
Gradient of Clifford Neural Networks

Takashi Maruyama∗
NEC Laboratories Europe

takashi.maruyama@neclab.eu

Francesco Alesiani∗
NEC Laboratories Europe

francesco.alesiani@neclab.eu

Abstract
Clifford neural network, geometric neural network over Clifford algebra, is an
emerging deep learning model tailored to capture geometrical interactions of
physical features. While the models have made promising progress in various
tasks, their usage has not yet been explored in scientific tasks that rely on the
inverse mode of the networks, which at inference time requires the gradient of
the networks over elements of Clifford algebra. In this paper, we give an in-depth
theoretical foundation of the gradient of functions over Clifford algebras. To fully
utilize the networks’ functionality, we extend the notion of the differentiability of
general functions between Clifford algebras. We further show that the extended
analytic gradient can be numerically derived through widely adopted automatic
differentiation modules such as Autograd, which unlocks the full application of the
differential modules in any inverse-mode problems on the algebra. We illustrate the
promise of using Clifford neural networks in inverse-mode problems in scientific
discovery by showing their superior/competitive performance against baselines.

1 Introduction
Clifford neural networks [6, 8, 33, 39, 50, 54, 61], a class of geometric deep learning models [9],
have made promising progress in modeling the inherent interactions of physical systems, such as
fluid dynamics [6] and multibody interaction systems [50, 8], or geometrical quantities [7]. Typical
experiments conducted in the recent literature are categorized as a forward problem, where tasks solely
rely on the forward-inference mode of neural network models at the inference time. A typical task in
this regard is the prediction of the future state given an initial state of a physical system, such as partial
differential equations (PDEs) [6, 61] and ordinary differential equations (ODEs) [8, 33, 50, 54]. While
solving forward problems is of huge importance, scientific problems and real-world applications
include an important class of tasks that require inverse mode of models. Therein, models typically
require the gradient with respect to their input during their inference process. Example applications
include inverse-design [1, 60], flow-matching [11, 29], and normalizing flow [41, 52]. We believe that
the fundamental reason why many efforts have been put mainly into the forward problem is the fact
that the notion of differentiability of Clifford neural networks has not been sufficiently understood.
While [14, 24] discuss the differentiability of arbitrary functions between Clifford algebras and derive
the analytic gradient for some important classes of functions, some (implicit) condition is imposed
on the algebras and the gradient is not well-defined for some very useful class of Clifford algebras.

Contributions. As a first step towards the application of Clifford neural networks to inverse-mode
problems, i) we extend the notion of the differentiability of functions between Clifford algebras
to Clifford algebras with any signature to enable potential theoretical analysis of the gradients to
arbitrary inverse-mode problems over Clifford algebras. To allow for their experimental usage, ii) we
further show that the analytic gradient of the functions between Clifford algebras is compatible with
the gradient of the functions restricted on their underlying vector spaces, which eventually ensures
the use of automatic differentiation modules such as Autograd [44] and numerical derivation of the
gradient, equivalent to the analytic gradient, on any types of Clifford algebras; iii) we illustrate the
promise of using the neural networks defined over Clifford algebra across a variety of inverse-mode

*Equal contribution

D3S3: Data-driven and Differentiable Simulations, Surrogates, and Solvers @ NeurIPS 2024.

problems in scientific discovery. We demonstrate in respective experiments that the gradient of the
networks yields superior or competitive performance against strong baseline models. The code for
the experiments is provided in https://github.com/nec-research.

2 Background
Clifford Algebra. We start by introducing Clifford algebra [38], also known as geometric algebra
[25], over a real vector space V of finite dimension n, and some of its key properties. We follow
similar notation and definition as in [50, 61]. The Clifford algebra Cl(V, q) with a quadratic form
q : V → R is a vector space generated by the l-fold tensor product of an arbitrary basis {ei}ni=1 of V
with an equivalence relation q(v) = v ⊗ v (∀v ∈ V). Then, every element x ∈ Cl(V, q) may be
written with finite indices Im = {i1 < · · · < im} ⊂ {1, 2, · · · , n}

x =

n∑
m=0

∑
Im

xImei1 ⊗q · · · ⊗q eim , xIm ∈ R. (1)

Note that Im = ∅ for m = 0. The expression v⊗q w of elements v,w ∈ V represents the geometric
product of v,w, which defines a product on Cl(V, q) and charactrizes Cl(V, q) as an algebra. The
product of x,y ∈ Cl(V, q) runs all the pair of ei1 ⊗q · · · ⊗q eim composing respective x and y, but
some of the basis elements ei is reduced to a scalar because of the relation q(ei) = ei ⊗q ei,

(ei1 ⊗q · · · ⊗q eir)⊗q (ej1 ⊗q · · · ⊗q ejs) =

t−1∏
u=0

q(ekr+s−u
)(ek1

⊗q · · · ⊗q ekr+s−t
). (2)

Clifford Neural Networks. Clifford algebra is incorporated into many machine learning models, such
as message passing neural networks (MPNNs) [50], simplicial MPNNs [33], multilayer perceptron
models [39], convolutional neural networks [61], and transformers [8]. Those models are typically
represented as functions composed of polynomials defined over Clifford algebra. The polynomials
belong to the algebra R[X1, X2, · · · , Xc] of polynomials (of any order) in the coefficients of R
with c variables, in which the sum and product are defined as the sum and geometric product of
Cl(Rn, q). Therefore, the models in the literature are instances of the composition and concatenation
of polynomials F ∈ R[X1, X2, · · · , Xc], each of which serves as a map from a product space of
Clifford algebras (of channel dimension c) to algebra:

Cl(Rn, q)× · · · × Cl(Rn, q)︸ ︷︷ ︸
c

F−→ Cl(Rn, q). (3)

We name this class of models as Clifford neural networks.

3 Gradient of functions between Clifford algebras
In this section, we show our theoretical results on the differentiability of functions over Clifford
algebra.

Differentiable function on Clifford algebra. Let gV be an Euclidean metric for V , i.e., a symmetric,
non-degenerate and positive bilinear form gV : V × V → R. The metric induces a metric gCl(V,q)

on Cl(V, q) of dimension 2n, which is detailed in Appendix A.1 and A.2. With this induced metric,
the a-directional gradient of F at x0 ∈ Cl(V, q) in the direction a ∈ Cl(V, q) is defined as

F ′
a(x0) = lim

λ→0

F (x0 + λa)− F (x0)

λ
, a ∈ Cl(V, q). (4)

The original definition is given in [14, 24]. Here, the distance of the space, used when taking infinitely
small λ, is defined by a norm ||x|| =

»
gCl(V,q)(x,x). We call F differentiable when the limit exists

for any directional vector a ∈ Cl(V, q) and x0 (and its associated gradient is continuous). Another
prerequisite for this notion is detailed in Appendix A.

Connection on gradient between base space and associated Clifford algebra. The quadratic form
q, as defined in Section 2, defines a bilinear form b(v, w) = 1

2 (q(v+w)−q(v)−q(w)) : V ×V →
R. Throughout the rest of this paper, we assume the bilinear form b to be an inner product of
signature (p, q, r), i.e., b(v,w) = bp,q,r(v,w) = vT∆p,q,rw with matrix ∆p,q,r = diag(1, · · · , 1

p
,

−1, · · · ,−1
q

, 0, · · · , 0
r

), which leads to the following equivalent relations:

q(ei) =

+1, 1 ≤ i ≤ p,

−1, p+ 1 ≤ i ≤ p+ q,

0, p+ q + 1 ≤ i ≤ p+ q + r.

2

https://github.com/nec-research

0 250 500 750 1000
Iteration

10 2

10 1

M
SE

 (l
og

)

(a)

0 250 500 750 1000
Iteration

10 1

(b)

0 5 10 15
Iteration (x50)

10 2

10 1

(c)

CGGNN EGNN GNN Radial Field CGGNN_CGA

Figure 1: Numerical results of inverse optimization for input of neural network model fθ. (a)
shows optimization curve (Eq. 5) for inverse-design at different iteration steps. The horizontal
dotted lines are the final test errors observed in the training phase of respective models, which are
comparable to the test errors reported in [50]. (b) is the MSE error between ground-truth input
velocity and optimized input, and (c) shows MSE error between the ground-truth target state and
simulated target with respect to the optimized velocity input.
We also denote R[X1, · · · , Xc]p,q,r as the set of polynomial functions on the Clifford algebra whose
geometric product ⊗q is associated with the bilinaer form with signature (p, q, r). We here claim
that all functions in R[X1, · · · , Xc]p,q,r are differentiable for any signatures (p, q, r), which is an
extension of the derivative defined for (p, q, 0) in [14, 24]. By Eq. (3) in Section 2, the claim implies
that Clifford neural networks are differentiable. The formal claim is given in Appendix C.

With Proposition C.1, we further elaborate the connection between gradients of functions between
Clifford spaces and its base spaces: Suppose that we have the following embedding (inc) and
projection (proj) maps between V and Cl(V, q):

inc : V ↪→ Cl(V, q), v 7→
n∑

k=1

gV (v, ek)ek, proj : Cl(V, q) ↠ V,

n∑
m=0

∑
Im

vImeIm 7→
∑
I1

vI1eI1 .

Corollary 3.1. For ∀F ∈ R[X]p,q,r, its restriction to the base space V by inc and proj

V
inc

↪−−→ Cl(V, q)
F−−→ Cl(V, q)

proj
−−−−−↠ V

is a differentiable function between V with respect to the metric gV . In particular, when V = Rn and
its basis is the standard orthonormal basis, the function proj ◦F ◦ inc is differentiable on Rn with
respect to the canonical differentiable structure on Euclidean space.
This corollary ensures that the gradient of proj ◦F ◦ inc is the “standard” gradient over the Euclidean
spaces, and hence coincides with the gradient obtained through an automatic differentiation module.

4 Experiments
In this section, we illustrate experimentally the promising usage of Clifford neural networks in
an inverse-design of physical features and a challenging density modelling experiments in science
discovery. We also conduct runtime analysis for the analytic gradient and the gradient obtained
through Autograd. The details of the experiments are described in Appendix E, G, and J.
Inverse design. We base our inverse-design experiment on N -body interaction simulation
[28, 50, 53]. Our objective in this experiment is to find out optimal initial parameters
x∗ of the simulation such as coordinates and/or velocities that minimize the distance be-
tween their predicted future coordinate and given target coordinate. Formally, given ini-
tial parameters x ∈ Rm×N with m-features and future target coordinate y ∈ R3×N ,

Table 1: Comparison of the
inverse design results with
baselines. Comprehensive re-
sults are in Appendix J.2

Coordinate
Obj InitDist TarDist

EGNN 1.31 13.23 20.38

CGGNN 0.74 5.33 9.52

we optimize x by minimizing the following objective function

L(y,fθ(x)) = MSE(y,fθ(x)). (5)

We evaluate the performance of Clifford neural networks with a
couple of strong baselines. The details of the baselines are given in
Appendix G.1 All the networks take physical features of positions
and velocities of the bodies (and some invariant features) as input,
and are trained to predict bodies’ positions after 1000 timesteps,
where we use a similar experimental setup for the models as in
[5, 8, 50, 53] (We also present the details in Appendix G.1.)

Figure 1 shows the results of the inverse design with Clifford Group-Equivariant GNN (CGGNN)
with respect to the velocity input. We observed that CGGNN outperforms or is competitive with

3

other baselines in all metrics (Tab.1). Although in Figure 1 (a) the objective of CGGNN is slightly
worse than that of EGNN, in other metrics (b) and (c) CGGNN outperforms all the baselines by a
wide margin. This indicates that CGGNN can perform reasonable and robust inverse design, while
the other baselines fall into adversarial modes early in the inverse design iteration. We further analyze
the robustness of the proposed approach, by varying the noise variance σ for the initial parameters x̂,
in Appendix J.3. We also report the experimental results of the geometric algebra transformer [8]
(with the signature (3, 0, 1)) including the other baselines in Appendix J.2.
Sampling from distribution. To further investigate the use of gradients in the Clifford Algebra, we
adapt Clifford neural networks to continuous normalizing flow. We consider a Double Well (DW)
and Lennard-Jones (LJ) particle systems, as presented in [30], which model the interactions among
particles. DW4 consists of four particles moving in a 2 dimensional space whose energy depends
on a pair of particles. LJ13 consists of 13 particles and models the potential between molecules as
Lennard-Jones potentials. In Appendix B, we provide the details on how probability density functions
are defined on Clifford algebra and how the change of variable is implemented when using Clifford
neural networks for the gradient flow equation. Following the experimental setup of [53], we use 103
samples for testing and validation, while the training is performed on 10, 102 and 103 samples. We
compare state-of-the-art E(n)-equivariant flow architectures, whose details are given in Appendix E.

Table 2: Comparison of the Negative Log Likelihood on the
test partition on DW4 and LJ3 dataset.

DW4 (n = 2) LJ13 (n = 3)

training samples 102 103 10 102

E-NF 8.31±0.05 8.15±0.10 33.12±0.85 30.99±0.95

E-NF (24× 2n) 8.24±0.06 8.33±0.09 31.33±0.30 30.61±0.16

CGGNN (24) 8.80±0.32 8.56±0.04 31.36±0.55 30.35±0.18

Table 2 shows the results of DW4
and LJ13 experiments. We observe
that the performance of CNF with
CGGNN models is better or compa-
rable to the other baselines. We also
compare the performance of CG-
GNN with that of E-NF with the in-
creased number of hidden-channel
dimension, to ensure that both of the
models have a comparable number
of hidden units for a fair comparison. The performance of CGGNN is still comparable to or better than
those baselines. These results indicate that the back-propagation through Clifford neural networks
can carry informative Jacobian to transform density functions across time.

Table 3: Ratio of the computation time of ana-
lytic gradient to that of autograd gradients.

(batch size, channel size)

signature k (1, 1) (1, 10) (100, 1) (100, 10)

(2, 0, 0) 2 2.08 2.29 2.04 1.20
(3, 0, 0) 2 4.89 3.45 2.21 1.12
(3, 0, 1) 2 3.75 3.04 3.70 1.11
(4, 1, 0) 2 11.02 8.40 1.84 0.50

Analytic gradient and Autograd gradient.
We also report the computation time when com-
puting the gradient in the analytic form given
in [14] and when using the Autograd version as
proposed in our work. The aim of the runtime
experiment is to clarify the range of parameters
with which the computation of Autograd gra-
dients outperforms that of analytical gradients.
While we compare the runtimes, we keep com-
paring the values of the two gradients to make
sure that the two gradients are the same. We
report their ratio of the time of computing the analytic gradient to the time of computing Autograd
gradient. We here consider the gradient of polynomial functions of increasing order xk for k = 2 with
different signatures {(2, 0, 0), (3, 0, 0), (3, 0, 1), (4, 1, 0)}, for different batch sizes 1 and 100 and
channel sizes 1 and 10. We choose the polynomial functions since the polynomials are the primary
components composing Clifford neural networks, as shown with Eq. (3) in Section 2.
In Table 3, we observe that the computation of the analytic gradient is more efficient with larger
batchsize, channel sizes, and larger polynomial degree and signature. This observation is a typical
tendency whenever comparing the runtime between analytical solution and Autograd’s solution,
which supports that the gradient computation by Autograd is performed properly. Comprehensive
results are reported in Appendix I.

5 Conclusions
In this paper, we show that the gradient of functions between Clifford spaces is compatible with the
gradient of functions in the Euclidean spaces. This theoretical connection was previously overlooked.
With this theoretical result, we can immediately show that the gradient obtained through Autograd
coincides with the analytical gradient. We also provide empirical evidence of the utility of the gradient
of Clifford neural networks in the context of inverse-mode tasks. We expect that our exposition
inspires future research into better-aligned inverse-mode problems.

4

References
[1] Kelsey R Allen, Tatiana Lopez-Guavara, Kim Stachenfeld, Alvaro Sanchez-Gonzalez, Peter

Battaglia, Jessica B Hamrick, and Tobias Pfaff. Inverse design for fluid-structure interactions
using graph network simulators. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho, editors, Advances in Neural Information Processing Systems, 2022.

[2] Michael Athanasopoulos, Hassan Ugail, and Gabriela González Castro. Parametric design
of aircraft geometry using partial differential equations. Advances in Engineering Software,
40(7):479–486, 2009.

[3] John T Betts. Survey of numerical methods for trajectory optimization. Journal of guidance,
control, and dynamics, 21(2):193–207, 1998.

[4] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018.

[5] Johannes Brandstetter, Rob Hesselink, Elise van der Pol, Erik J Bekkers, and Max Welling.
Geometric and physical quantities improve e(3) equivariant message passing. In International
Conference on Learning Representations, 2022.

[6] Johannes Brandstetter, Rianne van den Berg, Max Welling, and Jayesh K Gupta. Clifford
neural layers for PDE modeling. In The Eleventh International Conference on Learning
Representations, 2023.

[7] Johannes Brandstetter, Daniel E. Worrall, and Max Welling. Message passing neural PDE
solvers. In International Conference on Learning Representations, 2022.

[8] Johann Brehmer, Pim de Haan, Sönke Behrends, and Taco Cohen. Geometric algebra trans-
former. In Advances in Neural Information Processing Systems, volume 37, 2023.

[9] Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

[10] Keith T Butler, Jarvist M Frost, Jonathan M Skelton, Katrine L Svane, and Aron Walsh.
Computational materials design of crystalline solids. Chemical Society Reviews, 45(22):6138–
6146, 2016.

[11] Ricky T. Q. Chen and Yaron Lipman. Flow matching on general geometries. In The Twelfth
International Conference on Learning Representations, 2024.

[12] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

[13] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP. In
International Conference on Learning Representations, 2017.

[14] Leo Dorst, Daniel Fontijne, and Stephen Mann. Geometric Algebra for Computer Science: An
Object-Oriented Approach to Geometry. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2009.

[15] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

[16] Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

[17] Dumitru Erhan, Y. Bengio, Aaron Courville, and Pascal Vincent. Visualizing higher-layer
features of a deep network. Technical Report, Univeristé de Montréal, 01 2009.

[18] Virginia V. Fernández, Antonio M. Moya, and Waldyr A. Rodrigues. Euclidean clifford algebra.
Advances in Applied Clifford Algebras, 11(3):1–21, Oct 2001.

5

[19] Virginia V. Fernández, Antonio M. Moya, and Waldyr A. Rodrigues. Extensors. Advances in
Applied Clifford Algebras, 11(3):23–40, Oct 2001.

[20] Virginia V. Fernández, Antonio M. Moya, and Waldyr A. Rodrigues. Multivector functions of a
multivector variable. Advances in Applied Clifford Algebras, 11(3):79–91, Oct 2001.

[21] Amir Gholaminejad, Kurt Keutzer, and George Biros. Anode: Unconditionally accurate memory-
efficient gradients for neural odes. In Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI-19, pages 730–736. International Joint Conferences
on Artificial Intelligence Organization, 7 2019.

[22] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adver-
sarial examples. In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015.

[23] David Hestenes. Hamiltonian mechanics with geometric calculus. In Zbigniew Oziewicz,
Bernard Jancewicz, and Andrzej Borowiec, editors, Spinors, Twistors, Clifford Algebras and
Quantum Deformations, pages 203–214, Dordrecht, 1993. Springer Netherlands.

[24] David Hestenes and Garret Sobczyk. Clifford algebra to geometric calculus : a unified language
for mathematics and physics. D. Reidel ; Distributed in the U.S.A. and Canada by Kluwer
Academic Publishers, Dordrecht; Boston; Hingham, MA, U.S.A., 1984.

[25] David Hestenes and Garret Sobczyk. Clifford algebra to geometric calculus: a unified language
for mathematics and physics, volume 5. Springer Science & Business Media, 2012.

[26] Herbert B Keller. Numerical solution of two point boundary value problems. SIAM, 1976.

[27] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

[28] Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural
relational inference for interacting systems. In Jennifer Dy and Andreas Krause, editors, Pro-
ceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pages 2688–2697. PMLR, 10–15 Jul 2018.

[29] Leon Klein, Andreas Krämer, and Frank Noe. Equivariant flow matching. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023.

[30] Jonas Köhler, Leon Klein, and Frank Noe. Equivariant flows: Exact likelihood generative
learning for symmetric densities. In Hal Daumé III and Aarti Singh, editors, Proceedings of the
37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pages 5361–5370. PMLR, 13–18 Jul 2020.

[31] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial examples in the physical
world. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Workshop Track Proceedings. OpenReview.net, 2017.

[32] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. In Proceedings of the IEEE, volume 86, pages 2278–2324,
1998.

[33] Cong Liu, David Ruhe, Floor Eijkelboom, and Patrick Forré. Clifford group equivariant
simplicial message passing networks. In The Twelfth International Conference on Learning
Representations, 2024.

[34] Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, and Kevin Swersky. Graph normalizing
flows. Advances in Neural Information Processing Systems, 32, 2019.

[35] Yang Liu, Saeed Anwar, Liang Zheng, and Qi Tian. Gradnet image denoising. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops,
June 2020.

6

[36] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

[37] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations, 2019.

[38] Douglas Lundholm and Lars Svensson. Clifford algebra, geometric algebra, and applications.
arXiv preprint arXiv:0907.5356, 2009.

[39] Pavlo Melnyk, Michael Felsberg, and Mårten Wadenbäck. Embed me if you can: A geometric
perceptron. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 1276–1284, October 2021.

[40] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: A simple
and accurate method to fool deep neural networks. 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 2574–2582, 2015.

[41] Frank Noé, Simon Olsson, Jonas Köhler, and Hao Wu. Boltzmann generators: Sampling
equilibrium states of many-body systems with deep learning. Science, 365(6457):eaaw1147,
2019.

[42] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization. Distill, 2017.
https://distill.pub/2017/feature-visualization.

[43] Dean S Oliver and Yan Chen. Recent progress on reservoir history matching: a review.
Computational Geosciences, 15(1):185–221, 2011.

[44] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS 2017 Workshop on Autodiff, 2017.

[45] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library, 2019.

[46] Simiao Ren, Willie Padilla, and Jordan Malof. Benchmarking deep inverse models over time,
and the neural-adjoint method. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 38–48.
Curran Associates, Inc., 2020.

[47] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
International conference on machine learning, pages 1530–1538. PMLR, 2015.

[48] Reuven Y Rubinstein and Dirk P Kroese. The cross-entropy method: A unified approach to
monte carlo simulation, randomized optimization and machine learning. Information Science &
Statistics, Springer Verlag, NY, 2004.

[49] Leonid I. Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise removal
algorithms. Physica D: Nonlinear Phenomena, 60(1):259–268, 1992.

[50] David Ruhe, Johannes Brandstetter, and Patrick Forré. Clifford group equivariant neural
networks. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

[51] David Ruhe, Jayesh K Gupta, Steven de Keninck, Max Welling, and Johannes Brandstetter.
Geometric clifford algebra networks. arXiv preprint arXiv:2302.06594, 2023.

[52] Victor Garcia Satorras, Emiel Hoogeboom, Fabian Bernd Fuchs, Ingmar Posner, and Max
Welling. E(n) equivariant normalizing flows. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, 2021.

[53] Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural
networks. In International conference on machine learning, pages 9323–9332. PMLR, 2021.

7

[54] Matthew Spellings. Geometric algebra attention networks for small point clouds, 2022.

[55] Olivier Talagrand and Philippe Courtier. Variational assimilation of meteorological observations
with the adjoint vorticity equation. i: Theory. Quarterly Journal of the Royal Meteorological
Society, 113(478):1311–1328, 1987.

[56] Jeroen Tromp, Carl Tape, and Qinya Liu. Seismic tomography, adjoint methods, time reversal
and banana-doughnut kernels. Geophysical Journal International, 160(1):195–216, 2005.

[57] Ian Vernon, Michael Goldstein, and Richard Bower. Galaxy formation: Bayesian history
matching for the observable universe. Statistical science, pages 81–90, 2014.

[58] Gerhard Wanner and Ernst Hairer. Solving ordinary differential equations II, volume 375.
Springer Berlin Heidelberg New York, 1996.

[59] Daniel Williamson, Michael Goldstein, Lesley Allison, Adam Blaker, Peter Challenor, Laura
Jackson, and Kuniko Yamazaki. History matching for exploring and reducing climate model
parameter space using observations and a large perturbed physics ensemble. Climate dynamics,
41(7):1703–1729, 2013.

[60] Tailin Wu, Takashi Maruyama, and Jure Leskovec. Learning to accelerate partial differential
equations via latent global evolution. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho, editors, Advances in Neural Information Processing Systems, 2022.

[61] Maksim Zhdanov, David Ruhe, Maurice Weiler, Ana Lucic, Johannes Brandstetter, and Patrick
Forré. Clifford-steerable convolutional neural networks, 2024.

8

Appendix

A Differentiability of functions between Clifford spaces

A.1 Metric on Clifford space

Here, we detail the definition of metrics, which are equivalent to those for Euclidean spaces, defined
on real vector spaces and show that the metrics on vector spaces induce metrics on their associated
exterior algebras, following the definition of [18, 19, 20]. Let V be a finite-dimensional vector space
in R. Then, the exterior algebra

∧∗
V of V is defined as the quotient of tensor algebra

⊗
V of V

divided by an ideal generated by v ⊗ w − w ⊗ v, in which we denote v ∧ w instead of v ⊗ w. This
leads to the anti-commutative relation v ∧ w = w ∧ v in

∧∗
V . In order to introduce a metric on∧∗

V , we first introduce Euclidean metric:

Definition A.1. We call a mapping between gV : V × V → R an Euclidean metric for V iff gV
satisfies the following conditions:

gV (v, w) = gV (w, v),∀v, w ∈ V,

gV (v, w) = 0,∀w ∈ V ⇒ v = 0,

gV (v, v) ≥ 0,∀v, w ∈ V, if gV (v, v) = 0, then v = 0.

The pair (V, gV) is called an Euclidean structure for V .

Now, associated to (V, gV), we define the scalar product of x,y ∈
∧∗

V . For x ∈
∧∗

V , we denote
the m-th fold exterior product composing x by

x(m) ∈
m∧

V = V
∧

· · ·
∧

V︸ ︷︷ ︸
m

.

Note that x(0) belongs to a scalor field, i.e., x(0) ∈ R.

Definition A.2. A scalar product on
∧∗

V is

g∧∗ V (x, y) = x(0)y(0) +

n∑
k=1

Å
1

k

ã2 ∑
Im,jm

xImyjm det((gV (ei, ej))i∈Im,j∈Jm)),

in which Im = {i1, · · · , im}, Jm = {j1, · · · , jm} ⊂ {1, 2, · · · , n}, and xIm and yIm are coeffi-
cients for eIm and eJm

.

We note that this product is a well-defined and symmetric, non-degenerate, and positive definite,
which means g∧∗ V defines an Euclidean structure for

∧∗
V . The reason we have

(
1
k

)2 is that we
would like the product to be invariant to the order of indices Im. However, if we arrange the order
of Im, say ascending order as in decomposition of Clifford space Eq.(1), this expression has the
following equivalent definition

gCl(V,q)(x, y) =

n∑
m=0

x(k) · y(k) =

n∑
m=0

∑
Im

xImyIm det((gV (eik , ejl))ik,jl∈Im).

We note that since the metric gCl(V,q) is defined by the determinant of (gV (eik , ejl))ik,jl∈Im , which
measures the magnitude of higher-dimensional grade elements as well as 1-dimensional vectors, this
can be considered as an extension of the notion of differentiable functions between Euclidean spaces.
For further details, we encourage the readers to have a look at [18, 19, 20].

A.2 Definition on differentiability

We first introduce subspaces of Clifford algebra. Eq.(1) defines vector subspaces Cl(m)(V, q) =
{
∑

Im
xImei1 ⊗q · · · ⊗q eim | Im ⊂ {1, 2, · · · , n}, xIm ∈ R} for m ∈ {0, 1, · · · , n}, called

9

m-grades. Therefore, the Clifford algebra Cl(V, q) has a canonical decomposition into the direct
sum of Cl(m)(V, q):

Cl(V, q) =

n⊕
m=0

Cl(m)(V, q), dimR Cl(m)(V, q) =

Ç
n

m

å
.

With this decomposition, we also write x(m) for x ∈ Cl(V, q) as the component of x belonging to
Cl(m)(V, q). We note that all the above settings and properties hold for any orthogonal basis of V ,
and Clifford algebra for V is unique up to isomorphism.

Let F be a function from Cl(p)(V, q) → Cl(q)(V, q). F is said to be differentiable at x0 if there
exists a function fx0

: Cl(p)(V, q) → Cl(q)(V, q) such that

lim
x→x0

F (x)− F (x0)− fx0
(x− x0)

||x− x0||
= 0.

We note that using the triangular inequality, we can show that such fx0
is unique if it exists, see also

[20]. Based on this definition, we can further derive the definition of directional derivative: Suppose
F is differentiable at x0. It is known from [20] that for ∀a ∈ Cl(p)(V, q), we have

lim
λ→0

F (x0 + λa)− F (x0)

λ
= fx0

(a).

Based on this fact, we define the a-directional derivative of F (not necessarily differentiable) at x0,
denoted by F ′

a(x0), to be

F ′
a(x0) = lim

λ→0

F (x0 + λa)− F (x0)

λ
.

We note that this definition is equivalent to that in Eq.(4). Namely, for ∀F : Cl(V, q) → Cl(V, q),
we can always derive a function between Cl(p)(V, q) → Cl(q)(V, q) by composing F with the
canonical inclusion Cl(p)(V, q) ↪→ Cl(V, q) and projection map Cl(V, q) → Cl(q)(V, q). On the
other hand, when we have two functions F1 : Cl(p1)(V, q) → Cl(q1)(V, q) and F2 : Cl(p2)(V, q) →
Cl(q2)(V, q), by taking the direct product (i.e., concatenation), we have

(F1,F2) : Cl(p1)(V, q)×Cl(p2)(V, q) → Cl(q1)(V, q)×Cl(q2)(V, q), (x1,x2) 7→ (F1(x1),F2(x2)).

The notion of (directional) differentiability is also equivalent to Definition 4, since the product of
canonical Euclidean distances dn1

and dn2
of two Euclidean spaces Rn1 and Rn2 is equivalent to the

canonical distance dn1+n2
of Rn1+n2 .

B Analysis of functions between Clifford algebras

Coordinate system For the continuous normalizing flow experiments, we need the definition of
probability distribution on the Clifford Algebra. Since the metric, defined on the Clifford Algebra
through their bilinear form, can be degenerate and not positive, we resort to the Euclidean metric
defined on the Euclidean coordinate system. We first define two mappings as follows:

inccoord :R2n ↪→ Cl(Rn, q),x =

Ö
x1

...
x2n

è
7→

n∑
m=0

∑
Im={i1...im}

xImeIm , (6)

projcoord :Cl(Rn, q) ↠ R2n ,x =

n∑
m=0

∑
Im

xImeIm 7→

Ö
x1

...
x2n

è
, (7)

where eIm = ei1 ⊗q · · · ⊗q eim and Im = {i1 < · · · < im} ⊂ {1, 2, · · · , n}. Note that Im = ∅ for
m = 0. We here suppose that the metric on the Clifford algebra is defined as the bilinear form b with

10

Figure 2: Clifford Jacobian (J = {∂IF (J)}I,J) with respect to the coordinate system {e1, e2, e3}
and its derived blades for a Clifford algebra with n = 3. The Clifford directional gradient is defined
as ∂IF

(J) = limλ→0
F (J)(x+λeI)−F (J)(x)

λ . Highlighted in the boxes the gradient of the scalar
components with respect to the scalar component, the vector, bivector and pseudo-scalar Jacobians.
The element of the Clifford Jacobian are ∂IF

(J), where each column highlight the direction eI of
the gradient, while the row indicates the component eJ at the output of the function.

signature (n, 0, 0). Then, the above two functions turn out to be isometric functions, and we get the
following commutative diagram (including dotted backward arrows)

Cl(Rn, q)
F //

��

Cl(Rn, q)

projcoord
��

ss

R2n

inccoord

OO

f
// R2n

ZZ

uu

Here f is defined as f = projcoord ◦F ◦ inccoord : R2n 7→ R2n : x 7→ f(x). This function is
a-directional differentiable in the usual sense, when F is differentiable.

Jacobian matrix of differentiable Clifford functions We define the Jacobian of functions between
Clifford algebras via the directional gradient. Given a differentiable function F : Cl(Rn, q) →
Cl(Rn, q), the directional gradient of the J-th component F (J) in the output space along the direction
eI in the input space is defined as follows:

∂IF
(J) = lim

λ→0

F (J)(x+ λeI)− F (J)(x)

λ
∈ Cl(Rn, q), (8)

∂IF =
∑
J

∂IF
(J) ∈ Cl(Rn, q). (9)

We define the Jacobian of F as

JF = (∂IF)I =

Ö
∂1F
...

∂2nF

è
=

Ö
∂1F

(1) + · · ·+ ∂1F
(2n)

...
∂2nF

(1) + · · ·+ ∂2nF
(2n)

è
∈ Cl(Rn, q)2

n

, (10)

which is equivalent to the Jacobian of f in the coordinate system through projcoord and inccoord:

Jf =
df(x)

dx
=

Ö
∂1f

(1), . . . , ∂1f
(2n)

...
∂2nf

(1), . . . , ∂2nf
(2n)

è
∈ R2n×2n . (11)

11

Figure 3: Example of vector-Jacobian product of functions between Clifford algebras with n = 3,
when computing the loss for a machine learning task.

Then, this gradient is compatible with gradient on functions between Clifford algebras through the
Jacobian of projcoord and inccoord, that is:

Jf = JinccoordJFJprojcoord
.

Vector-Jacobian product When we want to implement the chain rule, we proceed analogously as
in the Euclidean case. For example let suppose as in machine learning tasks, we have a loss function
L(y) of the output variable of a Clifford neural network y = f(x), then we are interested in the
variation of the loss for the variation of the input variable, i.e.

dL
dx

=
dL
dy

T df(x)

dx
=

dL
dy

T

Jf (x) (12)

as shown in Figure 3.

Density functions over Clifford algebra Since the Clifford algebra Cl(Rn, q) is equipped with
the Euclidean scalar metric gCl(Rn,q), we have a measure µ(x) on Cl(Rn, q), that is equivalent to
the canonical measure on R2n . Through this measure, we define a probability density function p(x)
on Cl(Rn, q) such that ∫

Cl(Rn,q)

p(x)dµ(x) = 1.

We can then also build the same probability theory on the space of Cl(Rn, q) as the Euclidean space.
Section E employs this probability theory when performing CNF in the space of Clifford space.
Namely, on the space of Cl(Rn, q), we have two equivalent formulas

ln p(X1) = ln p(X0)− ln

∣∣∣∣det ∂F (x0)

∂X

∣∣∣∣, (13)

where X1 = F (X0) based on the change of variable formula on Cl(Rn, q).

C Differentiability of Clifford neural networks

We give a regorous statement of the differentiability of Clifford neural networks. The result can be
viewed as an extension of the results in [14, 24], since the literature assume the case of r = 0.
Proposition C.1. Let p, q, r ∈ N s.t. p+ q + r = n. Then,

(i) any F ∈ R[X1, X2, · · · , Xc]p,q,r is differentiable.

(ii) For ∀F ,G ∈ R[X1, X2, · · · , Xc]p,q,r and ∀a ∈ Cl(V, q), the Leibniz rule holds:

(F ⊗q G)′a(X) = (F ′
a ⊗q G)(X) + (F ⊗q G

′
a)(X), X = (X1, X2, · · · , Xc).

12

Our definition of gradient adopts the bilinear form b with signature (n, 0, 0) as its metric gV , even
when taking the gradient of polynomials F ∈ R[X1, X2, · · · , Xc]p,q,r with arbitrary p, q, and r. This
is because the gradient defined by a metric associated with b with either q > 0 or r > 0 is ill-defined
(since b is not positive-definite when q > 0 or r > 0.) We exposit problematic behaviors of gradients
in a case of non positive-defininte metric in Appendix D. Our proposition implies that the gradient of
F ∈ R[X1, X2, · · · , Xc]p,q,r can also derive Jacobian of F equivalent to that of a function between
Euclidean space of dimension 2n, which we also detail in Appendix B.

While we are aware of the fact that the proof for majority of the claims in Proposition C.1 is essentially
same as the proof for differentiable functions of the Euclidean space of dimension 2n, we still give a
comprehensive proof for all the claims.

Proof. (i) All the arithmetic operations involved to define polynomials R[X1, X2, · · · , Xc]p,q,r are
the summation and geometric product. Therefore, we reduce the proof for (i) to the proof for the
summation and geometric product. We here show the differentiability of F for each of the cases.

Summation. With Eq. (1), the sum of two elements x,y ∈ Cl(V, q) may be written as

x+ y =

n∑
m=0

∑
Im

(xIm + yIm)ei1 ⊗q · · · ⊗q eim , xIm , yIm ∈ R.

Let a be a constant element of Cl(V, q). The a-directional gradient of F (with respect to x) is

(x+ y)′a = lim
λ→0

(x+ λa+ y)− (x+ y)

λ
= lim

λ→0

λa

λ
= a.

Geometric product. This proof is further reduced to the case of the geometric product of each pair
of basis elements ei1 ⊗q · · · ⊗q eim composing respective x,y ∈ Cl(V, q), since each element in
Cl(Rn, q) has the decomposition in Eq. (1) and the product runs over all pairs of the basis. Namely,

x⊗q y =

(
n∑

r=0

∑
Ir

xIrei1 ⊗q · · · ⊗q eir

)
⊗q

(
n∑

s=0

∑
Js

yJs
ej1 ⊗q · · · ⊗q ejs

)

=

n∑
r,s=0

∑
Ir,Js

(xIrei1 ⊗q · · · ⊗q eir)⊗q (yJs
ej1 ⊗q · · · ⊗q ejs) . (14)

Noting Eq. (2), the geometric product of each pair of basis elements may be written as

(xIrei1 ⊗q · · · ⊗q eir)⊗q (yJs
ej1 ⊗q · · · ⊗q ejs) = xIryJs

t−1∏
u=0

q(er+s−u)(ek1
⊗q · · · ⊗q ekr+s−t

).

(15)

Therefore, for a ∈ Cl(V, q), the a-directional derivative of the geometric product with respect to x is

(x⊗q y)
′
a

= lim
λ→0

(∑n
r=0

∑
Ir
(xIr + λaIr)ei1 ⊗q · · · ⊗q eir

)
⊗q

(∑n
s=0

∑
Js

yJs
ej1 ⊗q · · · ⊗q ejs

)
λ

−
(∑n

r=0

∑
Ir
xIrei1 ⊗q · · · ⊗q eir

)
⊗q

(∑n
s=0

∑
Js

yJs
ej1 ⊗q · · · ⊗q ejs

)
λ

= lim
λ→0

∑n
r,s=0

∑
Ir,Js

λaIryJs

∏t−1
u=0 q(er+s−u)(ek1

⊗q · · · ⊗q ekr+s−t
)

λ

= lim
λ→0

n∑
r,s=0

∑
Ir,Js

aIryJs

t−1∏
u=0

q(er+s−u)(ek1 ⊗q · · · ⊗q ekr+s−t)

=

n∑
r,s=0

∑
Ir,Js

aIryJs

t−1∏
u=0

q(er+s−u)(ek1
⊗q · · · ⊗q ekr+s−t

).

13

(ii) Recall that any polynomial in R[X1, X2, · · · , Xc]p,q,r is the linear sum of monomials in
R[X1, X2, · · · , Xc]p,q,r. Noting that the geometric product is bilinear and associative, it suffices to
show the proof for the case of the geometric product of each pair of the basis elements as shown in
Eq. (1). When we denote F (x) = xIrei1 ⊗q · · · ⊗q eir , and G(x) = xJs

ej1 ⊗q · · · ⊗q ejs , the
geometric product of F and G is

(F ⊗q G)(x) = xIrxJs

t−1∏
u=0

q(er+s−u)(ek1
⊗q · · · ⊗q ekr+s−t

).

Therefore, for a ∈ Cl(V, q), we get

(F⊗qG)′a(x)

= lim
λ→0

(xIr + λaIr)(xJs
+ λaJs

)
∏t−1

u=0 q(er+s−u)(ek1
⊗q · · · ⊗q ekr+s−t

)

λ

−
xIrxJs

∏t−1
u=0 q(er+s−u)(ek1

⊗q · · · ⊗q ekr+s−t
)

λ

= lim
λ→0

(
λ(aIrxJs + aJsxIr) + λ2aIraJs

)∏t−1
u=0 q(er+s−u)(ek1 ⊗q · · · ⊗q ekr+s−t)

λ

= lim
λ→0

λaIrxJs

∏t−1
u=0 q(er+s−u)(ek1

⊗q · · · ⊗q ekr+s−t
)

λ

+ lim
λ→0

λaJsxIr

∏t−1
u=0 q(er+s−u)(ek1 ⊗q · · · ⊗q ekr+s−t)

λ

= (F ′
a ⊗q G)(x) + (F ⊗q G

′
a)(x).

D Theoretical analysis on the gradient of Clifford neural networks

D.1 What if the metric is not positive?

We here give an example of ill-defined gradients which can happen in case we have non-positive metric.
Let us again first detail the derivation of the gradient of a function F : x0 +x1e1 +x2e2 +x12e12 →
x1e1+x2e2 along a direction a = e1+e2: Suppose the gradient of F is L = l0+l1e1+l2e2+l12e12.
Recall that the gradient of a function between Clifford algebras is defined as

lim
λ→0

F (x0 + λa)− F (x0)

λ
.

Then, we have the following equivalent equations:

lim
λ→0

F (x0 + λa)− F (x0)

λ
= L

⇔ lim
λ→0

(F (x0 + λa)− F (x0))− λL

λ
= 0

⇔ lim
λ→0

(x1 + λ)e1 + (x2 + λ)e2 − (x1e1 + x2e2)− λ(l0 + l1e1 + l2e2 + l12e12)

λ
= 0

⇔ lim
λ→0

λe1 + λe2 − λ(l0 + l1e1 + l2e2 + l12e12)

λ
= 0

⇔ lim
λ→0

−l0 + (1− l1)e1 + (1− l2)e2 − l12e12 = 0 · · · (a)

Then, by the definition of the limit operation limλ→0, Eq. (a) is rewritten as the ϵ-δ definition of
limit as follows: For ∀ϵ > 0, there exists δ > 0 such that

λ < δ ⇒ ∥−l0 + (1− l1)e1 + (1− l2)e2 − l12e12∥ < ϵ. · · · (b)
Since Eq. (a) does not include λ, (b) is equivalent to

∥−l0 + (1− l1)e1 + (1− l2)e2 − l12e12∥ = 0. · · · (c)

14

Let us now assume that the norm ∥·∥ on the Clifford algebra is induced by the quadratic form q, i.e.,
∥x∥2 = gCl(R2,q)(x, x), as in Section 3.1 in the main text and Appendix A.2. Then, the (squared)
norm for a multivector x = x0 + x1e1 + x2e2 + x12e12 may be written as

∥x0 + x1e1 + x2e2 + x12e12∥2 = x2
0 + q(e1)x

2
1 + q(e2)x

2
2 + q(e1)q(e2)x

2
12.

Therefore, when q(e1) = q(e2) = 1, (c) is reduced to

l20 + (l1 − 1)2 + (l2 − 1)2 + l212 = 0.

Then, we get a unique solution l0 = 0, l1 = 1, l2 = 1, l12 = 0, and therefore the gradient L is
uniquely determined in this case. On the other hand, when q(e1) = −q(e2) = 1, we get

l20 + (l1 − 1)2 − (l2 − 1)2 − l212 = 0.

This equation has multiple solutions L, which means the gradient L is not well-defined.

D.2 Disadvantage using ill-defined gradients in applications.

In case we use gradients defined on a non-Euclidean metric, it is inevitable that we face difficulty
in the treatment of the gradients. We give such an example in this subsection. We consider the root
finding problem with the classical Newton method. Our objective is: For a given function f(x), find
a solution x of f(x) = 0. The Newton method in this case is written as

f(x0 + a) = f(x0) + a · ∂xf(x)|x0
· · · (d)

where a · ∂xf(x)|x0
is the directional gradient evaluated at x0 along the direction a. Here, for

simplicity, we assume x0, a ∈ R2 and a problem in which the roots can be found with one-shot. What
we want to find is the direction a that satisfies f(x0 + a) = 0, therefore the equation above may be
rewritten as

0 = f(x0) + a · ∂xf(x)|x0
, · · · (e)

to set f(x0 + a) = 0, x1 = x0 + a. We now take the identity function f(x) = x and assume that the
metric || · || on R2 is ||(x, y)|| = x2 − y2, which essentially corresponds to (p, q, r) = (1, 1, 0). For
the directional derivative such that a · ∂xf(x)|x0

= L, we have the ϵ-δ expression of the definition

lim
ϵ→0

ϵ−1(f(x0 + ϵa)− f(x0)− ϵL) = 0.

A straightforward calculation leads to

∥a− L∥2 = 0,

and by definition of the norm this equation is reduced to

(a1 − l1)
2 − (a2 − l2)

2 = 0

⇔ l1 = a1 ± |a2 − l2|.
From the expression, we can consider l1 depends on l2. By applying the result to (e), we have

0 = x0 + (a1 ± |a2 − l2|, l2) = (x0,1 + a1 ± |a2 − l2|, x0,2 + l2).

Then, l2 = −x0,2. From the first entry in the above equation, we have an equation

0 = x0,1 + a1 ± |a2 + x2| · · · (f)

that gives solutions (a1, a2). This gives you the following "solution" for f(x0 + a) = 0:

x0 + a = (±|a2 + x0,2|, x0,2 + a2)

While x0 + a can be (0, 0), the above "solution" can have infinitely many choices which do not give
f(x0 + a) = 0.

This example showcases a possibility that the non-unique gradients can lead to wrong "solutions".
This problem can be also observed in gradient descent algorithms: We suppose we want to find the
minimum of minx L(f(x)), with L(y) the loss function and y = f(x). The gradient descent step is
written as

x1 = x0 + a · ∂xf(x)|x0 · · · (g)
a = ∂yL(y)|y0

15

Here, we set x1 = x0 + g with g = a · ∂xf(x)|x0 and y0 = f(x0) . We again use f(x) = x. Then,
the directional derivative is a · ∂xf(x)|x0 = L, and satisfies

lim
ϵ→0

ϵ−1(f(x0 + ϵa)− f(x0)− ϵL) = 0

If we assume the norm is induced from (p, q, r) = (1, 1, 0), by the ϵ− δ definition, we get

∥a− L∥2 = 0

that is reduced to
l1 = a1 ± |a2 − l2|

We set l2 as an independent variable, and then l1 as a dependent variable. We now compute Eq. (g)
with the above result:

x1 = x0 + (a1 ± |a2 − l2|, l2)
per component:

x1,1 = x0,1 + a1 ± |a2 − l2|
x1,2 = x0,2 + l2

Even if we consider a to be unique, the update x1 is not unique and depends on l2.

These examples demonstrate the difficulty of taking gradients, even for an elementary function, when
the metric is defined with a general signature since the gradients cannot be uniquely determined,
and it is not trivial to choose appropriate gradients. This fact, therefore, necessitates us to assume
a non-degenerate metric in the Clifford algebra. Using autograd, we can avoid the above problems
and get the proper gradient. Our experiments in the main text are meant to (indirectly) evaluate the
properness of the gradient computed by Autograd by showing that the performance in respective
tasks is reasonable.

E Sampling from probability distributions

Experimental setup. To evaluate the use of gradients in the Clifford Algebra for CNFs, we
consider a Double Well (DW) and Lennard-Jones (LJ) particle systems, as presented in [30],
which model the interactions among particles. These datasets have been generated by sam-
pling from the system energy (see also Appendix G.2) using Markov Chain Monte Carlo sam-
pling. DW4 consists of four particles moving in a 2 dimensional space whose energy de-
pends on a pair of particles. These systems have multiple metastable states. LJ13 con-
sists of 13 particles and models the potential between molecules as Lennard-Jones potentials,
which describe long-range interactions and include both repulsive and attractive components.

!" ℝ!, %
⋯ ⋯⋯⋯

!! = !" +$ %# !$ &'
!

"

Embedding Projection

! = 0 ! = 1

Continous Normalization
ℝ! ℝ!

&" &#&$

Figure 4: Schematic of Continuous Normalizing
Flow method. The samples are generated starting
from a random noise x0 ∼ N(0, I) and integrated
using the vector field defined in the Clifford Alge-
bra by the Clifford Neural Network F .

Following the experimental setup of [53], we use
103 samples for testing and validation, while the
training is performed on 10, 102 and 103 sam-
ples. We compare state of art E(n)-equivariant
flow architectures, as "Simple dynamics", "Ker-
nel dynamics" as described in [30]. Further, we
consider Graph Normalizing Flow (GNF, [34]),
with attention (GNF-att), and with attention and
data augmentation (GNF-att-aug), i.e. when we
augment the training data with rotations, and
Equivariant Normalizing Flow (E-NF) as pro-
posed in [53]. GNFs and E-NF consists of 3
layers and 32 features per layer, with SiLU acti-
vation function.

Problem settings. We now consider a continuous gradient flow, where xt satisfies the gradient

flow equation (Eq.5). The associated infinitesimal change of variable (Eq.6) is given by [12]
(Theorem.1), and the final sample probability is computed by integrating the infinitesimal change of
variable (Eq.7):

∂xt

∂t
= ft(xt),

∂ ln p(xt)

∂t
= − tr

ß
∂ft

∂xt

™
, ln p(x1) = ln p(x0)−

∫ 1

0

tr

ß
∂ft

∂xt

™
· · · (C1).

16

When the initial samples are drawn from a given distribution x0 ∼ p0(x), the generation process
of the final samples x1 ∼ p1(x) is called the continuous normalizing flow. CNF thus requires
to compute the trace of the Jacobian, i.e. the gradient with respect to the input variable, ∂ft

∂xt
.

In our experiment, we use dataset consisting of M samples {xi = {qm
i }Nm=1}Mi=1 of a system

of N particles (xi = {qm
i }Nm=1, qm

i ∈ Rn). We train the generative model ft by minimizing
Kullback–Leibler divergence KL(pt=0(x

i
0)|p0(xi

0)), between the prior and the sample probability
given by Eq. (C1), where the sample x0 is computed by reverse integrating the flow ft(x), from
t = 1 to t = 0, starting from x1. The prior is an isotropic normal distribution N (0, IN×n) or
p0(x) = (2π)−(nN/2) exp{−(∥x∥2)/2}. In Appendix B, we provide the details on how probability
density functions are defined on Clifford Algebra and how the change of variable is implemented
when using Clifford neural networks.

Results. Table 4 shows the results of DW4 and LJ13 experiments. We observe that the per-
formance of CNF with CGGNN models is better or comparable to the other baselines. We
also compare the performance of CGGNN with that of E-NF with the increased number of
hidden-channel dimension, to ensure that both of the models have a comparable number of
hidden units for a fair comparison. The performance of CGGNN is still comparable to or
better than those baselines. These results indicate that the back-propagation through Clifford
neural networks can carry informative Jacobian to transform density functions across time.

Table 4: Comparison of the Negative Log Likelihood (and its
error in terms of standard deviation) on the test partition for
the considered methods, on DW4 and LJ3 dataset. The score
in bold represents the best performance.

DW4 (n = 2) LJ13 (n = 3)

training samples 102 103 10 102

GNF 11.93±0.41 11.31±0.07 43.56±0.79 42.84±0.52

GNF-att 11.65±0.39 11.13±0.38 43.32±0.2 36.22±0.34

GNF-att-aug 8.81±0.23 8.31±0.19 41.09±0.53 31.5±0.35

Simple-dynamics 9.58±0.05 9.51±0.01 33.67±0.07 33.1±0.10

Kernel-dynamics 8.74±0.02 8.67±0.01 35.03±0.48 31.49±0.06

E-NF 8.31±0.05 8.15±0.10 33.12±0.85 30.99±0.95

E-NF (24× 2n) 8.24±0.06 8.33±0.09 31.33±0.30 30.61±0.16

CGGNN (24) 8.80±0.32 8.56±0.04 31.36±0.55 30.35±0.18

E.1 Discussion

It is expected that CGGNN outper-
forms or is competitive to other
baselines since the performance of
the trained Clifford neural network
models reported in the respective pa-
pers are better than those of base-
lines in their forward prediction
problems. However, even taking the
fact into account, we consider the
performance in the inverse design
and sampling with CGGNN impres-
sive and significant. We hypothesize
the reason for this is the inductive bias imposed by the geometric product of Clifford neural networks
as well as the equivariance to the E(3)-group action. The key insight of the hypothesis is that the
neural adjoint and CNF updates include the (discretized) integration of the functions as also in Eq.
(7), whose discretization serves as physical integration methods such as the Euler integration. We
claim that our hypothesis is valid, albeit indirectly and with some conditions, by giving a theoretical
result that Clifford neural networks can model a quantization of the Hamiltonian equation, which
means Clifford neural networks can serve as the symplectic integrator.

Proposition E.1. Clifford neural networks serve as a quantization of Hamiltonian equation, i.e.,
building blocks F ∈ R[X1, X2, · · · , Xc]n,0,0 of Clifford neural networks have a parametrization
that satisfies the following equation:

(q,−p) = F (p, q), p, q ∈ Rn.

This claim relies on the fact that Clifford algebras are naturally able to represent the Hamiltonian
equation [23]. Based on this fact, we give a proof of Proposition E.1 in Appendix F. Besides, we
conducted an ablation study in the sampling experiments, in which we compare CGGNN with its
ablation without modules performing the geometric product. The results are also reported in Appendix
K.1

F Connection between Clifford neural networks and Hamiltonian equations

We here claim that Clifford neural networks F : Cl(Rn, q)×c1 → Cl(Rn, q)×c2 represent a quanti-
zation of Hamiltonian equation, relying on the fact shown in [23]:

17

x = q̃ + p = p+ q ⊗q J, J =
∑
k

ek ⊗q ẽk,

in which p, q are elements of Rn, {ek} and {ẽk} are orthonormal bases of Rn, and we work in the
space of R2n ∼= Rn ⊕ Rn.

Proof of Proposition E.1. Let x1 = inc(p) and x2 = inc(q), with the following inclusion function

inc : Rn ↪→ Cl(Rn, q), v 7→
n∑

k=1

gRn(v, ek)ek.

Then, we can build a polynomial whose computational graph is as follows:

x1

x1 x1 ⊗q (x1 ⊗q x2) = q(x1)x2

x1 ⊗q x2

x2 x2 ⊗q (x1 ⊗q x2) = −q(x2)x1

x2

Cl(Rn, q)×2 Cl(Rn, q)×3 Cl(Rn, q)×2

⊗q
id

⊗q ⊗q

⊗q⊗q

id ⊗q

When we take the geometric product with x1 ⊗q x2 in the latter arrows, some constants can be
multiplied by x1 ⊗q x2 if necessary.

While in appearance this diagram merely shows the channel elements x1 and x2 are just swapped
during the forward computation, this serves as a quantization of Hamiltonian equation, based on
the fact in [23]. We presume that one reason why Clifford neural networks outperform some strong
baselines in various kinds of experiences, especially those involving the prediction of future object
configurations given a current state, is that building blocks of the networks can update states based on
the Hamiltonian equation through the geometric product, while it also allow for the adjustment of the
degree of the update by having trainable parameters in each of the arrows above.

G Experimental settings

G.1 Inverse design

To evaluate the gradient of Clifford neural networks, we adopt three types of Clifford neural networks
with signatures (3, 0, 0), (3, 0, 1). We use as the former model a message-passing Clifford neural
network (CGGNN) [50] and CGGNN with the signature (4, 1, 0). We also use E(n)-equivariant graph
neural network (EGNN) [53], its non-equivariant variant (GNN), and radial field network (RFN)
[30] as baselines to compare. As the model with the signature (3, 0, 1), we use a geometric algebra
transformer [8] and as baselines we use steerable-E(3)-GNN (SEGNN) [5], geometric Clifford algebra
GNN (GCA-GNN) [51], and a non-geometric transformer. We are especially interested in evaluating
gradient-based optimization, also called neural adjoint method [1, 46, 60].

All the models are trained to predict bodies’ positions after 1000 timesteps, where we use a similar
experimental setup for the models as in [5, 8, 50, 53]. Parameters x̂ to be optimized are initialized
by adding Gaussian noises ϵ ∼ N (0, I) to input data x in the test dataset. Input parameters to be
optimized are initialized in the following way: For the pair (x,y) in the test dataset, we add Gaussian

18

noises ϵ ∼ N (0, I) to x and define x̂ = x+ σϵ as an initialized input parameter, and set y as the
target used to define the objective function Eq.(5). We evaluate the performance of the respective
models with three metrics: First metric (Obj) is the objective function. The second metric (InitDist)
is MSE between x and the optimized input x̂∗. The third metric (TarDist) is MSE between the
ground-truth target y and the output of the numerical simulator (used to generate the training dataset)
for x̂∗. We embed the input x̂ to Cl(R3, q) to get Clifford representation when performing inference
and inverse design for this input. We use Adam optimizer to optimize x̂(i) for 1000 iterations to get
x̂∗.

We trained our models including the baselines with the very similar configuration provided in
[50, 53, 8, 51], and use the trained models for the inverse design task. We here give the parameter
configurations for the Clifford neural network models CGGNN and GATr including the baselines, as
well as the hyperparameters for training and inverse-design experiments.

Models. For the CGGNN model, we use the code released by the authors: The metric for the Clifford
algebra is (p, q, r) = (3, 0, 0). The charges of particles are embedded as a scalar, while coordinates
and velocities are embedded as 1-th grade in the Clifford algebra. The number of message-passing
layers is 3.

The models E(n)-equivariant graph neural network [53], non-equivariant GNN, and radial field
network (RFN) [30] are trained using the code provided in [53]. All the models are trained using
Adam optimizer with respective learning rates. The number of message-passing layers is 4.

For the GATr model, we have (p, q, r) = (3, 0, 1), therefore we have the Clifford algebra of dimension
24 = 16. We embed object masses as 0-th grade, object coordinates as trivectors, and velocities (like
translation vectors) as bivectors. Following the configurations reported in [8]. We use 10 attention
blocks, 16 multivector and 128 scalar channels, and 8 attention heads. We use multi-head attention
and do not use the distance-aware attention mechanism.

For the Transformer baseline, we follow a pre-layer normalization architecture with GELU activa-
tionsin the MLP block. We use 10 attention blocks, 384 channels, and 8 attention heads.

We also train non-equivariant, GCA-GNN [51]. We use the hyperparameter setting reported by [51]
for their Tetris experiment.

Finally, we train SEGNN [5]. In this case, we use the code released by the authors and the hyperpa-
rameters they recommend for (slightly different) n-body experiments. This leads to the model with
0.1 million parameters. For SEGNN, we vary the number of nearest neighbors between 3 and the
number of objects in the scene (corresponding a fully connected graph.)

Training. Training of the models CGGNN, EGNN, GNN, and RFN is done following the codes
provided by [50, 53]. In this experiment, we set the number of objects N to be 5. Training samples
are set to be 3000 and the batch size is 100. Adam optimizer was used to minimize L2 loss function
and learning rate is 0.004.

The models GATr, GCA-GNN, Transformer, and SEGNN are trained following the code provided
by [8]: We train the models by minimizing a L2 loss on the final position of all objects. In this
experiment, the number of objects N is set to be 4. We use 10,000 steps with the Adam optimizer,
using a batch size of 64 and exponentially decaying the learning rate from 3 · 10−4 to 3 · 10−6. Both
of the training are performed using an NVIDIA A40 48 GB GPU.

Inverse optimization. For both of the coordinate and velocity optimization problems, the objective
function was defined as an MSE loss function between the ground-truth future state and the output of
the neural network models. We use AdamW [37] as our optimizer, and perform 1000 iterations for
the optimization.

G.2 Continuous Normalizaing flow

DW-4 The Double Well experiments follow from [30, 52], where data is generated by sampling the
particles’ potential function

UDW(x) =
1

2T

∑
ij

(
a(dij − d0) + b(dij − d0)

2 + c(dij − d0)
4
)

(16)

19

Table 5: Hyperparameters used for CGGNN model architecture, training for the model, and its
inverse-design experiments
Hyperparameter name Inverse design experiments
Hyperparameters for CGGNN architecture:
∆p,q,r diag(1, 1, 1)
Dimension of input features 3
Hidden dimension 24
Dimension of output features 1
Dimension of edge features 1
Message passing layers 3
Use residual True
MLP for nodes: hidden layers 2
Hyperparameters for training:
Loss function MSE
Batch size 100
Optimizer Adam
Learning rate 0.004
Weight decay 0.0001
Number of training samples 3000
Max training steps 100000
Scheduler Cosine annealing
Hyperparameters for inverse design:
Optimizer Adam with decoupled weight decay [37]
Mean of Gaussian noise 0
Range of standard deviation to generate Gaussian noise [0.01, 2.0]
Gradient clipping False
Batch size for inverse optimization 128
Iteration number of inverse optimization 1000

with dij = ∥xi − xj∥ the distance between pairs of particles, and potential parameters a, b, c. T is
the simulation temperature. Samples and configuration of the potential used are the ones from [30].

LJ-13 For the Lennard-Jones experiment we use the dataset generated in [30], where M = 13
particles are simulated and sampled whose potential energy is given by

ULJ(x) =
ϵ

2T

∑
ij

ÇÅ
rm
dij

ã12
− 2

Å
rm
dij

ã6å (17)

with dij = ∥xi −xj∥, T the simulation temperature and rm, ϵ parameters governing the shape of the
potential.

Hyper-parameters and computational resources For the baselines, we consider the configuration
in [52], and the hyper-partners are reported in Table 6. As the computational resource for the training,
we use Vega 20 Radeon Pro, 16Gb RAM x4, and NVIDIA A40 48 GB GPU. In terms of the execution
time, we also observed as already noted in [52] that computation time varies significantly with respect
to the NLL, for example, both for large and small values the adaptive ODE solver may require a large
number of steps, leading to long computation times. Long computation time has also the side effect
of requiring increasing and unpredictable memory usage. While we could reduce and make more
predictable the computation time and memory usage by fixing the number of step, we notice that 1)
the computation time would still be large even when the adaptive ODE solver would require fewer
steps, 2) the performance floors to a higher NLL.

H Limitations of the gradient of Clifford neural networks

The use of the gradient of Clifford neural networks has its benefits and downsides. The benefit is
that due to the inductive bias of the geometric product, the gradient can have less noise (thanks to

20

Table 6: Hyperparameters used for Clifford neural network model architecture, training for the model,
and its sampling CNF experiments
Hyperparameter name Normalizing Flow experiments
Hyperparameters for model architecture:
∆p,q,r diag(1, 1)
Dimension of input features (n) 2
Hidden dimension 24
Dimension of output features 1
Dimension of edge features 1
Message passing layers 3
Use residual True
MLP for nodes and edges: hidden layers 2
Hyperparameters for training:
Loss function MSE
Batch size 100
Optimizer AdamW [36]
Learning rate 0.004
Weight decay 0.0001
Number of training samples 10, 102, 103 (see experiments)
Max training steps 1’000 (1000, 300 for DW4, 500, 1000 for LJ13)
Scheduler None
ODE method dopri5 (Runge-Kutta 4(5) of Dormand-Prince) [58]
relative tolerance 10−4

absolute tolerance 10−4

Error we performed the simulation using either random seeds
or consecutive seeds. We early discarded simulation with
too large validation NLL that leads to large computation
time for the ODE solver, with at least 3 repetitions.

Hyperparameters for Validation and Test:
Batch size 100
Number of samples 1000 (validation and test, the first 2’000 samplers of the

dataset)
ODE method dopri5 (Runge-Kutta 4(5) of Dormand-Prince) [58]
relative tolerance 10−4

absolute tolerance 10−4

DW Dataset:
Number of particles (N) 4
dimension (n) 2
a parameter 0.9
b parameter -4
c parameter 0
d0 distance offset 4
LJ Dataset:
Number of particles 13
dimension 3

the geometric bias) and is directly passed through the input compared to that of neural networks
that work on Euclidean spaces which need to learn the bias by making it have potentially redundant
parameters. The limitation is the computational complexity of Clifford neural networks: In the
experiments, we experienced up to 20× slower computational speed than the baselines. The cause of
this complexity mostly comes from the implementation of geometric product, which is performed
on all the pairs of basis elements composing multi-vectors. Also in the experiment of Section E,
due to the expressiveness of Clifford neural networks, the adaptive ODE solvers such as dopri5 took
long to solve ODEs integration. We actually used existing datasets, so we inherited the limitations
of those datasets and baselines. In particular, we are not considering out-of-distribution samples,
since these analyses are out of the scope of the current work. However, we emphasize that our
implementation is quite straightforward in the sense that we simply use Clifford neural networks with

21

initial settings with few parameter changes or replace some models with Clifford neural networks,
and this fact can allow future work to transcend these limitations: For the former issue, while the
introduction of Clifford Algebra increases the computational complexity, the scaling factor of the
synthetic complexity does not change, for example in terms of the number of samples or number of
particles. We might be able to reimplement the models with JAX software [4]. The second issue
would be also manageble, since the problem is mostly stemmed from the process of Neural ODEs
and some of the works in Neural ODEs proposed efficient architectures [21, 15].

22

I Rutime comparison results

Table 7: Ratio of the computation time of analytic gradient to that of autograd gradients for different
batch and channel sizes and for different signatures.

signature k (1, 1) (1, 10) (100, 1) (100, 10)
(2, 0, 0) 2 2.08 2.29 2.04 1.20
(2, 0, 0) 3 2.55 2.69 2.45 1.36
(2, 0, 0) 4 2.59 2.97 2.70 1.38
(2, 0, 0) 5 2.92 3.10 2.86 1.32
(2, 0, 1) 2 4.89 3.45 2.21 1.12
(2, 0, 1) 3 4.23 4.30 2.52 1.15
(2, 0, 1) 4 4.80 4.59 2.68 1.13
(2, 0, 1) 5 5.02 4.78 2.68 1.13
(3, 0, 0) 2 3.34 3.47 2.28 1.09
(3, 0, 0) 3 4.25 4.23 2.55 1.08
(3, 0, 0) 4 4.57 4.60 2.65 1.09
(3, 0, 0) 5 4.90 4.73 2.80 1.08
(3, 0, 1) 2 0.75 3.04 3.70 1.11
(3, 0, 1) 3 6.00 5.85 4.29 1.05
(3, 0, 1) 4 8.73 6.48 4.68 1.01
(3, 0, 1) 5 8.36 6.85 4.97 1.03
(3, 1, 0) 2 6.50 5.70 3.55 1.06
(3, 1, 0) 3 8.10 6.47 4.52 0.98
(3, 1, 0) 4 8.68 5.46 4.59 0.99
(3, 1, 0) 5 8.99 5.69 4.88 0.96
(4, 1, 0) 2 11.02 8.40 1.84 0.50
(4, 1, 0) 3 13.49 9.18 2.13 0.45
(4, 1, 0) 4 15.54 10.46 2.07 0.42
(4, 1, 0) 5 16.62 10.41 2.05 0.44

23

Table 8: Absolute computation times for analytic gradients for different batch, channel sizes, and
for different signatures. Computation time for 100 repetitions and normalized by batch and channel
size. The time rounds to zero when the time is below 0.005 seconds. Computation time for different
signatures seems to depend only on the total size of the algebra and not on the signature itself.
Computation time increases with polynomial order as expected, since multiple geometric product
operations are necessary.

signature k (1, 1) (1, 10) (100, 1) (100, 10)
(2, 0, 0) 2 0.42 0.04 0.00 0.00
(2, 0, 0) 3 0.75 0.09 0.01 0.00
(2, 0, 0) 4 1.03 0.11 0.01 0.00
(2, 0, 0) 5 1.18 0.13 0.01 0.00
(2, 0, 1) 2 0.68 0.06 0.01 0.00
(2, 0, 1) 3 0.94 0.12 0.01 0.00
(2, 0, 1) 4 1.41 0.16 0.02 0.00
(2, 0, 1) 5 1.83 0.21 0.02 0.00
(3, 0, 0) 2 0.46 0.05 0.01 0.00
(3, 0, 0) 3 0.88 0.10 0.01 0.00
(3, 0, 0) 4 1.29 0.14 0.02 0.00
(3, 0, 0) 5 1.71 0.19 0.02 0.00
(3, 0, 1) 2 1.05 0.11 0.01 0.00
(3, 0, 1) 3 1.76 0.22 0.03 0.00
(3, 0, 1) 4 2.59 0.33 0.04 0.01
(3, 0, 1) 5 3.43 0.41 0.05 0.01
(3, 1, 0) 2 1.01 0.11 0.02 0.00
(3, 1, 0) 3 1.90 0.21 0.03 0.00
(3, 1, 0) 4 2.79 0.29 0.04 0.01
(3, 1, 0) 5 3.68 0.38 0.05 0.01
(4, 1, 0) 2 2.16 0.26 0.03 0.01
(4, 1, 0) 3 4.24 0.50 0.06 0.02
(4, 1, 0) 4 6.34 0.76 0.10 0.02
(4, 1, 0) 5 8.33 0.99 0.12 0.03

24

0 250 500 750 1000
Iteration

10 3

10 2

10 1

M
SE

 (l
og

)

(a)

0 250 500 750 1000
Iteration

10 2

6 × 10 3

2 × 10 2

3 × 10 2
4 × 10 2 (b)

0 5 10 15
Iteration (x50)

10 2

10 1 (c)

CGGNN EGNN GNN Radial Field

Figure 5: Numerical results of inverse optimization for coordinate of neural network model fθ.
(a) shows optimization curve (Eq. 5) for inverse-design at different iteration steps. The horizontal
dotted lines are the final test errors observed in the training phase of respective models, which are
comparable to the test errors reported in [50]. (b) is the MSE error between ground-truth input and
optimized input, and (c) shows MSE error between the ground-truth target state and simulated target
with respect to the optimized coordinate input. All the errors are averaged over the simulation results
of 128 trajectories.

Table 9: Comparison of the inverse design results with baselines. All the scores in the table is
reported in MSE (×10−3).

Coordinate Velocity
Obj InitDist TarDist Obj InitDist TarDist

RFN 9.54 18.17 36.92 4.19 92.79 30.23
GNN 2.98 15.55 42.49 5.53 121.70 87.67
EGNN 1.31 13.23 20.38 2.50 88.65 66.24
CGGNN 0.74 5.33 9.52 2.81 56.64 5.72

J Additional results on inverse design

J.1 Results of inverse design with CGGNN for coordinate

Here, we discuss the design results of coordinate with CGGNN and baselines, as well as those
of velocity discussed in Section 4. The result is shown in Figure 5. We observe that CGGNN
outperforms all of the baselines. Notably, while the objective of all the models keeps decreasing
during the optimization, the distance between the inputs of the models (Figure 5 (b)) keeps increasing
after around 200 iterations, except CGGNN. Taking into account the observation that the distance
between the ground-truth target and simulated targets based on the optimized input remain lower than
that of the other models, CGGNN is robust to noises added to the input, while other baselines are
more likely to fall into local optimal.

J.2 Results of Geometric Algebra Transformer

Experimental setting..

For the inverse design, we use the same experimental setting described in Section 4, which we also
give an explanation in Appendix G.1.

We here report the results of the inverse design with the geometric algebra transformer (GATr)
[8]. The geometric transformer is categorized as a model with the signature (3, 0, 1). We train
GATr, as well as some baselines steerable-E(3)-GNN (SEGNN) [5], geometric Clifford algebra GNN
(GCA-GNN) [51], and a non-geometric transformer, using the same configuration provided in [8].

Results. Table 10 shows the inverse desing result of GATr and its baselines. We observed that
two Clifford algebra-based models, GATr and GCA-GNN, outperform the other models in most of
the cases. This indicates, albeit empirically, that while we do not know the theoretical guarantee
of Corollary 3.1 for the signature with r > 0 case, the arithmetic carried out by Clifford neural

25

Table 10: Comparison of the inverse design results with baselines for coordinate input. The
score reporeted is MSE (×10−4). The standard deviations are 0.1, 0.2, 0.4 and 0.8.

0.1 0.2 0.4 0.8

Obj InitDist Obj InitDist Obj InitDist Obj InitDist

Transformer 0.17 14.49 2.63 53.61 7.36 82.27 17.64 118.45
SE-GNN 0.17 16.18 7.67 22.75 87.20 147.93 32.61 87.10
GCA-GNN 0.19 51.64 1.35 50.73 6.25 58.12 19.17 70.83
GATr 0.13 1.11 2.14 22.97 7.59 128.29 16.16 549.35

networks pass informative gradient through the input of the networks. We also observed that while
GATr performed well for the case of a small standard deviation, the performance of GCA-GNN was
relatively stable compared to the other baselines across different magnitudes of the standard deviation.

J.3 Robustness assessment in inverse design

We here show the additional results of the inverse design of coordinates and velocity, by changing
the standard deviation of Gaussian distribution from which we sample noises. In both of the cases,
CGGNN basically outperforms all of the models. We emphasize that the aim of this objective is to
make sure that gradient of Clifford neural network produces reasonable results, given the prediction
performance reported in the literature.

J.4 Inverse design of coordinates of the objects

0 250 500 750 1000
Iteration

10 2

M
SE

 (l
og

)

(a)

0 250 500 750 1000
Iteration

10 2

3 × 10 3

4 × 10 3

6 × 10 3

(b)

0 5 10 15
Iteration (x50)

10 2

2 × 10 2

3 × 10 2
4 × 10 2 (c)

CGGNN EGNN GNN Radial Field CGGNN_CGA

0 250 500 750 1000
Iteration

10 3

10 2

10 1

M
SE

 (l
og

)

(a)

0 250 500 750 1000
Iteration

10 2

6 × 10 3

2 × 10 2

3 × 10 2
4 × 10 2 (b)

0 5 10 15
Iteration (x50)

10 2

10 1 (c)

CGGNN EGNN GNN Radial Field CGGNN_CGA

0 250 500 750 1000
Iteration

10 2

10 1

M
SE

 (l
og

)

(a)

0 250 500 750 1000
Iteration

10 1
(b)

0 5 10 15
Iteration (x50)

10 2

10 1

(c)

CGGNN EGNN GNN Radial Field CGGNN_CGA

Figure 6: Numerical results of inverse optimization for coordinate of neural network model fθ
with different standard deviations. (a), (b), and (c) are the same as described in Figure 5. Each row
corresponds to the inverse design results with different standard deviations: 0.1, 0.2, and 0.4.

26

J.5 Inverse design of velocity of the objects

0 250 500 750 1000
Iteration

10 2

M
SE

 (l
og

)
(a)

0 250 500 750 1000
Iteration

10 2

3 × 10 3

4 × 10 3

6 × 10 3

(b)

0 5 10 15
Iteration (x50)

10 2

2 × 10 2

3 × 10 2
4 × 10 2 (c)

CGGNN EGNN GNN Radial Field CGGNN_CGA

0 250 500 750 1000
Iteration

10 2

10 1

M
SE

 (l
og

)

(a)

0 250 500 750 1000
Iteration

10 2

6 × 10 3

2 × 10 2

3 × 10 2
4 × 10 2 (b)

0 5 10 15
Iteration (x50)

10 2

10 1 (c)

CGGNN EGNN GNN Radial Field CGGNN_CGA

0 250 500 750 1000
Iteration

10 2

10 1

M
SE

 (l
og

)

(a)

0 250 500 750 1000
Iteration

10 1

(b)

0 5 10 15
Iteration (x50)

10 2

10 1
(c)

CGGNN EGNN GNN Radial Field CGGNN_CGA

0 250 500 750 1000
Iteration

10 2

10 1

M
SE

 (l
og

)

(a)

0 250 500 750 1000
Iteration

10 1

(b)

0 5 10 15
Iteration (x50)

10 2

10 1

(c)

CGGNN EGNN GNN Radial Field CGGNN_CGA

Figure 7: Numerical results of inverse optimization for coordinate of neural network model fθ
with different standard deviations. (a), (b), and (c) are the same as described in Figure 5. Each row
corresponds to the inverse design results with different standard deviations: 0.1, 0.2, 0.4., and 0.8.

K Additional results on sampling from probability distributions

K.1 Ablation study

We performed an ablation study on the importance of the use of the geometric product in the Clifford
neural network. We compare CNF with CGGNN with that of CGGNN without the geometric product
layer. The results are shown in Table 11. We observed that substantial difference in the peformance
between the CNF with CGGNN and its ablation model in all the experiments. This indicates the
CGGNN benefits largely from the geometric product layers.

27

Table 11: Ablation study for the role of geometric product in the Clifford Neural Network. The
score is reported as Negative Log-Likelihood (NLL) and its standard deviation, while the number of
features is denoted beside the model name.

DW4 (n = 2) LJ13 (n = 3)

training samples 102 103 10 102

CGGNN (24) 8.80±0.32 8.56±0.04 31.36±0.55 30.35±0.18

CGGNN w/o GP (24) 10.99±0.35 11.44±0.79 38.40±1.91 39.13±0.99

L Related work

Clifford neural networks. Clifford neural networks are an emerging class of geometric deep learning
models [9]. All the representation and arithmetic inside the networks are based on Clifford algebra:
Physical features of the systems are represented by multi-vectors, and the inherent interaction of
physical features are modeled by the geometric product and linear summation of multi-vectors.
Various kinds of machine learning models incorporate Clifford algebra and employ arithmetic as their
inductive biases. Such examples include Fourier neural networks, [6], transformers [8], geometric
message passing neural networks [33, 50, 54], image-based convolutional neural networks [61]. We
can easily introduce geometric inductive biases when we use of Clifford algebra in neural networks
using the geometric product. The geometric product can model various kinds of physical interactions,
such as the interaction between the pressure and velocity fields in fluid dynamics simulations in a
data efficient way. The effectiveness of having those biases is shown in diverse applications in the
literature from simple regression tasks such as volume prediction to challenging tasks such as solving
fluid dynamics simulations.

Inverse Design. Inverse problems, such as inverse optimization of system parameters and inverse
parameter inference, are one of the important classes of problems in both of scientific and engineering
domains. Such problems have a huge importance in engineering, e.g. in designing jet engines [2]
and materials [10] where the objective can be minimizing drag or maximizing durability, and inverse
parameter inference (i.e. history matching) [57, 59, 43] where the objective can be maximum a
posteriori estimation. To solve such problem, classical methods include adjoint method [55, 56],
shooting method [26], collocation method [3], etc. One recent work [1] explores optimization
via backpropagation through differential physics in the input space, demonstrating speed-up and
improved accuracy compared to classical CEM method [48]. The method is categorized as the neural
adjoint method [1, 60, 46] and shown to be computationally efficient and scalable to high-dimensional
input space compared to CEM method.

Neural adjoint method. This method estimates the gradient of the objective function

Neural adjoint update

!"!" ##(!"!") &

Objective
Loss

!"!"$%

! = #ℒ('!(()"#), ,)
#(

−"	 ⋅ % !ℒ(%!(&'"#), *)

EvolutionUpdate

Figure 8: Schematic of Neural Ad-
joint method. Parameter x̂

(i)
t is up-

dated by back-propagating gradient of
L(fθ(x),y), with the target position y.

defined by loss function L and neural network simulator fθ

with trainable parameters θ to perform iterative gradient-
based estimation procedure:

x(i+1) = x(i) − α
∂L(fθ(x

(i)),y)

∂x
(x(i)).

Here, i represents an iteration number, y is the target out-
put, and α is an optimization rate. This update rule is
well-defined as long as the neural network fθ is differ-
entiable with respect to its input x. We note that while
optimizing the parameter x, we fix the model parameter
θ. One advantage of the neural adjoint method is its task-
agnostic generalization capability – Neural networks are
trained on dynamics with no access to the task objective or
design space and can be used to solve new design tasks, as
opposed to the adjoint method based on classical solvers
that typically cannot generalize to tasks or designs outside
of distribution.

28

Normalizing Flows. Normalizing flows form one large class of generative modeling frameworks.
Fundamental work is [47], which proposes to transform a simple base distribution, typically Gaussian
distribution, into a target distribution by applying a series of bijective mappings, each parameterized
by neural networks. Several variations of normalizing flows have been proposed to enhance their
flexibility and expressiveness. Examples of the artchitectures are [27, 13, 16, 30]. The normalizing
flows have been also applied to various kinds of applications such as molecular generations: Boltzman
generator [41], equivariant normalizing flows [53].

Neural ODEs. Neural Ordinary Differential Equations (Neural ODEs) offer a framework for
continuous-time modeling in neural networks [12]. Neural ODEs reformulate the discrete transfor-
mations of ResNet-like architectures into continuous-time transformations and model the evolution
of hidden states using a differential equation parameterized by a neural network, enabling adaptive
computation and potentially infinite depth. Recent advancements have focused on improving the
stability and expressiveness of Neural ODEs. Such examples include memory-efficient Neural ODEs
[21], and [15] which introduce augmented states to enhance representational capacity developed
Latent ODEs for learning from latent variable models. As also explained in the section on normalizing
flow, neural ODEs are also applied in other frameworks such as normalizing flows [13, 16, 27, 30]
and flow-matching [11, 29].

Gradient in machine learning . Representative usage of the gradient of neural network models is to
update parameters of the models so that the likelihood for the models to fit given data is maximized
[32]. Therein, the gradient used to optimize models is seen as being defined on the parameter space
of the models, in which model parameters are considered as the input of loss function while fixing
the input and output of the models with observed data during the training. Clifford neural networks
proposed in the recent literature [6, 8, 33, 39, 50, 54, 61] also make this assumption when updating
their model parameters. Another emerging approach is to compute the gradient with respect to the
input space of neural network functions. A common underlying assumption in this approach and
its application is that functions are defined on Euclidean space or smooth manifolds. Thereon, the
notion of differentiability of functions is well-defined, and therefore the gradient of these functions
can be passed through their input. Applications of the gradient in this regard can be found in image
denoising [35, 49], adversarial example generation [22, 31, 40], and feature visualization [42, 17]. In
the context of scientific problems, we can also find inverse design [1, 60], flow-matching [11, 29],
and normalizing flow [13, 16, 27, 30].

Untriviality of taking the gradient of Clifford neural networks. Clifford neural networks have been
typically applied for tasks that do not require computing the gradient of these networks with respect
to their input variables, despite the existence of automatic differentiation tools such as Autograd [44].
We believe this limitation arises because the concept of differentiability in Clifford neural networks
is non-trivial. This non-triviality stems from the fact that Clifford algebra is inherently algebraic
and does not incorporate a metric or distance structure, which is crucial for defining differentiability.
Even in a recent study [61], in which Clifford-based convolutional neural networks are proposed
using the notion of pseudo-Riemannian manifolds, differentiability between the manifolds is not
addressed. Thus the study on the differentiability of functions between Clifford algebras remains
an underexplored and not yet fully understood area. We extend the notion of differentiability
introduced by [18, 19, 20] and show the gradient of Clifford neural networks is compatible with
that of functions on Euclidean space. These results eventually ensure the validity of the usage of
automatic differentiation modules such as Autograd [44] for Clifford neural networks.

M Broader social impact

This section discusses the broader social impact of the presented work. Our work has important
implications for the physical systems and engineering, as many problems in these fields require
multibody simulations; we also discuss it in Section 1 and 2. Although this work focuses on standard
benchmark tasks, our experiments demonstrate the validity of the usage of our theoretical results for
important classes of physical systems. Beyond simply applying our idea to standard benchmark tasks,
the idea can be applied to tasks in real-world applications, such as molecular generation, designing
boundaries in fluid, and many more.

Our work has no obvious negative social impact. As long as it is applied to the physical sciences and
engineering in a way that benefits society, it will have positive effects.

29

N Asset licenses

The following resources and assets have been used (directly or indirectly):

• DW-4 & LJ-4 datasets and code https://github.com/noegroup/bgflow: MIT license
• EGNN model and code (https://github.com/vgsatorras/egnn): MIT license
• E-NF model, data and code https://github.com/vgsatorras/en_flows: MIT license
• FFJORD solver and code (https://github.com/rtqichen/ffjord): MIT license
• GATr model and code (https://github.com/Qualcomm-AI-research/
geometric-algebra-transformer): BSD-3-Clause-Clear license

30

https://github.com/noegroup/bgflow
https://github.com/vgsatorras/egnn
https://github.com/vgsatorras/en_flows
https://github.com/Qualcomm-AI-research/geometric-algebra-transformer
https://github.com/Qualcomm-AI-research/geometric-algebra-transformer

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification:
We propose to bridge the gap in the understanding of the abstract concept of the gradient
of functions defined as transformations between Clifford Algebras and the practical use of
Autograd in modern frameworks such as PyTorch [45] or JAX [4] (Section 3, "Differentiable
function on Clifford algebra" and "Connection on gradient between base space and associated
Clifford algebra.", and Appendix A).
We formally introduce the definition of gradient via the directional gradient (Section 3) and
then provide the connection with the Euclidean metric (Section 3).
Further, we provide two classes of experiments: inverse design (Section 4) and sampling
from a probability distributions (Section E) to justify the theoretical and practical use of
Clifford gradients.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discussed the limitation in Appendix H. We raise a high computational
complexity of Clifford neural networks as the limitation in the current experiments.
While the introduction of Clifford Algebra increases the computational complexity, the
scaling factor of the synthetic complexity does not change, for example in terms of the
number of samples or number of particles.
On the other side, we removed previous limitations in the definition of gradients to only
the signature of Clifford Algebra of the type (n, 0, 0), and we extended the definition to the
general case (p, q, r) (section 3).
On the side of the experiments, we used existing datasets, so we inherited the limitations
of those datasets and baselines. In particular, we are not considering out-of-distribution
samples, since these analyses are out of the scope of the current work.
We evaluate in Appendix J and Appendix K the robustness of the results in function for
example of the deviation of the parameters with respect to the initial configuration, or the
ablation study of the geometric product.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

31

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide a comprehensive proof for Proposition C.1 in Appendix C. We
also give a concise proof for Corollary 3.1 in the main text. The proof for Proposition E.1
can be found in Appendix F.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in the appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification:
While we provide a demo implementation in https://anonymous.4open.science/r/
clifford_flow_private-EC9C and the final code will be released at acceptance, we
describe in both main text sections 4, E,and Appendix G, the experimental problems, the
datasets, and configurations.
Although it is not always possible to capture all the information, we provide an extensive
description of the hyper-parameters used in the two Experiments. In the final code release,
the code includes a script to reproduce the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case

32

https://anonymous.4open.science/r/clifford_flow_private-EC9C
https://anonymous.4open.science/r/clifford_flow_private-EC9C

of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide a demo implementation in https://anonymous.4open.
science/r/clifford_flow_private-EC9C with the data necessary for the two exper-
iments of section E, while the final code will be released at acceptance, We describe in
both main text sections 4, E,and Appendix G, the experimental settings, the datasets, and
configurations.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

33

https://anonymous.4open.science/r/clifford_flow_private-EC9C
https://anonymous.4open.science/r/clifford_flow_private-EC9C
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Justification: We explain the experimental settings in Section 4 and Section E. Details
including hyperparameter configuration for the experiments are included in Appendix G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in the Appendix, or as supplemen-

tal material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide the experimental results, with error intervals in terms of standard
deviation, in Table 4, Table 9, Table 10, Table 11, where data is divided in train, validation
(when needed) and test. Additional information is reported in Appendix G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The information on computational resources for the experiments is provided
in Appendix G, for both inverse design (Appendix G.1) and sampling from distributions
(Appendix G.2).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

34

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The presented work follows the NeurIPS Code of Ethics. We also include
Appendix M, which discusses the broader social impact.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss social impacts on the present work in Appendix M.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
The paper poses no such risks since no language model, neither image generation, nor
scraped datasets are used.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited, and are the license and terms of use explicitly mentioned and
properly respected?

35

https://neurips.cc/public/EthicsGuidelines

Answer: [Yes]
Justification: We referred to the data, code, and models and provided references to the papers
of the original authors, in the main text and appendix. Also in the code, we mention the
most necessary libraries and projects. We list the licenses of the resources used in Appendix
N.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We give an explanation on our idea and its associated experiments in the
main text and appendix. The instruction for the experiments is also included in https://
anonymous.4open.science/r/clifford_flow_private-EC9C. But, we used dataset
and codes from publicly available projects. Existing assets are listed in Appendix N.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
The paper does not involve crowdsourcing nor research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]

36

paperswithcode.com/datasets
https://anonymous.4open.science/r/clifford_flow_private-EC9C
https://anonymous.4open.science/r/clifford_flow_private-EC9C

Justification:
The paper does not involve crowdsourcing nor research with human subjects.

37

	Introduction
	Background
	Gradient of functions between Clifford algebras
	Experiments
	Conclusions
	Differentiability of functions between Clifford spaces
	Metric on Clifford space
	Definition on differentiability

	Analysis of functions between Clifford algebras
	Differentiability of Clifford neural networks
	Theoretical analysis on the gradient of Clifford neural networks
	What if the metric is not positive?
	Disadvantage using ill-defined gradients in applications.

	Sampling from probability distributions
	Discussion

	Connection between Clifford neural networks and Hamiltonian equations
	Experimental settings
	Inverse design
	Continuous Normalizaing flow

	Limitations of the gradient of Clifford neural networks
	Rutime comparison results
	Additional results on inverse design
	Results of inverse design with CGGNN for coordinate
	Results of Geometric Algebra Transformer
	Robustness assessment in inverse design
	Inverse design of coordinates of the objects
	Inverse design of velocity of the objects

	Additional results on sampling from probability distributions
	Ablation study

	Related work
	Broader social impact
	Asset licenses

