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Abstract

Adversarial attacks pose major challenges to the reliability of deep learning models in
safety-critical domains such as medical imaging and autonomous driving. In such high-
stakes applications, providing reliable uncertainty quantification alongside adversarial ro-
bustness becomes crucial for safe deployment. Although conformal prediction can provide
certain guarantees for model performance under such conditions, unknown attacks may
violate the exchangeability assumption, resulting in the loss of coverage guarantees or
excessively large predictive uncertainty. To address this, we propose a synergistic frame-
work that integrates conformal prediction with game-theoretic defense strategies by mod-
eling the adversarial interaction as a discrete, zero-sum game between attacker and de-
fender. Our framework yields a Nash Equilibrium defense strategy, which we prove main-
tains valid coverage while minimizing the worst-case prediction set size against an opti-
mal adversary operating within the defined attack space. Experimental results on CIFAR-
10, CIFAR-100, and ImageNet further demonstrate that, under Nash equilibrium, defense
models within our framework achieve valid coverage and minimal prediction set size. By
bridging adversarial robustness and uncertainty quantification from a game-theoretic per-
spective, this work provides a verifiable defense paradigm for deploying safety-critical deep
learning systems, particularly when adversarial distributions are unknown or dynamically
evolving but contained within a known attack space. The Python code is available at
https://github.com/bjbbbb/Game- Theoretic- CP|

1 Introduction

The reliability of deep learning technologies (Chen et al., |2025a) is facing systematic challenges posed by
adversarial attacks. Such attacks, through carefully crafted subtle input perturbations, can cause medical
imaging analysis models to produce fatal misdiagnoses (Ma et all 2021) or induce autonomous driving sys-
tems (Badjie et al.l 2024) to make dangerous decisions (Chen et al. 2025b]), with potential risks that have
transcended traditional algorithmic fault tolerance boundaries. Although adversarial training techniques
have enhanced model robustness by proactively generating attack samples and have mitigated malicious
input threats to some extent, their defense mechanisms still exhibit significant uncertainty and cannot pro-
vide verifiable robustness guarantees. Against this backdrop, Conformal Prediction (CP) has emerged as a
promising paradigm, with its core advantages lying in distribution-free properties and robust uncertainty
quantification capabilities. This data-driven approach generates statistically rigorous confidence intervals
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and precisely calibrated probability estimates, demonstrating excellent performance in both regression and
classification tasks, thereby providing a novel solution for constructing trustworthy deep learning systems.

However, the application of Conformal Prediction (CP) methods faces fundamental limitations, as their effec-
tiveness strictly depends on the exchangeability assumption between training and test sets. This assumption
is often difficult to satisfy in real-world application scenarios, particularly under adversarial attack condi-
tions where attackers may employ unknown attack strategies to maliciously perturb input data. Existing
research efforts primarily attempt to mitigate the impact of adversarial samples on test data distribution
by reconstructing non-conformity scoring functions, but these approaches still face significant methodolog-
ical bottlenecks. First, the strategy of expanding prediction set sizes to ensure statistical validity directly
leads to a significant reduction in the decision utility of prediction results. Second, existing improvement
schemes are mostly optimized for specific attack paradigms and struggle to guarantee coverage generaliz-
ability when confronting unknown attack vectors. Furthermore, the engineering implementation of complex
non-conformity scoring functions presents technical obstacles, and existing methods exhibit systematic de-
ficiencies in both computational complexity and cross-scenario generalization capabilities, which severely
constrains the practical application value of CP methods in adversarial environments.

Therefore, developing a universal conformal prediction framework is essential. Such a framework needs to
address three critical challenges: first, establishing a theoretical guarantee system that ensures arbitrary
standard non-conformity scoring functions maintain preset coverage probabilities in open-world scenarios;
second, optimizing uncertainty quantification strategies to minimize prediction set sizes while preserving pre-
diction reliability; third, enabling the framework to simultaneously achieve effective coverage maintenance
and prediction set size minimization when confronting arbitrary unknown attack vectors in adversarial en-
vironments.
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Figure 1: Address adversarial attacks in conformal prediction by constructing a game-theoretic model.
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2 Preliminary and Problem Setup

Consider a classifier f : X — RX which maps an input image x € X to a probability vector f(x) € RE.
Here, X = [0,1]? represents the image space, where pixel values are normalized and d denotes the image
dimension. The integer K signifies the total number of classes, and y € [K] := {1,..., K} denotes the ground
truth label for the input x.

2.1 Conformal Prediction

We first train the classifier f on the training set Diyain, and then compute nonconformity scores on the
calibration set Dc,1. On the test set Diegs, for each input x, we construct a prediction set C(x) C [K] such
that the true label y is contained in C(x) with probability at least 1 — o, where a € (0, 1) is a user-specified
significance level. Formally, we guarantee

P(Y €Cx)>1—a. (1)

In conformal prediction, different nonconformity score functions s¢(x,y) can lead to varying outcomes,
resulting in prediction sets of different sizes. For instance, a choice for the nonconformity score is s(x, k) =
1 — fr(x), where k is the class label. We compute the nonconformity scores s(x, k) in Dc,1. Subsequently, the
conformal quantile § is determined as the (1 — «)-th quantile of these scores:

G1—a = [(1 4 |Decall)(1 — a)]-th largest value in {s(x;, y;) }iep..,- (2)

This quantile provides the precise value for our prediction threshold, such that 7 = ¢;_,. For a new test
input x € Diest, the prediction set C(-) is constructed using this threshold:

Clxi fom) = {k € [K]:s57(x,F) < -0} (3)

This guarantee fundamentally relies on the assumption that calibration data D., and test data Diest are
exchangeable.

2.2 Violation of Exchangeable Assumption

In adversarial scenarios, attackers manipulate the test set images Diest, transforming the original input
samples x into adversarial examples x?@ through a perturbation function (attack function) g,, i.e., x?% =
gn (). This transformation clearly disrupts the exchangeability property that underpins conformal prediction,
thereby rendering standard conformal prediction unreliable in the presence of adversaries. To address this,
there is a pressing need for more robust calibration and model selection strategies that explicitly account for
adversarial perturbations.

2.3 Problem Setup

We consider a problem where an attacker selects an optimal attack g% € {g,}"_; from a set of possible
attacks, and a defender aims to choose a best classification model f} € {fj };):1 and a threshold 7 € R to
minimize the expected size of the prediction set for adversarially perturbed test samples. The optimization
must ensure that the true label is included in the prediction set with a probability of at least 1 — . The
attacker, within this robust framework, seeks to maximize the prediction set size. The defender formulates
the problem as:

min max |C(X?d”;f;‘,7')\7
fj TER gn i€Dtest (4)
subject to: P (y; € C(de“;fj*,r)) >1—oq.

3 Game-Theoretic Framework for Adversarially Robust CP

As shown in Figure[l} the optimization problem can be naturally framed as a two-player zero-sum game. As
described in the problem setup, the defender aims to minimize the prediction set size while maintaining the
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coverage guarantee, whereas the attacker seeks to maximize it. This section first addresses how we ensure the
critical coverage constraint, P (yl eC (X?d"’; fj’-*7 7')) > 1 — «, under adversarial conditions, before formulating
the full game.

3.1 Robust Coverage Guarantee under Known Adversarial Attacks

To satisfy the coverage constraint in Eq. [d] under adversarial perturbations, we employ a robust calibration
strategy. The robust conformal quantile ¢{__ for model f; is then set as the maximum across all attacks:
@ = max g, (5)
n=1,....m
Remark 1 (Intuition behind Max-Quantile). The non-conformity score quantifies the discrepancy between the
prediction and the true label. Since adversarial attacks aim to induce misclassification, they typically inflate
these scores compared to clean data. By selecting the maximum quantile across all considered attacks, we
effectively establish a threshold calibrated to the “worst-case” perturbation. Intuitively, if a threshold is high
enough to encapsulate the true label under the strongest attack (which produces the highest non-conformity

scores), it will inherently cover the true label under weaker attacks, thereby preserving the coverage guarantee
across the entire set of known attacks.

Prediction sets C(x%4%; fj,q{_a) are constructed using q{_a as the threshold, consistent with Section
Additionally, we present Theorem [I] with its corresponding proof provided in Appendix [A]]
Theorem 1 (Robust Coverage Guarantee). For any classifier f; € {f; }57:1 and any adversarial attack g, €

{gn}_; that was included in the calibration process used to compute qj_,, the prediction set C(xfd”; fi q{;a)
provides a coverage probability of at least 1 — a for adversarially perturbed test samples x¢™ :

i .

P(yi € C™; fr,q] o) 21— o (6)

3.2 Game Formulation and Nash Equilibrium

Building upon the robust coverage guarantee established in the preceding section, the constrained optimiza-
tion problem presented in Eq.[d] can be formulated as a two-player zero-sum game. In this game, the defender
aims to minimize the prediction set size, while the attacker seeks to maximize it.

3.2.1 Participants and Strategies
This game involves two participants:
o The Defender: The defender’s strategy is to select a classifier f; from a finite set of models F =

{f1,..., fp}. For each chosen f;, its robust conformal quantile ¢]_,, will serve as the threshold for con-
structing the prediction set.

o« The Attacker: The attacker’s strategy is to select an adversarial attack g, from a finite set of known
attack methods G = {g1,...,9m}-

3.2.2 Payoff Function

The payoff of the game is defined as the expected size of the prediction set. For a defender’s chosen f; and an
attacker’s chosen g,,, the payoff (denoted as Payoff(f;, g,,)) is the average prediction set size on adversarially
perturbed test samples:

Payoff(f;, gn) = Exnpy [[Cx" £, 0] _0)l] (7)

where Py is the distribution of the unperturbed x, x9" denotes the adversarial sample generated by applying
attack g, to the original sample x. The defender seeks to minimize this payoff, while the attacker seeks to
maximize it.
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Algorithm 1 Game-Theoretic Framework for Adversarially Robust Conformal Prediction

1: Input: labeled data D, unlabeled test data Diest, set of defensive models f;,7 =1,...,p,
set of potential attack functions g,,n =1,...,m, Coverage probability 1 — «.
2: Randomly split D into {(2i,%:) }ieDiain {(%i,¥i) ieDew» and {(@4,4i) bieDovu -
> Step 1: Train all defensive models.
3: for j=1,...,pdo
Train defensive model f; on the training set Dirain-
end for
> Step 2: Compute robust conformal quantiles for each model.
for each defensive model f;,7 =1,...,p do
for each attack method g,,n =1,...,m do
Generate adversarial calibration set: x{" = g, (X, Yi, [5)icDen -
Use f;(x") to compute non-conformity scores {s?(x?”, Yi) }ieDon -
10: Compute the quantile threshold as: ¢J" . as the [(1 + |Deu|)(1 — @)]-th largest score in
{5729, ) D
11:  end for ‘ ‘
12:  Determine the maximum quantile threshold ¢f_, = max,—1 .. m ¢i", for defensive model f;.
13: end for
> Step 3: Estimate the prediction set sizes on the evaluation set.

14: for each defensive model f;,j =1,...,p do

15:  for each attack methods g,,n=1,...,m do

16: Generate adversarial evaluation set: x{" = g5, (X, ¥i, f5)icDovar -

17: Construct the prediction set using the model’s robust quantile: C(xJ"; f;, q{fa)iepeval.

18: Estimate the payoff by averaging the prediction set sizes over the adversarial evaluation set:
19: Payoff(f;, 9n) = mpoval] 2ieDen ICX{" 3 f5,a1-a)l-

20: end for

21: end for

> Step 4: Find Nash Equilibrium & Construct Robust Conformal Predictor.

22: Compute the Nash Equilibrium by solving a Linear Program: Payoff(f;, g,.).

23: Output the Nash Defense Strategy d* = (d1,...,d,) and Nash Attack Strategy a* = (a1,...,am).

24: Use the Nash Defense Strategy d* to define the final robust predictor.
> Step 5: Testing Nash Defense Model.

25: for a new test point Xjew € Diest (Which may be subjected to an unknown adversarial attack g € G to
become x?%) do

26:  Randomly sample a defensive model f; according to the Nash Equilibrium strategy d*.

27:  Construct and output the prediction set using the sampled model f; and its corresponding pre-

computed robust quantile ¢] __: C(x%%) = {y/ : 5;(x%% /) < ¢__}.
28: end for

3.2.3 Nash Equilibrium

Given that this is a finite two-player zero-sum game (with finite strategy sets F and G), the existence of
a Nash Equilibrium in mixed strategies is guaranteed by the fundamental Minimax Theorem

(1925).

Let d be a mixed strategy for the defender (a probability distribution over F) and a be a mixed strategy
for the attacker (a probability distribution over G). The expected payoff under these mixed strategies is
E[Payoff(d, a)].

Definition (Nash Equilibrium in Mixed Strategies): A pair of strategies (d*,a*) constitutes a Nash
Equilibrium if, for all other possible mixed strategies d and a:

E[Payoff(d*,a)] < E[Payoff(d*,a*)] < E[Payoff(d, a)] (8)
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In the context of our zero-sum game, the defender d seeks to minimize the expected payoff (prediction set
size), and the attacker a seeks to maximize it. The Nash Equilibrium (d*,a*) is the stable point where no
player can gain an advantage by unilaterally deviating.

The Minimax Theorem states that the minmax value (the best the defender can do) is equal to the maxmin
value (the best the attacker can do), and this common value, V', is the value of the game. The optimal mixed
strategies (d*,a*) achieve this value V. Formally, the value of the game V is defined by the equality:

V = E[Payoff(d*,a")] = m(}n max E[Payoff(d, a)]
. (9)

= max mdin E[Payoff(d, a)]
a

To compute this equilibrium, we first construct a payoff matrix where rows correspond to defender’s pure
strategies f; € F and columns correspond to attacker’s pure strategies g, € G, with each entry being
Payoff(f;, gn). We then solve for the optimal mixed strategies (d*,a*) by solving a Linear Program derived
from the Minimax equality, which yields a solution that is robust and realistic, especially when pure strategy
Nash Equilibria do not exist or when players wish to introduce unpredictability. Algorithm [I] outlines the
entire process of our framework.

Remark 2. Our framework finds a Nash Equilibrium, defined by optimal mixed strategies for the defender
(d*) and attacker (a*). This creates a stable state where no player can gain an advantage by unilaterally
deviating, as any such move would be met by the opponent’s optimal counter-play. The defender’s strategy
d*, an unpredictable probabilistic ensemble, is thus robust against the attacker’s best possible strategic
response, with the comprehensiveness of the attack set G defining the strict boundary and scope of this
guarantee.

4 Related Work

Conformal prediction (CP) (Vovk et al.| [2005) is a methodology designed to generate prediction regions for
variables of interest, facilitating the estimation of model uncertainty by providing prediction sets rather than
point estimates. CP has been successfully applied to both classification (Luo & Colombol 2024} |Luo & Zhou,
2025b)) and regression tasks (Luo & Zhoul [2025¢3f; |Bao et al., |2025a; |Guo et al.| [2026)). Tts flexibility allows
adaptation to various real-world scenarios, including segmentation (Luo & Zhou, [2025c)), games (Luo et al.,
2024)), time-series forecasting (Su et al., [2024), and graph-based applications (Luo et al.| 2023} Tang et al.,
2025} [Luo & Zhoul, 2025d; Wang et al.l |2025ajb; [Luo & Colombol 2025} |Zhang et al., 2025)).

The advent of adversarial examples (Goodfellow et al.,|2014; |Zhang et al., [2022) has posed substantial secu-
rity challenges within the field of machine learning. In this context, uncertainty quantification emerges as a
critical factor for enhancing the resilience of deep learning models. Conformal Prediction (CP) (Papadopou-
los et al., [2002; [Vovk et al., |2005), renowned for its ability to provide distribution-independent coverage
guarantees, faces notable obstacles when confronted with data poisoning and adversarial perturbations. Em-
pirical investigations, such as those presented by [Liu et al.| (2024)), reveal that conventional adversarial attack
strategies—including the Projected Gradient Descent (PGD) method (Madry et al.l 2017)—can significantly
undermine the reliability of conformal prediction frameworks.

Adversarially Robust Conformal Prediction To alleviate the adverse effects on conformal prediction
(CP) under adversarial settings, a number of research efforts have been dedicated to tackling this challenge
without relying on model retraining.

Adversarially Robust Conformal Prediction (ARCP) (Gendler et al. |2021) integrates conformal prediction
with randomized smoothing to provide finite-sample coverage guarantees in the presence of Lo-norm-bounded
adversarial noise. By incorporating Gaussian noise, it constrains the Lipschitz constant of the non-conformity
score, thereby handling unknown adversarial perturbations without the need for training adjustments. Prob-
abilistically Robust Conformal Prediction (PRCP) (Ghosh et al.| 2023) employs a quantile-of-quantile ap-
proach to adapt to perturbations, establishing thresholds for both data samples and perturbations. It utilizes
adversarial attacks to compute empirical robust quantiles, independently of the model training process.
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[Yan et al| (2024) put forward two methods, Post-Training Transformation (PTT) and Robust Conformal
Training (RCT), to enhance the efficiency of robust conformal prediction. They revise RSCP into RSCP+
to provide certified guarantees and incorporate it into the training phase. Zargarbashi et al.| (2024) develop
robust prediction sets by bounding the worst-case variations in conformity scores under adversarial evasion
and poisoning attacks. They employ CDF-based bounds to calculate conservative prediction sets and corre-
sponding thresholds for these scenarios. lJeary et al.| (2024)) introduce Verifiable Robust Conformal Prediction
(VRCP), which utilizes neural network verification techniques to uphold coverage guarantees amid adversar-
ial attacks. VRCP accommodates arbitrary norm-bounded perturbations and can be extended to regression
tasks.

While these approaches offer partial alleviation of the adversarial impact, they either sacrifice the com-
pactness of the prediction sets or struggle to sustain robustness against diverse attack types and varying
perturbation magnitudes.

Adversarial Training for Conformal Prediction To bolster adversarial robustness in conformal pre-
diction (CP), a straightforward and intuitive strategy involves integrating adversarial training techniques
into the CP framework.

Bao et al.| (2025b)) put forward a method that enhances adversarial robustness under the CP setting by
training on samples with uncertain attack models and incorporating conformal training with a hard thresh-
old. Moreover, introduced Uncertainty-Reducing Adversarial Training (AT-UR) aimed at
elevating both the efficiency and adversarial robustness of CP. This is achieved by minimizing predictive
entropy and employing a weighted loss function grounded in True Class Probability Ranking. They further
combined AT-UR with several established adversarial training methods, namely Adversarial Training (AT)
(Madry et al.|[2017)), Friendly Adversarial Training (FAT) (Zhang et al.||2020)), and Trade-off-inspired Adver-
sarial Defense via Surrogate-loss Minimization (TRADES) (Zhang et al.| |2019)). For generating adversarial
examples, they used the Projected Gradient Descent (PGD) approach.

5 Experiment Results

5.1 Experimental Setup

To comprehensively evaluate the effectiveness and robustness of our proposed game-theoretic framework
across datasets of varying complexity and scale, we have designed a series of detailed experiments. This
section will provide a thorough introduction to the datasets used in the experiments, the defense models,
the attack methods, as well as the specific parameter configurations.
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Figure 2: Evaluate the payoff matrix on both the CIFAR-10 dataset’s evaluation set and test set using the
APS method.



Published in Transactions on Machine Learning Research (01/2026)

Table 1: Performance of various Conformal Prediction (CP) methods under the Nash defense strategy on
the CIFAR-10 dataset. The table presents the mean and standard deviation of coverage, size, and SSCV (for
specific indicator calculations refer to Appendix ) against a range of attack strategies. All results are
averaged over 20 independent random splits.

Attacks Indicator APS RANK RAPS SAPS TOPK
Coverage  0.997 (0.001) 0.998 (0.001) 0.997 (0.001) 0.997 (0.001) 0.997 (0.001)
Clean Size 4.826 (0.092) 5.263 (0.070) 4.833 (0.095) 4.666 (0.105) 5.655 (0.093)
SSCV 0.100 (0.000) 0.098 (0.001) 0.100 (0.000) 0.100 (0.000) 0.097 (0.001)
Coverage  0.982 (0.003) 0.982 (0.002) 0.982 (0.003) 0.981 (0.003) 0.980 (0.003)
FGSM Size 5.237 (0.086) 5.356 (0.076) 5.241 (0.090) 5.069 (0.096) 5.653 (0.091)
SSCV 0.099 (0.002) 0.082 (0.002) 0.099 (0.000) 0.098 (0.001) 0.080 (0.003)
Coverage  0.983 (0.003) 0.984 (0.002) 0.983 (0.002) 0.982 (0.002) 0.981 (0.003)
PGD Size 5.189 (0.086) 5.342 (0.075) 5.193 (0.088) 5.040 (0.099) 5.655 (0.089)
SSCV 0.099 (0.002) 0.084 (0.002) 0.099 (0.001) 0.098 (0.002) 0.081 (0.003)
Coverage  0.995 (0.001) 0.989 (0.002) 0.995 (0.001) 0.991 (0.002) 0.986 (0.002)
APGD Size 4.879 (0.092) 5.287 (0.066) 4.887 (0.093) 4.762 (0.103) 5.654 (0.091)
SSCV 0.100 (0.000) 0.089 (0.002) 0.100 (0.001) 0.100 (0.000) 0.086 (0.002)
Coverage  0.997 (0.001) 0.998 (0.001) 0.997 (0.001) 0.997 (0.001) 0.997 (0.001)
CW Size 4.917 (0.090) 5.291 (0.069) 4.924 (0.091) 5.124 (0.095) 5.658 (0.089)
SSCV 0.100 (0.000) 0.098 (0.001) 0.100 (0.001) 0.100 (0.000) 0.097 (0.001)
Coverage  0.898 (0.008) 0.898 (0.007) 0.899 (0.008) 0.898 (0.007) 0.900 (0.007)
PIFGSM  Size 5.553 (0.085) 5.416 (0.083) 5.563 (0.088) 5.282 (0.094) 5.656 (0.088)
SSCV 0.099 (0.002) 0.005 (0.005) 0.099 (0.002) 0.066 (0.013) 0.006 (0.004)
Coverage  0.995 (0.001) 0.989 (0.002) 0.995 (0.001) 0.992 (0.001) 0.986 (0.002)
GN Size 5.562 (0.091) 5.532 (0.072) 5.570 (0.086) 5.305 (0.078)  5.653 (0.092)
SSCV 0.100 (0.000) 0.089 (0.002) 0.100 (0.000) 0.100 (0.000) 0.086 (0.002)
Coverage  0.997 (0.001) 0.998 (0.001) 0.997 (0.001) 0.998 (0.001) 0.997 (0.001)
Square Size 4.833 (0.088) 5.269 (0.068) 4.840 (0.094) 4.756 (0.099) 5.655 (0.088)
SSCV 0.100 (0.000) 0.098 (0.001) 0.100 (0.000) 0.100 (0.000) 0.097 (0.001)
Coverage  0.996 (0.001) 0.998 (0.001) 0.997 (0.001) 0.997 (0.001) 0.997 (0.001)
SPSA Size 4.852 (0.091) 5.266 (0.070) 4.858 (0.094) 4.699 (0.107) 5.658 (0.088)
SSCV 0.100 (0.000) 0.098 (0.001) 0.100 (0.001) 0.100 (0.000) 0.097 (0.001)
Coverage  0.949 (0.013) 0.989 (0.001) 0.951 (0.012) 0.968 (0.021) 0.982 (0.029)
Nash Size 5.558 (0.088) 5.532 (0.072) 5.566 (0.087) 5.304 (0.078) 5.657 (0.092)
SSCV 0.099 (0.001) 0.089 (0.001) 0.100 (0.001) 0.093 (0.006) 0.083 (0.028)

5.1.1 Datasets

Our experiments are conducted on three standard computer vision benchmarks: CIFAR-10, CIFAR-100, and
ImageNet. For CIFAR-10 and CIFAR-100, we utilize their official test sets. For ImageNet, we use the official
validation set. For each dataset, we randomly split the corresponding set into three disjoint subsets: 30% for
the calibration set (Dca1), 30% for the evaluation set (Deval), and the remaining 40% for the final test set

(Dtest ) .

5.1.2 Adversarial Attacks

We generate adversarial examples using the torchattacks library (Kiml 2020), with the perturbation for all
attacks constrained within an L..-norm ball of radius € = 8/255. As a baseline, we use original, unperturbed
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Payoff Matrix on Evaluation Set (CIFAR100 - SAPS) Payoff Matrix on Test Set (CIFAR100 - SAPS)
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Figure 3: Evaluate the payoff matrix on both the CIFAR-100 dataset’s evaluation set and test set using the
SAPS method.
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Figure 4: Obtain the Nash attack and Nash defense strategies on the CIFAR-10 dataset using the APS
method.

images. The specific attack parameters are set as follows: the FGSM (Fast Gradient Sign Method) attack
(Goodfellow et al., 2014) uses the default epsilon of € = 8/255; PGD (Projected Gradient Descent) (Madry;
et al.,|2017) is configured with 10 iteration steps, a step size () of 1/255, and a random starting point within
the e-ball; APGD (Auto-PGD) (Croce & Heinl [2020) is set to run for 10 steps utilizing the cross-entropy loss
function. Furthermore, the CW (Carlini & Wagner) attack (Carlini & Wagner| [2017)) is configured with 50
optimization steps, a learning rate of 0.01, and a confidence parameter (¢) of 1; PIFGSM (Projected Iterative
FGSM) (Gao et al., [2020) is executed for 10 iterations; and the default library implementation is used for
Gaussian Noise (GN). For the CIFAR-10 and CIFAR-100 datasets, we also incorporate two additional black-
box methods: the Square attack (Andriushchenko et all 2020), which is limited to a maximum of 1000
queries per sample, and SPSA (Simultaneous Perturbation Stochastic Approximation) (Uesato et al., 2018]),
for which we employ the default library implementation.
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Calculated Nash Equilibrium Strategy (CIFAR100 - SAPS)

Defender's Nash Strategy Attacker's Nash Strategy

10 10 0.96

Probability
Probability

Figure 5: Obtain the Nash attack and Nash defense strategies on the CIFAR-100 dataset using the SAPS
method.
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Figure 6: Box plots of size for different defense models using the APS method on the CIFAR-10 dataset
under various attacks.

5.1.3 Defensive Models

To ensure fairness and reproducibility, all defensive models, denoted as f;, are sourced from the RobustBench
benchmark (Croce et all [2021). RobustBench provides a standardized library of publicly available, state-
of-the-art models. Since there are inconsistencies in training models across different datasets, we mainly
selected these models (Addepalli et al., |2022; [Bai et al., 2024} |Chen & Lee) 2024; [Debenedetti et al., |2023}
Xu et al [2023; |Cui et al., 2024} |Addepalli et al., 2022; [Pang et al. [2022; [Peng et al [2023). These models
have verified adversarial robustness and serve as a recognized reference for progress in the field.

In our experiments, the significance level « is consistently set to 0.1 across all trials. We employ five widely
recognized CP methods (Huang et al., 2024al) to evaluate the performance of our framework, namely APS
(Romano et al.l 2020), RAPS (Angelopoulos et al., [2021)), TOPK (Angelopoulos et al. 2021)), SAPS (Huang
et al.,[2024b)), and RANK (Luo & Zhoul [2025a) approaches. We use coverage, size, and SSCV (Angelopoulos
et al., 2021)) as evaluation metrics.

A core finding of our game-theoretic framework is the exceptional robustness of the Nash defense strategy,
irrespective of the Conformal Prediction (CP) method. As shown in Table 1, our Nash defense guarantees that
the expected prediction set size remains at or below the threshold set by the attacker’s own Nash strategy.
This upper bound holds consistently, with minor deviations attributable to the inherent generalization gap
between the evaluation and test sets.
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Distribution of Prediction Set Size under CW Attack Distribution of Prediction Set Size under GN Attack Distribution of Prediction Set Size under Nash Attack
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Figure 7: Box plots of size for different defense models using the SAPS method on the CIFAR-100 dataset
under various attacks.

Additionally, as shown in Figures [6] and [7] when confronted with Nash attacks, our Nash defense strategy
consistently outperforms many standalone defense models. While some defense models demonstrate com-
parable performance, their vulnerabilities are also exposed (as illustrated in the left and middle panels of
Figures |§| and . The key advantage of Nash defense lies in its guaranteed performance ceiling: it ensures
that the size of the prediction set does not exceed the upper bound defined by the Nash attack value, a
guarantee that other individual models cannot provide against their respective worst-case attacks. This is
the essence of its robustness: it prevents adversaries from gaining an advantage by unilaterally altering their
strategies, thereby ensuring reliable worst-case performance.

As depicted in Figures it illustrates the errors in the payoff matrices between the evaluation and test
sets generated by Nash strategies, while Figures showcases the attack and defense strategies under
Nash equilibrium. We conducted detailed experiments on attack methods that fall outside the framework
construction (for details, see Appendix . Additionally, other results are presented in Appendix

6 Conclusion

In this study, we have introduced an innovative game-theoretic framework designed to tackle the significant
vulnerability of conformal prediction when subjected to adversarial attacks, which fundamentally breach
the foundational assumption of exchangeability. By conceptualizing the adversarial interaction between the
defender and attacker as a zero-sum game, we have transitioned the defense strategy from relying on a static
model selection to pursuing a dynamic, strategic equilibrium. Through rigorous theoretical analysis and ex-
tensive empirical validation on benchmark datasets such as CIFAR-10, CIFAR-100, and ImageNet, we have
demonstrated that the Nash Equilibrium solution yields a mixed defense strategy that offers provable robust-
ness within the defined game-theoretic framework. Although our Leave-One-Out experiments suggest strong
empirical generalization capabilities against unseen attacks, we recognize a notable limitation: the stringent
theoretical coverage guarantees are contingent upon the boundaries of the attack space. Consequently, ad-
versarial perturbations that are exceptionally potent or markedly distinct from those in the training set may
still undermine the validity of the coverage guarantees. Despite this limitation, our framework provides a
verifiable defense mechanism that ensures worst-case performance against optimal adversaries within the
modeled attack scope. By bridging the domains of adversarial robustness and uncertainty quantification,
this work establishes a principled approach towards achieving reliable artificial intelligence. Future work
could explore extending this framework to a continuous strategy space, or integrating certified robustness
techniques, to provide guarantees against adversarial perturbations g ¢ G.
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A Appendix

A.1 Proof for Theorem 1

Proof. Let f; be a given classifier and let x24V be a test sample generated by an arbitrary attack g, € {g,}™ ;.

Jn
11—«

By the definition of the conformal quantile, for the specific attack g,, the quantile ¢
calibration set D, guarantees:

computed on the

The robust quantile q{_a for model f; is defined as:

- "o 11
—o ke{mlfl.}.fm}ql*a (11)

From this definition, it directly follows that for our chosen attack g,:
N (12)

adV jn

The event s(x24V,y;) < qi™, is a subset of the event s(x?4V,y;) < q{_a. Therefore, the probability of the
latter is at least as large as the probability of the former:

P (s(%, ) < ql_o) = P (s m) < ai2s) (13)

The condition for the true label y; to be in the prediction set C(x24V; f;, q{;a) is precisely s(x2dV, y;) < q{;a.
Combining these steps, we have:

P(y; € CeSYi fioql_0)) = P (s, m) <ol )
> P (S(Xadv yz) < an )

] 11—«

— Q.

This completes the proof. O

A.2 Conformal Prediction Evaluation

The Coverage measures the proportion of test instances in Dyt Where the true label is contained within the
prediction set I'(z;), and is defined as

Coverage =

S 1y e D). (14)

| testl 1€ Dxest
A higher coverage indicates that the prediction sets reliably contain the true labels.
The Size metric calculates the average number of labels in the prediction sets across all test instances,
1
Size = —— > [T(;)), (15)
|Dtest| .
1€ Dxest

where smaller sizes denote more precise and informative predictions.

The Size-Stratified Coverage Violation (SSCV) evaluates the consistency of coverage across different predic-
tion set sizes. It is defined as

SSCV(I, {8;}3=,) = sup @Il 1 _ g, (16)
J€ls]

where {S;}5_; partitions the possible prediction set sizes, and J; = {i € Dies @ [I'(x;)] € Sj}. A smaller
SSCV indicates more stable coverage across different set sizes.
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A.3 Generalization to Unknown Attacks and Theoretical Discussions

In this section, we extend our analysis to evaluate the robustness of the proposed framework against unknown
adversarial threats and provide further theoretical insights into the game-theoretic formulation. Specifically,
we address the generalization capability of the Nash defense strategy, discuss the implications of the finite
attack space assumption, and provide an intuitive interpretation of the robust coverage guarantee.

A critical consideration for any adversarial defense is its performance against attack strategies that were
not encountered during the training or calibration phases. While our main framework assumes the attacker
selects from a predefined set G, real-world scenarios may involve "unknown" attacks g ¢ G. To rigorously
evaluate the generalization capability of our Nash defense strategy, we conducted Leave-One-Out (LOO)
and Leave-Two-Out (LTO) experiments.

Experimental Setup: In the LOO setting, we systematically exclude one attack strategy from the attacker’s
portfolio G during the calibration of conformal quantiles and the computation of the Nash Equilibrium. The
resulting defense strategy is then evaluated against the excluded attack. Similarly, in the LTO setting, two
attacks are simultaneously excluded from the defender’s knowledge base and used solely for testing.

Analysis of Results: The results for CIFAR-10 and CIFAR-100 are presented in Table [2] and Table
(referring to the tables provided in Appendix A.5 and A.6), respectively.

e Robustness Consistency: For the majority of attack methods, including APGD, CW, PGD, and
Square Attack, the Nash defense strategy maintains valid coverage (close to or exceeding the target
1—a = 0.90) even when these specific attacks are excluded from the calibration set. For instance, in
the LOO experiments on CIFAR-10, excluding APGD results in a coverage of 0.995 against APGD
itself. This suggests that the remaining attacks in G provide a sufficient "basis" to approximate the
worst-case boundary of the perturbation space for these attack types.

o Limitations and Boundary Cases: We observe a performance drop when testing against PIFGSM
(Projected Iterative FGSM) when it is excluded from the game. As shown in the tables, the coverage
against an unknown PIFGSM drops significantly (e.g., to ~ 0.70 in LOO settings). This highlights
a fundamental property of data-driven defenses: if an unknown attack explores a region of the
perturbation space that is orthogonal to or significantly more aggressive than the known set G,
the exchangeability assumption is violated too severely for the surrogate attacks to compensate.
However, when PIFGSM is included in the set G (as in our main experiments), the framework
successfully adapts, restoring valid coverage.

These findings demonstrate that while the framework generalizes well to unknown attacks that share struc-
tural characteristics with the known set, the defender must ensure the predefined set G is diverse enough to
approximate the “worst-case” capabilities of a potential adversary.

A.4 CIFAR10 results

In this section, we provide supplementary payoff matrices (on the evaluation set) and payoff matrices (on
the test set) for other methods applied to the CIFAR-10 dataset, along with corresponding results such as
box plots.

We will elaborate on the specific meanings of these figures in detail. Figures [§ and [9] are box plots showing
the results of using the RANK and TOPK CP methods on the CIFAR-10 dataset. The figure plots the size
of the prediction sets, and it can be seen that the Nash defense yields the smallest prediction sets. Figures
[10] [{1} 12} and [I3] respectively display the Nash attack strategies and Nash defense strategies obtained on
the validation set for four different CP methods (RAPS, SAPS, RANK, TOPK). Figures and 15| show
the sizes of prediction sets for RAPS and SAPS as CP methods under single attacks and Nash attacks,
respectively. We mainly focus on the non-single-attack scenario for Nash strategies. It can be observed that
there is inconsistency among the defense models that are optimal against different single attacks. Therefore,
the Nash defense employs different strategies, namely, a combined defense model. Figures [I6] to [I9) plot the
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Table 2: Robustness against Unknown Attacks (Generalization) on CIFAR10. Values denote Size (Std)
/ Coverage (Std).

Excluded Attack(s) APS RANK RAPS SAPS TOPK
Leave-One-Out (LOO)
Indicator Size Coverage Size Coverage Size Coverage Size Coverage Size Coverage
APGD 4.88 (0.09) / 0.995 (0.001)  3.77 (0.08) / 0.979 (0.002)  4.89 (0.11) / 0.995 (0.001) 3.9 (0.19) / 0.982 (0.003)  3.56 (0.08) / 0.975 (0.002)
cwW 4.92 (0.09) / 0.997 (0.001)  3.87 (0.05) / 0.996 (0.001)  4.93 (0.11) / 0.997 (0.001)  4.98 (0.09) / 0.998 (0.001)  3.56 (0.08) / 0.995 (0.001)
FGSM 5.23 (0.08) / 0.981 (0.003)  3.94 (0.03) / 0.963 (0.002)  5.25 (0.10) / 0.982 (0.003)  4.37 (0.18) / 0.974 (0.003)  3.56 (0.08) / 0.955 (0.002)
GN 5.89 (0.07) / 0.996 (0.001)  3.78 (0.07) / 0.969 (0.003)  5.90 (0.07) / 0.996 (0.001)  4.27 (0.29) / 0.980 (0.004)  3.57 (0.08) / 0.962 (0.003)
PGD 5.19 (0.08) / 0.983 (0.003)  3.91 (0.03) / 0.970 (0.001)  5.20 (0.11) / 0.984 (0.003)  4.33 (0.18) / 0.976 (0.003)  3.57 (0.07) / 0.966 (0.002)
PIFGSM 3.21 (0.08) / 0.705 (0.017) 1.35 (0.02) / 0.666 (0.008) 3.20 (0.06) / 0.703 (0.014) 2.44 (0.04) / 0.734 (0.007) 1.76 (0.03) / 0.757 (0.010)
SPSA 4.86 (0.10) / 0.997 (0.001)  3.82 (0.07) / 0.996 (0.001)  4.87 (0.10) / 0.997 (0.001)  4.03 (0.19) / 0.997 (0.001)  3.54 (0.09) / 0.995 (0.001)
Square 4.84 (0.09) / 0.997 (0.001)  3.80 (0.07) / 0.996 (0.001)  4.85 (0.10) / 0.997 (0.001)  4.20 (0.16) / 0.998 (0.001)  3.54 (0.08) / 0.995 (0.001)
Leave-Two-Out (LTO)

Indicator Size Coverage Size Coverage Size Coverage Size Coverage Size Coverage
APGD + CW 4.92 (0.10) / 0.996 (0.002)  3.82 (0.08) / 0.988 (0.009)  4.91 (0.10) / 0.996 (0.001)  4.47 (0.53) / 0.990 (0.008)  3.59 (0.09) / 0.985 (0.010)
APGD + FGSM 5.08 (0.20) / 0.988 (0.007)  3.85 (0.10) / 0.971 (0.008)  5.06 (0.20) / 0.988 (0.007)  4.25 (0.31) / 0.979 (0.005)  3.58 (0.09) / 0.965 (0.011)
APGD + GN 5.18 (0.75) / 0.994 (0.002)  3.78 (0.07) / 0.974 (0.005)  5.17 (0.75) / 0.994 (0.003)  4.23 (0.38) / 0.982 (0.004)  3.59 (0.09) / 0.969 (0.007)
APGD + PGD 5.06 (0.18) / 0.989 (0.006)  3.84 (0.09) / 0.975 (0.005)  5.04 (0.18) / 0.989 (0.006)  4.23 (0.30) / 0.980 (0.005)  3.59 (0.09) / 0.971 (0.005)
APGD + PIFGSM 2.66 (0.43) / 0.802 (0.101)  1.26 (0.06) / 0.770 (0.120) 2.73 (0.43) / 0.808 (0.105) 2.09 (0.25) / 0.805 (0.088) 1.73 (0.04) / 0.823 (0.076)
APGD + SPSA 4.89 (0.11) / 0.996 (0.001)  3.80 (0.08) / 0.987 (0.009)  4.87 (0.09) / 0.996 (0.001)  4.07 (0.25) / 0.990 (0.008)  3.55 (0.09) / 0.985 (0.010)
APGD + Square 4.88 (0.11) / 0.996 (0.002)  3.79 (0.08) / 0.988 (0.009)  4.86 (0.09) / 0.996 (0.001)  4.15 (0.25) / 0.990 (0.008)  3.55 (0.09) / 0.985 (0.010)
CW + FGSM 5.10 (0.18) / 0.989 (0.008)  3.90 (0.05) / 0.979 (0.017)  5.08 (0.19) / 0.989 (0.008)  4.66 (0.34) / 0.986 (0.012)  3.59 (0.09) / 0.975 (0.020)
CW + GN 5.20 (0.73) / 0.996 (0.001)  3.83 (0.07) / 0.983 (0.014)  5.20 (0.73) / 0.996 (0.001)  4.59 (0.41) / 0.988 (0.010)  3.59 (0.09) / 0.979 (0.016)
CW + PGD 5.08 (0.17) / 0.990 (0.007)  3.89 (0.05) / 0.983 (0.013)  5.06 (0.17) / 0.990 (0.007)  4.64 (0.36) / 0.987 (0.012)  3.59 (0.09) / 0.981 (0.015)

CW + PIFGSM
CW + SPSA

CW + Square
FGSM + GN
FGSM + PGD
FGSM + PIFGSM
FGSM + SPSA
FGSM + Square
GN + PGD

GN + PIFGSM
GN + SPSA

GN + Square
PGD + PIFGSM
PGD + SPSA
PGD + Square
PIFGSM + SPSA
PIFGSM + Square
SPSA + Square

2.91 (0.33) / 0.828 (0.125)

4.91 (0.11) / 0.997 (0.001)

4.90 (0.12) / 0.997 (0.001)

5.38 (0.55) / 0.990 (0.007)
)

5.23 (0.10) / 0.983 (0.003)
2.95 (0.17) / 0.791 (0.103)
5.07 (0.22) / 0.989 (0.008)
5.06 (0.23) / 0.989 (0.008)
5.34 (0.59) / 0.990 (0.006)
3.21 (0.25) / 0.825 (0.143)
5.15 (0.78) / 0.996 (0.001)
5.14 (0.78) / 0.997 (0.001)
3.02 (0.20) / 0.805 (0.104)
5.04 (0.20) / 0.990 (0.007)
5.03 (0.21) / 0.990 (0.007)
2.82 (0.39) / 0.832 (0.129)
2.82 (0.40) / 0.832 (0.129)
4.86 (0.10) / 0.997 (0.001)

1.28 (0.07) / 0.827 (0.162)
3.85 (0.06) / 0.996 (0.001)
3.84 (0.07) / 0.996 (0.001)
3.86 (0.09) / 0.966 (0.004)
3.92 (0.03) / 0.966 (0.004)
1.35 (0.01) / 0.785 (0.121)
3.88 (0.08) / 0.979 (0.017)
3.87 (0.09) / 0.979 (0.017)
3.85 (0.08) / 0.970 (0.002)
1.37 (0.02) / 0.792 (0.127)
3.80 (0.07) / 0.983 (0.013)
3.79 (0.07) / 0.983 (0.014)
1.34 (0.02) / 0.791 (0.127)
3.87 (0.07) / 0.983 (0.013)
3.86 (0.08) / 0.983 (0.013)
1.29 (0.06) / 0.823 (0.159)
1.29 (0.06) / 0.821 (0.157)
3.81 (0.07) / 0.996 (0.001)

2.93 (0.33) / 0.829 (0.125)
4.89 (0.09) / 0.997 (0.001)
4.88 (0.10) / 0.997 (0.001)
5.38 (0.55) / 0.990 (0.007)
5.22 (0.10) / 0.982 (0.003)

2.92 (0.17) / 0.790 (0.102)
5.04 (0.21) / 0.989 (0.008)
5.04 (0.22) / 0.989 (0.008)
5.34 (0.59) / 0.990 (0.006)
3.20 (0.25) / 0.823 (0.144)
5.14 (0.77) / 0.996 (0.001)
5.14 (0.78) / 0.996 (0.001)
2.99 (0.20) / 0.805 (0.103)
5.02 (0.19) / 0.990 (0.007)
5.01 (0.20) / 0.990 (0.007)
2.81 (0.38) / 0.832 (0.130)
2.80 (0.39) / 0.831 (0.130)
4.85 (0.10) / 0.997 (0.001)

2.56 (0.35) / 0.865 (0.125)
4.48 (0.52) / 0.998 (0.001)
4.57 (0.43) / 0.998 (0.001)
4.42 (0.33) / 0.978 (0.005)
4.42 (0.24) / 0.976 (0.003)

2.42 (0.03) / 0.822 (0.091)
4.26 (0.29) / 0.986 (0.011)
4.34 (0.24) / 0.987 (0.012)
4.40 (0.34) / 0.979 (0.005)
2.43 (0.03) / 0.829 (0.097)
4.24 (0.37) / 0.989 (0.009)
4.32 (0.33) / 0.990 (0.009)
2.40 (0.05) / 0.825 (0.092)
4.24 (0.28) / 0.987 (0.011)
4.32 (0.23) / 0.987 (0.011)
2.21 (0.23) / 0.850 (0.118)
2.26 (0.19) / 0.851 (0.118)
4.12 (0.19) / 0.998 (0.001)

1.75 (0.03) / 0.870 (0.115)
3.55 (0.09) / 0.995 (0.001)
3.56 (0.09) / 0.995 (0.001)
3.58 (0.09) / 0.959 (0.005)
3.58 (0.09) / 0.961 (0.006)
1.76 (0.03) / 0.832 (0.077)
3.55 (0.09) / 0.974 (0.021)
3.55 (0.09) / 0.975 (0.021)
3.58 (0.09) / 0.965 (0.003)
1.75 (0.02) / 0.828 (0.075)
3.55 (0.09) / 0.978 (0.017)
3.55 (0.09) / 0.979 (0.017)
1.75 (0.03) / 0.839 (0.085)
3.55 (0.09) / 0.980 (0.015)
3.55 (0.09) / 0.980 (0.015)
1.75 (0.03) / 0.866 (0.112)
1.75 (0.03) / 0.847 (0.093)
3.55 (0.08) / 0.995 (0.001)

sizes of prediction sets for four different CP methods (RANK, RAPS, SAPS, TOPK) on the evaluation set
and test set under various attacks and their corresponding defense models. This is used to verify that the
process is commutative. It can be seen that the sizes of prediction sets generated on the two datasets are
basically consistent, meaning that our evaluation set is fully commutative with the test set. This mutually
corroborates our theory of Nash defense.

Figure 8:

Distribution of Prediction Set Size under Nash Attack
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Box plots of size for different defense models using the RANK method on the CIFAR-10 dataset.
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Table 3: Robustness against Unknown Attacks (Generalization) on CIFAR100. Values denote Size (Std)
/ Coverage (Std).

Excluded Attack(s)

APS

RANK

RAPS

SAPS

TOPK

Indicator

Size Coverage

Leave-One-Out (LOO)

Size Coverage

Size Coverage

Size Coverage

Size Coverage

APGD
cwW
FGSM
GN
PGD
PIFGSM
SPSA
Square

51.94 (1.37) / 0.998 (0.001)
52.28 (1.36) / 0.999 (0.001)
54.34 (1.35) / 0.981 (0.002)
57.50 (1.32) / 0.992 (0.002)
54.03 (1.36) / 0.983 (0.002)
24.75 (0.77) / 0.692 (0.012)
51.55 (1.38) / 0.998 (0.001)
51.49 (1.38) / 0.998 (0.001)

64.01 (0.96) / 0.999 (0.001)
64.01 (0.96) / 0.999 (0.001)
64.03 (0.96) / 0.981 (0.002)
64.07 (0.96) / 0.990 (0.001)
64.03 (0.96) / 0.983 (0.002)
27.45 (1.13) / 0.690 (0.012)
63.99 (0.96) / 0.998 (0.001)
64.00 (0.96) / 0.999 (0.001)

52.00 (1.36) / 0.998 (0.001)
52.34 (1.36) / 0.999 (0.001)
54.40 (1.35) / 0.981 (0.002)
57.55 (1.32) / 0.992 (0.002)
54.09 (1.36) / 0.983 (0.002)
24.79 (0.89) / 0.692 (0.014)
51.51 (1.37) / 0.998 (0.001)
51.45 (1.36) / 0.998 (0.001)

63.36 (0.97) / 0.999 (0.001)
63.56 (0.97) / 0.999 (0.001)
63.59 (0.98) / 0.981 (0.002)
63.69 (0.97) / 0.990 (0.001)
63.57 (0.97) / 0.983 (0.002)
27.22 (1.13) / 0.690 (0.012)
63.30 (0.93) / 0.998 (0.001)
63.33 (0.93) / 0.999 (0.001)

64.26 (0.92) / 0.999 (0.001)
64.26 (0.92) / 0.999 (0.001)
64.26 (0.92) / 0.981 (0.002)
64.26 (0.92) / 0.990 (0.001)
64.26 (0.92) / 0.983 (0.002)
27.70 (1.12) / 0.691 (0.012)
64.25 (0.94) / 0.998 (0.001)
64.25 (0.95) / 0.999 (0.001)

Indicator

Size Coverage

Leave-Two-Out (LTO)

Size Coverage

Size Coverage

Size Coverage

Size Coverage

APGD + CW
APGD + FGSM
APGD + GN
APGD + PGD
APGD + PIFGSM
APGD + SPSA
APGD + Square
CW + FGSM
CW + GN

CW + PGD

CW + PIFGSM
CW + SPSA

CW + Square
FGSM + GN
FGSM + PGD
FGSM + PIFGSM
FGSM + SPSA
FGSM + Square
GN + PGD

GN + PIFGSM
GN + SPSA

GN + Square
PGD + PIFGSM
PGD + SPSA
PGD + Square
PIFGSM + SPSA
PIFGSM + Square
SPSA + Square

52.15 (1.39) / 0.998 (0.001)
53.18 (1.84) / 0.990 (0.009)
54.76 (3.12) / 0.995 (0.004)
53.03 (1.74) / 0.991 (0.008)
22.90 (2.05) / 0.830 (0.139)
51.77 (1.38) / 0.998 (0.001)
51.74 (1.38) / 0.999 (0.001)
53.35 (1.73) / 0.990 (0.009)
54.93 (2.97) / 0.995 (0.004)
53.19 (1.64) / 0.991 (0.008)
23.02 (1.94) / 0.830 (0.140)
51.94 (1.41) / 0.998 (0.001)
51.91 (1.42) / 0.998 (0.001)
55.96 (2.10) / 0.986 (0.006)
54.22 (1.38) / 0.982 (0.003)
22.77 (1.20) / 0.785 (0.108)
52.97 (1.97) / 0.989 (0.009)
52.94 (1.99) / 0.990 (0.009)
55.80 (2.22) / 0.987 (0.005)
24.86 (0.84) / 0.815 (0.126)
54.55 (3.32) / 0.995 (0.003)
54.52 (3.34) / 0.995 (0.004)
23.63 (1.34) / 0.797 (0.108)
52.81 (1.86) / 0.990 (0.008)
52.78 (1.88) / 0.991 (0.008)
22.48 (2.38) / 0.828 (0.139)
22.50 (2.37) / 0.830 (0.140)
51.47 (1.36) / 0.998 (0.001)

64.01 (0.95) / 0.999 (0.001)
64.02 (0.95) / 0.990 (0.009)
64.04 (0.95) / 0.994 (0.005)
64.02 (0.95) / 0.991 (0.008)
27.42 (1.11) / 0.831 (0.143)
64.00 (0.95) / 0.998 (0.001)
64.00 (0.95) / 0.999 (0.001)
64.02 (0.95) / 0.990 (0.009)
64.04 (0.95) / 0.994 (0.005)
64.02 (0.95) / 0.991 (0.008)
27.41 (1.12) / 0.833 (0.145)
64.00 (0.95) / 0.998 (0.001)
64.00 (0.95) / 0.999 (0.001)
64.05 (0.95) / 0.985 (0.005)
64.03 (0.95) / 0.982 (0.003)
25.76 (1.04) / 0.782 (0.108)
64.01 (0.95) / 0.989 (0.009)
64.01 (0.95) / 0.990 (0.009)
64.05 (0.95) / 0.987 (0.004)
27.44 (1.12) / 0.809 (0.120)
64.03 (0.95) / 0.994 (0.004)
64.03 (0.95) / 0.994 (0.005)
27.43 (1.11) / 0.797 (0.109)
64.01 (0.95) / 0.991 (0.008)
64.01 (0.95) / 0.991 (0.008)
27.40 (1.12) / 0.832 (0.143)
27.40 (1.12) / 0.833 (0.145)
63.99 (0.95) / 0.998 (0.001)

52.18 (1.37) / 0.998 (0.001)
53.22 (1.82) / 0.990 (0.009)
54.79 (3.11) / 0.995 (0.004)
53.06 (1.72) / 0.991 (0.008)
22.90 (2.07) / 0.829 (0.139)
51.75 (1.33) / 0.998 (0.001)
51.72 (1.33) / 0.998 (0.001)
53.38 (1.71) / 0.990 (0.009)
54.96 (2.96) / 0.995 (0.004)
53.23 (1.62) / 0.991 (0.008)
23.02 (1.96) / 0.831 (0.140)
51.91 (1.37) / 0.998 (0.001)
51.88 (1.37) / 0.998 (0.001)
55.99 (2.08) / 0.986 (0.006)
54.26 (1.36) / 0.982 (0.002)
22.81 (1.19) / 0.786 (0.107)
52.95 (1.94) / 0.989 (0.009)
52.92 (1.96) / 0.990 (0.009)
55.84 (2.21) / 0.987 (0.005)
24.97 (0.73) / 0.816 (0.125)
54.52 (3.30) / 0.995 (0.003)
54.50 (3.33) / 0.995 (0.004)
23.74 (1.28) / 0.798 (0.107)
52.79 (1.83) / 0.990 (0.008)
52.76 (1.85) / 0.991 (0.008)
22.59 (2.35) / 0.829 (0.138)
22.59 (2.34) / 0.831 (0.140)
51.52 (1.42) / 0.998 (0.001)

63.49 (0.97) / 0.999 (0.001)
63.51 (0.97) / 0.990 (0.009)
63.55 (0.97) / 0.994 (0.004)
63.50 (0.97) / 0.991 (0.008)
27.05 (1.16) / 0.831 (0.143)
63.38 (0.95) / 0.998 (0.001)
63.39 (0.95) / 0.999 (0.001)
63.60 (0.96) / 0.990 (0.009)
63.65 (0.96) / 0.994 (0.004)
63.59 (0.96) / 0.991 (0.008)
27.15 (1.15) / 0.833 (0.145)
63.48 (0.95) / 0.998 (0.001)
63.49 (0.95) / 0.999 (0.001)
63.67 (0.96) / 0.985 (0.005)
63.61 (0.96) / 0.982 (0.003)
25.38 (0.98) / 0.782 (0.109)
63.49 (0.96) / 0.990 (0.009)
63.51 (0.95) / 0.990 (0.009)
63.66 (0.96) / 0.987 (0.004)
27.15 (1.11) / 0.808 (0.120)
63.54 (0.96) / 0.994 (0.004)
63.56 (0.96) / 0.994 (0.004)
27.09 (1.12) / 0.797 (0.109)
63.48 (0.96) / 0.991 (0.008)
63.50 (0.95) / 0.991 (0.008)
26.96 (1.14) / 0.831 (0.143)
26.97 (1.13) / 0.833 (0.145)
63.32 (0.88) / 0.998 (0.001)

64.28 (0.96) / 0.999 (0.001)
64.28 (0.96) / 0.990 (0.009)
64.28 (0.95) / 0.994 (0.005)
64.28 (0.96) / 0.991 (0.008)
27.67 (1.07) / 0.831 (0.143)
64.28 (0.98) / 0.998 (0.001)
64.28 (0.98) / 0.999 (0.001)
64.28 (0.96) / 0.990 (0.009)
64.28 (0.96) / 0.994 (0.004)
64.28 (0.96) / 0.991 (0.008)
27.67 (1.07) / 0.833 (0.145)
64.29 (0.98) / 0.998 (0.001)
64.29 (0.98) / 0.999 (0.001)
64.28 (0.96) / 0.985 (0.005)
64.28 (0.96) / 0.982 (0.003)
26.03 (1.00) / 0.783 (0.108)
64.28 (0.98) / 0.989 (0.009)
64.28 (0.98) / 0.990 (0.009)
64.28 (0.96) / 0.987 (0.004)
27.73 (1.07) / 0.809 (0.120)
64.29 (0.98) / 0.994 (0.004)
64.29 (0.98) / 0.994 (0.005)
27.73 (1.08) / 0.798 (0.108)
64.29 (0.98) / 0.991 (0.008)
64.29 (0.98) / 0.991 (0.008)
27.72 (1.08) / 0.832 (0.143)
27.72 (1.07) / 0.833 (0.145)
64.26 (0.95) / 0.998 (0.001)

Distribution of Prediction Set Size under Nash Attack
(CP Method: TOPK, Dataset: CIFAR10)
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Figure 9: Box plots of size for different defense models using the TOPK method on the CIFAR-10 dataset.

A.5 CIFAR100 results

In this section, we provide supplementary payoff matrices (on the evaluation set) and payoff matrices (on
the test set) for other methods applied to the CIFAR-100 dataset, along with corresponding results such as
box plots.

Figures [20] to [23| respectively present the Nash attack strategies and Nash defense strategies derived on the
validation set for four different CP methods (APS, RANK, RAPS, TOPK). Figures [24] to [27] are box plots
showing the results on the CIFAR-100 test set using APS, RANK, RAPS, and TOPK as CP methods. The
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Calculated Nash Equilibrium Strategy (CIFAR10 - RAPS)
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Figure 10: Obtain the Nash attack and Nash defense strategies on the CIFAR-10 dataset using the RAPS
method.

Calculated Nash Equilibrium Strategy (CIFAR10 - SAPS)
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Figure 11: Obtain the Nash attack and Nash defense strategies on the CIFAR-10 dataset using the RANK
method.

figures plot the sizes of prediction sets, and it can be observed that, compared to single defense models, the
Nash defense generates the smallest prediction sets. When the Nash defense strategy is a single one, we plot
the results for one type of attack. When the Nash attack employs a mixed strategy, we separately display
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Calculated Nash Equilibrium Strategy (CIFAR10 - RANK)
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Figure 12: Obtain the Nash attack and Nash defense strategies on the CIFAR-10 dataset using the RANK
method.

Calculated Nash Equilibrium Strategy (CIFAR10 - TOPK)
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Figure 13: Obtain the Nash attack and Nash defense strategies on the CIFAR-10 dataset using the TOPK
method.

box plots of the prediction set sizes for different methods under one type of attack within the mixed strategy.
Figures [28| to [31] illustrate the sizes of prediction sets for four different CP methods (APS, RANK, RAPS,
TOPK) on the CIFAR-100 evaluation set and test set under various attacks and their corresponding defense
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Distribution of Prediction Set Size under GN Attack Distribution of Prediction Set Size under PIFGSM Attack Distribution of Prediction Set Size under Nash Attack
(CP Method: RAPS, Dataset: CIFAR10) (CP Method: RAPS, Dataset: CIFAR10) CP Method: RAPS, Dataset: CIFAR10,

o
B

7.00| -~ Minimum Mean Size of Defenses (5.548) -~ Minimum Mean Size of Defenses (5.164) -~ Minimum Mean Size of Defenses (5.565)
6.75 70 é 700
6.75
g g g
@ ? 565 5 6.50 %
g 6.25 g 3
z £ go2s
£6.00 £60 T g
i T = 5| oo ==
o ?

@
g

é * ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ?% 5.50 % """""" %% """"""""""" é

5.
o o > o o) & N 0 o > o s s o » >
o S° 2 & 2™ & - o s e & o o o o s S 5 - & W
o o & RS ¥ A & s o7 B e f o s o + o
55 o o ™ o oo gt o POt s N o o R
o & o o & o o 2 o & e o o S &
o o o o o A g o < a
o e o o & N
Defense Strategy Defense Strategy Defense Strategy

Figure 14: Box plots of size for different defense models using the RAPS method on the CIFAR-10 dataset
under various attacks.
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Figure 15: Box plots of size for different defense models using the SAPS method on the CIFAR-10 dataset
under various attacks.
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Figure 16: Evaluate the payoff matrix on both the CIFAR-10 dataset’s evaluation set and test set using the
RANK method.

models. This is used to verify that the process is commutative. It can be seen that the sizes of prediction sets
generated on the two datasets are basically consistent, indicating that our evaluation set is fully commutative
with the test set.

Table [] presents the performance of various CP methods under the Nash defense strategy on the CIFAR-
100 dataset. The table shows the average values and standard deviations of coverage, size, and SSCV for
a series of attack strategies. It can be observed that under Nash attacks, the generated prediction sets are
consistently the largest.
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Figure 17: Evaluate the payoff matrix on both the CIFAR-10 dataset’s evaluation set and test set using the

RAPS method.
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Figure 18: Evaluate the payoff matrix on both the CIFAR-10 dataset’s evaluation set and test set using the

SAPS method.
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Figure 19: Evaluate the payoff matrix on both the CIFAR-10 dataset’s evaluation set and test set using the

TOPK method.

A.6 ImageNet results

In this section, we provide supplementary payoff matrices (on the evaluation set) and payoff matrices (on
the test set) for other methods applied to the ImageNet dataset, along with corresponding results such as

box plots.
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Calculated Nash Equilibrium Strategy (CIFAR100 - APS)
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Figure 20: Obtain the Nash attack and Nash defense strategies on the CIFAR-100 dataset using the APS
method.
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Figure 21: Obtain the Nash attack and Nash defense strategies on the CIFAR-100 dataset using the RANK
method.

Figures |32] to [36] respectively present the Nash attack strategies and Nash defense strategies derived on the
validation set for five different CP methods (APS, RANK, RAPS, SAPS, TOPK). Figures to are box
plots showing the results on the ImageNet test set using APS, RANK, RAPS, SAPS, and TOPK as CP
methods. Figures 42| to |46|illustrate the sizes of prediction sets for five different CP methods (APS, RANK,
RAPS, SAPS, TOPK) on the evaluation set and test set under various attacks and their corresponding
defense models. This is used to verify that the process is commutative. It can be observed that the sizes of
prediction sets generated on the two datasets are basically consistent, indicating that our evaluation set is
fully commutative with the test set.
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Defender's Nash Strategy Attacker's Nash Strategy
» .00 » .00
o 08
B =y
Eos o
= =
= =]
o o
5 S
A os A os
02 02
Wl 0 0 0 0 Wl 0 0 o 00 0 0 0
® Q Q & © N
& N & & F TS T
S & S v
&S & J <
N ’ Y 5/
S >/ S 0 &
0 & X G &
& N S @ &
& & & & &
£ & & e vl
F & % & U
W & & &
o R =

Figure 22: Obtain the Nash attack and Nash defense strategies on the CIFAR-100 dataset using the RAPS
method.

Calculated Nash Equilibrium Strategy (CIFAR100 - TOPK)
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Figure 23: Obtain the Nash attack and Nash defense strategies on the CIFAR-100 dataset using the TOPK
method.

Table [ demonstrates the performance of various CP methods under the Nash defense strategy on the
ImageNet dataset. The table presents the average values and standard deviations of coverage, size, and

SSCV for a range of attack strategies.
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Table 4: Performance of various Conformal Prediction (CP) methods under the Nash defense strategy on
the CIFAR-100 dataset. The table presents the mean and standard deviation of coverage, size, and SSCV
against a range of attack strategies. All results are averaged over 20 independent random splits.

Attacks

Indicator

APS

RANK

RAPS

SAPS

TOPK

Clean

FGSM

PGD

APGD

CW

PIFGSM

GN

Square

SPSA

Nash

Coverage
Size
SSCV

0.996 (0.003)
49.198 (2.038)
0.100 (0.001)

0.997 (0.001)
62.059 (1.023)
0.097 (0.001)

0.996 (0.003)
48.881 (1.960)
0.100 (0.001)

0.997 (0.001)
61.097 (0.985)
0.097 (0.001)

0.997 (0.001)
62.304 (1.010)
0.097 (0.001)

Coverage
Size

SSCV

0.980 (0.003)
53.423 (1.117)
0.094 (0.008)

0.977 (0.002)
62.123 (1.021)
0.077 (0.002)

0.979 (0.002)
53.238 (1.045)
0.093 (0.008)

0.977 (0.002)
61.535 (0.994)
0.077 (0.002)

0.978 (0.003)
62.305 (1.005)
0.078 (0.003)

Coverage
Size
SSCV

0.981 (0.003)
52.955 (1.181)
0.095 (0.007)

0.978 (0.002)
62.113 (1.022)
0.078 (0.002)

0.981 (0.003)
52.757 (1.106)
0.095 (0.007)

0.978 (0.002)
61.496 (0.991)
0.078 (0.002)

0.979 (0.003)
62.302 (1.008)
0.079 (0.003)

Coverage
Size

SSCV

0.996 (0.003)
49.999 (1.845)
0.100 (0.001)

0.997 (0.001)
62.092 (1.022)
0.097 (0.001)

0.996 (0.003)
49.706 (1.763)
0.100 (0.001)

0.997 (0.001)
61.233 (0.985)
0.097 (0.001)

0.997 (0.001)
62.302 (1.010)
0.097 (0.001)

Coverage
Size
SSCV

0.996 (0.003)
52.307 (1.283)
0.100 (0.001)

0.997 (0.001)
62.099 (1.020)
0.097 (0.001)

0.996 (0.002)
52.218 (1.265)
0.100 (0.001)

0.997 (0.001)
61.798 (1.001)
0.097 (0.001)

0.997 (0.001)
62.303 (1.007)
0.097 (0.001)

Coverage
Size
SSCV

0.898 (0.009)
55.500 (1.156)
0.143 (0.091)

0.898 (0.006)
62.133 (1.026)
0.005 (0.004)

0.897 (0.008)
55.291 (1.099)
0.127 (0.068)

0.898 (0.008)
61.610 (0.990)
0.006 (0.005)

0.896 (0.008)
62.305 (1.008)
0.007 (0.006)

Coverage
Size
SSCV

0.991 (0.002)
57.335 (1.154)
0.100 (0.000)

0.988 (0.001)
62.166 (1.022)
0.088 (0.001)

0.991 (0.002)
57.225 (1.113)
0.100 (0.000)

0.988 (0.001)
61.725 (0.970)
0.088 (0.001)

0.988 (0.001)
62.302 (1.008)
0.088 (0.001)

Coverage
Size
SSCV

0.996 (0.003)
49.391 (1.940)
0.100 (0.001)

0.997 (0.001)
62.068 (1.022)
0.097 (0.001)

0.996 (0.003)
49.086 (1.862)
0.100 (0.001)

0.997 (0.001)
61.198 (0.988)
0.097 (0.001)

0.997 (0.001)
62.305 (1.010)
0.097 (0.001)

Coverage
Size
SSCV

0.995 (0.003)
49.487 (1.909)
0.100 (0.001)

0.996 (0.001)
62.060 (1.022)
0.096 (0.001)

0.995 (0.003)
49.184 (1.829)
0.099 (0.001)

0.996 (0.001)
61.131 (0.986)
0.096 (0.001)

0.996 (0.001)
62.308 (1.006)
0.096 (0.001)

Coverage
Size
SSCV

0.991 (0.002)
57.335 (1.154)
0.100 (0.000)

0.979 (0.029)
62.166 (1.022)
0.080 (0.025)

0.991 (0.002)
57.225 (1.113)
0.100 (0.000)

0.996 (0.004)
61.814 (0.967)
0.096 (0.004)

0.985 (0.024)
62.302 (1.006)
0.086 (0.019)
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Distribution of Prediction Set Size under Nash Attack
(CP Method: APS, Dataset: CIFAR100)
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Figure 24: Box plots of size for different defense models using the APS method on the CIFAR-100 dataset.

Distribution of Prediction Set Size under Nash Attack
(CP Method: RANK, Dataset: CIFAR100)
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Figure 25: Box plots of size for different defense models using the RANK method on the CIFAR-100 dataset.

Distribution of Prediction Set Size under Nash Attack
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Figure 26: Box plots of size for different defense models using the RAPS method on the CIFAR-100 dataset.
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Distribution of Prediction Set Size under APGD Attack
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Figure 27: Box plots of size for different defense models using the TOPK method on the CIFAR-100 dataset
under various attacks.
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Figure 28: Evaluate the payoff matrix on both the CIFAR-100 dataset’s evaluation set and test set using the
APS method.

Payoff Matrix on Evaluation Set (CIFAR100 - RANK)
Evaluation Set Size
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Figure 29: Evaluate the payoff matrix on both the CIFAR-100 dataset’s evaluation set and test set using the
RANK method.
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Figure 30: Evaluate the payoff matrix on both the CIFAR-100 dataset’s evaluation set and test set using the
RAPS method.
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Figure 31: Evaluate the payoff matrix on both the CIFAR-100 dataset’s evaluation set and test set using the
TOPK method.
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Figure 32: Obtain the Nash attack and Nash defense strategies on the ImageNet dataset using the APS
method.
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Table 5: Performance of various Conformal Prediction (CP) methods under the Nash defense strategy on the
ImageNet dataset. The table presents the mean and standard deviation of coverage, size, and SSCV against
a range of attack strategies. All results are averaged over 20 independent random splits.

Attacks

Indicator

APS

RANK

RAPS

SAPS

TOPK

Clean

FGSM

PGD

APGD

Cw

PIFGSM

GN

Nash

Coverage
Size

SSCV

0.955 (0.001)
269.403 (4.520)
0.086 (0.003)

0.937 (0.011)
257.710 (4.929)
0.037 (0.011)

0.955 (0.002)
269.351 (4.577)
0.086 (0.003)

0.938 (0.008)
257.284 (4.756)
0.038 (0.008)

0.937 (0.011)
257.565 (4.827)
0.037 (0.011)

Coverage
Size
SSCV

0.977 (0.001)
269.117 (4.453)
0.081 (0.002)

0.963 (0.005)
257.692 (4.942)
0.063 (0.005)

0.977 (0.001)
269.065 (4.537)
0.081 (0.003)

0.962 (0.004)
257.111 (4.755)
0.062 (0.004)

0.963 (0.005)
257.564 (4.826)
0.063 (0.005)

Coverage
Size

SSCV

0.964 (0.001)
266.248 (4.478)
0.072 (0.004)

0.951 (0.003)
257.689 (4.944)
0.051 (0.003)

0.964 (0.001)
266.194 (4.567)
0.072 (0.005)

0.951 (0.003)
257.077 (4.754)
0.051 (0.003)

0.951 (0.003)
257.565 (4.826)
0.051 (0.003)

Coverage
Size
SSCV

0.955 (0.002)
273.920 (4.421)
0.086 (0.003)

0.936 (0.011)
257.713 (4.928)
0.036 (0.011)

0.955 (0.002)
273.868 (4.478)
0.086 (0.003)

0.938 (0.008)
257.329 (4.757)
0.038 (0.008)

0.936 (0.011)
257.564 (4.826)
0.036 (0.011)

Coverage
Size
SSCV

0.986 (0.001)
278.106 (4.541)
0.090 (0.003)

0.974 (0.004)
257.706 (4.934)
0.074 (0.004)

0.986 (0.001)
278.054 (4.597)
0.090 (0.003)

0.974 (0.003)
257.318 (4.756)
0.074 (0.003)

0.974 (0.004)
257.565 (4.826)
0.074 (0.004)

Coverage
Size
SSCV

0.901 (0.003)
271.377 (4.892)
0.138 (0.017)

0.900 (0.003)
257.689 (4.944)
0.003 (0.002)

0.901 (0.003)
271.325 (5.014)
0.143 (0.019)

0.900 (0.003)
257.065 (4.752)
0.002 (0.001)

0.900 (0.003)
257.566 (4.827)
0.003 (0.002)

Coverage
Size
SSCV

0.987 (0.001)
253.404 (4.189)
0.092 (0.002)

0.976 (0.003)
257.686 (4.947)
0.076 (0.003)

0.987 (0.001)
253.355 (4.246)
0.092 (0.002)

0.975 (0.002)
257.015 (4.757)
0.075 (0.002)

0.975 (0.003)
257.566 (4.826)
0.075 (0.003)

Coverage
Size
SSCV

0.986 (0.001)
278.106 (4.541)
0.090 (0.003)

0.942 (0.018)
257.715 (4.929)
0.042 (0.018)

0.986 (0.001)
278.054 (4.597)
0.090 (0.003)

0.949 (0.020)
257.328 (4.758)
0.049 (0.020)

0.944 (0.026)
257.565 (4.827)
0.044 (0.026)

Figure 33:
method.
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Figure 34: Obtain the Nash attack and Nash defense strategies on the ImageNet dataset using the RAPS
method.
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Figure 35: Obtain the Nash attack and Nash defense strategies on the ImageNet dataset using the SAPS
method.
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Calculated Nash Equilibrium Strategy (IMAGENET - TOPK)
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Figure 36: Obtain the Nash attack and Nash defense strategies on the ImageNet dataset using the TOPK
method.
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Figure 37: Box plots of size for different defense models using the APS method on the ImageNet dataset.
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Figure 38: Box plots of size for different defense models using the RNAK method on the ImageNet dataset.
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Distribution of Prediction Set Size under Nash Attack
(CP Method: RAPS, Dataset: IMAGENET)
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Figure 39: Box plots of size for different defense models using the RAPS method on the ImageNet dataset.
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Figure 40: Box plots of size for different defense models using the TOPK method on the ImageNet dataset.

Distribution of Prediction Set Size under Nash Attack
(CP Method: SAPS, Dataset: IMAGENET)

00 — ---- Minimum Mean Size of Defenses (257.328)
450
@
N
D 400
=
g
151
o
£350 ==
&=
300
[
[ —
250 - -
2 3 ol < *
o2 e o o w
o - g
o ¥ o
o &
e o
&

Defense Strategy

Figure 41: Box plots of size for different defense models using the SAPS method on the ImageNet dataset.
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Figure 42: Evaluate the payoff matrix on both the ImageNet dataset’s evaluation set and test set using the
APS method.
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Figure 43: Evaluate the payoff matrix on both the ImageNet dataset’s evaluation set and test set using the
RANK method.
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Figure 44: Evaluate the payoff matrix on both the ImageNet dataset’s evaluation set and test set using the
RAPS method.
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Figure 45: Evaluate the payoff matrix on both the ImageNet dataset’s evaluation set and test set using the
SAPS method.
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Figure 46: Evaluate the payoff matrix on both the ImageNet dataset’s evaluation set and test set using the
TOPK method.
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