken with respect to the posterior distribution;

• DRQL-KL: distributionally robust Q-learning algorithm with KL divergence (see [14]);

• DRQL-Wass: distributionally robust Q-learning algorithm with Wasserstein distance (see
[15]).

5.2 Testing examples

Example 1: Coin Toss. Consider we are playing the following game. Each time we will toss K
coins and observe the number of coins that show heads, where the chance of each coin showing
heads is unknown. After observing the number of heads in the last toss, we can make a guess about
whether the next toss will have more heads or fewer heads. If our guess is right, we can get 1
dollar as the reward, otherwise, we need to pay 1 dollar. We also have the choice of not guessing,
in which case we do not pay or get paid. We model this game as a discounted infinite-horizon
MDP. The state st ∈ S = {0, 1, . . . ,K} denotes the number of heads in tth toss. The actions space
is A = {−1, 0, 1}, where a = 1 corresponds to guess st+1 > st, a = −1 corresponds to guess
st+1 < st, and a = 0 corresponds to not guess. Hence, the reward function is

r(s, a, s′) := a1{s<s′} − a1{s>s′} − |a|1{s=s′}.

Assume each coin shows a head with probability 0.4. The number of coins K = 10.

8



Example 2: Inventory Management. Suppose a warehouse manager runs a capacity system. At the
beginning of period t, the manager observes the current inventory level st and orders additional goods
of the amount at. An ordering cost of c = 1 is incurred for each unit of goods. The demand follows
a truncated Poisson distribution with a mean of 3 and support {0, 1, . . . ,K}. Suppose the demand
arrives during each period and is fulfilled at the end of the period. For each unit of fulfilled demand,
we can obtain a profit of u = 5. If a unit of demand is not fulfilled at the end of the period, the demand
is lost and a penalty cost of q = 2 is incurred. If there are any remaining goods at the end of the period,
the goods will be taken to the next period with a holding cost h = 1 per unit. The warehouse has a
maximal capacity of K for the goods. We model this problem as a discounted infinite-horizon MDP
with state space S = {−K, . . . , 0, . . . ,K}, where (st)+ = max(st, 0) represents the inventory level
at the beginning of period t and (st)

− = −min(st, 0) represents the lost demand at the end of period
t− 1. The action space is As := {0, . . . ,K − s+}. The reward is

r(s, a, s′) = −(c · a+ h · (s′)+ + q · (s′)−) + u · (s+ + a− (s′)+).

We consider two settings: (I) the demand in each period uniformly distributes among {0, 1, . . . ,K}
and (II) the demand depends on the current inventory level s. For the second setting, we will consider
the case where observations are insufficient to estimate the transition probability for every state-action
pair.

5.3 Experiment Setting

Coin toss. We consider stage-wise streaming observations with batch size n(t) = 1 and stage-wise
Q-learning with number of steps m(t) = 1. The minimal sample size to estimate the Bellman
operator N = 10. Initial observed data batch size n(0) = 10. We set the radius of the KL ball and
the Wasserstein ball to be 0.1. The risk level for VaR and CVaR is set to 0.2 in Figure 2 and 0.4 in
Figure 3.

Inventory Management. In Figure 4, We set K = 10, T = 60,m(t) = n(t) = 5, n(0) = 20, and
N = 10. The radius of the KL and the Wasserstein ball is 0.05, and the risk level for VaR and CVaR
is 0.2. In Figure 5, we set the capacity K = 10 and the size of the historical data set n(0) = 30.
The policies are deployed in different environments, where the demand follows different truncated
Poisson distributions with means ranging from 3 to 5.

5.4 Results

In Figure 2- 4, we compare the value functions of different algorithms as the time stage increases. The
value function of each algorithm is calculated by deploying the optimal policy in the real environment.
Each curve shows the empirical expected performance and the strip around the curve shows the 95%
confidence interval. In both examples, our proposed algorithms outperform the two distributionally
robust Q-learning algorithms in both expected performance and variation as the time stage increases,
since our proposed algorithms dynamically update the posterior to reduce the model uncertainty while
two DRQL algorithms learns with fixed ambiguity set. Compared with the risk-neutral algorithm,
BRQL-VaR and BRQL-CVaR achieve lower expected value functions but have smaller variations,
which shows the robustness of our two proposed algorithms.

Moreover, in Figure 5 We test for the insufficient data setting, where we only have a set of historical
data to estimate the transition model at the initial time stage. The value function is calculated as
deploying the learned policy in different environments with demand following different Poisson
distributions. Figure 5 indicates the two proposed algorithms achieve higher value functions than the
risk-neutral algorithm in the more adversarial setting (with Poisson parameter less than 3), showing
their robustness. They also obtain lower value functions than two DRQL algorithms in the adversarial
setting and higher value functions in other settings, indicating the risk measure is more flexible
compared to the worst-case criterion.

6 Conclusion and Limitation

In this paper, we propose a novel multi-stage Bayesian risk-averse Q-learning algorithm to learn
the optimal policy with streaming data, by reformulating the infinite-horizon MDP with unknown
transition model as an infinite-horizon BRMDP. In particular, we consider the two cases of risk
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Figure 2: Coin Toss: risk level α = 0.2 Figure 3: Coin Toss: risk level α = 0.4

Figure 4: Inventory Management: streaming
observations

Figure 5: Inventory Management: fixed BR-
MDP

measures, VaR and CVaR, for which we design a Monte Carlo estimator with varying sample sizes
to approximate the Bellman operator of BRMDP. We demonstrate the correctness of the BRMDP
formulation by providing statistical guarantee and prove the strong asymptotic convergence of the
proposed Q-Learning algorithm. The numerical results demonstrate that the proposed algorithms are
efficient with streaming data and robust with limited data.

As discussed in the paper, one limitation of the current framework is that the behavior policy that
generates real-world observations is assumed to be given. This is suitable for situations when it is
expensive for the agent to interact with the real environment or to change the policy frequently as it
may cause a large cost or system instability. An interesting future direction is to consider an online
learning setting, where at each period the agent also needs to take action in the real world.
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A Dirichlet Posterior on State-action Pair

A Dirichlet distribution is parameterized by a count vector ϕ = (ϕ1, . . . , ϕk), where ϕi ≥ 1, such
that the density of probability distribution p = (p1, . . . , pk) is defined as f(p | ϕ) ∝

∏k
i=1 p

ϕi−1
i .

For each (s, a) ∈ S ×A, we impose a Dirichlet prior with parameter ϕs,a = (ϕs,a(s
′))s′∈S on the

unknown transition probability ps,a = (ps,a(s
′))s′∈S . After we observe the transition (s, a, s′) for

os,a,s′ times ∀s′ ∈ S , the posterior distribution of ps,a is also a Dirichlet distribution with parameter
ϕs,a + os,a = (ϕs,a(s

′) + os,a,s′)s′∈S , where os,a = (os,a,s′)s′∈S .

B Technical Proofs

Table 1: Checklist of notations for different Q-functions.

Notation Explanation

Qϕ,∗ Optimal Q-function of BRMDP with posterior ϕ
Qω,∗ Data-conditional optimal Q-function conditioned on observation process ω
Qt Q-function at stage t given by Algorithm 1
Qc,∗ Optimal Q-function of the true environment

We first introduce the following lemma that guarantees the maximum taken over randomized policies
is equivalent to being taken over only deterministic policies.

Lemma B.1. (Deterministic Bellman operator)

LϕV (s) =max
a∈A

ρp∼ϕs,a
(Es∼p[r(s, a, s

′) + γV (s′)])

= sup
π∈Π

Ea∼π(s)[ρp∼ϕs,a
(Es′∼p[r(s, a, s

′) + γV (s′)])].

Proof. For an arbitrary randomized policy π, an arbitrary V , denote by π(s, a) = P(π(s) = a). We
have

sup
a∈A

ρp∼ϕs,a
(Es′∼p[r(s, a, s

′) + γV (s′)]) ≥
∑
a∈A

π(s, a)ρp∼ϕs,a
(Es′∼p[r(s, a, s

′) + γV (s′)]).

Hence,

LϕV (s) = max
a∈A

ρp∼ϕs,a
(Es∼p[r(s, a, s

′) + γV (s′)]) ≥ sup
π∈Π

Ea∼π(s)[ρp∼ϕs,a
(Es′∼p[r(s, a, s

′) + γV (s′)])].

The other direction holds naturally since a deterministic policy is also a randomized policy.

Lemma B.2. (Non-expansive risk measure) Suppose the risk measure ρ satisfies Assumption 2.3,
then

|ρ(f1(ξ))− ρ(f2(ξ))| ≤ ||f1(ξ)− f2(ξ)||ξ,∞,

where || · ||ξ,∞ is the sup norm with probability measure P.

Proof.

ρξ(f1(ξ)) = ρξ(f1(ξ)+f2(ξ)−f1(ξ)) ≤ ρξ(f1(ξ)+∥f2(ξ)−f1(ξ)∥ξ,∞) = ρξ(f1(ξ))+∥f2(ξ)−f1(ξ)∥ξ,∞.

Similarly, we have
ρξ(f2(ξ)) ≤ ρξ(f1(ξ)) + ∥f2(ξ)− f1(ξ)∥ξ,∞.

Combining together we complete the proof.
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Proof of Theorem 2.4

Proof. proof of 1. ∀ε > 0, there exists a deterministic policy π, such that ∀s ∈ S

LϕV (s) ≤ ρp∼ϕs,π(s)
(Es′∼p[r(s, π(s), s

′) + γV (s′)]) + ε.

Then,

LϕV (s)− LϕU(s)

≤ρp∼ϕs,π(s)
(Es′∼p[r(s, π(s), s

′) + γV (s′)])− ρp∼ϕs,π(s)
(Es′∼p[r(s, π(s), s

′) + γU(s′)]) + ε

≤γ||Es′∼p[V (s′)− U(s′)]||p,∞ + ε

≤γ||V − U ||∞ + ε

Since ε can be chosen arbitrarily, ||LϕV − LϕU || ≤ γ||V − U ||∞. Switching the position of V and
U , we obtain the desired result.
proof of 2. For the first part, since Lϕ is a contraction mapping, there exists a unique V ϕ,∗ such that
LϕV ϕ,∗ = V ϕ,∗. For the second part, let π′ be an arbitrary randomized policy. We have

V ϕ,∗(s) = LϕV ϕ,∗(s)

= sup
a∈A
{ρp1∼ϕs,a

(Es1∼p1
[r(s, a, s1) + γV ϕ,∗(s1)])}

= sup
π∈Π

∑
a∈A

π(s, a)ρp1∼ϕs,a
(Es1∼p1

[r(s, a, s1) + γV ϕ,∗(s1)])

≥
∑
a∈A

π′(s, a)ρp1∼ϕs,a(Es1∼p1 [r(s, a, s1) + γV ϕ,∗(s1)])

where the third equality holds because of Lemma B.1. Furthermore, by Assumption 2.3.2, we get

V ϕ,∗ ≥
∑
a∈A

π′(s, a)ρp1∼ϕs,a(Es1∼p1 [r(s, a, s1)+γ
∑
a1∈A

π′(s1, a1)ρp2∼ϕs1,a1
(Es2∼p2 [r(s1, a1, s2)+γV ϕ,∗(s2)])]).

(4)
Define Lϕ

π′ such that ∀s ∈ S and V ∈ R|S|,

Lϕ
π′V (s) =

∑
a∈A

π′(s, a)ρp1∼ϕs,a
(Es1∼p1

[r(s, a, s1) + γV (s1)]).

By the same induction as (4), we can derive

V ϕ,∗ ≥ (Lϕ
π′)

kV ϕ,∗, ∀k ≥ 1.

Define
V 0,π′

(s) =
∑
a∈A

π′(s, a)ρp∼ϕs,a
(Es1∼p[r(s, a, s1)])

and
V k+1,π′

(s) =
∑
a∈A

π′(s, a)ρp∼ϕs,a
(Es1∼p[r(s, a, s1) + γV k,π′

(s1)]).

By Assumption 2.3 and Lemma B.2, we have

V ϕ,∗(s) ≥ (Lϕ
π′)

kV ϕ,∗(s) ≥ V k,π′
(s)− γk||V ϕ,∗||∞ (5)

As k →∞,

|V ϕ,π′
(s)− V k,π′

(s)| ≤ γk+1||V ϕ,π′
||∞ ≤

γk+1

1− γ
R̄→ 0,

where V ϕ,π′
is the value function of BRMDP with posterior ϕ and policy π′. Then from (5) we obtain

V ϕ,∗(s) ≥ V ϕ,π′
(s)− γk||V ϕ,∗||∞ −

γk+1

1− γ
R̄, ∀s ∈ S.

By taking k →∞, we have V ϕ,∗(s) ≥ V ϕ,π′
(s). Since π′ is chosen arbitrarily, we get the desired

result.
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Proof of Theorem 2.6

Proof. Denote by

f(p|s, a, V ) =Es′∼p[r(s, a, s
′) + γV (s′)] =

∑
s′∈S

p(s′)[r(s, a, s′) + γV (s′)].

We first bound |f(p|s, a, V )− f(p′|s, a, V )| in terms of ∥p− p′∥∞ for ∥V ∥∞ ≤ R̄
1−γ . To see this,

|f(p|s, a, V )− f(p′|s, a, V )| =

∣∣∣∣∣∑
x∈S

[p(x)− p′(x)][r(s, a, x) + γV (x)]

∣∣∣∣∣
≤|S|[R̄+ ∥V ∥∞]∥p− p′∥∞

≤ |S|R̄
1− γ

∥p− p′∥∞.

(6)

Now consider p ∼ ϕs,a. Since ϕ0
s,a = 1, we have the posterior parameter ϕs,a(s

′) = os,a,s′ + 1,
where o(s, a, s′) is the number of transition from s to s′ taken action a in the data set. Let M̂
denote the empirical MDP generated with the same data which are used to estimate ϕ, with the
empirical transition probability p̂s,a(s

′) =
os,a,s′

Os,a
. Let pcs,a be the true transition distribution. Since

{os,a,s′}s′∈S follows the multinomial distribution with parameter Os,a; p
c
s,a, we have

P(|p̂s,a(s′)− pcs,a(s
′)| ≥

√
|S|
α

O
− 1

3
s,a ) ≤

α

|S|
O

− 1
3

s,a

by Chebyshev inequality. Define

p̄s,a(s
′) = Ep∼ϕs,a [p(s

′)] =
ϕs,a(s

′)∑
s′′∈S ϕs,a(s′′)

=
os,a,s′ + 1

Os,a + |S|
,

and

σ2
s,a(s

′) = Ep∼ϕs,a [(p(s
′)− p̄s,a(s

′))2] =
ϕs,a(s

′)(∥ϕs,a∥1 − ϕs,a(s
′)

∥ϕs,a∥21(∥ϕs,a∥1 + 1)
≤ 1

∥ϕs,a∥1
=

1

Os,a + |S|
.

Notice

|p(s′)− p̂s,a(s
′)| ≤|p(s′)− p̄s,a(s

′)|+ |p̄s,a(s′)− p̂s,a(s
′)|

=|p(s′)− p̄s,a(s
′)|+

∣∣∣∣ os,a,s′ + 1

Os,a + |S|
− os,a,s′

Os,a

∣∣∣∣
≤|p(s′)− p̄s,a(s

′)|+ 1

Os,a
.
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Since |S| ≥ 1, α ≤ 1, Os,a ≥ 1,
√

|S|
α O

− 1
3

s,a − 1
Os,a

≥ 0. Then, with probability at least 1− α
|S|O

− 1
3

s,a ,

Pp∼ϕs,a

(
|p(s′)− pcs,a(s

′)| ≥ 3

√
|S|
α

O
− 1

3
s,a

)

≤Pp∼ϕs,a

(
|p(s′)− p̄s,a(s

′)| ≥ 3

√
|S|
α

O
− 1

3
s,a − |p̄s,a(s′)− p̂s,a(s

′)| − |p̂s,a(s′)− pcs,a(s
′)|

)

≤Pp∼ϕs,a

(
|p(s′)− p̄s,a(s

′)| ≥ 3

√
|S|
α

O
− 1

3
s,a −

1

Os,a
−
√
|S|
α

O
− 1

3
s,a

)

≤Pp∼ϕs,a

(
|p(s′)− p̄s,a(s

′)| ≥
√
|S|
α

O
− 1

3
s,a

)

≤Pp∼ϕs,a

(
|p(s′)− p̄s,a(s

′)| ≥
√
|S|
α

O
− 1

3
s,a

)

≤αO
2
3
s,a

|S|
σ2
s,a(s

′) (7)

≤ α

|S|
,

where the second last inequality holds by Chebyshev inequality. Replacing a with π(s), we obtain

with probability at least 1− α
|S|O

− 1
3

s,π(s) ≥ 1− α
|S| Ō

− 1
3 ,

Pp∼ϕs,π(s)

(
|p(s′)− pcs,π(s)(s

′)| ≥ 3

√
|S|
α

O
− 1

3

s,π(s)

)
≤ α

|S|
.

This further implies with probability at least 1− α
|S| Ō

− 1
3 ,

Pp∼ϕs,π(s)

(
∥p− pcs,π(s)∥∞ ≥ 3

√
|S|
α

O
− 1

3

s,π(s)

)
≤
∑
s′∈S

Pp∼ϕs,π(s)

(
|p(s′)− pcs,π(s)(s

′)| ≥ 3

√
|S|
α

O
− 1

3

s,π(s)

)
≤ α.

Let U = {p|∥p− pcs,π(s)∥∞ ≤ 3
√

|S|
α O

− 1
3

s,π(s)}. Since with probability at least 1− α
|S| Ō

− 1
3 , VaRα is

the α-quantile, and Pϕs,a(U) ≥ 1− α, we have

inf
p∈U

f(p|s, π(s), V ) ≤ (VaRα)p∼ϕs,π(s)
(f(p|s, π(s), V )) ≤ sup

p∈U
f(p|s, π(s), V ).

Hence with probability at least 1− α
|S| Ō

− 1
3 ,

|(VaRα)p∼ϕs,π(s)
(f(p|s, π(s), V ))− f(pcs,π(s)|s, π(s), V )|

≤ sup
p∈U
∥f(p|s, π(s), V )− f(p̄s,π(s)|s, π(s), V )∥

≤ |S|R̄
1− γ

sup
p∈U
∥p− p̄s,π(s)∥∞

≤3
√
|S|
α

O
− 1

3

s,π(s)

|S|R̄
1− γ

≤3
√
|S|
α

Ō− 1
3
|S|R̄
1− γ

,

(8)

where the second last equality is by (6). Since this holds for all s, then we obtain with probability
1− αŌ− 1

3 ,

|(VaRα)p∼ϕs,π(s)
(f(p|s, π(s), V ))− f(p̂s,π(s)|s, π(s), V )| ≤ 3

√
|S|
α

Ō− 1
3
|S|R̄
1− γ
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holds for all s ∈ S.

Finally, let Lϕ,π denote the Bellman operator for BRMDP with posterior ϕ and policy π, that is
V ϕ,π = Lϕ,πV ϕ,π = (VaRα)p∼ϕs,π(s)

(f(p|s, π(s), V ϕ,π)). Similar as Theorem 2.4, Lϕ,π is a
γ-contraction mapping. We have

|V ϕ,π(s)− V c,π(s)| =|Lϕ,πV ϕ,π(s)− Lϕ,πV c,π(s) + Lϕ,πV c,π(s)− V c,π(s)|
≤∥Lϕ,πV ϕ,π − Lϕ,πV c,π∥∞ + |Lϕ,πV c,π(s)− V c,π(s)|
≤γ∥V ϕ,π − V c,π∥∞ + |Lϕ,πV c,π(s)− V c,π(s)|.

Since ∥V c,π∥∞ ≤ R̄
1−λ , we have the second term |Lϕ,πV c,π − V c,π| ≤ 3

√
|S|
α Ō− 1

3
|S|R̄
1−γ by (8).

Maximize over s on both sides, we obtain

∥V ϕ,π − V c,π∥∞ ≤ λ∥V ϕ,π − V c,π∥∞ + Ō− 1
3

√
|S|
α

3|S|R̄
(1− γ)

.

Hence,

∥V ϕ,π − V c,π∥∞ ≤ Ō− 1
3

√
|S|
α

3|S|R̄
(1− γ)2

≤ Ō− 1
3

√
|S|
α

5|S|R̄
(1− γ)2

.

For ρ is CVaRα, notice by (7), we have with probability at least 1− α
|S|O

− 1
3

s,a ,

Pp∼ϕs,a

(
|p(s′)− pcs,a(s

′)| ≥ 3

√
|S|
α

O
− 1

3
s,a

)
≤ α

|S|
O

− 1
3

s,a

Hence, with probability at least 1− α
|S|O

− 1
3

s,π(s) ≥ 1− α
|S| Ō

− 1
3 ,

Pp∼ϕs,π(s)

(
∥p− pcs,π(s)∥∞ ≥ 3

√
|S|
α

O
− 1

3

s,π(s)

)
≤ αO

− 1
3

s,π(s).

Recall CVaRα(X) is the conditional expectation on {X ≤VaRα(X)}. Let U = {p|∥p−pcs,π(s)∥∞ ≤

3
√

|S|
α O

− 1
3

s,π(s)} and W = {p|f(p|s, π(s), V ) ≤ (VaRα)p∼ϕs,π(s)
(f(p|s, π(s), V ))} for ∥V ∥∞ ≤

R̄
1−λ . Then, with probability at least 1− α

|S| Ō
− 1

3 ,

|(CVaRα)p∼ϕs,π(s)
(f(p|s, π(s), V ))− f(p̂s,π(s)|s, π(s), V )|

=
1

α

∣∣∣∣∫
W∩U

(f(p|s, π(s), V ))− f(p̂s,π(s)|s, π(s), V )dPϕs,π(s)
+

1

α

∫
W∩Uc

(f(p|s, π(s), V ))− f(p̂s,π(s)|s, π(s), V )dPϕs,a

∣∣∣∣
≤ 1

α

∫
W∩U

∣∣(f(p|s, π(s), V ))− f(p̂s,π(s)|s, π(s), V )
∣∣ dPϕs,π(s)

+
1

α

∫
W∩Uc

∣∣(f(p|s, π(s), V ))− f(p̂s,π(s)|s, π(s), V )
∣∣dPϕs,π(s)

≤ 1

α

{
α ·O− 1

3

s,π(s)

2R̄

1− γ
+ α · 3

√
|S|
α

O
− 1

3

s,π(s)

|S|R̄
1− γ

}

≤O− 1
3

s,π(s)

√
|S|
α

5|S|R̄
1− γ

≤Ō− 1
3

√
|S|
α

5|S|R̄
1− γ

.

Then, following the same proof as for VaRα, with probability at least 1− αŌ
1
3 , we can bound

∥V ϕ,π − V c,π∥∞ ≤ Ō− 1
3

√
|S|
α

5|S|R̄
(1− γ)2

.

This completes the proof of the first part. For the second part, let πc be the optimal policy forMc.
Then we have for both VaRα and CVaRα, with probability at least 1− αŌ− 1

3 (πc) ≥ 1− αO− 1
3 ,

V ϕ,∗ ≥ V ϕ,πc

≥ V c,πc

−O− 1
3

√
|S|
α

5|S|R̄
(1− γ)2

.
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Recall π∗ is the optimal policy for BRMDP, then

V c,πc

≥ V c,π∗
≥ V ϕ,∗ −O− 1

3

√
|S|
α

5|S|R̄
(1− γ)2

.

Combining together the proof is completed.

Proof of Proposition 4.2

Proof. First notice

||Qϕt,∗ −Qω,∗||∞ =||T ϕt

Qϕt,∗ − T ϕω

Qω,∗||∞
=||(T ϕt

Qϕt,∗ − T ϕt

Qω,∗) + (T ϕt

Qω,∗ − T ϕω

Qω,∗)||∞
≤γ||Qϕt,∗ −Qω,∗||∞ + ||T ϕt

Qω,∗ − T ϕω

Qω,∗||∞.

Since ||Qω,∗||∞ ≤ R̄
1−γ almost surely, we can prove the convergence of Qϕt,∗ if we can show that

almost surely for each (s, a) ∈ S ×A,

sup
||Q||∞≤ R̄

1−γ

|T ϕt

Q(s, a)− T ϕω

Q(s, a)| → 0 as t→∞. (9)

Fix a state-action pair (s, a), then for any observation process ω, if ||O∞
s,a(ω)||∞ <∞, ϕt

s,a = ϕω
s,a

after some time stage τ and (9) clearly holds for such ω. Otherwise, ||O∞
s,a(ω)||∞ =∞. For those ω’s,

by Bayesian consistency [6], we know that for any neighborhood of pcs,a with parameter ε > 0, which

is defined as Uε =
{
p ∈ R|S|

+

∣∣∑
x∈S p(x) = 1, |p(x)− pcs,a(x)| ≤ ε,∀x ∈ S

}
, limt→∞ P(p ∈

Uε|ϕt
s,a) = 1 almost surely.

For any probability mass function p ∈ R|S|
+ , Recall f(p|s, a,Q) = Es′∼p[r(s, a, s

′) +
γmaxb∈A Q(s′, b)], we have ∀p ∈ Uε,

|f(p|s, a,Q)− f(pcs,a|s, a,Q)| =

∣∣∣∣∣∑
x∈S

[p(x)− pcs,a(x)][r(s, a, x) + γmax
b∈A

Q(x, b)]

∣∣∣∣∣
≤ε|S|[R̄+ γ||Q||∞]

≤ε |S|R̄
1− γ

In the following we fix a sample path ω such that ||O∞
s,a(ω)||∞ =∞ and drop the notation of ω for

simplicity. We have almost surely:

• If ρ is VaRα: Since P(p ∈ Uε|ϕt
s,a)→ 1, for any risk level α > 0, P(p ∈ Uε|ϕt

s,a) > 1−α
for t large enough. Since VaRα is the α-quantitle, we have

VaR
ϕt
s,a

α (f(p|s, a,Q)) ≥ inf
p∈Uε

f(p|s, a,Q) ≥ f(pcs,a|s, a,Q)− ε
|S|R̄
1− γ

. (10)

Similarly,

VaR
ϕt
s,a

α (f(p|s, a,Q)) ≤ sup
p∈Uε

f(p|s, a,Q) ≤ f(pcs,a|s, a,Q) + ε
|S|R̄
1− γ

.

Combining the two inequalities above, we have

|VaR
ϕt
s,a

α (f(p|s, a,Q))− f(pcs,a|s, a,Q)| = |T ϕt

Q(s, a)− T ϕω

Q(s, a)| ≤ ε
|S|R̄
1− γ

(11)

Since this holds for any Q with ||Q||∞ ≤ R̄
1−γ and ε > 0, we know

lim
t→∞

sup
||Q||∞< R̄

1−γ

|T ϕt

Q(s, a)− T ϕω

Q(s, a)| = 0.

This completes the proof.
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• If ρ is CVaRα:

CVaR
ϕt
s,a

α (f(p|s, a,Q)) =VaR
ϕt
s,a

α (f(p|s, a,Q)) +
1

α
Eq∼ϕt

s,a
[VaR

ϕt
s,a

α (f(p|s, a,Q))− f(q|s, a,Q)]+

=VaR
ϕt
s,a

α (f(p|s, a,Q)) +
1

α
Eq∼ϕt

s,a,q∈Uε
[VaR

ϕt
s,a

α (f(p|s, a,Q))− f(q|s, a,Q)]+

+
1

α
Eq∼ϕt

s,a,q∈Uc
ε
[VaR

ϕt
s,a

α (f(p|s, a,Q))− f(q|s, a,Q)]+

Since VaR
ϕt
s,a

α (f(p|s, a,Q)) → f(pcs,a|s, a,Q) and ϕt
s,a(U

c
ε ) → 0, we have for large

enough t,

1. |VaR
ϕt
s,a

α (f(p|s, a,Q))− f(pcs,a|s, a,Q)| ≤ ε,

2. Eq∼ϕt
s,a,q∈Uε

[VaR
ϕt
s,a

α (f(p|s, a,Q))− f(q|s, a,Q)]+ ≤ 2ε |S|R̄
1−γ ,

3. Eq∼ϕt
s,a,q∈Uc

ε
[VaR

ϕt
s,a

α (f(p|s, a,Q)) − f(q|s, a,Q)]+ ≤ P(p ∈ U c
ε |ϕt

s,a)
2R̄
1−γ ≤

2ε |S|R̄
1−γ .

Then we obtain

|CVaR
ϕt
s,a

α (f(p|s, a,Q))− f(pcs,a|s, a,Q)| ≤ ε

(
1 +

4|S|R̄
α(1− γ)

)
Again, by arbitrary ε and the uniformness in Q, we obtain the desired result.

Proof of Theorem 4.3

Proof. Proof sketch. The complete proof is technical. We first provide a proof sketch. Intuitively,
the bias term converges to 0 since we either have posterior to concentrate on the true parameter or
have an increasing sample size for the Monto Carlo estimator, both of which reduce the bias term
to zero asymptotically. However, a major difficulty is uniform convergence (in terms of all possible
values of Q and sample size N ), for which existing results do not give a straightforward guarantee.
We prove the results by considering the two cases. First, when infinite observations are available,
i.e., ||O∞

s,a|| =∞, we construct i.i.d. samples h(pi) ≤ f(pi|s, a,Q) with the same sampled pi for an
arbitrary given ε, where f(pi|s, a,Q) is defined as in (2). with probability at least 1− ε, h(pi) takes
a value no less than f(pi|s, a,Q) by a constant multiple of ε. with probability at least ε, h(pi) takes
a value bounded by a constant. With the help of the Stirling formula and subtle calculation, we can
bound the expectation of order statistics of h(pi), which further lower bounds the Bellman operator
estimator. The upper bound can be obtained in a similar way. Together we can bound the bias term.
Second, in the case of limited observations, we prove a uniform convergence of empirical distribution
for f(pi|s, a,Q) when Q belongs to a bounded set. We carefully partition the probability space as a
union of disjoint rectangular sets, to which the Glivenko-Cantelli theorem can be applied and the
uniform convergence of the empirical distributions follows. Combining the two cases we complete
the proof.

Formal proof. Again, we fix a state-action pair (s, a), an observation process ω for which we drop
the notation for simplicity. Let Q be any Q-function such that ||Q||∞ ≤ R̄

1−γ . We first prove for the
VaR risk functional.

Estimator for VaR

we consider the two cases:

• O∞
s,a = ∞, then ϕt

s,a is consistent at the true parameter pcs,a. ∀ε >

0, P(p ∈ Uε|ϕt
s,a) → 1 almost surely for such ω, where Uε ={

p ∈ R|S|
+

∣∣∑
x∈S p(x) = 1, |p(x)− pcs,a(x)| ≤ ε,∀x ∈ S

}
. Then ∀ε > 0, P(p ∈
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Uε|ϕt
s,a) ≥ 1 − ε for all large t. At iteration k such that tk large enough, we ob-

tain p
(k)
1 , p

(k)
2 , . . . , p

(k)

N
(k)
s,a

∼ ϕtk
s,a. For each p

(k)
i , we have P(p(k)i ∈ Uε|ϕtk

s,a) ≥ 1 − ε.

Furthermore, since ϕtk
s,a is always smooth function, we can find Φ

(k)
i ∈ Uε such that

P(p(k)i ∈ Φ
(k)
i |ϕtk

s,a) = 1− ε. Recall

f(p|s, a,Q) =
∑
s′∈S

p(s′)[r(s, a, s′) + γmax
b∈A

Q(s, a)].

Define

h(p
(k)
i ) =


inf
p∈Uε

f(p|s, a,Q) if p(k)i ∈ Φ
(k)
i

inf
p
f(p|s, a,Q) if p(k)i ̸∈ Φ

(k)
i

It is easy to see f(p
(k)
i |s, a,Q) ≥ h(p

(k)
i ). Notice the distribution of sampled p

(k)
i only

depends on ϕtk
s,a, N

(k)
s,a , which are further determined by ωtk . Conditioned on ωtk , h(p(k)i ),

i = 1, 2, . . . , N
(k)
s,a are i.i.d. random variables taking two values infp∈Uε

f(p|s, a,Q)
and infp f(p|s, a,Q) with probability at least 1 − ε and ε, respectively. Notice
infp f(p|s, a,Q) ≥ − R̄

1−γ . And

| inf
p∈Uε

f(p|s, a,Q)− VaRϕ
tk
s,a

α (f(p|s, a,Q))|

≤| inf
p∈Uε

f(p|s, a,Q)− f(pcs,a|s, a,Q)|+ |f(pcs,a|s, a,Q)− VaRϕ
tk
s,a

α (f(p|s, a,Q))|.

By (10), we have | infp∈Uε
f(p|s, a,Q)− f(pcs,a|s, a,Q)| ≤ ε |S|||Q||∞

1−γ . By (11), we have

|f(pcs,a|s, a,Q) − VaRϕ
tk
s,a

α (f(p|s, a,Q))| ≤ ε |S|||Q||∞
1−γ for k large enough. Hence, we

obtain

| inf
p∈Uε

f(p|s, a,Q)− VaRϕ
tk
s,a

α (f(p|s, a,Q))| ≤ 2ε
|S|||Q||∞
1− γ

,

where ||Q||∞ again can be bounded by R̄
1−γ . Denote by Xi = f(p

(k)
i |s, a,Q) and Yi =

h(p
(k)
i ). We first bound the conditional expectation of the order statistic Y⌈N(k)

s,aα⌉:N(k)
s,a

, i.e.,
E[Y⌈N(k)

s,aα⌉:N(k)
s,a
|ωtk ].

Since {Yi|ωtk} are i.i.d., we can compute the conditional mass function of Y⌈nα⌉:n as

P(Y⌈nα⌉:n = inf
p
f(p|s, a,Q)|ωtk) =

∑
j≥⌈nα⌉

(
n

j

)
εj(1− ε)n−j . (12)

We now lower bound the conditional expectation of Y⌈nα⌉:n by upper bound (12). First,

we can show
(
n

j

)
εj(1 − ε)n−j is decreasing in term of j for j > nε. To see this, take

logarithm on the right hand side we have

η(j) = log(n!)− log((n− j)!j!) + j log ε+ (n− j) log(1− ε).

Compute the difference

η(j + 1)− η(j) = log(
n− j

j + 1
· ε

1− ε
).

Then η(j + 1)− η(j) < 0⇐⇒ j ≥ (n+ 1)ε− 1. Hence for ε < α and j ≥ nα ≥ nε >
(n+ 1)ε− 1, η(j) is decreasing. Hence we can upper bound (12) by
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(n+ 1− ⌈nα⌉)
(

n

⌈nα⌉

)
ε⌈nα⌉(1− ε)n−⌈nα⌉.

=(n+ 1− ⌈nα⌉) n!

(n− ⌈nα⌉)!⌈nα⌉!
ε⌈nα⌉(1− ε)n−⌈nα⌉ (13)

By Stirling Formula,
√
2πn

(n
e

)n
< n! <

√
2πn

(n
e

)n
e

1
12n < 2

√
2πn

(n
e

)n
.

Then we have

(13) < (n+ 1− ⌈nα⌉)
2
√
2πn

(
n
e

)n
ε⌈nα⌉(1− ε)n−⌈nα⌉√

2π(n− ⌈nα⌉)
(

n−⌈nα⌉
e

)n−⌈nα⌉√
2π⌈nα⌉

(
⌈nα⌉
e

)⌈nα⌉
= (n+ 1− ⌈nα⌉)

√
2ε⌈nα⌉(1− ε)n−⌈nα⌉√

(1− ⌈nα⌉
n )

(
1− ⌈nα⌉

n

)n−⌈nα⌉√
π⌈nα⌉

(
⌈nα⌉
n

)⌈nα⌉

For n ≥ 2
α(1−α) , we have

1. (n+ 1− ⌈nα⌉) ≤ 2n(1− α),
2. ε⌈nα⌉ ≤ εnα,
3. (1− ε)n−⌈nα⌉ ≤ (1− ε)n(1−α)/(1− ε),

4. ( ⌈nα⌉n )⌈nα⌉ ≥ ( ⌈nα⌉n )nα+1 ≥ αnα · α,

5. 1− ⌈nα⌉
n ≥ 1−α

2 ,

6. (1− ⌈nα⌉
n )n−⌈nα⌉ ≥ (1− ⌈nα⌉

n )n(1−α) ≥ ( 1−α
2 )n(1−α).

Then

(13) ≤ 2

√
2

π
n(1− α)

εnα(1− ε)n(1−α)/(1− ε)√
1−α
2 ( 1−α

2 )n(1−α)
√
nααnα · α

=
4
√

(1− α)

(1− ε)α
3
2
√
π

√
n

(
εα(1− ε)1−α

αα( 1−α
2 )1−α

)n

=
C

1− ε

√
nβn,

where C =
4
√

(1−α)

α
3
2
√
π

is a constant and β = εα(1−ε)1−α

αα( 1−α
2 )1−α

. For ε small enough, we can ensure

β < 1. Let

ζ(x) = log(
√
xβx) =

1

2
log x+ x log β.

Then, since log β < 0, ζ(x) attains the maximum at x = − 2
log β . Then we have

C

1− ε

√
nβn =

C

1− ε
eζ(n)

≤ C

1− ε
eζ(−

2
log β )

=
C

1− ε

√
− 2

log β
e−2

21



For n ≤ ⌊ 2
α(1−α)⌋, we have

P(Y⌈nα⌉:n = inf
p
f(p|s, a,Q)|ωtk)

≤P(Y1:n = inf
p
f(p|s, a,Q)|ωtk)

=1− (1− ε)n

≤1− (1− ε)⌊
2

α(1−α)
⌋

Let

C ′(ε) := max{ C

1− ε

√
− 2

log β
e−2, 1− (1− ε)⌊

2
α(1−α)

⌋},

where C ′(ε)→ 0 as ε→ 0.
Then we have

E[Y⌈nα⌉:n|ωtk ]

=P(Y⌈nα⌉:n = inf
pi

f(p|s, a,Q)|ωtk) ∗ (infp f(p|s, a,Q)) + P(Y⌈nα⌉:n = inf
p∈Uε

f(p|s, a,Q)|ωtk) ∗ inf
p∈Uε

f(p|s, a,Q)

≥P(Y⌈nα⌉:n = inf
p
f(p|s, a,Q)|ωtk) ∗ (−

R̄

1− γ
)

+ P(Y⌈nα⌉:n = inf
p∈Uε

f(p|s, a,Q)|ωtk) ∗ (VaRϕ
tk
s,a

α (f(p|s, a,Q))− 2ε|S|||Q||∞)

≥C ′(ε) ∗ (− R̄

1− γ
) + (1− C ′(ε)) ∗ (VaRϕ

tk
s,a

α (f(p|s, a,Q))− 2ε|S| R̄

1− γ
)

Hence we have almost surely,

E[X⌈N(k)
s,aα⌉:N(k)

s,a
− VaR

ϕt
s,a

α (f(p|s, a,Q))|ωtk ]

≥E[Y⌈N(k)
s,aα⌉:N(k)

s,a
− VaRϕ

tk
s,a

α (f(p|s, a,Q))|ωtk ]

≥− C ′(ε)

(
(

R̄

1− γ
) + VaRϕ

tk
s,a

α (f(p|s, a,Q))

)
− 2ε(1− C ′(ε))|S| R̄

1− γ

≥− 2(C ′(ε) + ε(1− C ′(ε))|S|)
(

R̄

1− γ

)
= : −C̃(ε),

where C̃(ε)→ 0 as ε→ 0.
Similarly by constructing

h(p
(k)
i ) =


sup
p∈Uε

f(p|s, a,Q) if p(k)i ∈ Ψi

sup
p

f(p|s, a,Q) if p(k)i ̸∈ Ψi

We can obtain

E[X⌈N(k)
s,aα⌉:N(k)

s,a
− VaRϕ

tk
s,a

α (f(p|s, a,Q))|ωtk ] ≤ Ĉ(ε),

almost surely for k large enough and Ĉ(ε)→ 0 as ε→ 0.

Notice T ϕtkQ(s, a) = VaRϕ
tk
s,a

α (f(p|s, a,Q)). Furthermore, since both C̃(ε) and Ĉ(ε) do
not depend on Q and by arbitrary ε, we obtain

lim
k→∞

sup
||Q||∞≤ R̄

1−γ

∣∣∣E[T̂ (k)Q(s, a)− T ϕtk
Q(s, a)|ωtk ]

∣∣∣ = 0.

• If O∞
s,a <∞, then the posterior distribution on (s, a) remains the same as ϕω

s,a for all large

t and the sample size N
(k)
s,a tends to infinity. In this case, by Glivenko-Cantelli theorem,
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we know almost surely the empirical distribution conditioned on ϕω
s,a (which is further

determined by ω), F (k)

N
(k)
s,a

, for the sampled p
(k)
1 , p

(k)
2 , . . . , p

(k)

N
(k)
s,a

uniformly converges to the

distribution ϕω
s,a as sample size N

(k)
s,a goes to infinity. Denote by X

(k)
i = f(p

(k)
i |s, a,Q) =∑

s′∈S p
(k)
i (s′)(r(s, a, s′)+γmaxb∈A Q(s′, b)) =

∑
s′∈S ds′p

(k)
i (s′) = d⊤p

(k)
i . We want

to show uniform convergence of empirical distribution of {X(k)
i }i=1,2,...,N

(k)
s,a

conditioned
on ϕω

s,a for d ∈ D uniformly, where D contains all the possible value d can take. Denote by

Gd
n the empirical distribution conditioned on ωtk of {X(k)

i }i=1,2,...,n in terms of d and Gd

the true distribution of d⊤p for p ∼ ϕω
s,a. We want to show

lim
n→∞

sup
d∈D,x

|Gd
n(x)−Gd(x)| → 0 almost surely.

Notice that |d| ≤ R̄
1−γ and (d+ε1)⊤ϕ = d⊤ϕ+ε, we have Gd

n(x) = Gd+ε1
n (x+ε). Hence

we only need to prove for D = {d ∈ R|S| : M1 ≥ d ≥ 1}, where M = 2R̄
1−γ + 1. Denote

by Pn(K) = 1
n

∑n
i=1 1{pi ∈ K} where p1, · · · , pn ∼ ϕω

s,a are i.i.d samples.

For an arbitrary ε = 1

Ñ
, we have

Pn

 |S|∑
s=1

dsqs ≤ x


=

Ñ∑
k2=1

· · ·
Ñ∑

k|S|=1

Pn(

|S|∑
s=1

dsqs ≤ x, (ki − 1)ε < qi ≤ kiε, i = 2, . . . , |S|)

≤
Ñ∑

k2=1

· · ·
Ñ∑

k|S|=1

Pn

q1 ≤ 1

d1
(x−

|S|∑
s=2

ds(ks − 1)ε), (ki − 1)ε < qi ≤ kiε, i = 2, . . . , |S|


Since the last probability is just some probability of rectangulars, it can be expressed by finite number
of cumulative distribution function, which by the Glivenko-Cantelli theorem, uniformly converge to
the true distribution. Then, almosdt surely there exists nε > 0 (independent of d, ε, ki), for n ≥ nε,
we have each

Pn

q1 ≤ 1

d1
(x−

|S|∑
s=2

ds(ks − 1)ε), (ki − 1)ε < qi ≤ kiε, i = 2, . . . , |S|


≤Pq∼ϕω

s,a

q1 ≤ 1

d1
(x−

|S|∑
s=2

ds(ks − 1)ε), (ki − 1)ε < qi ≤ kiε, i = 2, . . . , |S|

+
1

Ñ |S|

Hence we obtain

Pn

 |S|∑
s=1

dsqs ≤ x


≤

Ñ∑
k2=1

· · ·
Ñ∑

k|S|=1

Pq∼ϕω
s,a

q1 ≤ 1

d1
(x−

|S|∑
s=2

ds(ks − 1)ε), (ki − 1)ε < qi ≤ kiε, i = 2, . . . , |S|

+
1

Ñ

≤
Ñ∑

k2=1

· · ·
Ñ∑

k|S|=1

Pq∼ϕω
s,a

 |S|∑
s=1

dsqs ≤ x+

|S|∑
s=2

dsε, (ki − 1)ε < qi ≤ kiε, i = 2, . . . , |S|

+
1

Ñ

=Pq∼ϕω
s,a

 |S|∑
s=1

dsqs ≤ x+

|S|∑
s=2

dsε

+
1

Ñ

≤Pq∼ϕω
s,a

 |S|∑
s=1

dsqs ≤ x+
(|S| − 1)M

Ñ

+
1

Ñ
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Since this holds for any d, x, we have

sup
d∈D,x∈R

Pn

 |S|∑
s=1

dsqs ≤ x

− Pq∼ϕω
s,a

 |S|∑
s=1

dsqs ≤ x


≤ 1

Ñ
+ sup

d∈D,x∈R

Pq∼ϕω
s,a

 |S|∑
s=1

dsqs ≤ x+
(|S| − 1)M

Ñ

− Pq∼ϕω
s,a

 |S|∑
s=1

dsqs ≤ x


The last term converges to zero as Ñ → ∞. This is indicated by

Pq∼ϕω
s,a

 |S|∑
s=1

dsqs ≤ x+
(|S| − 1)M

Ñ

− Pq∼ϕω
s,a

 |S|∑
s=1

dsqs ≤ x


=Pq∼ϕω

s,a

x <

|S|∑
s=1

dsqs ≤ x+
(|S| − 1)M

Ñ


≤

S∑
s=1

Pq∼ϕω
s,a

(
x

ds
< qs ≤ x

ds
+

(|S| − 1)M

dsÑ

)

≤
S∑

s=1

Pq∼ϕω
s,a

(
x

ds
< qs ≤ x

ds
+

(|S| − 1)M

Ñ

)
Since each 0 ≤ qs ≤ 1 and its marginal distribution ϕω

s,a(qs) is continuous, it is uniformly continuous

in 0 ≤ q ≤ 1. Hence each Pq∼ϕω
s,a

(
x
ds

< qs ≤ x
ds

+ (|S|−1)M

Ñ

)
converge uniformly to 0 as

Ñ → ∞. Hence by arbitrary Ñ , we have

lim sup
n→∞

sup
d∈D,x∈R

Pn

 |S|∑
s=1

dsqs ≤ x

− Pq∼ϕω
s,a

 |S|∑
s=1

dsqs ≤ x

 ≤ 0.

Similarly, we can obtain the other side as

lim inf
n→∞

inf
d∈D,x∈R

Pn

 |S|∑
s=1

dsqs ≤ x

− Pq∼ϕω
s,a

 |S|∑
s=1

dsqs ≤ x

 ≥ 0.

Hence,

sup
d∈D,x

|Gd
n(x)−Gd(x)| → 0 almost surely.

We obtain the uniform convergence for empirical distribution in d, or equivalently, Q, conditioned

on the observation process ω. Hence the quantile estimator X⌈nα⌉:n → VaR
ϕω
s,a

α (Q) uniformly in Q
almost surely. Furthermore, since Xi is bounded,

lim
k→∞

sup
||Q||∞≤ R̄

1−γ

∣∣∣E[T̂ (k)Q(s, a)− T ϕtk
Q(s, a)|ωtk ]

∣∣∣ = 0 almost surely .

Estimator for CVaR

Given sample p
(k)
1 , p

(k)
2 , . . . , p

(k)

N
(k)
s,a

and Xi = f(p
(k)
i |s, a,Q) =

∑
s′∈S p

(k)
i (s′)[r(s, a, s′) +

γmaxb∈A Q(s′, b)]. The Monto Carlo estimator for CVaRϕ
tk
s,a

α (f(p|s, a,Q)) is
1

⌈N(k)
s,aα⌉

∑⌈N(k)
s,aα⌉

j=1 X
j:N

(k)
s,a

. Again we consider the two cases:

• O∞
s.a = ∞. Then we know almost surely ϕt

s,a is consistent at pcs,a. Then by the proof

for bias of VaR estimator, ∀1 > ε > 0, E[X⌈N(k)
s,aε⌉:N(k)

s,a
|ω] → VaRϕ

tk
s,a

ε (f(p|s, a,Q)) as
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k →∞ uniformly in Q almost surely. Then

E

 1

⌈N (k)
s,aα⌉

⌈N(k)
s,aα⌉∑
j=1

X
j:N

(k)
s,a
|ωtk


=E

 1

⌈N (k)
s,aα⌉

⌈N(k)
s,aε⌉∑
j=1

X
j:N

(k)
s,a
|ωtk

+ E

 1

⌈N (k)
s,aα⌉

⌈N(k)
s,aα⌉∑

j=⌈N(k)
s,aε⌉

X
j:N

(k)
s,a
|ωtk


≥− ⌈N

(k)
s,a ε⌉

⌈N (k)
s,aα⌉

R̄

1− γ
+
⌈N (k)

s,aα⌉ − ⌈N (k)
s,a ε⌉

⌈N (k)
s,aα⌉

E[X⌈N(k)
s,aε⌉:N(k)

s,a
|ωtk ]

Since E[X⌈N(k)
s,aε⌉:N(k)

s,a
|ϕtk

s,a] → VaRϕ
tk
s,a

ε (f(p|s, a,Q)), VaRϕ
tk
s,a

ε (f(p|s, a,Q)) →

f(pcs,a|s, a,Q), CVaR
ϕt
s,a

α (f(p|s, a,Q)) → f(pcs,a|s, a,Q) uniformly for
− R̄

1−γ ≤ Q ≤ R̄
1−γ as k → ∞ and ε is chosen arbitrarily, we have

lim infk→∞{E
[

1

⌈N(k)
s,aα⌉

∑⌈N(k)
s,aα⌉

j=1 X
j:N

(k)
s,a
|ωtk

]
− CVaRϕ

tk
s,a

α (f(p|s, a,Q))} ≥

0 uniformly in Q almost surely. Similarly we can also prove
lim supk→∞{E

[
1

⌈nα⌉
∑⌈nα⌉

j=1 Xj:n|ωtk

]
− CVaRϕ

tk
s,a

α (f(p|s, a,Q))} ≤ 0 uniformly
in Q almost surely. Combining the two inequalities together, we obtain

lim
k→∞

sup
||Q||∞≤ R̄

1−γ

∣∣∣E[T̂ (k)Q(s, a)− T ϕtk
Q(s, a)|ωtk ]

∣∣∣ = 0 almost surely .

• For O∞
s,a(∞) < ∞. By proof of VaR estimator we know the empirical distribution of

f(p
(k)
i |s, a,Q) conditioned on ω, converge uniformly to ϕω

s,a. Hence the CVaR estimator
also has the desired result.

Lemma B.3. [24] Consider a stochastic process (αt,∆t, g) , t ≥ 0, where αt,∆t, g : X → R
satisfy the equations

∆t+1(x) = (1− αt(x))∆t(x) + αt(x)g(x), x ∈ X, t = 0, 1, 2, . . .

Let Pt be a sequence of increasing σ-fields such that α0 and ∆0 are P0-measurable and αt,∆t

and Ft−1 are Pt-measurable. Let || · ||W denote some weighted maximum norm. Assume that the
following hold:

1. the set X is finite.

2. 0 ≤ αt(x) ≤ 1,
∑

t αt(x) =∞,
∑

t α
2
t (x) <∞w.p.1.

3. ∥E {g(·) | Pt}∥W ≤ κ ∥∆t∥W + ct, where κ ∈ [0, 1) and ct converges to zero w.p.1.

4. Var {g(x) | Pt} ≤ K (1 + ∥∆t∥W )
2, where K is some constant.

Then, ∆t converges to zero with probability one (w.p.1).

Proof for Theorem 4.4.

Proof. Following the same notation in Theorem 4.3. Denote by Q(k) the Q-function in iteration k.
Define

bias(k)(s, a) = E[T̂ (k)Q(k)(s, a)− T ϕtk
Q(k)(s, a)|ωtk ].

Then by Theorem 4.3 and observing ||Q(k)|| < R̄
1−γ almost surely, we have almost surely,

lim
k→∞

bias(k)(s, a) = 0 ∀s ∈ S, a ∈ A.
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Denote by ∆(k) = Q(k) −Qω,∗. ∆(k) satisfies

∆(k+1)(s, a) = (1− λk)∆
(k) + λkF(k),

where F(k) = T̂ (k)Q(k) − Qω,∗. Let H(k) be the σ-field generated by
{{∆(κ)}kκ=1, {λ(κ)}kκ=1, {F(κ)}k−1

κ=1}. We have

|E[F(k)(s, a)|H(k)]|
=|E[E[F(k)(s, a)|ωtk ,H(k)]|H(k)]|

=|E[T (k)(Q(k))(s, a)−Qϕtk ,∗(s, a) +Qϕtk ,∗(s, a)−Qω,∗(s, a) + bias(k)(s, a)|H(k)]|

=|E[T̂ (k)(Q(k) −Qϕtk ,∗)|H(k)] + E[Qϕtk ,∗(s, a)−Qω,∗(s, a)|H(k)] + E[bias(k)(s, a)|H(k)]|

≤γE[max
s′∈S
|max
b∈A

Q(k)(s′, b)−max
b∈A

Qϕtk ,∗(s′, b)||H(k)] + E[||Qϕtk ,∗ −Qω,∗||∞|H(k)] + E[|bias(k)(s, a)||H(k)]

≤γE[||Q(k) −Qϕtk ,∗||∞|H(k)] + E[||Qϕtk ,∗ −Qω,∗||∞|H(k)] + E[|bias(k)(s, a)||H(k)]

≤γE[||Q(k) −Qω,∗||∞|H(k)] + (1 + γ)E[||Qϕtk ,∗ −Qω,∗||∞|H(k)] + E[|bias(k)(s, a)||H(k)]

≤γ||∆(k)||∞ + (1 + γ)E[||Qϕtk ,∗ −Qω,∗||∞|H(k)] + E[|bias(k)(s, a)||H(k)].

where || · ||∞ denote the entry-wise sup norm. The second equality holds since the Monto Carlo
sampling procedure in iteration k only depends on the posterior ϕtk and sample size N

(k)
s,a , which

are completely determined by the past observations ωtk . By Proposition 4.2 and Theorem 4.3, we
know both ||Qϕtk ,∗ −Qω,∗||∞ and |bias(k)(s, a)| converge to 0 almost surely. Since they are both
bounded, by the bounded convergence theorem the last two terms in the last inequalities converge to
zero almost surely. Furthermore, since |F(k)(s, a)| ≤ R̄+ ||∆(k)||∞, we have

Var(F(k)(s, a)|H(k)) ≤ (R̄+ ||∆(k)||∞)2

≤ (R̄2 + 1)(1 + ||∆(k)||∞)2.

By Lemma B.3, we obtain ||∆(k)||∞ converges to 0 almost surely, which completes the proof.
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