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Abstract

While most classic studies of function in experimental neuroscience have focused
on the coding properties of individual neurons, recent developments in recording
technologies have resulted in an increasing emphasis on the dynamics of neural
populations. This has given rise to a wide variety of models for analyzing pop-
ulation activity in relation to experimental variables, but direct testing of many
neural population hypotheses requires intervening in the system based on current
neural state, necessitating models capable of inferring neural state online. Exist-
ing approaches, primarily based on dynamical systems, require strong parametric
assumptions that are easily violated in the noise-dominated regime and do not
scale well to the thousands of data channels in modern experiments. To address
this problem, we propose a method that combines fast, stable dimensionality re-
duction with a soft tiling of the resulting neural manifold, allowing dynamics
to be approximated as a probability flow between tiles. This method can be fit
efficiently using online expectation maximization, scales to tens of thousands of
tiles, and outperforms existing methods when dynamics are noise-dominated or
feature multi-modal transition probabilities. The resulting model can be trained at
kiloHertz data rates, produces accurate approximations of neural dynamics within
minutes, and generates predictions on submillisecond time scales. It retains predic-
tive performance throughout many time steps into the future and is fast enough to
serve as a component of closed-loop causal experiments.

1 Introduction

Systems neuroscience is in the midst of a data explosion. Advances in microscopy [1, 2] and probe
technology [3, 4, 5] have made it possible to record thousands of neurons simultaneously in behaving
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animals. At the same time, growing interest in naturalistic behaviors has increased both the volume
and complexity of jointly recorded behavioral data. On the neural side, this has resulted in a host
of new modeling and analysis approaches that aim to match the complexity of these data, typically
using artificial neural network models as proxies for biological neural computation [6, 7, 8].

At the same time, this increase in data volume has resulted in increasing emphasis on methods
for dimensionality reduction [9] and a focus on neural populations in preference to the coding
properties of individual neurons [10]. However, given the complexity of neural dynamics, it remains
difficult to anticipate what experimental conditions will be needed to test population hypotheses
in post hoc analyses, complicating experimental design and reducing power. Conversely, adaptive
experiments, those in which the conditions tested change in response to incoming data, have been
used in neuroscience to optimize stimuli for experimental testing [11, 12, 13, 14], in closed-loop
designs [15, 16, 17], and even to scale up holographic photostimulation for inferring functional
connectivity in large circuits [18].

Yet, despite their promise, adaptive methods are rarely applied in practice for two reasons: First,
although efficient online methods for dimensionality reduction exist [19, 20, 21, 22, 23], these
methods do not typically identify stable dimensions to allow low-dimensional representations of data
to be compared across time points. That is, when the spectral properties of the data are changing in
time, methods like incremental SVD may be projecting the data into an unstable basis, rendering these
projections unsuitable as inputs to further modeling. Second, while many predictive models based
on the dynamical systems approach exist [6, 24, 25, 26, 27, 28, 29], including online approaches
[30, 31, 16, 32], they typically assume a system with lawful dynamics perturbed by Gaussian noise.
However, many neural systems of interest are noise-dominated, with multimodal transition kernels
between states.

In this work, we are specifically interested in closed loop experiments in which predictions of future
neural state are needed in order to time and trigger interventions like optogenetic stimulation or a
change in visual stimulus. Thus, our focus is on predictive accuracy, preferably far enough into
the future to compensate for feedback latencies. To address these goals, we propose an alternative
to the linear systems approach that combines a fast, stable, online dimensionality reduction with a
semiparametric tiling of the low-dimensional neural manifold. This tiling introduces a discretization
of the neural state space that allows dynamics to be modeled as a Hidden Markov Model defined by a
sparse transition graph. The entire model, which we call “Bubblewrap,” can be learned online using a
simple EM algorithm and handles tilings and graphs of up to thousands of nodes at kiloHertz data
rates. Most importantly, this model outperforms methods based on dynamical systems in high-noise
regimes when the dynamics are more diffusion-like. Training can be performed at a low, fixed latency
⇡10ms using a GPU, while a cached copy of the model in main memory is capable of predicting
upcoming states at <1ms latency. As a result, Bubblewrap offers a method performant and flexible
enough to serve as a neural prediction engine for causal feedback experiments.

2 Stable subspaces from streaming SVD

As detailed above, one of the most pressing issues in online neural modeling is dealing with the
increasingly large dimensionality of collected data — hundreds of channels per Neuropixels probe
[4, 5], tens of thousands of pixels for calcium imaging. However, as theoretical work has shown
[33, 34], true neural dynamics often lie on a low-dimensional manifold, so that population activity
can be accurately captured by analyzing only a few variables.

Here, we combine two approaches to data reduction: In the first stage, we use sparse random
projections to reduce dimensionality from an initial d dimensions (thousands) to n (a few hundred)
[35, 36]. By simple scaling, for a fixed budget of N cells in our manifold tiling, we expect density
(and thus predictive accuracy) to scale as N

1
n in dimension n, and so we desire n to be as small

as possible. However, by the Johnson-Lindenstrauss Lemma [37, 36], when reducing from d to n

dimensions, the distance between vectors u⇤ and v⇤ in the reduced space is related to the distance
between their original versions u and v by

(1� ")ku� vk
2
 ku⇤ � v⇤k

2
 (1 + ")ku� vk

2 (1)
with probability 1� � if n > O(log(1/�)/"2). Unfortunately, even for " ⇠ 0.1 (10% relative error),
the required n may be quite large, making this inappropriate for reducing to the very small numbers
of effective dimensions characterizing neural datasets.
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Algorithm 1 Procrustean SVD (proSVD)
1: Given: Initial data X0, decay parameter ↵ 2 (0, 1]
2: Initialize: QR Factorization: X0 = Q0R0

3:
4: for t = 1 . . . do
5: Fetch b new columns of data, X+

6: C  Q
>
t�1X+, X?  X+ �Qt�1C, Q?, R?  QR(X?) . Gram-Schmidt

7: Q̂ [Qt�1 Q?], R̂ 


Rt�1 C

0 R?

�
. QR of augmented data

8: U,⌃, V  SVD(R̂)
9: ⌃ ↵⌃ . Discount old data

10: M  Q
>
t�1Q̂U1 = [ k⇥k 0k⇥b]U1 . U1 contains the first k columns of U

11: Ũ , ⌃̃, Ṽ  SVD(M), T  Ũ Ṽ
>

. Orthogonal Procrustes: minT kQ̂U1T
>
�Qt�1kF

12: Qt  Q̂U1T
>

. Update left subspace basis
13: Qv, Rv  QR(V ), Rt  T⌃1Q

>
v . QR right subspace, update inner block

14: end for

Thus, in the second stage, we reduce from n ⇠ O(100) to k ⇠ O(10) dimensions using a streaming
singular value decomposition. This method is based on the incremental block update method of
[20, 22] with an important difference: While the block update method aims to return the top-k SVD
at every time point, the directions of the singular vectors may be quite variable during the course
of an experiment (Figure 1d–h), which implies an unstable representation of the neural manifold.
However, as we show below, the top-k subspace spanned by these vectors stabilizes in seconds on
typical neural datasets and remains so throughout the experiment. Therefore, by selecting a stable
basis (instead of the singular vector basis) for the top-k subspace, we preserve the same information
while ensuring a stable representation of the data for subsequent model fitting.

More specifically, let xt 2 Rn be a vector of input data after random projections. In our streaming
setup, these are processed b samples at a time, with b = 1 reasonable for slower methods like calcium
imaging and b = 40 more appropriate for electrophysiological sampling rates of ⇠20kHz. Then,
if the data matrix X has dimension n ⇥ T , adding columns over time, the incremental method of
[20, 22] produces at each time step a factorization X = QRW

>, where the columns of the orthogonal
matrices Q and W span the left and right top-k singular subspaces, respectively. If the matrix R were
diagonal, this would be equivalent to the SVD. In the incremental algorithm, R is augmented at each
timestep based on new data to form R̂, which is block diagonalized via an orthogonal matrix and
truncated to the top-k subspace, allowing for an exact reduced-rank SVD (Appendix A).

However, as reviewed in [20, 22], since there are multiple choices of basis Q for for the top-k singular
subspace, there are likewise multiple choices of block diagonalization for R̂. In [20, 22], the form
of this operation is chosen for computational efficiency. But an equally valid option is to select the
orthogonal matrix that minimizes the change in the singular subspace basis Q from one timestep to
the next:

minkQt �Qt�1kF = min
T
kQ̂U1T

>
�Qt�1kF , (2)

where Q̂ is an augmented basis for the top-(k + b) singular subspace, U1 contains the first k left
singular vectors of R̂, and T is an orthogonal matrix (Appendix A). This minimization is known as
the Orthogonal Procrustes problem and has a well-known solution [38]: T = Ũ Ṽ

>, where Ũ and
Ṽ are the left and right singular vectors, respectively, of M ⌘ Q

>
t�1Q̂U1. (See [39] for a recent

application of similar ideas in brain-computer interfaces). This Procrustean SVD (proSVD) procedure
is summarized in Algorithm 1. There, lines 1–8 follow [20, 22], while lines 10 and 11 perform the
Orthogonal Procrustes procedure. Line 9 serves as a leak term that discounts past data as in [40].

Figures 1a-c illustrates the performance of the two-stage dimension reduction algorithm for a case
of d = 104 randomly generated Gaussian data. While proSVD yields minimal distortion (due to
truncation of the spectrum to k = 6), random projections require k ⇠ O(100) to achieve the same
result (Figure 1a). By contrast, random projections are much faster (Figure 1b). Thus, we can trade
off distortion against time by adjusting n, the number of intermediate dimensions. As Figure 1c
shows, the optimal tradeoff occurs somewhere around n = 200 for this example.
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Figure 1: Timing and stability of two-stage dimension reduction. a) Distortion (") as a function
of number of dimensions retained (n) for both sparse random projections and proSVD on random
Gaussian data with batch size b = 1000. b) Time required for the dimensionality reduction in (a),
amortized for batch size. While random projections are extremely efficient, proSVD time costs grow
with the number of dimensions retained. c) Pareto front for the time-distortion tradeoff of random
projections followed by proSVD. Color indicates n, the number of dimensions retained by random
projections. Black arrow indicates the particular tradeoff we chose of n = 200. d–f) Embedding
of a single trial (green line) into the basis defined by streaming SVD for different amounts of data
seen. Dotted line indicates the same trial embedded using SVD on the full data set. Rapid changes
in estimates of singular vectors early on lead to an unstable representation. g–i) Same trial and
conventions as (d–f) for the proSVD embedding. Dotted lines in the two rows are the same curve in
different projections.

Figures 1d-i show results for neural data from recorded from monkey motor cortex [26] in a cued
reach task. While projection of the data into the basis defined by streaming SVD remains unstable
early in data collection (top), the proSVD representation is nearly equivalent to the full offline result
after only a few trials (⇡15s, middle). This is due to the fact that, in all data sets we examined, the
top-k SVD subspace was identified extremely quickly; proSVD simply ensures the choice of a stable
basis for that subspace.

3 Bubblewrap: a soft manifold tiling for online modeling

As reviewed above, most neural population modeling approaches are based on the dynamical systems
framework, assuming a lawful equation of motion corrupted by noise. However, for animals engaged
in task-free natural behavior [41, 42, 43], trajectories are likely to be sufficiently complex that simple
dynamical models fail. For instance, dynamical systems models with Gaussian noise necessarily pro-
duce unimodal transition probabilities centered around the mean prediction, while neural trajectories
may exhibit multimodal distributions beginning at the same system state. By contrast, we pursue an
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alternative method that trades some accuracy in estimating instantaneous system state for flexibility
in modeling the manifold describing neural activity.

Our approach is to produce a soft tiling of the neural manifold in the form of a Gaussian mixture model
(GMM), each component of which corresponds to a single tile. We then approximate the transitions
between tiles via a Hidden Markov Model (HMM), which allows us to capture multimodal probability
flows. As the number of tiles increases, the model produces an increasingly finer-grained description
of dynamics that assumes neither an underlying dynamical system nor a particular distribution of
noise.

More specifically, let xt be the low-dimensional system state and let zt 2 1 . . . N index the tile to
which the system is assigned at time t. Then we have for the dynamics

p(zt = j|zt�1 = i) = Aij p(xt|zt) = N (µzt ,⌃zt) p(µj ,⌃j) = NIW(µ0j ,�j , j , ⌫j), (3)

where we have assumed Normal-inverse-Wishart priors on the parameters of the Gaussians. Given its
exponential family form and the conjugacy of the priors, online expectation maximization updates
are available in closed form [44, 45, 46] for each new datum, though we opt, as in [45] for a
gradient-based optimization of an estimate of the evidence lower bound

L(A, µ,⌃) =
X

ij

(N̂ij(T ) + �ij � 1) logAij +
X

j

(Ŝ1j(T ) + �jµ0j)
>⌃�1

j µj (4)

�
1

2

X

j

tr(( j + Ŝ2j(T ) + �jµ0jµ
>
0j + (�j + n̂j(T ))µjµ

>
j )⌃

�1
j )

�
1

2

X

j

(⌫j + n̂j(T ) + d+ 2) log det⌃j

with accumulating (estimated) sufficient statistics

↵j(t) =
X

i

↵i(t� 1)�ij(t) N̂ij(t) = (1� "t)N̂ij(t� 1) + ↵i(t� 1)�ij(t) (5)

n̂j(t) =
X

i

N̂ij(t) Ŝ1j(t) = (1� "t)Ŝ1j(t� 1) + ↵j(t)xt

Ŝ2j(t) = (1� "t)Ŝ2j(t� 1) + ↵j(t)xtx
>
t

where ↵j(t) = p(zt = j|x1:t) is the filtered posterior, �ij(t) is the update matrix from the forward
algorithm [44], and "t is a forgetting term that discounts previous data. Note that even for " = 0, L is
only an estimate of the evidence lower bound because the sufficient statistics are calculated using
↵(t) and not the posterior over all observed data.

In setting Normal-Inverse-Wishart priors over the Gaussian mixture components, we take an empirical
Bayes approach by setting prior means µ0j to the current estimate of the data center of mass and
prior covariance parameters  j to N

� 2
k times the current estimate of the data covariance (Appendix

B). For initializing the model we use a small data buffer M ⇠ O(10). We chose effective observation
numbers (�, ⌫) = 10�3 and trained this model to maximize L(A, µ,⌃) using Adam [47], enforcing
parameter constraints by replacing them with unconstrained variables aij and lower triangular Lj

with positive diagonal: Aij = exp(aij)/
P

j exp(aij), ⌃
�1
j = LjL

>
j .

Finally, in order to prevent the model from becoming stuck in local minima and to encourage more
effective tilings, we implemented two additional heuristics as part of Bubblewrap: First, whenever a
new observation was highly unlikely to be in any existing mixture component (log p(xt|zt) < ✓n for
all zt), we teleported a node at this data point by assigning ↵J(t) = 1 for an unused index J . For
initial learning this results in a “breadcrumbing” approach where nodes are placed at the locations
of each new observed datum. Second, when the number of active nodes was equal to our total node
budget N , we chose to reclaim the node with the lowest value of n̂(t) and zeroed out its existing
sufficient statistics before teleporting it to a new location. In practice, these heuristics substantially
improved performance, especially early in training (Appendix D). The full algorithm is summarized
in Algorithm 2.
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Algorithm 2 Bubblewrap
1: Given: Hyperparameters �j , ⌫j ,�t, forgetting rate "t, teleport threshold ✓, step size �, initial

data buffer M
2: Initialize with {x1 . . . xM}: µj  µ̄, ⌃j  ⌃̄, aij  1

N , ↵j  �j
1
N .

3:
4: for t = 1 . . . do
5: Observe new data point xt.
6: if log p(xt|zt) < ✓ 8zt then . Teleport
7: µJ = xt,↵J(t) = 1 for J = argminj n̂j(t)
8: end if
9: Calculate �ij(t) via forward filtering [44].

10: Update sufficient statistics via (5). . E step

11: µ̄ 

P
j Ŝ1jP
j n̂j

, ⌃ 
P

j Ŝ2jP
j n̂j
� µ̄µ̄

T
. Global mean and covariance update

12: ✏j ⇠ N (0, ⌘2), µ0j  aµ0j + (1� a)µ̄+ ✏j ,  j  
⌃

N
2
k

. Update priors (Appendix B)
13: Perform gradient-based update of L(A, µ,⌃) (4) . M step
14: end for

4 Experiments

We demonstrated the performance of Bubblewrap on both simulated non-linear dynamical systems
and experimental neural data. We compared these results to two existing online learning models for
neural data, both of which are based on dynamical systems [30, 32]. To simulate low-dimensional
systems, we generated noisy trajectories from a two-dimensional Van der Pol oscillator and a three-
dimensional Lorenz attractor. For experimental data, we used four publicly available datasets from a
range of applications: 1) trial-based spiking data recorded from primary motor cortex in monkeys
performing a reach task [48, 49] preprocessed by performing online jPCA [49]; 2) continuous video
data and 3) trial-based wide-field calcium imaging from a rodent decision-making task [50, 51]; 4)
high-throughput Neuropixels data [52, 53].

For each data set, we gave each model the same data as reduced by random projections and proSVD.
For comparisons across models, we quantified overall model performance by taking the mean log
predictive probability over the last half of each data set (Table 1). For Bubblewrap, prediction T steps
into the future gives

log p(xt+T |x1:t) = log
X

i,j

p(xt+T |zt+T = j)p(zt+T = j|zt = i)p(zt = i|x1:t)

= log
X

i,j

N (xt+1;µj ,⌃j)(A
T )ij↵i(t), (6)

where A
T is the T -th power of the transition matrix. Conveniently, these forward predictions can

be efficiently computed due to the closed form (6), while similar predictions in comparison models
[30, 32] must be approximated by sampling (Appendix C). In addition, for Bubblewrap, which is
focused on coarser transitions between tiles, we also report the entropy of predicted transitions:

H(t, T ) = �
X

j

p(zt+T = j|x1:t) log p(zt+T = j|x1:t) = �
X

ij

(AT )ij↵i(t) log
X

k

(AT )kj↵k(t).

(7)

Additional detailed experimental results and benchmarking of our GPU implementation in JAX [54]
are in Appendix D. We compared performance of our algorithm against both [30] (using our own
implementation in JAX) and Variational Joint Filtering [32] (using the authors’ implementation). Our
implementation of Bubblewrap, as well as code to reproduce our experiments, is open-source and
available online at http://github.com/pearsonlab/Bubblewrap.

When tested on low-dimensional dynamical systems, Bubblewrap successfully learned tilings of both
neural manifolds, outperforming VJF [32] on both datasets (Figure 2a,b) while it was comparable to
the algorithm of [30] on one of the 2D (but neither of the 3D) cases (Figure 2). This is surprising,
since both comparison methods assume an underlying dynamical system and attempt to predict
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Table 1: Model comparison results as mean ± standard deviation of the log predictive probability
over the last half of the dataset. Asterisks (*) indicate models that degenerated to a random walk.

Log predictive probability

Dataset Bubblewrap VJF [32] ZP (2016) [30]

2D Van der Pol, 0.05 0.965± 1.123 �0.338± 0.427 0.121± 0.857
2D Van der Pol, 0.20 �1.088± 1.184 �1.140± 0.879 �0.506± 0.964
3D Lorenz, 0.05 �7.338± 1.289 �16.98± 1.923 �12.39± 1.723⇤
3D Lorenz, 0.20 �7.474± 1.279 �17.30± 2.112 �12.42± 1.708⇤
Monkey reach 3.046± 4.959 �5.159± 0.987 3.818± 9.118
Wide-field calcium 5.974± 2.979 3.768± 6.204 1.613± 4.083
Mouse video �10.93± 2.386 �15.86± 1.084 �10.65± 4.145⇤
Neuropixels �12.84± 6.017 �12.06± 5.244 �12.28± 4.567

Figure 2: Modeling of low-dimensional dynamical systems. a) Bubblewrap end tiling of a 2D
Van der Pol oscillator (data in gray; 5% noise case corresponding to line 1 of Table 1). Tile center
locations are in black with covariance ’bubbles’ for 3 sigma in orange. b) Bubblewrap end tiling of a
3D Lorenz attractor (5% noise), where tiles are plotted similarly to (a). c) Log predictive probability
across all timepoints for each comparative model for the 2D Van der Pol, 0.05 case (top) and for the
3D Lorenz, 0.05 case (bottom).

differences between individual data points, while Bubblewrap only attempts to localize data to within
a coarse area of the manifold.

We next tested each algorithm on more complex data collected from neuroscience experiments. These
data exhibited a variety of structure, from organized rotations (Figure 3a) to rapid transitions between
noise clusters (Figure 3b) to slow dynamics (Figure 3c). In each case, Bubblewrap learned a tiling
of the data that allowed it to equal or outperform state predictions from the comparison algorithms
(Figure 3d–f, blue). In some cases, as with the mouse dataset, the algorithm of [30] produced
predictions for xt by degenerating to a random walk model (Table 1 marked with *; Appendix D).
Regardless, Bubblewrap’s tiling generated transition predictions with entropies far below those of
a random walk (Figure 3d–f, green), indicating it successfully identified coarse structure, even in
challenging datasets. Thus, even though these data are noise-dominated and lack much of the typical
structure identified by neural population models, coarse-graining identifies some reliable patterns.

We additionally considered the capability of our algorithm to scale to high-dimensional or high-
sampling rate data. As a case study, we considered real-time processing (including random projections,
proSVD, and Bubblewrap learning) of Neuropixels data comprising 2688 units with 74,330 timepoints
from 30 ms bins. As Figure 4 shows, Bubblewrap once again learns a tiling of the data manifold
(a), capturing structure in the probability flow within the space (b) with predictive performance
comparable to finer-grained methods (Table 1). More importantly, all these steps can be performed
well within the 30ms per sample time of the data (c). In fact, when testing on representative examples
of d = 104 dimensions, 1 kHz sampling rates, or N = 20, 000 tiles, our algorithm was able to
maintain amortized per-sample processing times below those of data acquisition. In practice, we
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Figure 3: Bubblewrap results on experimental datasets. a) Bubblewrap results for example trials
(blue) from the monkey reach dataset [48, 49], projected onto the first jPCA plane. All trials are
shown in gray. The tile center locations which were closest to the trajectories are plotted along
with their covariance "bubbles." Additionally, large transition probabilities from each tile center are
plotted as black lines connecting the nodes. Bubblewrap learns both within-trial and across-trial
transitions, as shown by the probability weights. b) Bubblewrap results on widefield calcium imaging
from [50, 51], visualized with UMAP. A single trajectory comprising ⇡1.5s of data is shown in blue.
Covariance "bubbles" and transition probabilities omitted for clarity. c) Bubblewrap results when
applied to videos of mouse behavior [50, 51], visualized by projection onto the first SVD plane. Blue
line: 3.3s of data. d, e, f) Log predictive probability (blue) and entropy (green) over time for the
respective datasets in (a,b,c). Black lines are exponential weighted moving averages of the data.
Dashed green line indicates maximum entropy (log2(N)).

found that even in higher-dimensional datasets (as in the Neuropixels case), only 1-2 thousand tiles
were used by the model, making it easy to run at kHz data rates. What’s more, while learning involved
round trip GPU latencies to perform gradient updates, online predictions using slightly stale estimates
of Bubblewrap parameters could be performed far faster, in tens of microseconds.

Just as importantly, when used for closed loop experiments, algorithms must be able to produce
predictions far enough into the future for interventions to be feasible. Thus we examined the
performance of our algorithm and comparison models for predicting T steps ahead into the future.
Bubblewrap allows us to efficiently calculate predictions even many time steps into the future using
(6), whereas the comparison models require much costlier sampling approaches. Figure 5 shows the
mean log predictive probabilities for all models many steps into the future for each experimental
dataset (top row), and the entropy of the predicted transitions using Bubblewrap (bottow row). Our
algorithm consistently maintains performance even when predicting 10 steps ahead, providing crucial
lead time to enable interventions at specific points along the learned trajectory. In comparison,
predictive performance of [30], which initially matches or exceeds Bubblewrap for two datasets,
rapidly declines, while Variational Joint Filtering [32], with lower log likelihood, also exhibits a slow
decay in accuracy.

5 Discussion

While increasing attention has been paid in neuroscience to population hypotheses of neural function
[10], and while many methods for modeling these data offline exist, surprisingly few methods
function online, though presumably online methods will be needed to test some population dynamics
hypotheses [17]. While the neural engineering literature has long used online methods based on
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Figure 4: High-throughput data & benchmarking. a) Bubblewrap results for example trajectories
(blue) in the Neuropixels dataset [52, 53] (data in gray) visualized with UMAP. b) Log predictive
probability (blue) and entropy (green) over time. Black lines are exponential weighted moving
averages of the data. Dashed green line indicates maximum entropy. c) Average cycle time (log
scale) during learning or prediction (last bar) for each timepoint. Neuropixels (NP) is run as in (a,b)
with no optimization and all heuristics, and Bubblewrap is easily able to learn at rates much faster
than acquisition (30 ms). By turning off the global mean and covariance and priors updates and only
taking a gradient step for L every 30 timepoints, we are able to run at close to 1 kHz (NPb). All other
bars show example timings from Van der Pol synthetic datasets optimized for speed: 104 dim, where
we randomly project down to 200 dimensions and used proSVD to project to 10 dimensions for
subsequent Bubblewrap modeling learning; N = 20k, 10k, and 1k nodes, showing how our algorithm
scales with the number of tiles; and Prediction, showing the time cost to predict one step ahead for
the N = 1k case.

Kalman filtering, (e.g., [16]), and these methods are known to work well in many practical cases,
they also imply strong assumptions about the evolution of activity within these systems. Thus, many
studies that employ less constrained behavior or study neural activity with less robust dynamics may
benefit from more flexible models that can be trained while the experiment is running.

Here, to address this need, we have introduced both a new dimension reduction method that rapidly
produces stable estimates of features and a method for rapidly mapping and charting transitions on
neural manifolds. Rather than focus on moment-by-moment prediction, we focus on estimating a
coarse tiling and probability flow among these tiles. Thus, Bubblewrap may be less accurate than
methods based on dynamical systems when state trajectories are accurately described by smooth
vector fields with Gaussian noise. Conversely, when noise dominates, is multimodal, or only large-
scale probability flow is discernible over longer timescales, Bubblewrap is better poised to capture
these features. We saw this in our experiments, where the model of [30] exhibited better overall
performance in the mouse video dataset (Figure 3e) when it did not learn to predict and degenerated
to a random walk. Indeed, the most relevant comparison to the two approaches is the duality between
stochastic differential equations and Fokker-Planck equations, where ours is a (softly) discretized
analog of the latter. Nonetheless, in many of the cases we consider, Bubblewrap produces superior
results even for state prediction. Nonetheless, like many similar models, ours includes multiple
hyperparameters that require setting. While we did not experience catastrophic failure or sensitive
dependence on parameters in our testing, and while our methods adapt to the scale and drift of the
data, some tuning was required in practice.

As detailed above, while many methods target population dynamics, and a few target closed-loop
settings [31, 16, 55], very few models are capable of being trained online. Thus, the most closely
related approaches are those in [30, 32], to which we provide extensive comparisons. However,
these comparisons are somewhat strained by the fact that we provided all models with the same
proSVD-reduced low-dimensional data, while [32] is capable of modeling high-dimensional data in
its own right and [30] was targeted at inferring neural computations from dynamical systems. We
thus view this work as complementary to the dynamical systems approach, one that may be preferred
when small distinctions among population dynamics are less important than characterizing highly
noisy, non-repeating neural behavior.

Finally, we showed that online training of Bubblewrap can be performed fast enough for even
kiloHertz data acquisition rates if small latencies are tolerable and gradient steps can be performed
for small numbers of samples at a time. Yet, for real-time applications, it is not training time but the

9



Figure 5: Multi-step ahead predictive performance. (top) Mean log predictive probability as a
function of the number of steps ahead used for prediction for each of the four experimental datasets
studied. Colors indicate model. (bottom) Bubblewrap entropy as a function of the number of steps
ahead used for prediction. Higher entropy indicates more uncertainty about future states. Dashed
lines denote maximum entropy for each dataset (log of the number of tiles).

time required to make predictions that is relevant, and we demonstrate prediction times of tens of
microseconds. Moreover, Bubblewrap is capable of producing effective predictions multiple time
steps into the future, providing ample lead time for closed-loop interventions. Thus, coarse-graining
methods like ours open the door to online manipulation and steering of neural systems.
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