
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GLOBAL OPTIMIZATION OF GRAPH ACQUISITION FUNC-
TIONS FOR NEURAL ARCHITECTURE SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Bayesian optimization (BO) has shown potential as a powerful and data-
efficient tool for neural architecture search (NAS). Most existing graph BO works
focus on developing graph surrogate models, i.e., metrics of networks and/or
kernels to quantify the similarity between networks. However, optimization of the
resulting acquisition functions over graph structures is less studied due to their
complexity and formulations over the combinatorial graph search space. This
paper presents explicit optimization formulations for graph input spaces, including
properties such as reachability and shortest paths, which can then be used to
formulate graph kernels and associated acquisition functions. We theoretically
prove that the proposed encoding is an equivalent representation of the original
graph space and provide a general formulation for neural architecture cells that
incorporates node and/or edge-labeled graphs with multiple sources and sinks
regardless of connectivity. Numerical results over several NAS benchmarks show
that our method efficiently finds the optimal architecture for most cases.

1 INTRODUCTION

Despite numerous breakthroughs in deep learning, the design of neural architectures largely relies on
prior experience and heuristic search. The field of neural architecture search (NAS) seeks systematic
algorithms for designing the architecture of a neural network model (Ren et al., 2021). In general,
NAS algorithms share several steps (Salmani Pour Avval et al., 2025): (i) encoding the search space,
e.g., as a general or modular domain, (ii) prescribing a search strategy over the above space, and (iii)
assessing the (approximate) performance at selected points. Early works in NAS sought to encode a
general search space from scratch, e.g., as a string (Zoph & Le, 2017). Later works constrain the
search space toward problem tractability, such as by explicitly encoding a layer- or module-based
structure (Liu et al., 2018; Wu et al., 2019). Search strategies are often based on random search,
gradient-based optimization (Liu et al., 2019; Wu et al., 2019), Bayesian optimization (Ru et al., 2021;
White et al., 2021a), evolutionary algorithms (Real et al., 2019; Qiu et al., 2023), or reinforcement
learning (Zoph & Le, 2017; Jaafra et al., 2019; Cheng et al., 2022). Finally, performance assessments
are the most expensive step of NAS, often involving full or partial training of the proposed model(s).

Graph Bayesian optimization (BO) exhibits particular promise for NAS (Elsken et al., 2019; White
et al., 2023), given its efficiency in exploring the graph search space, i.e., treating the model as
a directed graph, and identifying promising architectures within limited budgets (Ru et al., 2021).
Graph BO addresses the above NAS steps using (i) a trained graph surrogate that serves as a predictor,
and (ii) an acquisition function, encoding trade-offs between exploitation and exploration, which
is then optimized to give the next candidate to sample. From modeling perspectives, Gaussian
processes (GPs) (Schulz et al., 2018) are commonly used, since they offer accurate prediction
along with principled uncertainty quantification. To apply GPs in a graph domain, graph kernels
(Vishwanathan et al., 2010; Borgwardt et al., 2020; Kriege et al., 2020; Nikolentzos et al., 2021) are
introduced to measure the similarity between graphs. Although advances in graph kernels facilitate
the generalization from non-structural spaces to graph space, optimizing the resulting acquisition
functions over (combinatorial) graph spaces remains a challenge. Most works use sample-based or
evolutionary algorithms due to cheap evaluations of the acquisition function, but must incorporate
problem-specific constraints into the sampling and mutation steps to remove invalid candidates, and
lack theoretical guarantees about the optimality of solutions.
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Figure 1: Illustration of NAS-GOAT. The main idea is to represent graphs in variable space and
introduce constraints to build a bijection between all graphs and the feasible domain. The graph
kernel value between an unknown graph (which is our optimization target) and a given graph is then
formulated as expressions of variables, or constraints, enabling us to employ global optimization for
acquisition function and propose the next neural architecture to evaluate.

Recently, the idea of using mathematical programming techniques to formulate machine learning
(ML) models, e.g., neural networks (NNs) (Fischetti & Jo, 2018; Anderson et al., 2020; Tsay et al.,
2021; Zhang et al., 2023), trees (Mišić, 2020; Mistry et al., 2021; Ammari et al., 2023), and GPs
(Schweidtmann et al., 2021; Xie et al., 2024), provides a way to explicitly solve decision-making
problems involving ML models. Relevant applications include BO acquisition optimization (Thebelt
et al., 2021; 2022; Wang et al., 2023), NN verification (Hojny et al., 2024), and molecular design
(McDonald et al., 2024; Zhang et al., 2024), among others. Based on the global optimization
formulation for acquisition optimization proposed in Xie et al. (2024), Xie et al. (2025) propose
BoGrape as a general graph BO framework, comprising the first work to treat graph acquisition
functions from a discrete optimization viewpoint. By encoding graph spaces and shortest-path graph
kernels (Borgwardt & Kriegel, 2005) into mixed-integer programming (MIP), BoGrape can handle
constraints over graph search spaces and globally optimize the acquisition function with mathematical
guarantees. However, the requirement of strong connectivity makes BoGrape unsuitable for NAS,
since neural architectures usually include weakly connected acyclic digraphs (DAGs).

This paper studies the global optimization of graph acquisition functions for graph BO-based NAS. To
represent the graph space containing valid neural architectures, we theoretically generalize the graph
encoding presented in Xie et al. (2025) to omit assumptions about connectivity, and further restrict
the general encoding to the NAS search space. GPs with shortest-path kernels are used as graph
surrogates, and lower confidence bound (LCB) (Srinivas et al., 2010) as the acquisition function. The
proposed graph encoding contains more graph properties than Xie et al. (2025), including reachability,
shortest distances and shortest paths, and is compatible with existing formulations for shortest-path
graph kernels and acquisition functions. The final acquisition optimization is formulated as a MIP,
which can be solved with global optimality guarantees. Figure 1 illustrates the main idea of the
proposed framework; we also list the major contributions of this work here:

• We present an equivalent representation for general labeled graphs in optimization variable
space. Each graph corresponds to a unique feasible solution containing its graph structure,
as well as graph properties like reachability, shortest distances, and shortest paths.

• We provide a general kernel form measuring the similarity between two labeled graphs
over graph structure, node label, and edge label levels, and we present a formulation that is
compatible with our graph encoding.

• We incorporate NAS-specific constraints to the graph encoding, which handles settings with
multiple sinks/sources, edge and node labels regardless of connectivity in NAS tasks.

• We propose NAS-GOAT to globally optimize graph acquisition functions based on our
proposed encoding. Numerical results demonstrating a full BO loop on NAS benchmarks
show the efficiency and potential of NAS-GOAT.
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2 BACKGROUND

2.1 CELL-BASED NAS

In many NAS search spaces, a network architecture is designed by varying some repeated small
feedforward sub-structures termed cells (Ying et al., 2019; Dong & Yang, 2020). Each cell is treated
as a DAG, where the operation units are represented as node or edge labels, and information flows
within the cell following graph topologies. Cells are then stacked multiple times and embedded into a
macro neural network skeleton to give the final architecture. For instance, NAS-Bench-101 (Ying
et al., 2019) and NAS-Bench-201 (Dong & Yang, 2020) define one stack as 3 and 5 replications
of cells, respectively, and each stack appears 3 times in the overall network structure. In more
challenging cases such as NAS-Bench-301 (Zela et al., 2022), cells may not be identical. Cell-based
NAS can be effectively considered as an expensive black-box optimization problem over a graph input
domain, where one seeks the best graph, i.e., cell, that optimizes the performance of the resulting
neural architecture over certain metrics, e.g., validation/test accuracy.

2.2 GRAPH BAYESIAN OPTIMIZATION

Graph BO is a natural extension of BO (Frazier, 2018; Garnett, 2023) from vector space to graph
space. At the t-th iteration, a graph Gaussian process (GP) equipped with a graph kernel is trained
on available data X = {(Gi, F i), yi}t−1

i=1 . The posterior distribution of the graph GP is then used to
define acquisition functions such as lower confidence bound (LCB): αLCB(x) = µt(x)−β1/2

t ·σt(x),
where βt is a hyperparameter balancing between exploitation and exploration.

From modeling perspectives, the core component of graph GPs is the graph kernel that measures
similarity between graphs. Classic graph kernels include random walk (RW) (Gärtner et al., 2003),
subgraph matching (SM) (Kriege & Mutzel, 2012), shortest-path (SP) (Borgwardt & Kriegel, 2005),
Weisfeiler-Lehman (WL) (Shervashidze et al., 2011), and Weisfeiler-Lehman optimal transport
(WLOA) (Kriege et al., 2016) kernels. We refer the reader to Vishwanathan et al. (2010); Borgwardt
et al. (2020); Kriege et al. (2020); Nikolentzos et al. (2021) for comprehensive details about graph
kernels. In this work, we consider SP kernels used for graph BO in Xie et al. (2025). Mathematically,
for two node-labeled graphs G1 and G2, denote V 1 and V 2 as their node sets, respectively, lv as the
label of v, and du,v as the shortest distance from node u to node v. The SP kernel is defined as:

kSP (G
1, G2) =

1

n2
1n

2
2

∑
u1,v1∈V 1,u2,v2∈V 2

1(lu1
= lu2

) · 1(du1,v1
= du2,v2) · 1(lv1 = lv2), (kg)

where n2
1n

2
2 is a normalizing coefficient with n1 and n2 as the node number of G1 and G2, resp.

2.3 GRAPH ACQUISITION OPTIMIZATION

The major challenge of graph BO is the acquisition optimization step, which seeks to find the
graph structure (i.e., connectivity, nodes, labels) with optimal acquisition function value and is often
required for most BO convergence proofs. Encoding a graph search space and acquisition function
as optimization constraints is non-trivial, and most existing works follow a sample-then-evaluate
procedure to avoid directly optimizing over discrete space, e.g., see Kandasamy et al. (2018); Ru
et al. (2021); Wan et al. (2021; 2023). From a discrete optimization viewpoint, Xie et al. (2025) first
formulate the space of strongly connected graphs using MIP, and propose BoGrape as a graph BO
framework that can globally optimize the lower confidence bound (LCB) acquisition:

min
x∈X

µt − β
1/2
t · σt ← acquisition function

s.t. µt = KxXK−1
XXy ← posterior mean

σ2
t ≤ Kxx −KxXK−1

XXKXx ← posterior mean

KxXi = k(x,Xi), ∀1 ≤ i < t ← graph kernel

(Acq-Opt)

However, NAS settings involve graphs that are weakly connected, or even disconnected, potentially
with edge labels. Embedding this general graph domain in MIP remains an open challenge.
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Table 1: Variables introduced to encode shortest paths for an arbitrary graph. Since the shortest
distance between two nodes is strictly less than n, we use du,v = n to denote that node u cannot
reach node v.

Variables Domain Description

Av,v, v ∈ [n] {0, 1} if node v exists
Au,v, u, v ∈ [n], u ̸= v {0, 1} if edge u → v exists

ru,v, u, v ∈ [n] {0, 1} if node u can reach node v
du,v, u, v ∈ [n] [n+ 1] the shortest distance from node u to node v

δwu,v, u, v, w ∈ [n] {0, 1} if node w appears on the shortest path from node u to node v

3 METHODOLOGY

3.1 ENCODE A NAS GRAPH SEARCH SPACE IN OPTIMIZATION

This paper precisely seeks a MIP encoding for the general search space over graphs found in NAS
settings. In other words, we must formally define the graph search space over which acquisition
optimization is performed. For the sake of exposition, we temporarily ignore node/edge features and
first focus on an optimization formulation over variable graph structures. To avoid graph isomorphism
caused by node indexing, we assume that all nodes are labeled differently. We discuss node/edge
features in Section 3.3. Intuitively, encoding such a general graph space is easy, since each graph is
uniquely determined by its adjacency matrix, and one simply needs to define the n× n adjacency
matrix containing binary variables Au,v that denote the existence of edge u→ v. However, this naive
encoding omits important graph information, e.g., connectivity, reachability, and shortest distance
between nodes, which are important for defining acquisition functions and constraining feasible
graphs. Encoding these graph properties into the space of decision variables is significantly more
challenging because we must define constraints that mathematically prescribe all variables to take
correct values for any possible graph in the search space.

The graph encoding introduced in this paper incorporates reachability, shortest distances, and shortest
paths for any graph without requiring strong connectivity (or in fact any connectivity requirements) as
in previous work (Xie et al., 2025). We describe the mathematical differences in detail between these
formulations in Appendix A.3. These metrics are then used to encode shortest-path graph kernels for
graph BO. To begin with, we define variables corresponding to relevant graph properties in Table 1.
We consider all graphs with node number ranging from n0 to n. For simplicity, we use [n] to denote
the set {0, 1, . . . , n− 1}.
For each variable Var in Table 1 , we use Var(G) to denote its value on a given graph G. For example,
du,v(G) is the shortest distance from node u to node v in graph G. If graph G is given, all variable
values can be easily obtained using classic shortest-path algorithms, such as the Floyd–Warshall
algorithm (Floyd, 1962). However, for optimization over arbitrary graphs, the variables must be
properly defined using mathematical constraints, such that they take correct values for any given
graph, i.e., to match the Description column in Table 1. For conciseness, we only present our
final derived encoding in Eq. (Graph-Encoding) and the major theoretical result in Theorem 1. Full
derivations of our formulation and its correctness are given in Appendix A.

Eq. (Graph-Encoding) comprises many linear constraints encoding correctness of shortest paths for
any graphs in the search space, specifically defined as satisfying Conditions (C1)–(C8) in Appendix
A.1. Here we present the final formulation, which conveys the overall idea about how to use
constraints to mathematically define variables over graphs. Constraints for optimization formulations
must be carefully selected. There are often multiple ways to encode a combinatorial problem, but
insufficient constraints result in an unnecessarily large search space with symmetric solutions, while
excessive constraints may cutoff feasible solutions from the search space. Theorem 1 guarantees that
our encoding exactly formulates the graph space (see Appendix A.2 for proofs).

Theorem 1. There is a bijection between the feasible domain restricted by Eq. (Graph-Encoding)
with size [n0, n] and the complete graph space with node numbers in [n0, n].
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

∑
v∈[n]

Av,v ≥ n0

Av,v ≥ Av+1,v+1

2 ·Au,v ≤ Au,u +Av,v

2 · ru,v ≤ Au,u +Av,v

du,v ≥ n · (1−Au,u)

du,v ≥ n · (1−Av,v)

rv,v = 1

dv,v = 0

δvv,v = 1

δwv,v = 0

ru,v ≥ Au,v

du,v ≥ 2−Au,v

du,v ≤ 1 + (n− 1) · (1−Au,v)

du,v ≤ n− ru,v

du,v ≥ n− (n− 1) · ru,v
ru,w + rw,v ≥ 2 · δwu,v

ru,v ≥ ru,w + rw,v − 1

δuu,v = δvu,v = 1∑
w∈[n]

δwu,v ≥ 2 + ru,v −Au,v

∑
w∈[n]

δwu,v ≤ 2 + (n− 2) · (ru,v −Au,v)

du,v ≤ du,w + dw,v − (1− δwu,v) + (n+ 1) · (2− ru,w − rw,v)

du,v ≥ du,w + dw,v − 2n · (1− δwu,v)

(Graph-Encoding)

3.2 FROM GRAPH TO CELL IN NEURAL ARCHITECTURE SEARCH

Eq. (Graph-Encoding) defines general graph topology, while cells considered in NAS are DAGs. In
practice, these cells have more specific graph structures and features, requiring additional constraints
to further restrict the feasible domain. Based on Eq. (Graph-Encoding), we present these constraints
in Eq. (1) to formulate cells that are node- and/or edge-labeled DAGs with multiple sources (input
nodes) and sinks (output nodes). Note that cells could be disconnected.

Consider graphs with n nodes indexed by [n], among which I ⊂ [n] and O ⊂ [n] are source and sink
indices, respectively. Let Ln denote the number of node labels (including two extra labels to identify
the sources and the sinks) and Le the number of edge labels. W.l.o.g., in terms of node labels, we use
the first label for the sources, and the last label for the sinks. Introducing variable Fv,l ∈ {0, 1} to
represent whether node v ∈ [n] has label l ∈ [Ln], and variable Fu→v,l to represent whether edge
u→ v (with u < v) has label l ∈ [Le], we recover the encoding in Eq. (1).

Eq. (1a) enforces that each edge starts from the node with smaller index to reduce the number
of isomorphic graphs. Eqs. (1b)–(1c) are definitions of sources (zero in-degree), and sinks (zero
out-degree), resp. Eqs. (1d) and (1f) set nodes with indices in I as the sources, where any other nodes
can be reached by at least one source. Similarly, Eqs. (1e) and (1g) define nodes indexed by O as the
sinks, where any other nodes can reach to at least one sink. When the cell has a single source or a
single sink, Eqs. (1d) and (1e) implicitly enforce the weak connectivity of the cell, which is the most
classic setting in cell-based NAS. Eq. (1h) enforces each node to take one label. Eq. (1i) forces one
edge label for each existing edge and no edge labels for nonexistent edges.
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Adding all the constraints in Eq. (1) to Eq. (Graph-Encoding) produces a feasible domain containing
all the node- and edge-labeled DAGs with multiple sources and sinks (not necessarily connected). In
practice, the encoding can easily become more general by simply removing unnecessary constraints.
For example, cells defined in NAS-Bench-201 datasets are weakly connected edge-labeled DAGs,
meaning Eqs. (1f)–(1h) are unnecessary. Other benchmark-specific restrictions on cells can also be
seamlessly added to the encoding, such as limits on the number of edges, e.g., NAS-Bench-101, and
disconnected graphs formulated as two cells, e.g., NAS-Bench-301. Appendix C details how these
two cases are handled. 

du,v = n, ∀u, v ∈ [n], u > v

dv,i = n, ∀i ∈ I, v ∈ [n]\I
do,v = n, ∀o ∈ O, v ∈ [n]\O∑

i∈I ri,v ≥ 1, ∀v ∈ [n]\I∑
o∈O rv,o ≥ 1, ∀v ∈ [n]\O

Fi,0 = 1, Fv,0 = 0, ∀i ∈ I, v ∈ [n]\I
Fo,Ln−1

= 1, Fv,Ln−1
= 0, ∀o ∈ O, v ∈ [n]\O∑

l∈[Ln]
Fv,l = 1, ∀v ∈ [n]∑

l∈[Le]
Fu→v,l = Au,v, ∀u, v ∈ [n], u ̸= v

(1a)
(1b)
(1c)
(1d)

(1e)

(1f)
(1g)
(1h)

(1i)

3.3 ENCODE GRAPH KERNELS

We take the triple (G,Fn, Fe) as a graph with node labels Fn = {Fv,l}v∈[n], l∈[Ln] and edge labels
Fe = {Fu→v,l}u,v∈[n], l∈[Le]. Given two graphs X1 = (G1, F 1

n , F
1
e ) and X2 = (G2, F 2

n , F
2
e ) with

node numbers n1 and n2, resp., we define the following general kernel form:

klin(X
1, X2) = α · kg(G1, G2) + β · kn(F 1

n , F
2
n) + γ · ke(F 1

e , F
2
e ), (linear)

where kernels kg, kn, ke quantify similarity over graph structure, node labels, and edge labels, resp.

We then denote the optimization target (i.e., to maximize the acquisition function) as an unknown
graph x = (G,Fn, Fe), and the available data points as X = {Xi, yi}t−1

i=1 with Xi = (Gi, F i
n, F

i
e).

After properly defining the search space in Section 3.2, we must encode kernel-relevant terms in
Eq. (Acq-Opt), i.e., kxXi and kxx. We take a similar approach to Xie et al. (2025) to encode the graph
structure kernel, i.e., kg(G,G), kg(G,Gi) and binary node features, i.e., kn(Fn, Fn), kn(Fn, F

i
n) for

graph structure G and node labels Fn. Formulations are given in Appendix B.

Edge label encoding: Edge labels can be treated in a similar way to node labels. However, several
NAS settings have more specific properties, i.e., all nodes are indexed when edge labels are present,
and all graphs have the same size. Therefore, we propose the following alternative form:

ke(F
1
e , F

2
e ) =

2

n(n− 1)
⟨F 1

e , F
2
e ⟩ =

2

n(n− 1)

∑
u<v

∑
l∈[Le]

F 1
u→v,l · F 2

u→v,l, (ke)

where n(n− 1)/2 is a normalizing coefficient, with n as the node number of both G1 and G2, given
that a DAG has at most n(n− 1)/2 edges.

We take edge kernels as follows, and evaluate their performance in Section 4.3:

ke(Fe, F
i
e) =

2

n(n− 1)

∑
u<v

∑
l∈[Le]

F i
u→v,l · Fu→v,l,

ke(Fe, Fe) =
2

n(n− 1)

∑
u<v

∑
l∈[Le]

F 2
u→v,l =

2

n(n− 1)

∑
u<v

∑
l∈[Le]

Fu→v,l =
2

n(n− 1)

∑
u<v

Au,v,

where we use the trick that x2 = x for binary x and the relation in Eq. (1i).

The above defines a formulation for all relevant terms in kernel form (linear). To improve representa-
tion ability, we also consider an alternative exponential form defined as:

kexp(X
1, X2) = σ2

k · exp(klin(X
1, X2)), (exponential)

where the variance σ2
k controls the magnitude of kernel values.

6
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4 EXPERIMENTS

All experiments are performed on a 4.7 GHz Intel Core i7-1260P CPU with 32 GB memory. For
our methods, we use GPflow (Matthews et al., 2017) to implement GP models, and Gurobi (Gurobi
Optimization, LLC, 2024) to solve MIPs. For kernel comparison, GraKel (Siglidis et al., 2020) is
used to implement graph kernels. We use the published implementations of NAS-BOWL (Ru et al.,
2021) and Naszilla (White et al., 2020; 2021b;a) for all other NAS baselines.

4.1 BENCHMARKS

We evaluate the performance of our graph BO-based method using the most popular benchmarks
used in NAS literature: NAS-Bench-101 (Ying et al., 2019), NAS-Bench-201 (Dong & Yang, 2020),
and NAS-Bench-301 (Zela et al., 2022). The former two benchmarks correspond to the classic node-
and edge-labeled DAGs cases, respectively, where the cells involved in an architecture are identical.
NAS-Bench-301 represents a more challenging setting, with larger graph sizes and more edge labels.
Moreover, the overall architecture involves two cell designs, resulting in a disconnected edge-labeled
graph search space during optimization. Details about these benchmarks are provided in Appendix C.

NAS-Bench-101 (N101): DAGs with one source, one sink, at most 7 nodes and 9 edges, and 3
different node operations. Only the source is labeled as operation IN, only the sink is labeled as oper-
ation OUT, and each of other nodes has one of the remaining three operations: 3x3 convolution, 1x1
convolution, or 3x3 max pooling. After removal of duplicates, N101 has approximately 423k unique
architectures. Each architecture is trained on CIFAR-10 to obtain validation and test accuracies.

NAS-Bench-201 (N201): Dense DAGs with 4 nodes. Each of the 6 edges has a label chosen from 5
operation types: zeroize, skip-connection, 1x1 convolution, 3x3 convolution, or 3x3 average pooling.
N201 has 15,625 architectures in total, each of which has various metrics including validation and
test accuracies over three datasets: CIFAR10, CIFAR100, and ImageNet-16-120.

NAS-Bench-301 (N301): A surrogate NAS benchmark on the DARTS search space (Liu et al.,
2019). The normal cell and reduction cell in DARTS architecture each defines a DAG with 7 nodes
(2 sources, 4 intermediate nodes and 1 sink) and 12 edges. Each edge between the source and an
intermediate node is labeled with one of the 8 operations: zeroize, identity, skip-connection, 3× 3
and 5× 5 separable convolutions, 3× 3 and 5× 5 dilated separable convolutions, 3× 3 max pooling,
3 × 3 average pooling, identity, and zero. The two cells are treated as one disconnected graph for
optimization since they may not be identical. N301 predicts the validation accuracies of different
architectures on CIFAR-10 dataset.

For N101 and N201 benchmarks, each architecture is trained 20 times with varying random seeds,
which could be used as a noisy objective function as suggested in Ru et al. (2021). For N301, the
noise comes from prediction variance of different ensembles. We conduct experiments on the three
benchmarks, reporting results for both the deterministic setting, i.e., averaging the accuracies over
multiple random seeds/ensembles, and the noisy setting.

Table 2: GP model performance metrics using different graph kernels. For each dataset, 50 and 400
architectures are sampled for training and testing, resp. Predictive performance metrics are averaged
over 20 replications and reported in the table, with one standard deviation in the brackets. The best
method is marked in bold metric-wisely for each dataset.

Graph type Node-labeled DAG (N101) Edge-labeled DAG (N201)

Kernel RMSE ↓ MNLL ↓ Spearman ↑ RMSE ↓ MNLL ↓ Spearman ↑
RW 0.29(0.01) 30.29(5.26) 0.81(0.04) 0.32(0.02) 43.07(19.14) 0.78(0.05)
WL 0.15(0.02) -0.77(0.07) 0.87(0.03) 0.23(0.04) 0.98(1.02) 0.81(0.07)

WL-edge - - - 0.37(0.02) 46.00(16.73) 0.11(0.09)
SP 0.21(0.05) 227.67(114.59) 0.83(0.04) 0.33(0.04) 465.15(152.20) 0.63(0.10)

ESP 0.11(0.02) 28.83(15.02) 0.93(0.02) 0.30(0.04) 0.36(0.22) 0.64(0.11)
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4.2 BASELINES

We compare our method, NAS-GOAT, which is capable of globally optimizing acquisition in form
(Acq-Opt) with the encoding introduced in Section 3, against state-of-the-art baselines in NAS,
described in Table 3 of Appendix D.2. BO-based baselines either use GPs or neural predictors as the
surrogate model. Graph inputs are featurized into vectors using different encoding methods before
being input to NN surrogates (Snoek et al., 2015; Springenberg et al., 2016; Shi et al., 2020; White
et al., 2021a). For GP surrogate models, graphs can be directly used as data points by defining a
proper graph kernel (Ru et al., 2021) or graph similarity metric (Kandasamy et al., 2018). In addition
to BO-based algorithms, we also include popular methods in NAS such as random search, regularized
evolution (Real et al., 2019), local search (White et al., 2021b) and GCN predictor (Wen et al.,
2020). For BO-based methods, optimization of acquisition functions is achieved through mutation
or sampling, while NAS-GOAT is capable of globally acquisition optimization over graph search
spaces using MIP. Complete descriptions and implementation details of the baselines can be found in
Appendix D, and a comparison against recent non-BO-based NAS methods is given in Appendix D.4.

4.3 GRAPH KERNELS COMPARISON

Although the focus of our work is a MIP formulation for global acquisition optimization, the GP
model performance remains important to overall BO performance, noting that we employ SP kernels.
In this section, we compare the predictive performance of graph GPs equipped with various graph
kernels. For DAGs with node labels (N101), we compare RW, WL, and our kernels in form (linear)
(SP) and (exponential) (ESP). For DAGs with edge labels (N201), all architectures are first converted
to node-labeled graphs and then evaluated using RW and WL kernels. We also test the performance
of WL kernels over the original edge-labeled graphs (denoted as WL-e). Both SP and ESP kernels
can directly handle edge labels without conversion.

Table 2 reports performance metrics including root mean squared error (RMSE) and Spearman’s
rank correlation (Spearman) showing the predictive accuracy, as well as mean negative log likelihood
(MNLL). Appendix D provides visualizations of GP predictions with different kernels on both node-
and edge-labeled DAGs sampled from N101 and N201, respectively. The RW kernel does not perform
well on either case. The WL kernel performs significantly better on converted node-labeled graphs
compared to the original edge-labeled graphs, which matches the empirical observations in Ru et al.
(2021). WL and ESP kernels exhibit the best overall performance, notably better than the simpler
SP kernel. We found that a better kernel does not necessarily translate to better BO performance,
since a simpler kernel may have benefits during the acquisition optimization step, resulting in a
computational trade-off between the modeling and optimization steps.

4.4 GRAPH BO FOR NAS

Following the batch setting in Ru et al. (2021); White et al. (2021a), we conduct 30 BO iterations
starting with 10 initial samples. At each iteration, we solve the MIP defined by Eq. (Graph-Encoding)
and Eq. (1) using Gurobi (Gurobi Optimization, LLC, 2024) and store the best 5 candidates (in terms
of acquisition function value) to evaluate.

We denote our methods as NAS-GOAT-L and NAS-GOAT-E to differentiate using the (linear) and
(exponential) kernels, respectively, in graph GP. All baselines introduced in Table 3 are implemented,
but here we only report Random, GCN (Wen et al., 2020), Evolution (Real et al., 2019), NAS-
BOT (Kandasamy et al., 2018), BANANAS (White et al., 2021a) and NAS-BOWL (Ru et al., 2021)
for clarity, since they generally achieve better results. Full baseline results are given in Appendix
D.3. Not all the baselines are available for N301, we only report the available ones here. Specifically,
N301 involves designing two separate cells, which NAS-GOAT can handle simultaneously as a
disconnected graph. Other methods cannot directly handle this setting, e.g., the competing methods
BANANAS and Evolution iterate between improving the two cells.

Following NAS literature, we minimize over validation error and report both validation and test
errors (except for N301 where only validation errors are available). In other words, in terms of the
BO algorithm, performance is only evaluated using the validation error as the black-box function
to be optimized. We show the results in terms of validation error in Figures 2–3 and test error in
Figure 8 of Appendix D.3. Differences between validation- and test-error performance may be
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(a) N101 (CIFAR10) (b) N201 (CIFAR10) (c) N301 (CIFAR10)

(d) N101 (CIFAR10) (e) N201 (CIFAR10) (f) N301 (CIFAR10)

Figure 2: Numerical results on N101, N201 and N301 for CIFAR10. Top: Deterministic validation
error. Bottom: Noisy validation error. Median with one std. deviation over 20 replications is plotted.

(a) N201 (CIFAR100) (b) N201 (ImageNet) (c) N201 (CIFAR100) (d) N201 (ImageNet)

Figure 3: Numerical results on N201 for other datasets. (a)-(b): Deterministic validation error.
(c)-(d): Noisy validation error. Median with one standard deviation over 20 replications is plotted.

improved by larger validation datasets. In general, both NAS-GOAT-L and NAS-GOAT-E find (near-
)optimal architectures in terms of validation error. NAS-GOAT-L achieves slightly better performance,
perhaps owing to its simpler form and resulting optimization formulation. Figure 2 evaluates all three
benchmarks on the CIFAR10 dataset. Notably, NAS-GOAT considerably outperforms all baselines in
the most challenging N301 setting, highlighting its importance as a general NAS framework that can
be adapted to more challenging settings. Specifically, N301 reveals the potential of NAS-GOAT past
the simpler N101 and N201 benchmarks, which are inherently limited by considering only the design
of a single repeated cell. Nevertheless, on these benchmarks NAS-GOAT achieves similar efficiency
to other BO methods (Figures 2–3) and final performance to other NAS methods (Appendix D).

5 CONCLUSIONS

This work considers global acquisition optimization in graph BO for NAS. The graph search space
is precisely encoded into an equivalent variable space for discrete optimization. A general kernel
is designed to handle both node and edge labels, and formulations are proposed based on the graph
encoding. After adding suitable constraints to remove invalid architectures, we are able to globally
optimize the acquisition function at each BO iteration, demonstrating promising results on commonly
used NAS benchmarks. Future works could consider more graph kernels beyond shortest-path kernels,
or apply the proposed method to more graph-based decision making problems.
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REPRODUCIBILITY STATEMENT

We ensure our results are reproducible by providing theoretical proofs, code implementations, and
documentation. The complete formulations are presented in Section 3 and Appendices A–C. Proofs
to all the theorems in this paper can be found in the Appendix A.2. We provide code implementation
of our method, NAS-GOAT, along with instructions for replicating the experiments in Section 4 in
the supplementary materials.
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A SHORTEST PATH ENCODING

A.1 ENCODING

For each variable Var in Table 1 , we use Var(G) to denote its value on a given graph G. For
example, du,v(G) is the shortest distance from node u to node v in graph G. If graph G is given, all
variable values can be easily obtained using classic shortest-path algorithms like the Floyd–Warshall
algorithm (Floyd, 1962). However, for graph optimization, those variables need to be constrained
properly so that they have correct values for any given graph. In this section, we first provide a list
of necessary conditions that these variables should satisfy based on their definitions. Then we will
prove that these conditions are sufficient in next section.

Condition (C1): At least n0 nodes exist. W.l.o.g., assume that nodes with smaller indexes exist:
∑
v∈[n]

Av,v ≥ n0

Av,v ≥ Av+1,v+1, ∀v ∈ [n− 1]

Condition (C2): Initialization for nonexistent nodes, i.e., if either node u or node v does not exist,
edge u→ v cannot exists, node u cannot reach node v, and the shortest distance from node u to node
v is infinity, i.e., n:

min(Au,u, Av,v) = 0⇒ Au,v = 0, ru,v = 0, du,v = n, ∀u, v ∈ [n], u ̸= v

which could be rewritten as the following linear constraints:
2 ·Au,v ≤ Au,u +Av,v, ∀u, v ∈ [n], u ̸= v

2 · ru,v ≤ Au,u +Av,v, ∀u, v ∈ [n], u ̸= v

du,v ≥ n · (1−Au,u), ∀u, v ∈ [n], u ̸= v

du,v ≥ n · (1−Av,v), ∀u, v ∈ [n], u ̸= v

Condition (C3): Initialization for single node, i.e., node v can reach itself with shortest distance as 0,
and node v is obviously the only node that appears in the shortest path from node v to itself:

rv,v = 1, ∀v ∈ [n]

dv,v = 0, ∀v ∈ [n]

δvv,v = 1, ∀v ∈ [n]

δwv,v = 0, ∀v, w ∈ [n], v ̸= w

Condition (C4): Initialization for each edge, i.e., if edge u→ v exists, node u can reach node v with
shortest distance as 1. Otherwise, the shortest distance from node u to node v is larger than 1:

Au,v = 1⇒ ru,v = 1, du,v = 1, ∀u, v ∈ [n], u ̸= v

Au,v = 0⇒ du,v > 1, ∀u, v ∈ [n], u ̸= v

which could be rewritten as the following linear constraints:
ru,v ≥ Au,v, ∀u, v ∈ [n], u ̸= v

du,v ≥ 2−Au,v, ∀u, v ∈ [n], u ̸= v

du,v ≤ 1 + (n− 1) · (1−Au,v), ∀u, v ∈ [n], u ̸= v

Condition (C5): Compatibility between distance and reachability, i.e„ node u can reach node v if
and only the shortest distance from node u to node v is finite:

du,v < n⇔ ru,v = 1, ∀u, v ∈ [n], u ̸= v

which could be rewritten as the following linear constraints:{
du,v ≤ n− ru,v, ∀u, v ∈ [n], u ̸= v

du,v ≥ n− (n− 1) · ru,v, ∀u, v ∈ [n], u ̸= v
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Condition (C6): Compatibility between path and reachability, i.e., (i) if node w appears in the
shortest path from node u to node v, then node u can reach node w, and node w can reach node v
(the opposite is not always true), which means that node u can reach node v via node w:

δwu,v = 1⇒ ru,w = rw,v = 1⇒ ru,v = 1,∀u, v, w ∈ [n], u ̸= v ̸= w

which could be rewritten as the following linear constraints:{
ru,w + rw,v ≥ 2 · δwu,v, ∀u, v, w ∈ [n], u ̸= v ̸= w

ru,v ≥ ru,w + rw,v − 1, ∀u, v, w ∈ [n], u ̸= v ̸= w

Condition (C7): Construction of shortest path, i.e., (i) always assume that both node u and node v
appear in the shortest path from node u to node v for well-definedness, (ii) if edge u→ v exists or
node u cannot reach node v, then no other nodes can appear in the shortest path from node u to node
v, (iii) if edge u→ v does not exist but node u can reach node v, then at least one node except for
node u and node v will appear in the shortest path from node u to node v:

δuu,v = δvu,v = 1, ∀u, v ∈ [n], u ̸= v

Au,v = 1 ∨ ru,v = 0⇒
∑
w∈[n]

δwu,v = 2, ∀u, v ∈ [n], u ̸= v

Au,v = 0 ∧ ru,v = 1⇒
∑
w∈[n]

δwu,v > 2, ∀u, v ∈ [n], u ̸= v

Observing that Au,v = 1 ∨ ru,v = 0 ⇔ ru,v − Au,v = 0 since ru,v ≥ Au,v always holds, we can
rewrite these constraints as the following linear constraints:

δuu,v = δvu,v = 1, ∀u, v ∈ [n], u ̸= v∑
w∈[n]

δwu,v ≥ 2 + ru,v −Au,v, ∀u, v ∈ [n], u ̸= v

∑
w∈[n]

δwu,v ≤ 2 + (n− 2) · (ru,v −Au,v), ∀u, v ∈ [n], u ̸= v

Condition (C8): Triangle inequality of shortest distance, i.e., if node u can reach node w and node
w can reach node v, then the shortest distance from node u to node v is no larger than the shortest
distance from node u to node w then to node v, and the equality holds when node w appears in the
shortest path from node u to node v:

δwu,v = 1⇒ du,v = du,w + dw,v, ∀u, v, w ∈ [n], u ̸= v ̸= w

ru,w = rw,v = 1 ∧ δwu,v = 0⇒ du,v < du,w + dw,v, ∀u, v, w ∈ [n], u ̸= v ̸= w

where we omit ru,w = rw,v = 1 in the first line since δwu,v = 1 implies it.

Similarly, we can rewrite these constraints as the following linear constraints:{
du,v ≤ du,w + dw,v − (1− δwu,v) + (n+ 1) · (2− ru,w − rw,v), ∀u, v, w ∈ [n], u ̸= v ̸= w

du,v ≥ du,w + dw,v − 2n · (1− δwu,v), ∀u, v, w ∈ [n], u ̸= v ̸= w

Putting Conditions (C1)–(C8) together presents the final formulation Eq. (Graph-Encoding).

A.2 THEORETICAL GUARANTEE

All constraints in Eq. (Graph-Encoding) are necessary conditions, i.e., as shown in Lemma 1.

Lemma 1. Given any labeled graph G with n nodes, {Au,v(G), ru,v(G), du,v(G), δwu,v(G)}u,v,w∈[n]

is a feasible solution of Eq. (Graph-Encoding) with n0 = n.

Proof. By definition, it is easy to check that {Au,v(G), ru,v(G), du,v(G), δwu,v(G)}u,v,w∈[n] satisfies
condition (C1) – (C8).
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The opposite is non-trivial to prove, that is, any feasible solution of Eq. (Graph-Encoding) corresponds
to an unique graph with

∑
v∈[n] Av,v nodes, which is guaranteed by Theorem 1.

Proof of Theorem 1. Denote Fn0,n as the feasible domain restricted by Eq. (Graph-Encoding) with
size [n0, n], and Gn0,n as the whole graph space with node numbers in [n0, n]. Define the following
mapping:

Mn0,n : Fn0,n → Gn0,n

{Au,v, ru,v, du,v, δ
w
u,v}u,v,w∈[n] 7→ {Au,v}u,v∈[n]

For simplicity, we still use a n× n adjacency matrix to define a graph with node number less than n
and use Av,v(G) to represent the existence of node v. Also, the subscriptions, e.g., {}u,v,w∈[n], are
omitted from now on.

If n1 =
∑

v∈[n] Av,v < n, Condition (C1) forces that:

Av,v =

{
1, v ∈ [n1]

0, v ∈ [n]\[n0]

For any pair of (u, v) with u ̸= v and max(u, v) ≥ n1, Conditions (C2) and (C7) uniquely define
{ru,v, du,v, δwu,v} as:

ru,v = 0, du,v = n, δwu,v =

{
1, w ∈ {u, v}
0, w ̸∈ {u, v}

Therefore, it is equivalent to show thatMn,n is a bijection. Since Lemma 1 already shows thatMn,n

is a surjection, it suffices to prove thatMn,n is an injection. Precisely, for any feasible solution
{Au,v, ru,v, du,v, δ

w
u,v}, there exists a graph G with adjacency matrix given by {Au,v(G)} = {Au,v},

such that:
{ru,v(G), du,v(G), δwu,v(G)} = {ru,v, du,v, δwu,v} (⋆)

Since rv,v(G), dv,v(G), δwv,v(G), δuu,v(G), δvu,v(G) are defined for completeness of our definition,
whose variable counterparts are properly and uniquely defined in Condition (C3) and the first part
of Condition (C7), we only need to consider all triples (u, v, w) with u ̸= v ̸= w, which will not be
specified later for simplicity.

Now we are going to prove Eq. (⋆) holds by induction on min(du,v(G), du,v) < n.

When min(du,v(G), du,v) = 1, for any pair of (u, v), we have:

du,v(G) = 1⇒ Au,v(G) = 1, ru,v(G) = 1, δwu,v(G) = 0 ←− definition

⇒ Au,v = 1 ←− definition ofMn,n

⇒ ru,v = 1, du,v = 1, δwu,v = 0 ←− Conditions (C4) + (C7)
and:

du,v = 1⇒ Au,v = 1, ru,v = 1, δwu,v = 0 ←− Conditions (C4) + (C7)
⇒ Au,v(G) = 1 ←− definition ofMn,n

⇒ ru,v(G) = 1, du,v(G) = 1, δwu,v(G) = 0 ←− definition

For both cases, we have Eq. (⋆) holds.

Assume that Eq. (⋆) holds for any pair of (u, v) with min(du,v(G), du,v) ≤ sd with sd < n − 1.
Consider the following two cases for min(du,v(G), du,v) = sd+ 1 < n.

Case I: If du,v(G) = sd+ 1, we know that ru,v(G) = 1 since the shortest distance from node u to
node v is finite. For any w ̸∈ {u, v} such that δwu,v(G) = 1, we have:

δwu,v(G) = 1⇒ du,w(G) + dw,v(G) = du,v(G) ←− definition of δwu,v(G)

⇒ max(du,w(G), dw,v(G)) ≤ sd ←− du,w(G) > 0, dw,v(G) > 0

⇒ du,w = du,w(G), dw,v = dw,v(G) ←− assumption of induction
⇒ ru,w = rw,v = 1 ←− Condition (C5)
⇒ du,v ≤ du,w + dw,v = sd+ 1 ←− Condition (C8)
⇒ du,v = sd+ 1 ←− du,v ≥ sd+ 1

⇒ ru,v = 1, δwu,v = 1 ←− Conditions (C5) + (C8)
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which means that ru,v = ru,v(G), du,v = du,v(G), δwu,v = δwu,v(G) with δwu,v(G) = 1.

For any w ̸∈ {u, v} such that δwu,v(G) = 0. If δwu,v = 1, then we have:

δwu,v = 1⇒ ru,w = rw,v = 1, du,v = du,w + dw,v ←− Conditions (C6) + (C8)
⇒ max(du,w, dw,v) ≤ sd ←− du,w > 0, dw,v > 0

⇒ du,w(G) = du,w, dw,v(G) = dw,v ←− assumption of induction
⇒ du,w(G) + dw,v(G) = sd+ 1 = du,v(G) ←− du,v(G) = du,v = sd+ 1

⇒ δwu,v(G) = 1 ←− definition of δwu,v(G)

which contradicts to δwu,v(G) = 0. Thus δwu,v = 0 = δwu,v(G) with δwu,v(G) = 0.

Case II: If du,v = sd + 1, from sd + 1 > 1 and Condition (C4) we know that Au,v = 0, from
Condition (C5) we have ru,v = 1, and then from Condition (C7) we obtain that

∑
w∈[n] δ

w
u,v > 2.

For any w ̸∈ {u, v} such that δwu,v = 1, we have:

δwu,v = 1⇒ du,w + dw,v = du,v = sd+ 1 ←− Condition (C8)
⇒ max(du,w, dw,v) ≤ sd ←− du,w > 0, dw,v > 0

⇒ du,w(G) = du,w, dw,v(G) = dw,v ←− assumption of induction
⇒ du,v(G) ≤ du,w(G) + dw,v(G) = sd+ 1 ←− definition of du,v(G)

⇒ du,v(G) = sd+ 1 ←− du,v(G) ≥ sd+ 1

⇒ ru,v(G) = 1, δwu,v(G) = 1 ←− definition

which means that ru,v(G) = ru,v, du,v(G) = du,v, δ
w
u,v(G) = δwu,v with δwu,v = 1.

For any w ̸∈ {u, v} such that δwu,v = 0. If δwu,v(G) = 1, then we have:

δwu,v(G) = 1⇒ du,v(G) = du,w(G) + dw,v(G) ←− definition of δwu,v(G)

⇒ max(du,w(G), dw,v(G)) ≤ sd ←− du,w(G) > 0, dw,v(G) > 0

⇒ du,w = du,w(G), dw,v = dw,v(G) ←− assumption of induction
⇒ du,w + dw,v = sd+ 1 = du,v ←− du,v(G) = du,v = sd+ 1

⇒ δwu,v = 1 ←− Condition (C8)

which contradicts to δwu,v = 0. Thus δwu,v(G) = 0 = δwu,v with δwu,v = 0.

The remaining case is du,v(G) = du,v = n, i.e., node u cannot reach node v. It is straightforward to
verify that:

ru,v = 0 = ru,v(G) ←− Condition (C5), definition of ru,v(G)

δwu,v = 0 = δwu,v(G) ←− Condition (C7), definition of δwu,v(G)

Therefore, Eq. (⋆) always holds, which completes the proof.

A.3 DIFFERENTIATION FROM PRIOR WORK

Observe that our encoding Eq. (Graph-Encoding) can be easily restricted to the encoding in Xie et al.
(2025) by adding the following constraints:

Undirected: Add symmetry constraints to get undirected graphs:

Au,v = Av,u, ru,v = rv,u, du,v = dv,u, δ
w
u,v = δwv,u, ∀u, v, w ∈ [n], u < v.

Strong connectivity: Each existing node can reach all other existing nodes, i.e.,

Au,u = Av,v = 1⇒ ru,v = 1, ∀u, v ∈ [n], u ̸= v,

which can be equivalently rewritten as the following constraint:

ru,v ≥ Au,u +Av,v − 1, ∀u, v ∈ [n], u ̸= v.

Remark 1. Note that strong connectivity reduces to connectivity for undirected graphs.
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B KERNEL ENCODING

This section presents encoding for shortest-graph kernels and binary node labels proposed in Xie
et al. (2025). Notations are slightly changed to keep consistency with this paper.

Graph kernel encoding Introduce indicator variables pu,vs,l1,l2
= 1(Fu,l1 = 1, du,v = s, Fv,l2 = 1)

and count the number of each type of paths as:

Ps,l1,l2(G
i) =

∑
u,v∈[N ]

pu,vs,l1,l2
.

Then SP kernel (kg) could be formulated as:

kg(G,Gi) =
1

n2n2
i

∑
s∈[n],l1,l2∈[Ln]

Ps,l1,l2(G
i) · Ps,l1,l2 ,

kg(G,G) =
1

n4

∑
s∈[n],l1,l2∈[Ln]

P 2
s,l1,l2 .

To handle the quadratic term P 2
s,l1,l2

, we further introduce indicator variables P c
s,l1,l2

= 1(Ps,l1,l2 =

c), and rewrite kg(G,G) as the following linear form:

kg(G,G) =
1

n4

∑
s∈[n],l1,l2∈[Ln],c∈[n2+1]

c2 · P c
s,l1,l2 .

Before formulating indicators pu,vs,l1,l2
, we need indicators dsu,v = 1(du,v = s) that satisfy:∑

s∈[n+1]

dsu,v = 1,
∑

s∈[n+1]

s · dsu,v = du,v, ∀u, v ∈ [n],

using which we can formulate pu,vs,l1,l2
, ∀u, v, s ∈ [n], l1, l2 ∈ [Ln] as:

3 · pu,vs,l1,l2
≤ Fu,l1 + dsu,v + Fv,l2 , p

u,v
s,l1,l2

≥ Fu,l1 + dsu,v + Fv,l2 − 2.

Similar to dsu,v , indicators P c
s,l1,l2

can be expressed as:∑
c∈[n2+1]

P c
s,l1,l2 = 1,

∑
c∈[n2+1]

c · P c
s,l1,l2 = Ps,l1,l2 , ∀s ∈ [n], l1, l2 ∈ [Ln].

Node label encoding kn could be defined in multiple ways, Xie et al. (2025) propose the following
permutational-invariant kernel measuring the pair-wise similarity among node features:

kn(F
1
n , F

2
n) :=

1

n1n2Ln

∑
v1∈[n1],v2∈[n2]

F 1
v1 · F

2
v2 =

1

n1n2Ln

∑
l∈[Ln]

Nl(F
1
n) ·N1(F

2
n),

where Nl =
∑

v∈[n]

Fv,l, ∀l ∈ [Ln], and n1n2Ln is the normalized coefficient.

Similar to the graph kernel encoding, we have:

kn(Fn, F
i
n) =

1

nniLn

∑
l∈[Ln]

Nl(F
i
n) ·Nl,

kn(Fn, Fn) =
1

n2Ln

∑
l∈[Ln]

N2
l =

1

n2Ln

∑
l∈[Ln],c∈[n+1]

c2 ·N c
l ,

where indicators N c
l = 1(Nl = c) satisfy:∑

c∈[n+1]

N c
l = 1,

∑
c∈[n+1]

c ·N c
l = Nl, ∀l ∈ [Ln].
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C BENCHMARK-SPECIFIC PARAMETER SETTINGS AND CONSTRAINTS

We further restrict the feasible domain of the proposed encoding in Section 3 to correspond the search
space defined by different benchmarks. The following benchmark-specific constraints are added to
produce only valid graphs for each benchmark.

NAS-Bench-101: Search space for NAS-Bench-101 consists of classic node-labeled DAGs with
one source and one sink. NAS-Bench-101 limits the maximal number of edges (E) in each cell to 9.
After removing the constraint Eq. (1i) on edge labels, the following constraint is added to define the
limitation on E: ∑

u<v Au,v ≤ E.

NAS-Bench-101 is a particular instance with n = 7, E = 9, Ln = 5, I = {0}, O = {6}.
NAS-Bench-201: As explained in the main paper, cells in NAS-Bench-201 search space are classic
edge-labeled DAGS with one source and one sink. One only need to remove constraints Eqs. (1f)-(1h)
for optimization. NAS-Bench-201 is a particular instance with n = 4, Le = 4, I = {0}, O = {3}.
Note that NAS-Bench-201 has 5 labels: one label denotes nonexistance, which is not needed in our
encoding.

NAS-Bench-301: The search space in NAS-Bench-301 is DARTS which consists of two types of
cells: normal cell and reduction cell. Both of them are edge-labeled DAGs with two sources and
one sink, but they may not be identical. Although treating them as identical cells in optimization is
a common approach (Ru et al., 2021), we treat them together as one disconnected graph to exactly
match their original definitions and allow non-identical cells. Denote the normal cell node indices
set as V n and reduction cell node indices set as V r. After removing constraints Eqs. (1f)-(1h), the
following constraints are added:

du,v = dv,u = n, ∀u ∈ V n, v ∈ V r (2a)
Ai,o = 0, ∀i ∈ I, o ∈ O (2b)
Au,o = 1, ∀u ∈ V n\(I ∪O), o ∈ O ∩ V n (2c)
Av,o = 1, ∀v ∈ V r\(I ∪O), o ∈ O ∩ V r (2d)∑v−1

u=0 Au,v = 2, ∀v ∈ [n]\(I ∪O) (2e)

Eq. (2a) formulates the disconnected graph structure. Eq. (2b) makes sure no edges between sources
and sinks. According to the procedure of formulating cells in DARTS, all the intermediate nodes are
connected to the sink within each cell which is formulated as Eqs. (2c)-(2d). Finally, the DARTS
search space requires the number of incoming nodes to each intermediate node to be 2, we encode
this requirement as Eq. (2e). NAS-Bench-301 is a particular instance with n = 14, Le = 8, I =
{0, 1, 7, 8}, O = {6, 13}, V n = {0, 1, 2, 3, 4, 5, 6}, V r = {7, 8, 9, 10, 11, 12, 13}. Similar to NAS-
Bench-201, NAS-Bench-301 has 8 labels but one label denotes nonexistance, which is not needed in
our encoding.

D EXPERIMENTAL DETAILS AND FULL RESULTS

D.1 HYPERPARAMETER SETTINGS IN GP AND BO

We implement our graph kernels defined in Eqs. (linear) and (exponential) as an inherited Kernel
class in GPflow (Matthews et al., 2017). The initial values of the trainable kernel parameters α, β, γ
and σ2

k are set to 1 with bounds [0.01, 100]. In BO, we apply a batch setting to return 5 architectures
with the lowest LCB values in each iteration by setting Gurobi parameter PoolSearchMode=2.
The final MIP model Eq. (Graph-Encoding) is designed for fixed graph size, but NAS-Bench-101
dataset consists of graph sizes ranging from 2 to 7. Our graph encoding supports changeable sizes.
The only issue is that the normalized coefficients in kernel encoding are no longer constant, which
complicates our formulation. One can resolve this issue by replacing these coefficients by constants
or ignoring them. In NAS, however, architectures with more nodes usually have better performance.
For instance, most high-quality architectures in NAS-Bench-101 have either 6 or 7 nodes. Therefore,
in our experiments for NAS-Bench-101, we simply solve two MIP models with graph size set to
N = 6, 7 sequentially. Each model returns 5 architectures, we still select 5 of 10 with the lowest
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Table 3: NAS algorithms comparison, including whether the method is BO-based, the surrogate
model used, and how acquisition function (acq.) is optimized (if BO-based). The superscript ‘a’
denotes methods that are not originally designed for NAS but can be adapted for NAS settings. For
surrogate models, we use ‘v’ to denote models using vectorized embeddings of graphs and ‘g’ to
denote models that directly over graph spaces.

Algorithms BO-based Surrogate Acq. optimization

Random × - -
DNGOa (Snoek et al., 2015) ✓ BNN(v) mutation

BOHAMIANNa (Springenberg et al., 2016) ✓ BNN(v) mutation
NASBOT (Kandasamy et al., 2018) ✓ GP(g) mutation

Evolution (Real et al., 2019) × - -
GP-BAYESOPTa (Neiswanger et al., 2019) ✓ GP(v) sampling

GCN (Wen et al., 2020) × - -
BONAS (Shi et al., 2020) ✓ GCN(v) sampling

Local search (White et al., 2021b) × - -
BANANAS (White et al., 2021a) ✓ NN(v) mutation

NAS-BOWL (Ru et al., 2021) ✓ GP(g) mutation
NAS-GOAT (ours) ✓ GP(g) MIP

LCB values. To encourage exploration, we set β1/2
t = 3 in LCB. The TimeLimit parameter in

Gurobi for solving each MIP is set as 1800s.

Figure 4: Predictive performance of graph GPs with different kernels. 50 and 400 edge-labeled DAGs
are randomly sampled from N201 for training and testing, resp. Predicted deterministic validation
error are plotted against the true values, with one standard deviation as error bars.

Figure 5: Predictive performance of graph GPs with different kernels. 50 and 400 node-labeled DAGs
are randomly sampled from N101 for training and testing resp. Predicted deterministic validation
error are plotted against the true values, with one standard deviation as error bars.

D.2 DETAILS ON BASELINES

We provide more details on algorithms used in Section 4.2. Table 3 summarizes key characteristics of
the chosen baselines. We adapt the implementation from White et al. (2020) for all baselines except
for NAS-BOWL, where we use the publicly available code from Ru et al. (2021).
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• Random: Randomly sample the required number of architectures and evaluate them.

• DNGO: Deep Network for Global Optimization (DNGO) uses neural networks to learn
an adaptive set of basis functions for Bayesian linear regression instead of GP in BO. It is
adapted for NAS by treating the adjacency matrix of graph as encoding vector inputs.

• BOHAMIANN: Bayesian Optimization with Hamiltonian Monte Carlo Artificial Neural
Networks (BOHAMIANN) uses Bayesian neural networks as the surrogate model in both
single- and multi-task BO, and achieves scalability through stochastic gradient Hamiltonian
Monte Carlo. It is not originally designed for NAS but could be adapted by encoding graph
input by adjacency matrix.

• NASBOT: Neural Architecture Search with Bayesian Optimisation and Optimal Transport
(NASBOT) is a GP-based BO framework for NAS. It defines a distance metric to reveal the
similarity between graphs called Optimal Transport Metrics for Architectures of Neural Net-
works (OTMANN). NASBOT specifically provides a list of operations for the evolutionary
algorithm used in the acquisition function optimization.

• Evolution: Regularized evolution consists of mutating the best architectures from the
population until a given budget runs out. White et al. (2020) set the population size to 30
and outdate the architecture with the worst validation accuracy instead of the oldest one
because it results in better performance in NAS tasks following.

• GP-BAYESOPT: Standard BO with GP surrogate and UCB acquisition, implemented using
ProBO (Neiswanger et al., 2019). Similarity (distance) metric between two architectures is
defined as the sum of Hamming distances between the adjacency matrices and the associated
operations.

• GCN: Use Graph Convolutional Networks (GCN) as the neural predictor to predict the
performance of random architectures and select the best K samples for evaluation.

• BONAS: Bayesian Optimized Neural Architecture Search (BONAS) uses a GCN as surro-
gate model in BO to select multiple architectures in each iteration, and apply weight-sharing
during the model training to accelerate traditional sampling methods.

• Local search: The simplest hill-climbing local search method evaluates all architectures in
the neighborhood of a given sample. It is verified by White et al. (2021b) that local search is
a strong baseline in NAS when the noise in the benchmark datasets is reduced to a minimum.

• BANANAS: Bayesian optimization with neural architectures for NAS (BANANAS) uses a
meta neural network over path encoding of individual architectures to predict the validation
accuracies. The trained meta NN is used as the surrogate model in BO.

• NAS-BOWL: NAS-BOWL is a BO-based NAS algorithm which uses Weisfeiler Lehman
(WL) graph kernel in GP surrogate model and adapts to both random sampling and mutation
for optimizing the expected improvement (EI) acquisition function. Their experiment results
show better performance of NAS-BOWL when using mutation as the acquisition function
solver, hence we choose this setting to compare against. NAS-BOWL is considered as the
state-of-the-art NAS algorithm.

D.3 ADDITIONAL GRAPH BO FOR NAS RESULTS

We present additional experiment results on comparing NAS-GOAT with baselines when performing
graph BO on NAS-Bench-101, NAS-Bench-201 and NAS-Bench-301 benchmarks. Figure 6 shows
the performance of the remaining baselines on CIFAR10 dataset under different benchmarks, where
NAS-GOAT shows comparable performance or outperforms others in all cases. Figure 7 shows
results on other datasets, where NAS-GOAT continues to show superior performance. NAS-GOAT
consistently outperforms other baselines in the most challenging N301 case. We have similar
conclusions as in Section 4.4 that NAS-GOAT, as a global graph optimization method, presents
more robust performance in terms of the difficulty in the optimization task. Figure 8 summarizes
the comparisons between NAS-GOAT and all 11 baselines in terms of test accuracies. NAS-GOAT
demonstrates comparable performance as state-of-the-art baselines, e.g. NAS-BOWL, NASBOT,
BONAS. Note that in terms of BO performance, only the validation error is the black-box objective,
which we expect NAS-GOAT to directly minimize. The test error, on the other hand, is specific to
the NAS setting, where a good NAS algorithm is hypothesized to heuristically find architectures
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with accompanying good test accuracies, despite potential stochasticity such as overfitting in training
process. The performance gap between the two measures could be improved in other benchmarks,
e.g., by increasing the size of the validation dataset.

D.4 COMPARISON AGAINST NON-BO-BASED NAS METHODS

We search for recent NAS algorithms who also include experiments on the N101, N201 and N301
benchmarks and collect their performance metrics in the following tables. We report the average
deterministic accuracies. Notice that most of the NAS methods require a larger number of queries to
achieve performance comparable to ours, as NAS-GOAT follows a BO framework that maximizes
data-efficiency, i.e., returning promising solutions within a limited budget. NAS-GOAT presents
comparable performance in N101 and N201 despite the relatively smaller number of queries and
outperforms all other methods in the most challenging benchmark N301.

(a) N101 (CIFAR10) (b) N201 (CIFAR10) (c) N301 (CIFAR10)

(d) N101 (CIFAR10) (e) N201 (CIFAR10) (f) N301 (CIFAR10)

Figure 6: Comparison NAS-GOAT with the remaining baselines. Numerical results of Graph BO on
N101, N201 and N301 with CIFAR10 dataset. Top: Deterministic validation error. Bottom: Noisy
validation error. Median with one standard deviation over 20 replications is plotted.

(a) N201 (CIFAR100) (b) N201 (ImageNet) (c) N201 (CIFAR100) (d) N201 (ImageNet)

Figure 7: Comparison NAS-GOAT with the remaining baselines. Numerical results on N201 for
other datasets. (a)-(b): Deterministic validation error. (c)-(d): Noisy validation error. Median with
one standard deviation over 20 replications is plotted.
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(a) N101 (CIFAR10) (b) N201 (CIFAR10) (c) N201 (CIFAR100) (d) N201 (ImageNet)

(e) N101 (CIFAR10) (f) N201 (CIFAR10) (g) N201 (CIFAR100) (h) N201 (ImageNet)

Figure 8: Numerical results on N101 and N201. Top: Deterministic test error. Bottom: Noisy test
error. Median with one standard deviation over 20 replications is plotted.

Table 4: Comparison against non-BO based methods on NAS-Bench-101. Average deterministic
validation and test accuracies are reported, with the corresponding sources of the data, number of
architectures queried within each algorithm and the number of replications performed.

Dataset CIFAR10

Methods Source Val Test Queries Replications

NAO(Luo et al., 2018) Asthana et al. (2024) 94.66 93.49 192 10
SemiNAS(Luo et al., 2020) Cassimon et al. (2025) - 93.89 300 500

Synflow(Tanaka et al., 2020) Han et al. (2023) - 94.18 700 5
NASWOT(Mellor et al., 2021) Cassimon et al. (2025) - 91.77 100 500

WeakNAS(Wu et al., 2021) Asthana et al. (2024) - 94.18 200 100
GANAS(Rezaei et al., 2021) Rezaei et al. (2021) - 94.23 1562 10
AG-Net(Lukasik et al., 2022) Asthana et al. (2024) 94.90 94.18 192 10

CR-LSO(Rao et al., 2022) Rao et al. (2022) - 94.06 500 16
CL-fine-tune(Han et al., 2023) Han et al. (2023) - 94.23 700 5

RAGS-NAS(Xiao & Wang, 2024) Xiao & Wang (2024) - 94.22 608 10
GraphPNAS(Li et al., 2024) Cassimon et al. (2025) - 94.19 300 10
DiNAS(Asthana et al., 2024) Asthana et al. (2024) 94.98 94.27 150 10
Ape-X(Cassimon et al., 2025) Cassimon et al. (2025) - 93.86 150 5

NAS-GOAT-L(ours) - 94.72 94.12 150 20
NAS-GOAT-E(ours) - 94.46 93.91 150 20

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274

Under review as a conference paper at ICLR 2026

Ta
bl

e
5:

C
om

pa
ri

so
n

ag
ai

ns
tn

on
-B

O
ba

se
d

m
et

ho
ds

on
N

A
S-

B
en

ch
-2

01
.A

ve
ra

ge
de

te
rm

in
is

tic
va

lid
at

io
n

an
d

te
st

ac
cu

ra
ci

es
ar

e
re

po
rt

ed
,w

ith
th

e
co

rr
es

po
nd

in
g

so
ur

ce
s

of
th

e
da

ta
,n

um
be

ro
fa

rc
hi

te
ct

ur
es

qu
er

ie
d

w
ith

in
ea

ch
al

go
ri

th
m

an
d

th
e

nu
m

be
ro

fr
ep

lic
at

io
ns

pe
rf

or
m

ed
.

D
at

as
et

C
IF

A
R

10
C

IF
A

R
10

0
Im

ag
eN

et

M
et

ho
ds

So
ur

ce
V

al
Te

st
V

al
Te

st
V

al
Te

st
Q

ue
ri

es
R

ep
lic

at
io

ns

Sy
nfl

ow
(T

an
ak

a
et

al
.,

20
20

)
H

an
et

al
.(

20
23

)
-

94
.3

7
-

-
-

-
90

5
SG

N
A

S(
H

ua
ng

&
C

hu
,2

02
1)

H
ua

ng
&

C
hu

(2
02

1)
90

.1
8

93
.5

3
70

.2
8

70
.3

1
44

.6
5

44
.9

8
-

3
G

A
N

A
S(

R
ez

ae
ie

ta
l.,

20
21

)
R

ez
ae

ie
ta

l.
(2

02
1)

-
94

.3
4

-
73

.2
8

-
46

.8
0

44
4

20
A

G
-N

et
(L

uk
as

ik
et

al
.,

20
22

)
A

st
ha

na
et

al
.(

20
24

)
91

.6
0

94
.3

7
73

.4
9

73
.5

1
46

.3
7

46
.3

4
19

2
10

C
R

-L
SO

(R
ao

et
al

.,
20

22
)

R
ao

et
al

.(
20

22
)

91
.5

4
94

.3
5

73
.4

4
73

.4
7

46
.5

1
46

.9
8

50
0

32
β

-D
A

R
T

S(
Y

e
et

al
.,

20
22

)
Y

e
et

al
.(

20
22

)
91

.5
5

94
.3

6
73

.4
9

73
.5

1
46

.3
7

46
.3

4
-

4
C

L
-fi

ne
-t

un
e(

H
an

et
al

.,
20

23
)

H
an

et
al

.(
20

23
)

-
94

.3
7

-
-

-
-

90
5

R
A

G
S-

N
A

S(
X

ia
o

&
W

an
g,

20
24

)
X

ia
o

&
W

an
g

(2
02

4)
91

.6
1

94
.3

7
73

.5
1

73
.4

9
46

.6
4

46
.6

1
35

4
10

D
iN

A
S(

A
st

ha
na

et
al

.,
20

24
)

A
st

ha
na

et
al

.(
20

24
)

91
.6

1
94

.3
7

73
.4

9
73

.5
1

46
.6

6
45

.4
1

19
2

10

N
A

S-
G

O
A

T-
L

(o
ur

s)
-

91
.5

4
91

.4
4

73
.0

8
73

.1
5

46
.6

2
47

.0
5

15
0

20
N

A
S-

G
O

A
T-

E
(o

ur
s)

-
91

.4
6

91
.3

1
73

.4
0

73
.4

6
46

.5
9

46
.8

6
15

0
20

24



1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328

Under review as a conference paper at ICLR 2026

Table 6: Comparison against non-BO based methods on NAS-Bench-301. Average deterministic
validation accuracies are reported, with the corresponding sources of the data, number of architectures
queried within each algorithm and the number of replications performed.

Dataset CIFAR10

Methods Source Val Queries Replications

TPE(Bergstra et al., 2013) Rao et al. (2022) 94.50 200 5
NAO(Luo et al., 2018) Cassimon et al. (2025) 94.49 200 10

Synflow(Tanaka et al., 2020) Han et al. (2023) 94.60 800 5
CMA-ES(Nomura et al., 2021) Rao et al. (2022) 94.37 200 5
AG-Net(Lukasik et al., 2022) Asthana et al. (2024) 94.79 192 10

CR-LSO(Rao et al., 2022) Rao et al. (2022) 94.53 200 5
CL-fine-tune(Han et al., 2023) Han et al. (2023) 94.83 800 5

RAGS-NAS(Xiao & Wang, 2024) Xiao & Wang (2024) 94.89 300 10
DiNAS(Asthana et al., 2024) Asthana et al. (2024) 94.92 100 10
Ape-X(Cassimon et al., 2025) Cassimon et al. (2025) 94.83 150 5

NAS-GOAT-L(ours) - 94.94 150 20
NAS-GOAT-E(ours) - 94.85 150 20
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