
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

THE EFFECTIVENESS OF CURVATURE-BASED
REWIRING AND THE ROLE OF HYPERPARAMETERS IN
GNNS REVISITED

Anonymous authors
Paper under double-blind review

ABSTRACT

Message passing is the dominant paradigm in Graph Neural Networks (GNNs).
The efficiency of it, however, can be limited by the topology of the graph. This
happens when information is lost during propagation due to being oversquashed
when travelling through bottlenecks. To remedy this, recent efforts have focused
on graph rewiring techniques, which disconnect the input graph originating from
the data and the computational graph, on which message passing is performed. A
prominent approach for this is to use discrete graph curvature measures, of which
several variants have been proposed, to identify and rewire around bottlenecks, fa-
cilitating information propagation. While oversquashing has been demonstrated in
synthetic datasets, in this work we reevaluate the performance gains that curvature-
based rewiring brings to real-world datasets. We show that in these datasets, edges
selected during the rewiring process are not in line with theoretical criteria iden-
tifying bottlenecks. This implies they do not necessarily oversquash information
during message passing. Subsequently, we demonstrate that SOTA accuracies on
these datasets are outliers originating from sweeps of hyperparameters—both the
ones for training and dedicated ones related to the rewiring algorithm—instead of
consistent performance gains. In conclusion, our analysis nuances the effectiveness
of curvature-based rewiring in real-world datasets and brings a new perspective on
the methods to evaluate GNN improvements.

1 INTRODUCTION

Machine learning on graph data, and more specifically Graph Neural Networks (GNNs), has un-
dergone rapid development over the past few years. Both in terms of architecture variations (Wu
et al., 2019; Kipf & Welling, 2016; Veličković et al., 2018; Hamilton et al., 2017) as theoretical
understanding (Xu et al., 2018; Bronstein et al., 2021; Bodnar et al., 2021a;b). Due to their large
flexibility GNNs have been applied in a variety of domains, from physical sciences to knowledge
graphs or social sciences (Zhou et al., 2020; Wu et al., 2021). The basis of the message passing
paradigm of GNNs (Gilmer et al., 2017) rests on the idea of information diffusion where messages,
namely the node’s feature vector, are propagated along the edges of the graph to their neighbours.

This approach to GNNs has been shown to be very successful, as it combines topological information
(the graph) and specific node information (feature vectors) for predictions. However, this paradigm
can also suffer from drawbacks. The receptive field of a node, i.e., the number of nodes it can receive
information from, depends on the number of layers of the GNN. A low number of layers can cause
under-reaching (Sun et al., 2022) where required information does not reach the nodes. On the other
hand, if a node’s receptive field is too large, this can lead to oversmoothing (Li et al., 2018; Oono &
Suzuki, 2019), where node representations are homogenised due to subsequent message passing.

Recently, a lot of attention has been drawn to the problem of oversquashing (Alon & Yahav, 2021)
where structural properties of the graph called bottlenecks cause a loss of information as the messages
passing through get too compressed. Research efforts have therefore focused on understanding this
phenomenon (Di Giovanni et al., 2023; Black et al., 2023) as well as on ways to alleviate it. The most
pragmatic approach consists of rewiring, i.e., a targeted addition or removal of edges, to reduce the
bottlenecks in the graph.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In this work, we investigate the role of graph rewiring to improve performance on node classification
tasks. Discrete notions of curvatures on graphs can be used to detect the location of bottlenecks,
allowing for the development of algorithmic rewiring methods such as Stochastic Discrete Ricci Flow
(Topping et al., 2021). While this point of view was presented first in (Topping et al., 2021), other
definitions of curvatures such as Jost and Liu Curvature (Giraldo et al., 2023; Jost & Liu, 2014) or
Augmented Forman Curvature (Fesser & Weber, 2023) have been proposed as alternative measures
(Bober et al., 2023). Despite that fact that work on synthetic datasets (Di Giovanni et al., 2023;
Black et al., 2023) does indicate the occurrence of oversquashing, we here nuance these results on
benchmark datasets and reevaluate the performance gains of curvature-based rewiring.

Contribution The goal of our paper is to analyse the effectiveness of curvature-based rewiring
to improve performances in non-synthetic graph datasets. This is in line with Tortorella & Micheli
(2023) which evaluates rewiring performances on training-free GNNs and shows that rewiring rarely
confers a practical benefit for message-passing in those cases. Our work shows that this is the case
in general GNNs and offers an explanation: the theoretical motivation for rewiring is not satisfied
in most cases when applied to real-world datasets. Additionally, we explain the occurrence of the
SOTA results when rewiring by analysing the role of hyperparameter sweeps. We find that these
results can be attributed to hyperparameter tuning outliers, as has also been found in other GNN
performance gains (Tönshoff et al., 2024). Our work thus calls into question the effectiveness of
rewiring for graph datasets and creates a starting point for further investigations on how to evaluate
(GNN) improvements and how to bridge theory and experiment beyond synthetic datasets.

Outline In section 2 we introduce the theoretical relation between curvature and bottlenecks in
graphs. Section 3 experimentally verifies this condition in standard datasets, where we find that most
rewired edges are not necessarily responsible for oversquashing. With this nuanced perspective on
the theory underlying the rewiring algorithm, we evaluate the performance gains possible due to
rewiring in section 4. When comparing performances of all curvature definitions with the performance
obtained when implementing no rewiring at all, we find no consistent (at the level of distributions)
improvements over the different datasets.

2 GRAPHS, OVERSQUASHING AND CURVATURE

2.1 PRELIMINARIES

Graphs We consider an undirected graph G = (V,E) identified by a set V of nodes, which are
described by a feature vector xi ∈ Rn0 with i ∈ V, and a set of edges E ⊂ V× V. The adjacency
matrix, which describes the connection of the graph, is denoted by A.

Graph Neural Networks Given the graphG as described as above, we write h(l)
i the representation

of node i at layer l, where h0
i = xi. Given layer dependent, differentiable functions ϕl : Rnl ×Rn′

l →
Rnl+1 and ψl : Rnl × Rnl → Rn′

l , we write the message passing function as

h
(l+1)
i = ϕl

(
h
(l)
i ,

n∑
j=1

Âijψ
l
(
h
(l)
i ,h

(l)
j

))
. (1)

Here, Â denotes the normalised augmented adjacency matrix, i.e. the adjacency matrix A is augmented
by self-loops Ã = A + I and then normalised by D̃ = D + I, where D denotes the diagonal degree

matrix. More precisely, we have Â = D̃
− 1

2 · Ã · D̃
− 1

2 .

2.2 DISCRETE CURVATURE NOTIONS ON GRAPHS

The main idea behind applying discrete curvature notions to detect local bottlenecks in graphs stems
from differential geometry. Here, it is well known that the Ricci curvature describes whether two
geodesics which start close to each other, either diverge (negative curvature), stay parallel (zero
curvature) or converge (positive converge). Prominent examples are the hyperbolic space (negative
curvature), Euclidean space (zero curvature) and the sphere (positive curvature). The graph analogues

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

for these spaces are trees, four-cycles and triangles. Discrete curvature notions in essence capture the
occurrence of such structures around a given edge. Intuitively, negatively curved edges exhibit more
tree-like structures in their local neighbourhoods and are thus prone to oversquash information.

Discrete curvature notions for graphs Curvature notions on graphs depend on topological aspects
of the graph with the needed ingredients being the following. For a simple, undirected graph we
consider an edge i ∼ j. We denote by di the degree of node i and by dj the degree of node j. The
common neighbours of node i and node j are denoted by ♯△(i, j). They correspond to the triangles
located at edge i ∼ j. The neighbours of i (resp. j) that form a four-cycle based at i ∼ j without
diagonals inside are denoted by ♯i□ (resp. ♯j□) and the maximum number of four-cycles without
diagonals inside that share a common node is denoted by γmax. We denote by x ∨ y .

= max(x, y)
(resp. x ∧ y .

= min(x, y)) the maximum (resp. minimum) of two real numbers. In this paper we
analyse three main branches of discrete curvatures, with variations within.

First, we consider Balanced Forman Curvature (BFc) (Topping et al., 2021) and variations thereof:

• Balanced Forman Curvature: For an edge i ∼ j we have BFc(i, j) = 0 if min(di, dj) = 1
and otherwise

BFc(i, j) =
2

di
+

2

dj
− 2 + 2

|♯△(i, j)|
di ∨ dj

+
|♯△(i, j)|
di ∧ dj

+

(
|♯i□|+ |♯j□|

)
γmax(di ∨ dj)

. (2)

• Balanced Forman Curvature (without four-cycles): Determining the number of four-cycles
without diagonals inside is a costly computational effort, especially for dense graphs. We
therefore analyse the rewiring performance of BFc without these four-cycles to evaluate
the need of more intensive computations. For an edge i ∼ j we have BFc3(i, j) = 0 if
min(di, dj) = 1 and otherwise

BFc3(i, j) =
2

di
+

2

dj
− 2 + 2

|♯△(i, j)|
di ∨ dj

+
|♯△(i, j)|
di ∧ dj

. (3)

• Modified Balanced Forman Curvature: The original code implementation provided in
Topping et al. (2021) contained an error in the counting of four-cycles (See Appendix B for
more details). We therefore implement this version as well for comparison. For an edge
i ∼ j we have BFcmod(i, j) = 0 if min(di, dj) = 1 and otherwise

BFcmod =
2

di
+

2

dj
− 2 + 2

|♯△(i, j)|
di ∨ dj

+
|♯△(i, j)|
di ∧ dj

+O
(
|♯i□|+ |♯j□|

)
. (4)

Secondly, we consider JLc (Jost and Liu) Curvature(Jost & Liu, 2014). For an edge i ∼ j we have,
with s+

.
= max(s, 0),

JLc(i, j) = −
(
1− 1

di
− 1

dj
− |♯△(i, j)|

di ∧ dj

)
+

−
(
1− 1

di
− 1

dj
− |♯△(i, j)|

di ∨ dj

)
+

+
|♯△(i, j)|
di ∨ dj

.

(5)
Finally, we consider the Augmented Forman Curvature used for rewiring in (Fesser & Weber, 2023).
Originally, the Forman curvature was introduced in (Forman, 2003) as a discrete analogue of the Ricci
curvature that aims to mimic the Bochner–Weitzenböck decomposition of the Riemannian Laplace
operator for quasiconvex cell complexes (compact regular CW complexes which are quasiconvex, i.e.
the boundary of two cells can at most consist of one lower-dimensional cell). It was then adapted to
graphs (Sreejith et al., 2016) and augmented to also include two dimensional cells such as triangles
(Weber et al., 2018; Samal et al., 2018). The Augmented Forman curvature comes in two variants.

• A variant where we consider only three-cycle contributions to the curvature. For an edge
i ∼ j we have

AF3(i, j) = 4− di − dj + 3|♯△(i, j)| . (6)

• A variant where we also consider the four-cycle contributions to this curvature. It is important
to note that, unlike the Balanced Forman curvature, the term □(i, j) in AF4—as uniquely
used in (Fesser & Weber, 2023)—counts all four-cycles located at a given edge i ∼ j
without obstructions on diagonals inside. For an edge i ∼ j we have

AF4(i, j) = 4− di − dj + 3|♯△(i, j)|+ 2□(i, j) . (7)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

For all datasets we consider in this paper (see section 3), we computed the curvature distributions
of the edges for all different definitions above. These can be found in Appendix A. From these
distributions, we note the similar behaviour of BFc (and variants thereof) and JLc.

Curvature and oversquashing One global measure to identify potential bottlenecks in an undi-
rected graph is given by the Cheeger constant. Small values indicate that the graph can be decomposed
into two distinct sets of nodes with only a few edges between those sets. Therefore, the Cheeger
constant is only non-zero for connected graphs. Due to the well-known Cheeger inequality, the
Cheeger constant can be approximated by the spectral gap, i.e. the first non-zero eigenvalue of the
normalised Graph Laplacian. The latter has a lower computational cost. Both notions have been
linked to oversquashing. It has been shown (Theorem 6 in (Topping et al., 2021)) that diffusion-based
methods (Gasteiger et al., 2019) are limited in their ability to increase the Cheeger constant. In
(Di Giovanni et al., 2023), the symmetric Jacobian obstruction between two nodes is introduced as
a measure of how well information can be exchanged between those nodes. Here, higher values
indicate worse information flow and it is shown that the symmetric Jacobian obstruction is bounded
by the inverse of the Cheeger constant (Corollary 5.6 in (Di Giovanni et al., 2023)).

There have also been attempts to rewire based on a targeted increase of the spectral gap (Karhadkar
et al., 2022). However, global measures such as the spectral gap do not convey information about
the location of local bottlenecks and thus do not necessarily help to alleviate oversquashing. Here,
discrete curvature measures have, allegedly, given us a local and computable metric to estimate
this effect based on the graph topology itself. In (Fesser & Weber, 2023), a bound on connections
between the neighborhoods of nodes i and j is derived based on AF4 −AFmin

4 (Proposition 3.4 in
(Fesser & Weber, 2023)). However, this bound is in general not very strict and rather heuristic. In
(Nguyen et al., 2023), it is shown edges i ∼ j with an Ollivier (Ricci) Curvature κ(i, j) close to
the minimum value of −2 cause oversquashing (Propostion 4.4 and Theorem 4.5 in (Nguyen et al.,
2023)). From (Topping et al., 2021) we know that κ(i, j) ≥ BFc(i, j), and through the distribution
of BFc in Appendix A we can see that most edges are far away from the lower limit of −2 of BFc
(and therefore also κ(i, j)). This will play an important role in the next section.

The fundamental result connecting edges with a very negative Balanced Forman curvature to over-
squashing is given in Topping et al. (2021), where theorem 4 identifies negatively curved edges as
sources of distorted information for a large set of nodes in the local neighbourhood of the given edge.

Theorem 4 (Topping et al., 2021)

Consider a MPNN as in Equation 1. Let i ∼ j with di ≤ dj and assume that:
1. |∇ϕl| ≤ α and |∇ψl| ≤ β with L ≥ 2 the depth of the MPNN.
2. There exists δ > 0 such that δ < 1√

(di∨dj)
; δ < 1

γmax
for which Ric(i, j) ≤ −2+δ

Then there exists Qj ⊂ S2(i) satisfying |Qj | > 1
δ and for 0 ≤ l0 ≤ L− 2 we have

1

|Qj |
∑
k∈Qj

∣∣∣∣∣∂h(l0+2)
k

∂hl0i

∣∣∣∣∣ < (αβ)2δ
1
4 . (8)

Theorem 4 above gives a reason to rewire the graph around negatively curved edges (adding triangles
or four-cycles which give a positive contribution) as it increases the δ and therefore softens the bound
in equation 8. In (Topping et al., 2021), the set Qj is explicitly constructed as the neighbours of
j that correspond to tree-like structure around the edge i ∼ j and the Balanced Forman curvature
gives us control over the information flow to these neighbours from node i along the edge i ∼ j. The
idea of the proof is to bound the left-hand side of equation 8 by second powers of the augmented
normalised adjacency matrix (Âik)

2 and then to control these contributions with knowledge about the
three- and four-cycles located at edge i ∼ j derived from the δ bound. However, the question arises
if the edges selected to be rewired during pre-processing indeed satisfy the conditions (specifically
condition 2) of the theorem.

In the next sections, we will explore graph rewiring based on curvature measures in two ways. First,
we look at how well Theorem 4 can be applied to benchmark datasets by seeing if edges selected

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

during rewiring are contributing to the bottleneck. Specifically, we look at whether these edges satisfy
condition 2. In the second phase, we take a closer look at the performances that different curvature
measures deliver. Instead of reporting one-off accuracies originating from parameter sweeps, we take
a look at the distribution of accuracies obtained when sweeping parameters.

2.3 GRAPH CURVATURE AND REWIRING

Graph rewiring In its core idea, graph rewiring techniques encompass recent efforts to decouple
the input (true) graph from the graph used for computational tasks. The original message-passing
paradigm (Gilmer et al., 2017) for GNNs used the input graph itself. By decoupling this input graph
from the graph on which the computations are performed, which can take many forms, one can find
alleviations for the oversquashing and -smoothing problem mentioned in the previous section.

One can first look at ways to modify the message passing algorithm on the original graph, for example
by sampling only certain nodes to improve scalability (Hamilton et al., 2017), by considering multiple
hops during message propagation (Abu-El-Haija et al., 2019; 2020; Zhu et al., 2020) or by changing
the definition of a neighbour. This can be done either using shortest path distances (Abboud et al.,
2022) or defining importance-based neighbourhoods using random walks (Ying et al., 2018). A
more drastic approach consists of changing the graph itself used for propagation, for example by
pre-computing unsupervised node embeddings and using neighbourhoods defined by geometric
relationships in the resulting latent space for the propagation (Pei et al., 2019), by exchanging the
adjacency matrix with a sparsified version of the generalised graph diffusion matrix S, by defining
a new weighted and directed graph (Gasteiger et al., 2019), or by propagating messages along a
personalised PageRank (Gasteiger et al., 2018).

In this paper, we focus on graph-rewiring techniques as follows: Given a graph G = (V,E), we
construct a new graph G′ = (V,E′) for message-passing. The set E′ is constructed based on the
discrete curvature measures discussed in the previous section. We treat rewiring as a pre-processing
task, similar to methods like SDRF (Topping et al., 2021), BORF (Nguyen et al., 2023), FoSR
(Karhadkar et al., 2022), LASER (Barbero et al., 2023), G-RLEF or νDReW (Gutteridge et al., 2023).

3 BENCHMARK DATASETS HAVE A LACK OF SUFFICIENTLY NEGATIVELY
CURVED EDGES

Table 1: When an edge is selected by the SDRF algorithm,
we verify if this edge satisfies condition 2 of Theorem 4
(Eq. equation 9). Additionally, we check if the edge satisfies a
softer, but sufficient, version of condition 2 (Eq. equation 10)

.
Dataset Edges rewired Cond. 2 (%) Cond. 2b (%)
Texas 89 0 (0%) 6 (6.7%)

Cornell 126 0 (0%) 15 (11.90%)

Wisconsin 136 0 (0%) 11 (8.09%)

Chameleon 2441 4 (0.16%) 141 (5.78%)

Actor 1000 11 (1.1%) 237 (23.70%)

Squirrel 787 0 (0%) 34 (4.32%)

Cora 100 0 (0%) 68 (68.0%)

Citeseer 84 0 (0%) 24 (28.57%)

Pubmed 166 25 (15.06%) 116 (69.88%)

MUTAG 3497 0 (0%) 1228 (35.16%)

PROTEINS 50936 0 (0%) 5944(11.67%)

In our experiments, we make ex-
clusive use of the Stochastic Dis-
crete Ricci Flow (SDRF) (Topping
et al., 2021) algorithm for rewiring,
which works in two steps. First, it
selects the most negatively curved
edge based on the curvature measure.
Around this edge, all edges that can
lead to three-cycles and four-cycles
are considered, and for each candi-
date edge, the potential improvement
of the curvature is computed. The
edge to be added is then selected in a
stochastic way, regulated by the tem-
perature parameter τ , where the prob-
ability is determined by the improve-
ment the edge brings to the curvature
of the original edge. Finally, SDRF
also allows, at each iteration, the re-
moval of (very) positively curved edges, determined by the threshold curvature value C+. Although
different algorithms have been proposed, we only work with SDRF due to the simplicity of its
approach, allowing us to look at the impact of the added edges more clearly.

Looking at the condition from Theorem 4, we now experimentally check if the edges in standard GNN
benchmark datasets satisfy the necessary condition 2, which identifies the edge as an ‘oversquashing’

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

edge. The number of edges to be rewired is chosen from the hyperparameters given in (Topping
et al., 2021). For each edge selected to be rewired (which is the most negative edge) we compute the
upper threshold δmax(i, j) = BFc(i, j) + 2. For each of these edges, we then verify if this δmax

determined by the curvature is compatible with the condition

δ <
1√

(di ∨ dj)
& δ <

1

γmax
(Condition 2) (9)

which allows the theorem to identify the edge as a bottleneck in the derivation. From our results in
Table 1, we see that these conditions on δ are seldom satisfied by the graphs in the datasets. However,
upon examining the derivation of the theorem, we find that the degree-based condition is too stringent.
The inequality 0 < δ < 1/

√
(di ∨ dj) is solely used to guarantee that δ ≤ 1/♯△, and it is this

condition that is subsequently used in the proof. In the second column of Table 1, we display the
number of edges that satisfy the actual modified condition required.

δ ≤ 1

♯△
& δ <

1

γmax
(Condition 2b) . (10)

Since this bound is looser, we see that more selected edges satisfy the condition 2b, especially when
looking at the citation graphs. However, these numbers imply that a part of the edges selected do
not satisfy the conditions for Theorem 4, limiting their interpretation as bottlenecks during message
passing. Figure 1 shows in which step of SDRF (in % based on maximum number of iterations) the
edges that do not satisfy condition 2b are selected to be rewired. Finally, we also note that edges do
not satisfy condition 2b due to the three-cycle condition, as well as due to the γmax upper limit (as
shown by the edges below the dotted line). The figure shows as well that edges that do satisfy the
condition are sometimes close to the upper bound of 1/♯△. This again reduces their interpretation
as bottlenecks, as the δ bound on the Jacobian of the features is therefore looser. This temporal
information for both types of edges tells us that this phenomenon occurs both at the beginning and
the end, indicating that this is not a saturation-type effect.

4 HYPERPARAMETER DEPENDENCY OF REWIRING

Graph rewiring algorithms depend on quite some hyperparameters. The first category consists of
training and GNNs hyperparameters: learning rate, hidden depth, hidden dimension, weight decay,
and dropout. Additionally, there are also the rewiring hyperparameters, which in the case of the
SDRF algorithm are: max iterations (i.e. number of edges around which is rewired), temperature
τ , and threshold curvature C+. While hyperparameter tuning is an important aspect of optimising
models, we argue here that results in accuracy should not be the main judge for a new technique’s
performance, but one should consider the overall improvement over a wide array of hyperparameters.
In this experiment, we perform a parameter sweep over different benchmark graph datasets to evaluate
curvature-based graph rewiring with different curvature notions.

Experimental setup To analyse the impact of different curvatures we ran node-classification tasks.
For the node classification tasks we used 9 datasets to evaluate the different curvature notions: Texas,
Cornell and Wisconsin from WebKB (University), Chameleon and Squirrel (Rozemberczki et al.,
2021), Actor (Tang et al., 2009), Cora (McCallum et al., 2000), Citeseer (Sen et al., 2008) and Pubmed
(Namata et al., 2012). For graph classification we used MUTAG and PROTEINS (Morris et al.,
2020). For each dataset we only use the largest connected component, extracted with the algorithm
provided in https://github.com/jctops/understanding-oversquashing. While
this implementation does not strictly adhere to the mathematical definition of connected components
for directed graphs (it returns neither the strong nor weak component), it was chosen to maintain
consistency in the number of nodes and edges, thus facilitating a fair comparison with other studies.
Directed graphs were subsequently transformed to undirected.

Our hyperparameter grid is defined as: learning rate: [0.0001, 0.5555], number of layers: {1, 2, 3},
layer width: {16, 32, 64, 128}, dropout: [0.0001, 0.5555], weight decay: [0.0001, 0.9999], C+:
[0.2, 21.2], τ : [1, 500] and the max number of iterations is dataset dependent, where we take the lower
and upper boundary to be 20% above and below the reported best hyperparameters from (Topping
et al., 2021). We perform a random-grid search with 800 iterations for all datasets. Our evaluations
follows (Gasteiger et al., 2019). Each dataset is split into a development set and a test set with a fixed

6

https://github.com/jctops/understanding-oversquashing

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 4 8
0

1.7 × 100

tr
ue

a.
Texas

0 4 8

Cornell

0 5 10

Wisconsin

0 15 30

Chameleon

0

20

40

60

80

%

0 8 16
0

6 × 10 1

tr
ue

Squirrel

0 3 6

Actor

0 6 12

Cora

0 3 6

Citeseer

0 2 4
0

3.5 × 10 1

tr
ue

Pubmed

0 2 4
0

100

MUTAG

0 3 6

PROTEINS

0 3 6
0

1.5 × 100

tr
ue

b.
Texas

0 3 6

Cornell

0 3 6

Wisconsin

0 4 8

Chameleon

0

20

40

60

80

%

0 4 8
0

6 × 10 1

tr
ue

Squirrel

0 3 6

Actor

0 4 8

Cora

0 3 6

Citeseer

0 3 6
0

3.5 × 10 1

tr
ue

Pubmed

0 3 6
0

100

MUTAG

0 3 6

PROTEINS

Figure 1: A visualisation of the edges selected during the SDRF rewiring algorithm. a, The panels
show the edges that do not satisfy condition 2b, both due to δ > 1/♯△ (if the edge is situated above
the dotted line) or δ > 1/γmax (if the edge is situated below the dotted line). b, The panels show
the opposite, namely the edges that satisfy condition 2b. This means that the edge is situated below
the dotted line and δ < 1/γmax. The color code of the edges indicates at which step of the rewiring
process (in %) the edge is selected. Dotted line shows y = 1/♯△ corresponding to the upper limit in
condition 2b.

seed. The development set is then split 100 times into a validation and training set using the same
seeds as in (Topping et al., 2021). Each hyperparameter configuration is then trained and evaluated
on each of the 100 training-validation sets. The reported accuracy is then the mean test accuracy over
the 100 validation sets. We train the networks with early stopping, where the patience is 100 epochs
of no improvement on the validation set. We use a GCN (Kipf & Welling, 2016) for all datasets
together with the Adam optimizer (Kingma & Ba, 2014).

Curvature notions The question now arises as to what the role is of different curvature measures
when rewiring graphs. For each dataset, we used each discrete curvature notion on graphs discussed
in section 2 to rewire the graph in order to assess possible SDRF as extensively as possible.

Results Figure 13 show the smoothed distributions (kernel density estimates), together with box-
enplots, of the average accuracy obtained per dataset for each rewiring measure. Additionally, we
also look at the top 10% of the reported accuracies given by hyperparameters, which is presented in
Table 3. To assess the robustness of the distributions we analysed how well the distribution saturates
with an increasing number of added iterations. We look at the evolution of the mean and standard
deviation as iterations are added, as well as the Wasserstein distance metric between two distributions

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

which include progressively more iterations. We performed this analysis for all datasets and show it
in Appendix F. From these results, we see that our sample of iterations is not unrepresentative of the
expected performances and that the obtained distributions saturate, indicating that further runs would
not majorly impact the performance distribution.

A first observation is that no curvature measure consistently shifts the distribution of the mean test
accuracy away from the None distribution (meaning no rewiring) over all datasets. On some datasets,
such as Cornell, Wisconsin or Actor we do notice that AFc based rewiring does provide better
performance. However, these curvature definitions do not do this consistently for the other low
homophily datasets such as Texas, Squirrel or Chameleon. We also see this behaviour when looking
at the average of the top 10% results, where AFc based rewiring does perform better than other
variants but with a larger standard deviation. The improvement, taking into account the spread of
the distributions is therefore not significant with respect to no rewiring. We can also note the similar
performance of less-computational intensive curvature measures (BFc3 and AFc3) in comparison
with their more intensive variant (BFc and AFc4).

It is also interesting to note that rewiring can also negatively impacted the performance of a dataset,
as seen by the larger spread for the citation networks. This could be due to rewiring non-suitable
edges which introduces noise in the graph by allowing the communication between nodes that should
not. Secondly, when comparing the results from Table 1 with the distribution of BFc in Figure 13,
we can see that the datasets with more edges that satisfy condition 2b do not perform better than other
(e.g. Pubmed).

Table 2: For each dataset we take the top 10% results from the hyperparameter sweeps and compute
the average mean test accuracy obtained together with the standard deviation. For some datasets, the
top 10% showed almost no variability which resulted in a standard deviation of (almost) 0.

Texas Cornell Wisconsin Chameleon Cora Citeseer
None 59.95± 1.15 53.66± 0.14 54.92± 0.51 40.76± 3.52 58.83± 16.36 58.14± 7.33
BFc 59.26± 0.00 53.61± 0.28 54.06± 0.01 34.58± 3.19 28.39± 17.24 35.99± 13.82
BFc3 59.26± 0.00 53.59± 0.12 54.06± 0.01 30.93± 0.10 21.86± 08.75 30.35± 12.03
BFcmod 59.26± 0.00 53.68± 0.43 54.91± 1.72 31.60± 2.04 27.73± 13.08 44.16± 12.46
JLc 59.26± 0.00 53.57± 0.01 54.06± 0.02 30.91± 0.02 26.83± 13.82 42.48± 7.83
AFc3 59.58± 0.52 54.20± 1.57 56.37± 1.60 36.93± 5.14 59.25± 14.83 60.11± 6.30
AFc4 59.79± 0.54 53.63± 0.10 54.60± 0.80 31.20± 0.62 58.68± 16.10 61.67± 5.43

Pubmed Actor Squirrel MUTAG PROTEINS
None 41.99± 12.58 27.73± 0.02 36.73± 1.96 55.34± 3.67 61.45± 1.49
BFc 39.67± 8.30 27.73± 0.01 35.35± 1.00 54.38± 1.71 61.36± 1.23
BFc3 40.97± 12.01 27.73± 0.02 34.66± 0.54 54.45± 2.25 61.16± 0.00
BFcmod 41.23± 11.30 27.73± 0.01 34.89± 0.85 54.56± 2.32 61.20± 0.18
JLc 39.47± 8.97 27.73± 0.02 34.53± 0.26 54.53± 2.86 61.20± 0.37
AFc3 42.74± 12.91 28.00± 0.93 35.78± 1.83 54.63± 2.91 61.22± 0.45
AFc4 41.40± 12.65 28.14± 1.02 35.64± 1.40 54.54± 2.40 61.27± 1.02

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0
100

101

De
ns

ity

Texas Cornell Wisconsin Chameleon

0.4 0.6

BFc
BFc3

BFcmod

JLc
AFc3
AFc4
None

0.2 0.4 0.6 0.2 0.4 0.6 0.3 0.4 0.5

0
100

101
102

De
ns

ity

Squirrel Actor Cora Citeseer

0.3 0.4

BFc
BFc3

BFcmod

JLc
AFc3
AFc4
None

0.25 0.30 0.0 0.5 0.0 0.5

0
100

101

De
ns

ity

Pubmed

0
100

101

102

De
ns

ity

MUTAG PROTEINS

0.4 0.6 0.8

BFc
BFc3

BFcmod

JLc
AFc3
AFc4
None

0.6 0.7

BFc
BFc3

BFcmod

JLc
AFc3
AFc4
None

0.6 0.7

Figure 2: Distribution of mean test accuracy over the sweep of hyperparameters for the different
curvature measures and node-classification datasets used. We show boxenplots which first identify
the median, then extend boxes outward, each covering half of the remaining data on which outliers
(circles) are identifiable. For each dataset we also show the smoothed distribution using kernel density
estimates from the seaborn package.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5 CONCLUSION

In our work, we have taken a closer look at the effectiveness of graph-rewiring on (large-scale) graph
datasets which are commonly used for benchmarking. Our results show that the conditions for over-
squashing based on theorems proposed from the literature are not always met when considering these
datasets. This implies that the edges selected during rewire do not necessarily cause oversquashing
during message-passing and that severe bottlenecks are in fact not present in these datasets. Although
one might interpret oversquashing as a continuous phenomenon, these results suggest that it is limited
to specific graph topologies.

While graph rewiring can alleviate structural properties of graphs that cause information bottlenecks,
thereby mitigating oversquashing, it also interacts intricately with other factors that influence the
performance of a GNN. There is an inherent trade-off between reducing oversquashing and enhancing
oversmoothing (Nguyen et al., 2023; Fesser & Weber, 2023). Additionally, rewiring can introduce
noise, allowing nodes to access information they shouldn’t while improving overall information flow.

Moreover, enabling long-range interactions between nodes is only necessary for tasks that depend
on those interactions. This explains why citation networks in this paper, despite meeting theoretical
bounds better than other datasets (see Table 1), do not show performance improvements with rewiring.
This is in line with previous research indicating that these tasks do not rely on long-range interactions
(Alon & Yahav, 2021). This dependency is measured by the homophily (Pei et al., 2019), and
Appendix C shows that citation networks have the highest homophily among the benchmark datasets,
further strengthening this observation. For the other datasets, the low homophily indicates the
necessity of long-range interactions, aligning with the observation that many edges fail to meet
theoretical conditions, as shown in Table 1, and therefore explaining the lack of performance gains
for these datasets.

Our analysis is further substantiated by examining the role of hyperparameter sweeping when
benchmarking curvature-based graph rewiring methods. We found that most performance gain is due
to finding an optimal hyperparameter configuration rather than a structural shift in the performance,
as illustrated by the distribution of performance in Figure 13. We argue that future rewiring methods
should take into consideration the dependency of their method on hyperparameters, both GNN and
rewiring, when evaluating their performance.

Limitations and future work The results presented in this manuscript suggest several directions
for future investigation while also facing some limitations. While the distributions shown above
might be influenced by the hyperparameter grid used in our random search, focusing on the top 10%
of results demonstrates that this influence is likely minimal. Our analysis tested the results for the
SDRF algorithm from (Topping et al., 2021), which is the most natural method for curvature-based
graph rewiring. It would be interesting to extend this investigation to other rewiring algorithms to
validate similar claims. The theoretical analysis of the SDRF bounds indicates that the current bound,
δ · |#△| ≤ 1, could potentially be replaced by a more general bound, δ · |#△| ≤ R with R > 1, as
alluded to in Remark 15 of (Topping et al., 2021). However, this adjustment would further weaken
the theoretical bounds established in Theorem 4. The curvature distributions provided in the appendix
reveal that the edges are not negatively curved enough to create bottlenecks. Future work could
involve developing real-world benchmark datasets that do suffer from bottlenecks to test whether
the robust performance gains observed in synthetic data can be replicated. Moreover, exploring the
possibility of Theorem-aware rewiring, which involves only rewiring edges that meet theoretical
conditions, could be beneficial. This approach should be tested on datasets that genuinely suffer from
severe information bottlenecks, as indicated earlier.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ralph Abboud, Radoslav Dimitrov, and Ismail Ilkan Ceylan. Shortest path networks for graph
property prediction. In Learning on Graphs Conference, pp. 5–1. PMLR, 2022.

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In international conference on machine learning,
pp. 21–29. PMLR, 2019.

Sami Abu-El-Haija, Amol Kapoor, Bryan Perozzi, and Joonseok Lee. N-gcn: Multi-scale graph
convolution for semi-supervised node classification. In Ryan P. Adams and Vibhav Gogate
(eds.), Proceedings of The 35th Uncertainty in Artificial Intelligence Conference, volume 115 of
Proceedings of Machine Learning Research, pp. 841–851. PMLR, 22–25 Jul 2020.

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
In International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=i80OPhOCVH2.

Federico Barbero, Ameya Velingker, Amin Saberi, Michael M Bronstein, and Francesco Di Giovanni.
Locality-aware graph rewiring in gnns. In The Twelfth International Conference on Learning
Representations, 2023.

Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. Understanding oversquashing in
gnns through the lens of effective resistance. In International Conference on Machine Learning,
pp. 2528–2547. PMLR, 2023.

Jakub Bober, Anthea Monod, Emil Saucan, and Kevin N Webster. Rewiring networks for graph neural
network training using discrete geometry. In International Conference on Complex Networks and
Their Applications, pp. 225–236. Springer, 2023.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Lio, Guido F Montufar, and
Michael Bronstein. Weisfeiler and lehman go cellular: Cw networks. Advances in neural
information processing systems, 34:2625–2640, 2021a.

Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F Montufar, Pietro Lio, and
Michael Bronstein. Weisfeiler and lehman go topological: Message passing simplicial networks.
In International Conference on Machine Learning, pp. 1026–1037. PMLR, 2021b.

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and Michael M
Bronstein. On over-squashing in message passing neural networks: The impact of width, depth,
and topology. In International Conference on Machine Learning, pp. 7865–7885. PMLR, 2023.

Lukas Fesser and Melanie Weber. Mitigating over-smoothing and over-squashing using augmentations
of forman-ricci curvature. In The Second Learning on Graphs Conference, 2023.

Forman. Bochner’s method for cell complexes and combinatorial ricci curvature. Discrete &
Computational Geometry, 29:323–374, 2003.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In International Conference on Learning
Representations, 2018.

Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph
learning. Advances in neural information processing systems, 32, 2019.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

11

https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=i80OPhOCVH2

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jhony H. Giraldo, Konstantinos Skianis, Thierry Bouwmans, and Fragkiskos D. Malliaros. On the
trade-off between over-smoothing and over-squashing in deep graph neural networks. In Proceed-
ings of the 32nd ACM International Conference on Information and Knowledge Management,
CIKM ’23, pp. 566–576, New York, NY, USA, 2023. Association for Computing Machinery. ISBN
9798400701245.

Benjamin Gutteridge, Xiaowen Dong, Michael M Bronstein, and Francesco Di Giovanni. Drew:
Dynamically rewired message passing with delay. In International Conference on Machine
Learning, pp. 12252–12267. PMLR, 2023.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Jürgen Jost and Shiping Liu. Ollivier’s ricci curvature, local clustering and curvature-dimension
inequalities on graphs. Discrete & Computational Geometry, 51(2):300–322, 2014.

Kedar Karhadkar, Pradeep Kr Banerjee, and Guido Montufar. Fosr: First-order spectral rewiring
for addressing oversquashing in gnns. In The Eleventh International Conference on Learning
Representations, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2016.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating the
construction of internet portals with machine learning. Information Retrieval, 3:127–163, 2000.

Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. arXiv preprint
arXiv:2007.08663, 2020.

Galileo Namata, Ben London, Lise Getoor, Bert Huang, and U Edu. Query-driven active surveying
for collective classification. In 10th international workshop on mining and learning with graphs,
volume 8, pp. 1, 2012.

Khang Nguyen, Nong Minh Hieu, Vinh Duc Nguyen, Nhat Ho, Stanley Osher, and Tan Minh Nguyen.
Revisiting over-smoothing and over-squashing using ollivier-ricci curvature. In International
Conference on Machine Learning, pp. 25956–25979. PMLR, 2023.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. In International Conference on Learning Representations, 2019.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. In International Conference on Learning Representations, 2019.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. Journal
of Complex Networks, 9(2):cnab014, 2021.

Areejit Samal, RP Sreejith, Jiao Gu, Shiping Liu, Emil Saucan, and Jürgen Jost. Comparative analysis
of two discretizations of ricci curvature for complex networks. Scientific reports, 8(1):8650, 2018.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

RP Sreejith, Karthikeyan Mohanraj, Jürgen Jost, Emil Saucan, and Areejit Samal. Forman curvature
for complex networks. Journal of Statistical Mechanics: Theory and Experiment, 2016(6):063206,
2016.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Qingyun Sun, Jianxin Li, Haonan Yuan, Xingcheng Fu, Hao Peng, Cheng Ji, Qian Li, and Philip S
Yu. Position-aware structure learning for graph topology-imbalance by relieving under-reaching
and over-squashing. In Proceedings of the 31st ACM International Conference on Information &
Knowledge Management, pp. 1848–1857, 2022.

Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. Social influence analysis in large-scale networks.
In Knowledge Discovery and Data Mining, 2009. URL https://api.semanticscholar.
org/CorpusID:4931148.

Jan Tönshoff, Martin Ritzert, Eran Rosenbluth, and Martin Grohe. Where did the gap go? reassessing
the long-range graph benchmark. Transactions on Machine Learning Research, 2024.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In International
Conference on Learning Representations, 2021.

Domenico Tortorella and Alessio Micheli. Is rewiring actually helpful in graph neural networks?
arXiv preprint arXiv:2305.19717, 2023.

Carnegie Mellon University. Webkb. http://www.cs.cmu.edu/afs/cs.cmu.edu/
project/theo-11/www/wwk.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Melanie Weber, Emil Saucan, and Jürgen Jost. Coarse geometry of evolving networks. Journal of
complex networks, 6(5):706–732, 2018.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861–6871. PMLR, 2019.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 32(1):4–24, 2021. doi: 10.1109/TNNLS.2020.2978386.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2018.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 974–983,
2018.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications.
AI open, 1:57–81, 2020.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. Advances in neural
information processing systems, 33:7793–7804, 2020.

13

https://api.semanticscholar.org/CorpusID:4931148
https://api.semanticscholar.org/CorpusID:4931148
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwk
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwk

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A CURVATURE DISTRIBUTIONS

2 0 5
0

100

200

Texas

2 1
0

25

2 0 5

2 1

2 0 5

2 1

2 0 5

2 1

2 1 0 1 2 3 4 5
0.0

0.5

De
ns

ity

100 80 60 40 20 0
0

20

40

BFc BFc3 BFcmod JLc AFc3 AFc4

100 80 60 40 20 0

Figure 3: Distribution of curvatures for dataset Texas

2 0 5
0

100

200

Cornell

2 1
0

25

2 0 5

2 1

2 0 5

2 1

2 0 5

2 1

2 1 0 1 2 3 4 5
0.0

0.5

De
ns

ity

100 80 60 40 20 0
0

20

40

BFc BFc3 BFcmod JLc AFc3 AFc4

100 80 60 40 20 0

Figure 4: Distribution of curvatures for dataset Cornell

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

2 0 5
0

100

200

Wisconsin

2 1
0

50

2 0 5

2 1

2 0 5

2 1

2 0 5

2 1

2 1 0 1 2 3 4 5
0.0

0.5

De
ns

ity

100 80 60 40 20 0
0

10

20

BFc BFc3 BFcmod JLc AFc3 AFc4

100 80 60 40 20 0

Figure 5: Distribution of curvatures for dataset Wisconsin

2 0 5
0

500

1000

Chameleon

2 1
0

500

2 0 5

2 1

2 0 5

2 1

2 0 5

2 1

2 1 0 1 2 3 4
0.0

0.5

De
ns

ity

100 50 0 50
0

200

BFc BFc3 BFcmod JLc AFc3 AFc4

0 2000 4000 6000 8000

Figure 6: Distribution of curvatures for dataset Chameleon

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

2 0 5
0

500

Cora

2 1
0

500

2 0 5

2 1

2 0 5

2 1

2 0 5

2 1

2 1 0 1 2
0.0

0.5

De
ns

ity

100 80 60 40 20 0
0

250

500

BFc BFc3 BFcmod JLc AFc3 AFc4

100 80 60 40 20 0

Figure 7: Distribution of curvatures for dataset Cora

2 0 5
0

500

Citeseer

2 1
0

250

2 0 5

2 1

2 0 5

2 1

2 0 5

2 1

2 1 0 1 2
0.0

0.5

De
ns

ity

100 80 60 40 20 0
0

250

500

BFc BFc3 BFcmod JLc AFc3 AFc4

100 80 60 40 20 0

Figure 8: Distribution of curvatures for dataset Citeseer

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

2 0 5
0

5000

Pubmed

2 1
0

5000

2 0 5

2 1

2 0 5

2 1

2 0 5

2 1

2 1 0 1 2
0

1

De
ns

ity

100 80 60 40 20 0
0

1000

2000

BFc BFc3 BFcmod JLc AFc3 AFc4

100 80 60 40 20 0

Figure 9: Distribution of curvatures for dataset Pubmed

2 0 5
0

2000

4000

Actor

2 1
0

5000

2 0 5

2 1

2 0 5

2 1

2 0 5

2 1

2 1 0 1 2 3 4 5
0

1

De
ns

ity

100 80 60 40 20 0
0

500

1000

BFc BFc3 BFcmod JLc AFc3 AFc4

100 80 60 40 20 0

Figure 10: Distribution of curvatures for dataset Actor

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

2 0 5
0

2500

5000

Squirrel

2 1
0

2500

2 0 5

2 1

2 0 5

2 1

2 0 5

2 1

2 1 0 1 2 3 4
0.0

0.5

De
ns

ity

100 80 60 40 20 0
0

200

400

BFc BFc3 BFcmod JLc AFc3 AFc4

100 80 60 40 20 0

Figure 11: Distribution of curvatures for dataset Squirrel

B ON THE IMPLEMENTATION OF THE BALANCED FORMAN CURVATURE

Figure 12:
Sample graph
provided in
Figure. 3 in
Topping et al.
(2021)

During the setup of our experiment, we noticed that the implementation of the
Balanced Forman curvature provided by the authors of Topping et al. (2021) under
https://github.com/jctops/understanding-oversquashing
does not match the theoretical definition presented in their paper (Definition 1 in
Topping et al. (2021)). More precisely, the issue for a given edge i ∼ j evolves
around the terms corresponding to the four-cycle contributions, i.e. |♯i□|, |♯

j
□| and

γmax. The degree di and dj of the involved nodes and the number of triangles
|♯△(i, j)| are calculated correctly. However, even for the sample graph provided
in Figure. 3 in Topping et al. (2021) (Figure 12 here) the publicly available
implementation produces demonstrably wrong results. The four-cycle contribution
is computed as illustrated in the code below with sharpij = |♯i□| + |♯j□|,
lambdaij = γmax.

If we consider the edge 0 ∼ 1 of the sample graph in Figure 12 and using the
definition of the Balanced Forman curvature, Eq. equation 2 we find BFc(0, 1) = 0.10. In contrast,
when using the publicly available code we find BFc(0, 1) = 0.08.

To control that our computation of BFc was correct we implemented with the NetworkX library the
set-theoretical definition (evolving around the 1-hop neighbourhoods S1(i) and S1(j) of the involved
nodes) provided in Definition 1 in Topping et al. (2021). These are

1. ♯∆(i, j) := S1(i) ∩ S1(j) are the triangles based at i ∼ j.

2. ♯i□(i, j) := {k ∈ S1(i)\S1(j), k ̸= j : ∃w ∈ (S1(k) ∩ S1(j)) \S1(i)} are the neighbours
of i forming a 4-cycle based at the edge i ∼ j without diagonals inside.

3. γmax(i, j) is the maximal number of four-cycles based at i ∼ j traversing a common node

Additionally, we used Remark 10 from Topping et al. (2021) to calculate the four-cycle contribution
and in particular γmax. Our CUDA implementation of BFc was then controlled with the Networkx
implementation. Both our implementations are available in our code.

18

https://github.com/jctops/understanding-oversquashing

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Listing 1: Code snippet from Topping et al. (2021) to compute the 4-cycle contribution of the BFc
// 4-cycle contribution
for k in range(N):

TMP = A[k, j] * (A2[i, k]-A[i, k]) * A[i, j]
if TMP > 0:

sharp_ij += 1
if TMP > lambda_ij:

lambda_ij = TMP
TMP = A[i, k] * (A2[k, j]-A[k, j]) * A[i, j]

if TMP > 0:
sharp_ij += 1
if TMP > lambda_ij:

lambda_ij = TMP

C[i, j] = ((2 / d_max) + (2 / d_min) - 2 + (2 / d_max + 1 /
d_min) * A2[i, j] * A[i, j])

if lambda_ij > 0:
C[i, j] += sharp_ij / (d_max * lambda_ij)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

C GNN ARCHITECTURE ABLATION

In order to confirm that our results are not dependent on architecture choices of the Graph Neural Net-
works we perform the same hyperparameter analysis on three datasets (Texas, Cora and Chameleon)
for two additional architectures: GAT Veličković et al. (2018) and GraphSAGE Hamilton et al.
(2017).

Figure 13: GraphSAGE and GAT distributions of mean test accuracy over the sweep of hyper-
parameters. For each dataset we show the smoothed distribution using kernel density estimates from
the seaborn package. We also show boxenplots which first identify the median, then extend boxes
outward, each covering half of the remaining data on which outliers (circles) are identifiable.

Table 3: GraphSAGE and GAT results of top 10% runs For each dataset we take the top 10%
results from the hyperparameter sweeps and compute the average mean test accuracy obtained
together with the standard deviation.

Texas Cora Chameleon Texas Cora Chameleon
GraphSAGE GraphSAGE GraphSAGE GAT GAT GAT

None 71.09± 5.45 65.14± 7.54 43.02± 2.50 60.12± 1.90 61.18± 9.44 33.08± 3.22
BFc 63.63± 3.63 48.17± 10.19 38.06± 3.05 59.26± 0.00 24.58± 11.53 30.92± 0.11
BFc3 62.19± 3.67 47.43± 11.54 37.44± 3.61 59.26± 0.00 23.62± 9.81 30.95± 0.27
BFcmod 63.50± 3.82 45.20± 9.95 34.38± 4.08 59.26± 0.00 28.29± 11.30 30.96± 0.42
JLc 63.17± 3.62 50.81± 9.17 36.28± 3.78 59.26± 0.00 26.18± 12.23 31.02± 1.09
AFc3 63.18± 4.14 54.01± 4.67 40.87± 2.07 64.95± 4.72 46.72± 12.39 32.65± 2.73
AFc4 63.23± 3.84 50.26± 6.89 35.13± 3.80 64.76± 4.36 48.99± 8.69 33.01± 3.27

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

D DATASETS

If the dataset connected disconnected components we report the statistics for the largest connected
component selected. The homophily index H(G) defined by Pei et al. (2019) is defined as

H(G) =
1

|V|
∑
v∈V

Number of v ’s neighbors who have the same label as v
Number of v ’s neighbors

. (11)

Texas Cornell Wisconsin Chameleon Squirrel Actor Cora Citeseer Pubmed

H(G) 0.06 0.11 0.16 0.25 0.24 0.22 0.83 0.72 0.79
Nodes 135 140 184 832 2186 4388 2485 2120 19717
Edges 251 219 1703 12355 65224 21907 5069 3679 44324

Features 1703 1703 1703 2323 2089 931 1433 3703 500
Classes 5 5 5 5 5 5 7 6 3

Directed? Yes Yes Yes Yes Yes Yes No No No

E HARDWARE SPECIFICATIONS

Our experiments were performed on a HPC server with nodes containing the following components:

GPUs per node GPU memory processors per node CPU memory local disk network

2 x Nvidia A100 40 Gb 2x 16-core AMD EPYC 256 Gb 2 TB SSD EDR-IB
2 x Nvidia Tesla P100 16 Gb 2x 12-core INTEL E5-2650v4 256 Gb 2 TB HDD 10 Gbps

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

F SATURATION ANALYSIS OF DISTRIBUTIONS

0.4 0.6
0

100

101

De
ns

ity
a.

Texas
(33%)

0.4 0.6
Mean Test Accuracy

b.(66%)

0.4 0.6

c.(100%)

0.25 0.50
0

100

101 a.
Cornell

(33%)

0.25 0.50
Mean Test Accuracy

b.(66%)

0.25 0.50

c.(100%)

10 4

10 3

10 2

W
1(

x
1,

(x
)) e.e.e.e.e.e.e.

10 4

10 3

10 2 e.e.e.e.e.e.e.

0.550

0.575

x

f.f.f.f.f.f.f.

0.500

0.525 f.f.f.f.f.f.f.

0 20 40 60 80 100
% of Iterations included (x)

0.025
0.050
0.075

x

g.g.g.g.g.g.g.

0 20 40 60 80 100
% of Iterations included (x)

0.025
0.050

g.g.g.g.g.g.g.

Figure 14: Saturation analysis for datasets Texas and Cornell (a.-d.) Distribution of the obtained
mean test accuracy when including 33%, 66%, and 100% of the total hyperparameters runs. (e.)
Evolution of the Wasserstein distance between two subsequent distributions that include x% of the
total hyperparameter iterations. (f., g.) Mean and standard deviation when including x% of the total
iterations.

0.25 0.50
0

100

101

De
ns

ity

a.
Wisconsin

(33%)

0.25 0.50
Mean Test Accuracy

b.(66%)

0.25 0.50

c.(100%)

0.3 0.4 0.5
0

100

101
102 a.

Chameleon
(33%)

0.3 0.4 0.5
Mean Test Accuracy

b. (66%)

0.3 0.4 0.5

c. (100%)

10 4

10 3

10 2

W
1(

x
1,

(x
)) e.e.e.e.e.e.e.

10 4

10 2 e.e.e.e.e.e.e.

0.475
0.500
0.525

x

f.f.f.f.f.f.f.

0.31
0.32
0.33 f.f.f.f.f.f.f.

0 20 40 60 80 100
% of Iterations included (x)

0.025
0.050
0.075

x

g.g.g.g.g.g.g.

0 20 40 60 80 100
% of Iterations included (x)

0.00

0.05 g.g.g.g.g.g.g.

Figure 15: Saturation analysis for datasets Wisconsin and Chameleon (a.-d.) Distribution of the
obtained mean test accuracy when including 33%, 66%, and 100% of the total hyperparameters runs.
(e.) Evolution of the Wasserstein distance between two subsequent distributions that include x% of
the total hyperparameter iterations. (f., g.) Mean and standard deviation when including x% of the
total iterations.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0.35 0.40
0100

101
102
103

De
ns

ity
a.

Squirrel
(33%)

0.3 0.4
Mean Test Accuracy

b. (66%)

0.3 0.4

c. (100%)

0.2750.3000.325
0100

101
102 a.

Actor
(33%)

0.25 0.30
Mean Test Accuracy

b. (66%)

0.25 0.30

c. (100%)

10 5
10 4
10 3

W
1(

x
1,

(x
)) e.e.e.e.e.e.e.

10 5

10 4

10 3 e.e.e.e.e.e.e.

0.345

0.350

x

f.f.f.f.f.f.f.

0.276

0.277
f.f.f.f.f.f.f.

0 20 40 60 80 100
% of Iterations included (x)

0.00

0.01

x

g.g.g.g.g.g.g.

0 20 40 60 80 100
% of Iterations included (x)

0.000

0.005 g.g.g.g.g.g.g.

Figure 16: Saturation analysis for datasets Squirrel and Actor (a.-d.) Distribution of the obtained
mean test accuracy when including 33%, 66%, and 100% of the total hyperparameters runs. (e.)
Evolution of the Wasserstein distance between two subsequent distributions that include x% of the
total hyperparameter iterations. (f., g.) Mean and standard deviation when including x% of the total
iterations.

0.250.500.75
0

100

101

De
ns

ity

a.

Pubmed
(33%)

0.250.500.75
Mean Test Accuracy

b. (66%)

0.250.500.75

c. (100%)

10 4

10 3

10 2

W
1(

x,
(x

+
1)

) e.e.e.e.e.e.e.

0.34

0.36

x

f.f.f.f.f.f.f.

0 20 40 60 80 100
% of Iterations included (x)

0.00

0.05x

g.g.g.g.g.g.g.

Figure 17: Saturation analysis for dataset Pubmed (a.-d.) Distribution of the obtained mean test
accuracy when including 33%, 66%, and 100% of the total hyperparameters runs. (e.) Evolution
of the Wasserstein distance between two subsequent distributions that include x% of the total
hyperparameter iterations. (f., g.) Mean and standard deviation when including x% of the total
iterations.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

0.6 0.7
0

100

101
102

De
ns

ity

a.
MUTAG

(33%)

0.6 0.7
Mean Test Accuracy

b. (66%)

0.6 0.7

c. (100%)

0.550.600.65
0

100

101 a.
PROTEINS

(33%)

0.6 0.7
Mean Test Accuracy

b. (66%)

0.6 0.7

c. (100%)

10 4

10 2

W
1(

x
1,

(x
)) e.e.e.e.e.e.e.

10 4

10 3

10 2 e.e.e.e.e.e.e.

0.54

0.55

x

f.f.f.f.f.f.f.

0.590

0.595 f.f.f.f.f.f.f.

0 20 40 60 80 100
% of Iterations included (x)

0.000

0.025x

g.g.g.g.g.g.g.

0 20 40 60 80 100
% of Iterations included (x)

0.010

0.015
g.g.g.g.g.g.g.

Figure 18: Saturation analysis for datasets MUTAG and PROTEINS (a.-d.) Distribution of the
obtained mean test accuracy when including 33%, 66%, and 100% of the total hyperparameters runs.
(e.) Evolution of the Wasserstein distance between two subsequent distributions that include x% of
the total hyperparameter iterations. (f., g.) Mean and standard deviation when including x% of the
total iterations.

24

	Introduction
	Graphs, Oversquashing and Curvature
	Preliminaries
	Discrete curvature notions on graphs
	Graph curvature and rewiring

	Benchmark datasets have a lack of sufficiently negatively curved edges
	Hyperparameter dependency of rewiring
	Conclusion
	Appendices
	Curvature distributions
	On the implementation of the Balanced Forman curvature
	GNN architecture ablation
	Datasets
	Hardware specifications
	Saturation analysis of distributions

