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Graph Neural Networks (GNNs) are emerging models to analyze graph-structure data. The GNN execution
involves both compute-intensive and memory-intensive kernels. The memory-intensive kernels dominate
execution time, because they are significantly bottlenecked by data movement betweenmemory and processors.
Processing-In-Memory (PIM) systems can alleviate this data movement bottleneck by placing simple processors
near or inside memory arrays. To this end, we investigate the potential of PIM systems to alleviate the data
movement bottleneck in GNNs, and introduce PyGim, an efficient and easy-to-use GNN library for real PIM
systems. We propose intelligent parallelization techniques for memory-intensive kernels of GNNs tailored
for real PIM systems, and develop an easy-to-use Python API for them. PyGim employs a cooperative GNN
execution, in which the compute- and memory-intensive kernels are executed in processor-centric and
memory-centric computing systems, respectively, to fully exploit the hardware capabilities. PyGim integrates
a lightweight tuner that configures the parallelization strategy of the memory-intensive kernel of GNNs to
provide high system performance, while also enabling high programming ease. We extensively evaluate PyGim
on a real-world PIM system that has 16 PIM DIMMs with 1992 PIM cores connected to a Host CPU. In GNN
inference, we demonstrate that it outperforms prior state-of-the-art PIM works by on average 4.38× (up to
7.20×), and the state-of-the-art PyTorch implementation running on Host (on Intel Xeon CPU) by on average
3.04× (up to 3.44×). PyGim improves energy efficiency by 2.86× (up to 3.68×) and 1.55× (up to 1.75×) over prior
PIM and PyTorch Host schemes, respectively. In memory-intensive kernel of GNNs, PyGim provides 11.6×
higher resource utilization in PIM system than that of PyTorch library (optimized CUDA implementation)
in GPU systems. Our work provides useful recommendations for software, system and hardware designers.
PyGim is publicly and freely available at https://github.com/CMU-SAFARI/PyGim to facilitate the widespread
use of PIM systems in GNNs.
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1 Introduction
GraphNeural Networks (GNNs) [49, 67, 135, 147] have emerged as state-of-the-artMachine Learning
(ML) models to depict dependent relations in graph-structure data, providing high accuracy in
vertex classification and link (edge) prediction tasks [93, 115, 126, 140]. Thus, they have been
adopted to many real-world applications, including point-cloud analysis [110], recommendation
systems [134], social network analysis [29], and drug discovery [121]. GNNs comprise a few layers,

https://github.com/CMU-SAFARI/PyGim
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and each layer consists of two steps: aggregation and combination. The former aggregates the input
feature vectors of the neighboring vertices for each vertex in the graph via a permutation-invariant
operator (e.g., average). The latter processes the aggregated vectors of all vertices through a small
neural network (e.g., a multilayer perceptron [9]) to produce the output feature vectors, which will
be fed as input feature vectors to the next layer.
The key operators of combination are dense matrix matrix multiplications (GEMMs), while

aggregation degenerates to a Sparse Matrix Matrix Multiplication (SpMM) kernel, processing the
graph data that is represented as a sparse matrix [43, 141, 148]. In §2.1, we profile the GNN execution
in a high-end GPU system, and find that aggregation dominates execution time and exhibits high
memory intensity, while combination is compute-intensive. The compute-intensive combination fits
to be executed in processor-centric systems (CPUs or GPUs). However, aggregation is significantly
bottlenecked by data movement between memory and processors in such systems, since SpMM is
typically memory-bandwidth-bound in CPUs and GPUs [43, 45, 141] (See also §2.1).
A promising way to alleviate the data movement cost is Processing-In-Memory (PIM) [2, 4,

12, 14, 18, 19, 23, 25–27, 30, 31, 34, 37, 39–42, 47, 48, 53, 57, 60, 64, 70, 72, 75, 84, 86, 89, 95–98,
112, 116, 145, 149] computing paradigm. PIM enables computation to be performed close to the
application data by equipping memory chips with processing capabilities (in-memory processors).
To provide significantly higher memory bandwidth for the in-memory processors than standard
DRAM modules, manufacturers have commercialized near-bank PIM designs [25]. Near-bank PIM
memory modules tightly couple a PIM core with one (or a few) DRAM bank, exploiting bank-
level parallelism to expose the high aggregated on-chip memory bandwidth of standard DRAM
to processors. A real PIM system supports multiple near-bank PIM memory modules, which are
connected to a CPU or GPU, henceforth referred to as Host. The UPMEM PIM architecture [25] is
the first PIM system to become commercially available. HBM-PIM [74] and AiM [75] are near-bank
PIM systems that have been prototyped and evaluated in real systems.

A few works [128, 141, 148] propose hybrid Host-PIM accelerators for GNNs. However, none of
them considers real-world PIM systems. These works design new microarchitectures for near-rank
PIM systems, i.e., accelerator cores are placed at each rank of memory modules. Near-rank PIM
designs have not been commercialized yet, and are not always able to provide significantly higher
memory bandwidth for processors than standard DRAM [4, 74]. In the software level, these works
have simple fixed parallelization strategies for GNN aggregation in PIM cores, which would cause
out-of-memory errors for medium-/large-size graphs (See §2.3) or achieve very low performance in
real near-bank PIM systems, as we show in Figs. 13 and 14 of §4. Moreover, these works use software
emulators for their evaluations (not a real PIM system), and do not describe the engineering efforts
needed to deploy GNNs in their accelerators.
Our goal in this work is to efficiently map GNNs on near-bank PIM systems and quantify

the potential of real PIM architectures in GNN executions. Efficiently executing GNNs in real
PIM systems encounters three key challenges. 1) GNN execution has repeated compute-intensive
(combination) and memory-intensive (aggregation) kernels. On the one hand, executing both types
of kernels in PIM cores would incur high performance overheads in combination, since PIM cores are
low-area and low-power cores with relatively low computation capabilities [4, 47, 74]. On the other
hand, executing combination on Host cores and aggregation on PIM cores, respectively, necessitates
minimizing the overheads of passing the output result of one kernel as input to the next kernel. 2)
Real-world graphs exhibit diverse characteristics, e.g., the average, min or max vertex neighboring
degrees vary across different graphs. Therefore, as discussed in prior works [39, 62, 77, 122, 138],
the execution behavior of sparse kernels, such as the SpMV/SpMM, depends on the particular
characteristics of the input given, and there is no typically one-size-fits-all parallelization solution
that performs best across various inputs [39]. 3) Programming a real near-bank PIM system for a



PyGim: An Efficient Graph Neural Network Library for Real Processing-In-Memory Architectures 3

high-level application is a hard task [14, 55, 61], since software stacks for PIM systems are still in
an early stage. Thus, ML programmers may need to distribute data of GNNs across thousands of
DRAM banks in a fine-grained and careful way, have expertise of the PIM hardware [14, 61] and/or
program the PIM cores using low-level APIs [14, 47].
To address the aforementioned challenges, we design PyGim [44]1, a high-level ML library to

efficiently execute GNNs in real PIM systems. PyGim provides high system performance in real
Host-PIM executions of GNNs, and bridges the gap between ML engineers, who prefer high-level
programming interfaces (e.g., Python), and real PIM systems, that typically provide complex and
low-level APIs and may need deep knowledge of PIM hardware.
PyGim co-designs a Cooperative Acceleration (CoA) model with a novel Parallelism Fu-

sion (PaF) method. CoA runs heterogeneous kernels to the best-fit underlying hardware: the
processor-centric Host (CPU/GPU) system executes the compute-intensive GNN combination, and
the memory-centric PIM system executes the memory-intensive aggregation. PaF serves a dual
purpose: it (i) strives a balance between computation and data transfer costs in GNN aggregation
executed in PIM cores, minimizing the overheads of passing the output result of combination
as input to aggregation, and vice versa, and (ii) provides various parallelization techniques to
cover many real-world graphs with diverse characteristics. Specifically, in GNN aggregation, we
enable three parallelism levels on the hardware PIM side and, at each level, we provide different
parallelization techniques on the software side. 1) We group the available PIM cores of the system
in clusters, and design edge- and feature-level parallelism across PIM clusters. 2) We enable vertex-
or edge-level parallelism across cores within PIM cluster. 3) We employ either vertex- or edge-level
parallelism across threads within a PIM core. The technique of the first parallelism level reduces data
transfer overheads to/from PIM memory modules, thus reducing costs when passing the output
of one GNN kernel as input to the next one. The techniques of the second and third parallelism
levels enable load balancing schemes that provide high compute balance across low-power PIM
cores and across threads of a PIM core. PaF enables various GNN aggregation configurations and
load balancing strategies, by configuring the number of PIM cores per cluster, vertex- or edge-level
parallelism within a PIM cluster or within a PIM core, such that to efficiently support diverse
real-world graphs.

We design PyGim to adapt to the graph’s characteristics with minimal programmer intervention.
We integrate in PyGim a lightweight tuner that predicts the best-performing PaF aggregation
configuration based on the particular characteristics of the input graph. PyGim’s tuner employs
effective performance models to estimate performance of different GNN aggregation configurations
in PIM systems at low cost. This way, we automate the selection of the PyGim PaF configuration
and eliminate the need for manual programmer intervention, while also providing high system
performance. We develop a PIM backend for our optimized implementations and expose them with
a handy Python API (See Alg. 2), so that programmers can easily use them. We integrate our
API with PyTorch [105] (it can be integrated to other frameworks [1, 15, 46, 58]) to support either
CPU or GPU as the Host (GPU-PIM systems are expected to be commercialized) in GNN PIM-based
executions. PyGim supports two widely-used compression formats for real-world graphs. To our
knowledge, PyGim is the first easy-to-use and high-level ML library to deploy GNN models in real
PIM systems, and is available as open-source to enable the wide use of PIM systems in GNNs.

We comprehensively characterize GNN execution on the UPMEM PIM system, the first real-world
PIM architecture, which has 16 PIM DIMMs with 1992 PIM cores connected to Host CPU. We
evaluate our techniques in terms of scalability, data transfer costs, aggregation kernel and inference
performance and energy efficincy using various real-world graphs and various GNN models. We

1PyGim is publicly available at https://github.com/CMU-SAFARI/PyGim.
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compare PyGim over prior state-of-the-art PIM-based works for GNNs and show that it achieves
significantly higher performance by on average 4.38× (up to 7.20×) and higher energy efficiency by
on average 2.86× (up to 3.68×) in GNN inference. PyGim improves GNN inference performance and
energy efficiency over the state-of-the-art PyTorch scheme running on Host by on average 3.04×
(up to 3.44×) and 1.55× (up to 1.75×), respectively. Moreover, PyGim achieves on average 11.6×
higher resource utilization on PIM system than that of PyTorch’s backend on GPU systems, which
is an optimized CUDA implementation from pytorch_sparse library [32]. This means that PyGim
uses the PIM system more effectively than PyTorch’s backend library uses the GPU system. Our
extensive study provides recommendations to improve multiple aspects of future PIM hardware,
systems and software. We hope that our ML library encourages further research and deployment
of GNNs and sparse ML models in real PIM systems.

Overall, we make the following contributions:
• We investigate the challenges of efficiently implementing GNNs on real-world PIM architectures,
and propose an easy-to-use high-level GNN library, named PyGim, for such systems. PyGim is
open-source to enable further research.

• We combine the execution of heterogeneous kernels running on Host and PIM cores with a multi-
level parallelization model. We enable three levels of parallelism and reduce the data transfer
overheads from/to PIM memory modules in a heterogeneous GNN execution. We provide various
parallelization strategies and load balancing schemes to cover diverse real-world graphs.

• We design a fast tuning mechanism to adapt the parallelization configuration of GNNs in PIM
systems to the particular characteristics of the input graph, eliminating the need for manual
programmer intervention. We expose our optimized PIM backend implementations as a handy
Python API that can be integrated with state-of-the-art ML frameworks such as PyTorch.

• We extensively study the potential of real-world PIM architectures in GNNs using various real-
world graphs and models. We show that PyGim significantly outperforms prior approaches both
in performance and energy efficiency, and provides high resource utilization on real PIM systems.

2 Background & Motivation
2.1 GNNs in Commodity Systems
GNNs are emerging ML models that analyze graph-structured data (e.g., knowledge graphs, social
and road networks). A GNN has a few layers. Each layer takes as input (i) the graph 𝐺 = (𝑉 , 𝐸),
where𝑉 and 𝐸 represent the graph’s vertices and edges (connections between vertices), respectively,
which is stored as a matrix, referred to as adjacency matrix 𝐴, and (ii) the feature matrix 𝐹 , that
has one feature vector per vertex in the graph, each vector encodes the vertex’s characteristics.
Most real-world graphs are typically sparse (less than 1% density) [39, 141], i.e., they have relatively
few connections between vertices compared to the total number of possible connections. Thus,
the adjacency matrix is stored in memory in a compressed format, e.g., Compress Sparse Row
(CSR) [10]. The feature matrix is dense with size 𝑁 × 𝐾 , where 𝑁 is the number of vertices and 𝐾
is the number of features per vertex (henceforth referred to as hidden size).
Fig. 1 shows the GNN layer execution that has two steps: the aggregation and combination. In

aggregation, each vertex gathers the feature vectors of its neighbors, and produces an aggregated
vector though an operator (e.g., average). In combination, the aggregated vectors of all vertices
are processed through a small neural network, that typically has dense operators (e.g., GEMMs)
and finishes with an activation. The output feature vectors of all vertices serve as an input feature
matrix of the next layer in GNN model.
The aggregation and combination operators vary slightly across GNN models. For example,

GCN [67] uses a weighted sum function for aggregation, while GIN [135] uses a sum function. GIN
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Fig. 1. Overview of the GNN layer execution workflow.

uses an MLP for combination, while SAGE [49] uses a fully-connected operator. Assuming that 𝐴′

is a normalized adjacency matrix based on the aggregation function of each particular model, 𝐹 𝑙 is
the input feature matrix of a layer 𝑙 with hidden size 𝐾 , and𝑊 𝑙

𝑖 matrices are weight matrices used
in the small neural network of combination, the GNN computation can be expressed as:

𝐹 𝑙+1 = 𝜎 (𝜎 ((𝐴′ ∗ 𝐹 𝑙 ) ∗𝑊 𝑙
1 )... ∗𝑊 𝑙

𝑤)

𝐹 𝑙+1 will be the input feature matrix of the next layer. The aggregation step corresponds to the
computation 𝐴′ ∗ 𝐹 𝑙 , which is a Sparse Matrix Matrix Multiplication (SpMM).

Recent works [128, 141, 148] show that GNN aggregation takes the largest portion of the execution
time, because it is bottlenecked by memory bandwidth in processor-centric systems (CPUs/GPUs).
We evaluate a 3-layer GNN in a RTX 3090 GPU and observe that aggregation takes ∼91% of the
inference time. Fig. 2 shows the roofline model, when executing a GNN layer in the GPU. Even
in a high-end GPU with more than 900GB/s bandwidth, aggregation is highly limited by memory
bandwidth. Moreover, as we show in Table 2, the resource utilization in aggregation is very low, i.e.,
on average 0.44% and 1.19% in CPU and GPU systems, respectively, due to the bottleneck of moving
data from memory to processors. Therefore, we conclude that GNN aggregation is significantly
limited by data movement in processor-centric systems like CPUs and GPUs.
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Fig. 2. Roofline model in the NVIDIA RTX 3090 GPU for aggregation and combination kernels.

2.2 Processing-In-Memory (PIM) Systems
PIM computing paradigm [4, 74, 96, 130] enables memory-centric computing systems: processing
units (general-purpose cores or specialized accelerators) are placed near or inside memory arrays.
PIM is a practical solution to alleviate the data movement bottleneck of processor-centric systems,
and in this work, we study the potential of real PIM systems in GNNs. According to the location of
PIM cores, PIM architectures could be classified into two categories: (i) near-rank in which PIM
cores are placed at the buffer chip of the DIMM and have access to all DRAM banks of the DIMM,
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and (ii) near-bank in which each PIM core is tightly coupled with one (or a few) DRAM banks,
and can access data placed in its local bank(s). Placing PIM cores at a lower level provides larger
aggregated memory bandwidth, enabling higher levels of parallelism. For example, UPMEM near-
bank PIM can provide up to ∼80GB/s internal bandwidth per DIMM [47], while TensorDIMM [71]
near-rank PIM only 22GB/s per DIMM. Therefore, several manufacturers [25, 74, 75] target the
commercialization of near-bank PIM designs to enable high levels of (bank-level) parallelism and
support thousands of PIM cores. UPMEM PIM [25] has already commercialized a PIM product that
has a general-purpose core near each memory bank of a DDR4 DRAM chip. HBM-PIM [74] and
AiM [50, 75] have been prototyped and evaluated in real systems. HBM-PIM proposes a SIMD unit
with 16-bit floating-point support between every two banks in memory layers of HBM stack. AiM
is a GDDR6-based PIM system with near-bank cores that support multiply-and-accumulate and
activation operations.
These real-world PIM systems have some important common characteristics, shown in Fig. 3.

First, there is a Host processor (CPU or GPU) typically having a deep cache hierarchy, which is
connected to standard main memory and PIM-enabled memory. Second, the PIM-enabled memory
module has one (or a few) memory devices (rank of 2D DRAM or stacked layer of 3D-stacked
DRAM). Each PIM device contains multiple processing elements (PIM cores), that have access
to memory banks with higher bandwidth and lower latency than the Host cores. Third, the PIM
cores (general-purpose cores, SIMD units, or specialized processors) run at only a few hundred
megahertz, and have relatively small (or no) scratchpad or cache memory. Fourth, PIM cores may
not be able to directly communicate with each other (UPMEM, HBM-PIM or AiM in different chips),
and communication between them typically happens via the Host.
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Fig. 3. Overview of a real near-bank PIM system. Host has access to𝑚 standard and 𝑛 PIM-enabled modules.

In our evaluation, we use UPMEM PIM [25], the first PIM system that has been commercialized
on real hardware. UPMEM PIM uses 2D DRAM arrays and combines them with general-purpose
cores, called DPUs, on the same chip. Each PIM-enabled module has two ranks (devices), each rank
has 8 chips, and each chip has 8 DPUs. Each DPU is tightly coupled to a DRAM bank, has a 14-stage
pipeline, and supports multiple threads (up to 24), called tasklets.

DPUs have a 32-bit RISC-style general-purpose instruction set, and natively support in hardware
32-bit integer addition/subtraction and 8-bit/16-bit multiplication. More complex operations, e.g.,
32-bit integer multiplication/division, and floating-point operations are software emulated [48].
Each DPU has access to its own (1) 64MB DRAM bank, called MRAM, (2) 24KB instruction memory,
and (3) 64KB scratchpad memory, called WRAM. The Host CPU can access the MRAM banks to
copy input data (from main memory to MRAM, i.e., CPU-DPU) and retrieve results (from MRAM
to main memory, i.e., DPU-CPU). The CPU-DPU/DPU-CPU transfers can be performed in parallel
across multiple MRAM banks, if the size of data transferred from/to all MRAM banks is the same.
There is no direct communication channel between DPUs, and inter-DPU communication takes
place via the Host [61].
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In our paper, we use generic terminology since our optimization strategies can generally apply
to near-bank PIM systems (e.g., HBM-PIM or AiM), like the generic one shown in Fig. 3, and not
exclusively to the UPMEM PIM. Thus, we use the terms PIM device, PIM core, PIM thread, DRAM
bank, scratchpad, and Host-PIM/PIM-Host data transfer, corresponding to PIM rank, DPU, tasklet,
MRAM bank, WRAM, and CPU-DPU/DPU-CPU data transfer in UPMEM’s terminology.

2.3 Prior PIM-Based GNN Accelerators
A few prior works [128, 141, 148] propose hardware accelerators for GNN aggregation; however,
they do not consider real-world PIM systems. They target near-rank PIM systems that have not
been developed as proof-of-concept silicon yet, and typically provide lower memory bandwidth
than near-bank PIM systems [74], which have already been commercialized. Moreover, these prior
works focus on the ASIC design of the processing units, and implement simple parallelization
strategies at the software level, which have been evaluated in software simulators (instead of a real
system). Specifically, these works do not comprehensively evaluate the performance overheads of
transferring data to/from PIM memory modules (i.e., Host-PIM and PIM-Host data transfer costs).
We find that applying the simple parallelization strategies of prior PIM-based GNN accelera-

tors [128, 141, 148] is not suitable or efficient for real near-bank PIM systems. In detail, GNNear [148]
equally distributes the graph’s vertices across PIM cores, and the large dense feature matrix is
copied at each PIM device of the system. Applying this approach at near-bank PIM systems would
necessitate to replicate the large dense matrix of size 𝑁 (vertices) × 𝐾 (hidden size) at each (or a
few) PIM memory bank, and would cause out-of-memory errors for medium-/large-size graphs:
e.g., assuming an UPMEM PIM bank of 64MB and 256 hidden size, GNNear’s approach would
support only small graphs with maximum ∼64K vertices. G-NMP [128] equally distributes the
feature matrix across PIM units. On the one hand, distributing the hidden size dimension 𝐾 of
the feature matrix across PIM cores in near-bank PIM systems would leave many PIM cores idle
causing low PIM utilization: GNN layers typically have a much smaller hidden size (e.g., 128 or
256 [43, 49, 54, 67, 135, 138, 147]) than the available PIM cores (thousands of cores) of near-bank
PIM systems (e.g., UPMEM PIM system has 2560 PIM cores). On the other hand, distributing the
vertex dimension 𝑁 of the feature matrix across the PIM cores would create a partial result of
size 𝑁 × 𝐾 for the output feature matrix of aggregation at each (or a few) PIM bank. Similarly to
GNNear’s scheme, this approach would cause out-of-memory errors for medium-/large-size graphs
(e.g., graphs with only up to ∼64K vertices could be supported in UPMEM PIM), while also a large
number of partial results would need to be merged by Host cores. Finally, considering all prior
PIM-based works in GNNs, GraNDe is the state-of-the-art work, and the most optimized in terms of
its parallelization strategy. GraNDe [141] demonstrates that a 2D distribution scheme provides the
highest on average performance in near-rank PIM systems. In this scheme, the vertex dimension 𝑁
of the feature matrix is distributed across PIM modules (e.g., PIM devices (ranks) in a near-bank
PIM system) and the hidden size dimension 𝐾 of the feature matrix is distributed across PIM units
of the same device (e.g., PIM cores of the same PIM device (rank)). We evaluate this scheme in a
real near-bank PIM system, and show that it achieves very low performance, being on average
6.3× (Fig. 14) worse in GNN inference compared to our proposed PyGim approach. This is because
GraNDe is tailored for near-rank PIM systems, rather than near-bank PIM systems.

3 PyGim: Detailed Design
PyGim is a easy-to-use ML library to efficiently execute GNNs on real near-bank PIM systems. See
common characteristics in §2.2. PyGim improves system efficiency by running compute-bound and
memory-bound kernels on processor-centric and memory-centric hardware, respectively (§3.1),
and providing highly efficient parallelization strategies in GNN aggregation tailored for real PIM
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systems (§3.2). Moreover, PyGim adapts to the characteristics of the real-world graph without any
programmer intervention via a lightweight tuning mechanism (§3.3) that automates the aggregation
configuration. PyGim enables high programming ease via a high-level ML-friendly interface (§3.4)
that is integrated with state-of-the-art ML frameworks.

3.1 Cooperative Acceleration Model (CoA)
GNN execution alternates between sparse and dense operators: the aggregation step degenerates to
an SpMM kernel, which is bottlenecked by memory bandwidth in processor-centric systems (Fig. 2),
while the combination step mainly comprises compute-heavy kernels, e.g., GEMMs. We employ a
Cooperative Acceleration (CoA) model that efficiently maps and executes each step to the best-fit
underlying hardware. For each GNN layer, PyGim executes the SpMM kernel of aggregation on PIM
cores to leverage immense memory bandwidth available on PIM system, and the compute-heavy
kernels of combination on Host (CPU or GPU) to exploit large processing capabilities available
on processor-centric systems. Since aggregation and combination are repeated one after the other
in multiple consecutive GNN layers, the key challenge is how to minimize the overheads of
passing the output of the one step as input to the next step. We discuss how we address it in the
next subsection. Note that while PIM cores are running aggregation, Host cores are idle, until
the dependent computation is finished, and vice versa. We leave for future work the extension
of PyGim to offload part of aggregation and combination computations on Host and PIM cores,
respectively, to minimize idleness.

3.2 Parallelism Fusion (PaF)
Fig. 4 shows the GNN aggregation execution on a real PIM system that can be broken down in four
execution steps: (1) the time to transfer the input feature matrix of combination from Host into
DRAM banks of PIM-enabled memory (Host-PIM), (2) the time to execute computational kernel
on PIM cores (Kernel), (3) the time to retrieve from DRAM banks of PIM-enabled memory to the
Host the results for the output (PIM-Host), and (4) the time to merge partial results and assemble
the final output feature matrix on the Host (Merge). The graph (adjacency matrix) is pre-loaded
into PIM-enabled memory once, i.e., when reading the graph file from the disk and loading it to
DRAM (pre-processing step). The same graph (adjacency matrix) is reused across all layers.
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Fig. 4. Execution of aggregation step on a real PIM system.

We design Parallelism Fusion (PaF) to mitigate data transfer and kernel time performance costs.
We enable three levels of parallelism, each level implements a different strategy, shown in Fig. 5.
The first-level strategy reduces data transfer overheads (Host-PIM and PIM-Host), thus addressing
the aforementioned key challenge, while the second- and third-level strategies reduce computation
overheads (kernel time) to achieve high PIM performance. This way PaF provides the sweet-spot and
strives a balance between computation and data transfer costs. Moreover, in sparse computational
kernels, including SpMM, the execution behavior depends on the particular characteristics of the
input given, i.e., the input graph in GNNs. Therefore, PyGim enables various data partitioning
approaches and load balance schemes, such that to tune the parallelization strategy based on the
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particular characteristics of the input graph, thus achieving performance that is as close as possible
to the optimal performance for that given graph.

PIM-enabled Memory Modules
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Fig. 5. PaF overview.

Across PIM Clusters. We group the available PIM cores into clusters, named PIM clusters, and
execute a part of the SpMM aggregation at each cluster. A PIM device, i.e., a rank in 2D DRAM
(e.g., UPMEM PIM system) or a stacked layer in 3D DRAM (e.g., HBM-PIM system) can contain
multiple PIM clusters, while all cores of the same cluster belong to the same PIM device (grouping
cores located to different PIM devices is inefficient, since it would need multiple separate Host-PIM
and PIM-Host transfers for the same cluster, causing high transfer and launch overheads).

We parallelize SpMM across PIM clusters via a hybrid edge-level and feature-level approach,
as shown in Fig. 6. Each cluster processes a subset of the graph’s edges and a subset of the vertices’
features to minimize Host-PIM and PIM-Host transfer costs. We create vertical partitions (edge-level
parallelism) on the adjacency sparse matrix, the number of which is henceforth referred to as
sparse partitions. The adjacency matrix is distributed vertically across multiple PIM clusters,
where each vertical partition is assigned to multiple PIM clusters. To minimize the amount of partial
results produced for the final output matrix, and thereby minimizing the PIM-Host transfers, we
combine edge-level parallelism with feature-level parallelism: we also create vertical partitions on
the feature dense matrix, the number of which is henceforth referred to as dense partitions. Edge-
and feature-level parallelism split the feature matrix both vertically and horizontally. This way
the feature matrix is distributed into 2D tiles, the number of which is equal to the number of PIM
clusters used, i.e., each 2D tile is assigned to a PIM cluster. Multiple PIM clusters process in parallel
the 2D tiles of the feature matrix with their corresponding vertical partitions of the adjacency
matrix, executing a part of the SpMM. Multiple PIM clusters produce dense output matrices that
correspond to partial results for the final output matrix. These partial results are merged in the
Host cores (merge step) via matrix matrix addition.
Let’s assume the number of sparse partitions is 𝑠 and the number of dense partitions is 𝑑 . The

sparse matrix is split into 𝑠 vertical partitions, and the feature matrix is split into 𝑠 horizontal
partitions and 𝑑 vertical partitions, creating 𝑠 × 𝑑 2D tiles. Each PIM cluster will be assigned to
process a 2D tile of the feature matrix with the corresponding vertical partition of the adjacency
matrix. The clusters that are assigned to 2D tiles of the same vertical partition in the feature matrix
create partial results for the output matrix. The values of sparse partitions 𝑠 and dense partitions
𝑑 , and the number of PIM clusters per PIM device can be configured either manually by the user
or automatically by the PyGim tuner, as described in §3.3. The PIM clusters per device multiplied
with the number of PIM devices used in SpMM execution needs to be equal to the number 𝑠 ×𝑑 . By
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Fig. 6. Example of edge-level and feature-level parallelism across PIM clusters in PyGim.

carefully selecting the values of sparse partitions 𝑠 and dense partitions 𝑑 , as well as the number of
PIM clusters per PIM device, PaF technique can significantly minimize the Host-PIM and PIM-Host
data transfer costs.
Fig. 6 shows an example of two sparse partitions and two dense partitions and a PIM system

of four PIM clusters. In this example, there are four 2D tiles in the feature matrix each assigned
to a different PIM cluster. The clusters 1 and 2 are assigned to 2D tiles that belong in the first 2D
tile row of the feature matrix, while the clusters 3 and 4 are assigned to 2D tiles that belong in
the second 2D tile row of the feature matrix. Therefore, in the adjacency matrix, clusters 1 and
2 are assigned to process the first vertical partition, i.e., the vertical partition that is associated
with the orange edges of the input graph, while clusters 3 and 4 are assigned to process the second
vertical partition, i.e., the vertical partition that is associated with the blue edges of the graph. The
clusters 1 and 3 create partial results for the final output matrix corresponding to the first two
columns of the final output matrix, while the cluster 2 and 4 create partial results for the final
output matrix corresponding to the last two columns of the final output matrix. Assuming a graph
with 𝑁 vertices, hidden size 𝐾 and 𝑅 PIM clusters, when creating 𝐿 equal partitions on the feature
matrix (𝐿 < 𝑅), each PIM cluster processes a feature matrix tile of size (𝑁 /(𝑅/𝐿)) × (𝐾/𝐿), which
corresponds to the Host-PIM transfer cost for this cluster, and produces a partial output matrix of
size 𝑁 × (𝐾/𝐿), which corresponds to the PIM-Host transfer cost for this cluster. Although in the
example of Fig. 6 the sparse and dense partitions have the same column width, PyGim can support
variable-sized vertical partitions on the adjacency and feature matrices. However, with variable-
sized partitions, PIM clusters process variable-sized 2D feature tiles and produce variable-sized
partial output results. Our exploratory evaluations showed that this approach incurs high load
imbalance in Host-PIM/PIM-Host transfers, causing high overheads. Thus, in our evaluations we
present equal-sized partitions.
Within PIM Cluster. PyGim encodes the adjacency matrix in CSR [10, 108] and COO [108, 114]
formats, the most widely-used compressed matrix storage formats for sparse matrices [56, 73, 94,
107]. We parallelize smaller SpMMs across PIM cores of the same cluster, by enabling vertex-level
parallelism, if the adjacency matrix is stored in CSR, and either vertex-level parallelism or edge-level
parallelism, if it is stored in COO. This way we provide compute balance across cores of the same
cluster, minimizing the kernel time. The corresponding 2D feature matrix tile is replicated at each
core of the same PIM cluster. Fig. 7 presents an example of parallelization across multiple cores of
the same cluster with CSR and COO formats.
The CSR format (Fig. 7 left) sequentially stores the edges (non-zero elements) in a vertex-wise

(row) order. A column index array (colind[]) and a value array (values[]) store the column index
and the value of each non-zero element, respectively. An array rowptr[], stores the location of the
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Fig. 7. Vertex- and edge-level parallelism across PIM cores within cluster. The gray cells represent zero values,
while the green, blue and pink cells represent non-zero values (edges).

first non-zero element of each row within the values[] array. An adjacent pair rowptr[i, i+1] stores
the number of the non-zero elements of the i-th row. Since in CSR the adjacency matrix is stored in
vertex-wise order, we perform vertex-level parallelism across PIM cores of the same cluster: each
core processes a subset of the vertices, i.e., consecutive rows in the adjacency matrix. We enable
load balance across cores via two schemes: (a) equally balancing the number of vertices (rows)
across PIM cores (Fig. 7 left i), or (b) equally balancing the number of edges (non-zero elements)
across PIM cores at vertex (row) granularity (Fig. 7 left ii).

The COO format (Fig. 7 right) uses three arrays to store edges (non-zero elements): the row index
(rowind[]), column index (colind[]) and value (values[]) arrays store the row index, column index
and value of each non-zero element, respectively. Since in COO the adjacency matrix is stored in
non-zero-element-wise order (edge-wise order), we enable either vertex-level parallelism, i.e., each
PIM core of the cluster processes a subset of the vertices, or edge-level parallelism, i.e., each PIM core
processes a subset of the edges. We enable load balance across cores via two schemes: (a) equally
balancing the number of edges (non-zero elements) across cores at a vertex (row) granularity (Fig. 7
right i), or (b) equally balancing the number of edges (non-zero elements) across cores by enabling
splitting a vertex (row) across two (or more) neighboring cores to provide near-perfect edge-level
balance (Fig. 7 right ii). In (b), when a vertex (row) is split between neighboring PIM cores, the cores
produce partial results for the same row of the output matrix, which are merged by Host cores.
Within PIM Core. We enable a similar scheme across threads of a PIM core with that enabled
across PIM cores of the same cluster (Fig. 7). We enable high compute balance across threads of
the same core to further minimize the kernel time. In CSR, we perform vertex-level parallelism by
either (i) equally balancing the number of vertices (rows) across threads of a core, or (ii) equally
balancing the number of edges (non-zero elements) at a vertex (row) granularity across threads.
In COO, we either (i) equally balance the number of edges (non-zero elements) at a vertex (row)
granularity across threads of a core (vertex-level parallelism), or (ii) equally balance the number of
edges (non-zero elements) across threads, enabling splitting a vertex (row) across two (or more)
PIM threads (edge-level parallelism). In the latter case, when a vertex (row) is split across two (or
more) PIM threads, PIM threads perform write accesses to the same elements of the output matrix,
thus synchronization among threads is necessary. We provide two synchronization schemes:
• Coarse-grained locking: one global mutex (lock) protects all the elements of the output matrix.
• Lock-free: given that we assign consecutive rows to each thread (consider Fig. 7 COO (ii) with

threads instead of cores), race conditions might arise only when a vertex (row) is split across two
(or more) threads. These vertices (rows) are proportional to the number of threads, which are
only a few per core. Thus, the number of partial results for the same final output element are a
few, and threads can temporarily store partial results in the scratchpad memory (e.g., WRAM in
the UPMEM PIM system). Then, only one single thread merges the partial results by reading them
from scratchpad memory, and writes the final result to the DRAM bank/s with no synchronization.
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Kernel Implementation. We describe how threads access the data involved in SpMM. There are
three types of data arrays: (i) the arrays that store the non-zero elements of the adjacency matrix,
i.e., their values (values[]) and their positions (rowptr[], colind[] for CSR, and rowind[], colind[] for
COO), (ii) the array that stores the elements of the feature matrix, and (iii) the array that stores
the partial results for the output matrix. First, SpMM performs streaming memory accesses to the
arrays that store the non-zero elements. To exploit PIM’s immense internal bandwidth, each thread
reads the non-zero elements (their values and positions) by fetching large chunks of bytes in a
coarse-grained manner from DRAM bank to scratchpad (e.g., fromMRAM toWRAM in the UPMEM
PIM system). Then, it accesses data element by element via scratchpad. In the UPMEM PIM system,
we fetch large chunks of 128-bytes/256-bytes, as suggested by prior work [47]. Second, SpMM
processes the feature matrix elements at a row granularity, as a chunk of hidden size elements in
the tile assigned to the PIM core, e.g., a chunk of 𝐾/𝐿 elements in Fig. 6. To exploit spatial locality,
each thread reads the feature matrix elements by fetching chunks of tile hidden size × data type
bytes from DRAM bank to scratchpad, and performs multiply-and-add. Third, threads temporarily
store partial results for the elements of the same output matrix row in scratchpad, until all non-zero
elements of the same row of the adjacency matrix are processed. This way we exploit temporal
locality for multiple updates on the same output matrix elements. Then, the produced results are
written from scratchpad to DRAM bank/s as a chunk of tile hidden size × data type bytes.
Merge Step. PyGim merges partial results created across PIM clusters and across cores within PIM
cluster (merge step) on the Host cores. In our CPU-PIM system, we use the OpenMP API [21] to
parallelize Merge, and perform (i) 2D block copy on the final output matrix for the partial results of
the PIM clusters assigned to the first 2D block row of the feature matrix (Clusters 1,2 in Fig. 6) and
(ii) 2D block reduction (add) operation on the final output matrix (matrix-matrix addition) for the
partial results of the PIM clusters assigned to the remaining 2D block rows of the feature matrix
(Clusters 3,4 in Fig. 6).

3.3 PyGim Tuner
PyGim’s PaF is designed to support various parallelization and load balancing strategies to efficiently
cover various real-world graphs: as shown in prior works [39, 62, 77, 138], the execution behavior
of sparse kernels that process input data with diverse characteristics, such as the SpMM of GNN
aggregation that processes real-world graphs with varying neighboring degrees, diameters etc,
depends on the particular characteristics of the input. Therefore, to enable high performance
by adapting the PaF strategy to the particular graph’s characteristics and avoid programmer’s
intervention, we integrate in PyGim a lightweight tuner that selects the aggregation configuration
to be used: the user selects the compression format (CSR/COO), and then the tuner predicts the
best-performing aggregation configuration, i.e., the sparse and dense partitions, the groups per
device, the selection of vertex- or edge-level parallelism across cores of a PIM cluster and across
threads of a PIM core.

To enable the tuner, we first run a fewmicrobenchmarks on the PIM system to collect information
on hardware characteristics. Thesemicrobenchmarks runwithin less than∼30 secs, and are executed
only once per PIM server to gather runtime characteristics of the underlying hardware. Our approach
is similar to prior prediction and profiling tools for ML executions [7, 16, 35, 63, 144]. We devise
four microbenchmarks. 1) The Host-PIM-BW-byte and PIM-Host-BW-byte measure the Host-PIM
and PIM-Host bandwidth, respectively, when using multiple PIM devices and transferring𝑀 bytes
to/from each PIM core (PCore). We vary𝑀 from 64KB to 8MB, collecting 16 different byte sizes. 2)
The Host-BW-byte measures the Host bandwidth of standard DRAM modules, when copying 𝑀
bytes from one memory area (i.e., allocated matrix) to another area. We vary 𝑀 from 8B to 2KB
and collect 9 different byte sizes. 3) FMA-PCore-chunk is the fused multiply-add (FMA) throughput
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achieved by a PIM core (PCore), i.e., number of FMA operations executed per second, when the
PIM core performs FMA operations on data values that are transferred from the DRAM bank
to scratchpad memory as chunks of 𝑀 elements. We vary 𝑀 from 2 to 512 elements collecting
9 different chunk sizes. 4) ADD-Host-block is the addition (ADD) throughput achieved by Host
cores, when accumulating (ADD) the𝑀 elements of a block to a larger allocated matrix. We vary
𝑀 from 2 to 512 elements collecting 9 different block sizes. After collecting data on hardware
characteristics, the tuner estimates the execution time of an aggregation configuration using the
following analytical models:

𝑇total = 𝑇Host-PIM +𝑇Kernel +𝑇PIM-Host +𝑇Merge

𝑇Host-PIM =
PCores x max-bytes-to-PCore
Host-PIM-BW-byte (closest)

𝑇Kernel = max-NNZs-PCore × FMA-PCcore-chunk (closest)

𝑇PIM-Host =
PCores × max-bytes-from-PCore

PIM-Host-BW-byte (closest)

𝑇Merge =
dp x cluster-2Dtile-byte
Host-BW-byte (closest) +

(sp-1) x dp x cluster-2Dtile
ADD-Host-block (closest)

Themax-bytes-to/from-PCore andmax-NNZs-PCore are the maximum bytes sent/received to/from
a PIM core in Host-PIM/PIM-Host transfers and the maximum non-zero elements (NNZs) processed
by a PIM core, respectively. The sp and dp are the number of sparse and dense partitions created. The
cluster-2Dtile and cluster-2Dtile-byte represent the number of elements and bytes of the 2D tile for
partial results created by a PIM cluster (e.g., 𝑁 × (𝐾/𝐿) in Fig. 6), respectively. For the Host-PIM-BW,
PIM-Host-BW and Host-BW, we use the collected bandwidth measurement associated with the
data size that is closest to the data size of the aggregation configuration we are estimating. For
FMA and ADD throughput, we use the collected throughput measurement associated with the
chunk of elements/block size that is closest to the chunk of elements/block size of the aggregation
configuration we are estimating.

Alg. 1 presents a brief description of the PyGim tuner which iterates over all possible aggregation
configurations and predicts the best-performing configuration. Specifically, the tuner iterates over
all divisors of the available PIM devices in the system (line 5), creates 1, 2, or 4 clusters per PIM
device, and it computes the number of dense partitions (line 7). If the number of dense partitions
is larger than the hidden size, this configuration is not valid and is omitted (lines 9). Otherwise,
the tuner iterates over the possible load balance strategies within the PIM cluster (line 10) and
within the PIM core (line 11). For each current configuration, the tuner estimates the performance
using the described analytical models (line 12), and keeps the lowest estimated execution time and
its corresponding configuration in local variables (lines 13-15). When the tuner has examined all
possible configurations, it returns the estimated best-performing configuration (line 16).

The PyGim tuner is optional, providing flexibility to the programmer who may choose to utilize it
or not. If the tuner is not used, the programmer is responsible for manually selecting and providing
the desired aggregation configuration. In Alg. 2 (an example of GCN inference), line 18 needs to be
replaced with a manually tuned configuration. If the tuner is enabled, it takes around ∼33 secs and
is executed once, when reading the graph file from the disk and loading it into PIM devices in the
pre-processing step. Then, users can submit multiple GNN inference requests to query properties
of vertices/edges or the existence of edges between graph’s vertices [49, 67, 132, 137, 143]. Finally,
the tuner’s goal is to estimate the best-performing aggregation configuration by leveraging simple
analytical models. In our evaluations (Fig. 12), we evaluate the efficiency of our tuner by comparing
the performance achieved by the predicted configuration of tuner versus the best-performing
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1 def tune(graph, hidden_size , device_info):
2 clst_cfg = ['ver', 'edg'] # load balance within PIM cluster

3 core_cfg = ['ver', 'edg'] # load balance within PIM core

4 best = inf, best−cfg = []

5 for sp in divisors of num_pim_devices: # sparse partitions
6 for grp in [1, 2, 4]: # clusters per PIM device
7 dp = num_pim_devices / sp ∗ grp # dense partitions

8 if dp > hidden_size:
9 continue
10 for cl in clst_cfg:
11 for cr in core_cfg:
12 Ttotal = predict(graph, hidden_size , grp, sp, dp, cl, cr, device_info)

13 if (Ttotal < best):
14 best = Ttotal

15 best−cfg = [sp, dp, grp, cl, cr]

16 return best−cfg

Algorithm 1. PyGim tuner for the aggregation operator.

manually tuned configuration (oracle prediction), and show that the simple analytical models used
by the tuner are highly effective.

3.4 PyGim API and Integration
Combination comprises a small neural network, thus PyGim leverages existing optimized ML
kernels from PyTorch to execute the corresponding ML operators of GNN combination on Host
cores. We integrate PyGim with PyTorch, as we explain in the next paragraph. Note that although
we only have access to a CPU-PIM system for our evaluations, PyGim can support GPU-PIM
GNN executions (GPU-PIM systems that are expected to be available in the market) by leveraging
PyTorch’s supported backends (CPU and GPU).
To interact with PIM devices (e.g., Host-PIM/ PIM-Host transfers) in aggregation, Host code

needs to be implemented. The Host code implements (developed in C language) the parallelization
approaches and the corresponding data partitioning schemes proposed in §3.2, when loading the
graph into PIM-enabled memory modules (pre-processing step). The kernel code that PIM cores
are running is implemented using the UPMEM PIM interface, since this is the only commercially
available real PIM system. This interface is also written using the C language, and it can be easily
ported to other PIM systems with similar interfaces to UPMEM. We create a PIM backend for
PIM aggregation and expose this software runtime as a handy Python API so that programmers
can easily use it via a high-level programming interface. We combine our Python-like API with
PyTorch [105] to enable efficient CoA execution. PyGim’s PIM aggregation can be also easily
integrated to other ML frameworks, such as TensorFlow [1], Keras [46], MXNet [15] and Caffe [58].

Alg. 2 presents an example of GCN inference with PyGim. Programmers need to (i) allocate PIM
devices (line 15), (ii) load graph data into PIM-enabled memory (lines 17-19), (iii) create a GNN
model (lines 21-25), and (iv) run GNN inference by configuring aggregation and combination to
be executed on the PIM cores (line 9) and Host cores (line 11), respectively. The allocated PIM
resources are released, when the program exits.

4 Evaluation
4.1 Methodology
System. We use the UPMEM PIM architecture, a real-world PIM system. The system consists of a
Host CPU (2-socket Intel Xeon with 8-cores each and a total of 32 threads at 2.10 GHz), standard
DDR4 memory (128 GB), and 16 PIM DIMMs of 2 ranks (124.5 GB and 1992 PIM cores at 350 MHz),
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1 import torch, pygim as gyn
2 class GCNConv(torch.nn.Module):
3 def __init__(self, hidden_size):
4 self.linear = torch.nn.Linear(hidden_size , hidden_size)

5
6 def forward(self, graph_pim , in_dense):
7 # Execute Aggregation in PIM

8 dense_parts = col_split(in_dense)

9 out_dense = gyn.pim_run_aggr(graph_pim , dense_parts)

10 # Execute Combination in Host

11 out = self.linear(out_dense)

12 return out
13
14 # Allocate PIM Devices
15 gyn.pim_init_devices(num_pim_devices , groups_per_device)
16 # Load graph in PIM devices
17 data = load_dataset()
18 graph_parts , config = gyn.tune(data.graph, hidden_size , device_info)
19 graph_pim = gyn.load_graph_pim(graph_parts , config)
20 # Create GNN model
21 model = torch.nn.Sequential([Linear(in_channels , hidden_size),
22 GCNConv(hidden_size),

23 GCNConv(hidden_size),

24 GCNConv(hidden_size),

25 Linear(hidden_size , out_channels) ])

26 model.forward(graph_pim , data.features)

Algorithm 2. Example of GCN execution with PyGim API.

each rank has 64 cores. There are 56 faulty cores in the evaluated system that cannot be used, but
they do not affect the correctness of our results (they are not used in our experiments).
Models and Datasets.We evaluate the GCN [67], GIN [135] and SAGE [49] models. The multiplica-
tion of floating point data types is software emulated in the UPMEM PIM system. Thus, we present
detailed evaluations with 32-bit integer (int32) data type, since it has the same byte width with 32-
bit float (fp32), its arithmetic operations are more effectively supported in UPMEM PIM hardware,
and provides high accuracy (having int32 for both computation and memory representation results
to less than 1% accuracy drop in all models and datasets over fp32 using the quantization scheme
of Ctranslate2 [20]). Quantization [20, 90, 146] is orthogonal to our optimizations, and we expect
that future PIM systems (e.g., HBM-PIM) will provide native floating-point arithmetic support or
optimized quantization schemes will provide high accuracy with fixed-precision data types. We
evaluate real-world sparse matrices from the Sparse Matrix Suite Collection [24], when using one
PIM core and one PIM cluster, and present large-scale experiments with three real-world graph
datasets: ogbn-proteins [124], Reddit [49] and AmazonProducts [142]. See also Appendix A.7 for
detailed matrix and graph dataset characteristics.
Comparison Points.We use the PyG library [109] for GNN implementation. In GNN inference,
combination runs on the Host CPU with PyTorch’s default backend implementation. In GNN aggre-
gation, we compare PyGim with prior software schemes for PIM systems proposed in the literature.
In PyGim and other PIM-based software schemes, when the kernel step of GNN aggregation is
running on PIM cores, the host CPU cores are idle. We also compare PyGim with a CPU-only
scheme, that runs on same system with PIM schemes, i.e., the Host CPU side of the UPMEM PIM
server, similarly to the methodology of prior state-of-the-art PIM works [14, 39, 57, 61]. Overall,
we compare PyGim with four schemes:
• PyTorch: the PyTorch’s backendwhich is the state-of-the-artmatmul operator from pytorch_sparse
library [32]. We evaluate the latest default implementation of matmul that uses the optimized
Intel MKL library. We run this scheme using all 32 threads of the 32-thread Intel Xeon CPU.
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• GraNDe [141]: the best-performing PIM scheme of prior PIM-based work for GNNs [141] that
equally distributes the vertex (row) dimension of the feature matrix across PIM devices, and then
equally distributes the hidden size of the feature matrix across cores of the same PIM device.

• SP1 and SP2 [39]: two SpMV-based schemes of prior work [39] for real PIM systems. SparseP [39]
proposes SpMV kernels for PIM systems, and shows that their optimized COO.nnz-lf kernel
performs best, when using ∼2 PIM devices. We run aggregation as an SpMV execution: for each
column of the feature matrix, we execute one SpMV kernel using either one PIM device (SP1) or
two PIM devices (SP2), and parallelize multiple SpMVs for the multiple columns of the feature
matrix using multiple PIM devices.

4.2 Within PIM Core Analysis
We evaluate SpMM for int32 and fp32 data types with multiple threads of a PIM core. Fig. 8 shows
scalability of CSR when equally balancing the vertices (RV) or edges at vertex granularity (RE)
across threads, and COO when equally balancing the edges at vertex granularity (CE) or via
near-perfect edge balance using the coarse-grained locking (CP-cg) or lock-free (CP-lf) schemes.
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Fig. 8. Scalability of all schemes with of a PIM core in int32 (left) and fp32 (right) data types, as the number
of threads of a PIM core increases.

We draw three findings. First, all schemes scale up to 16 threads, because the PIM core pipeline
is fully utilized after 16 threads. In wing_nodal with 16 threads, only one thread processes many
more edges than the rest, thus RV slightly scales to 24 threads (by 0.09%), because it exhibits better
compute balance across threads. Second, int32 data type provides at least one order of magnitude
better performance than fp32 data type. The UPMEM PIM core does not support in hardware
floating-point operations, while they are software emulated using integer arithmetic units. Thus,
fp32 SpMM achieves much lower performance than int32 SpMM due to the excessive amount of
computations. Third, RV provides worse performance than other schemes, since balancing the
vertices across threads incurs high edge (non-zero element) imbalance, thus causing high disparity
in the amount of computations performed across threads (high compute imbalance).

Recommendation 1:
PIM cores typically have low compute capabilities, thus we recommend programmers

to design algorithms that minimize the amount of computations performed and
support parallelization schemes that enable high compute balance across threads.

Recommendation 2:
Programmers can leverage quantization in ML models, if PIM cores
have limited precision and arithmetic operation support in hardware,
and can design quantized data types that enable low compute require-
ments (e.g., replacing multiplications with logical/shift/add operations).
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4.3 Within PIM Cluster Analysis
Fig. 9 evaluates SpMM in one PIM cluster of 64 cores with int32 data type for CSR, when equally
balancing the vertices (RV) or edges at vertex granularity (RE) across PIM cores, and for COO
when equally balancing the edges at vertex granularity (CE) or via near-perfect edge balance (CP).
Within each PIM core, we use 16 threads with edge-balance across threads in CSR and near-perfect
edge balance across threads (lock-free synchronization) in COO. We present the execution time of
the breakdown steps of Fig. 4, and sort matrices with increasing irregularity, i.e., standard deviation
of non-zero elements among rows.
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Fig. 9. Comparison of various schemes using one PIM cluster of 64 PIM cores and various sparse matrices.

We draw three findings. First, the vertex-balance scheme (RV) incurs higher kernel time than
edge-balance schemes (RE, CE, CP) by 1.96×, because the latter provide high compute balance, i.e.,
similar number of edges (non-zeros) are processed across cores. Second, edge-balance schemes
incur higher PIM-Host data transfer costs over vertex-balance by 2.63×. In UPMEM PIM, PIM-Host
data transfers can be performed in parallel across multiple cores, if the transfer sizes from all DRAM
banks are the same. To leverage parallel data transfers, we perform padding with empty bytes (zeros)
at the granularity of a PIM device, when transferring data from/to Host. Edge-balance schemes
have higher disparity in the number of vertices assigned to PIM cores, i.e., PIM cores produce
different amount of partial results for the output matrix, thus they suffer from higher zero padding
costs in PIM-Host data transfers. Based on first and second findings, we observe that if a single
parallelization scheme, e.g., only vertex- or edge-parallelism, is used across all available PIM cores
in the system (thousands of PIM cores), performance would be sub-optimal, since it would cause
either high kernel (e.g., RV) or high data transfer time (e.g., RE, CE, CP). This is key experimental
observation that inspired our PaF approach: PaF enables multiple parallelization strategies to trade
off computation and data transfer costs in PIM executions. Third, most matrices have a power-law
distribution [125], i.e., only a few vertices have a very large number of neighbors (edges), thus
edge-balance schemes provide best end-to-end performance by significantly improving kernel time.
Dubcova2 is a relatively regular matrix, thus the vertex-balance scheme provides enough compute
balance across PIM cores, achieving 1.11× better total performance than edge-balance schemes.

Recommendation 3:
Commodity DRAM has multiple hierarchy levels (e.g., DIMM-, rank/layer-, bank
group-, bank-level), each level has different characteristics in circuitry design. PIM
architects can enable different hardware optimizations or accelerator cores at each
level of hierarchy (e.g., adding processing capabilities both before and after the
sense amplifiers of memory arrays). Then, system and software engineers can de-
sign different optimization techniques (e.g., different parallelization strategies) for
each different level of hardware hierarchy (similar to our proposed PaF approach)
to enable high performance in PIM executions via hardware software co-design.
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Recommendation 4:
Data transfers to/from PIM memory are typically expensive (since they are
performed via the common memory bus), and are on the critical path in
hybrid Host-PIM executions. Thus, hardware architects and system engi-

neers can explore mechanisms for PIM systems that (i) overlap data transfers
to/from PIM memory with computation on PIM cores, and (ii) minimize the
zero padding amount needed in parallel Host-PIM/PIM-Host data transfers.

4.4 Across PIM Cluster Analysis
We evaluate SpMM using multiple PIM clusters and within cluster we select edge-balance schemes
to minimize kernel time. Fig. 10 presents the performance using real-world graphs, 128 hidden size,
32 PIM devices, and a fixed number of 1992 PIM cores, while varying the parallelization scheme
used: each triple of values shows the number of sparse partitions, the number of dense partitions
and the number of PIM clusters per PIM device, respectively. We show breakdown steps of Fig. 4,
and the stacked bar “Other” corresponds to the time needed to partition the dense matrix.
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Fig. 10. Performance of edge-balance schemes varying the number of sparse, the number of dense partitions,
and the number ofPIM clusters per device.

We note four key points. First, having 2 PIM clusters per device with ∼28 cores per cluster
increases the kernel time by 1.30× on average over having 1 cluster per device of ∼56 cores. Using a
smaller number of cores per cluster results in higher compute costs, since each PIM core processes a
larger number of edges (non-zeros), executing many more computations. Second, creating a larger
number of sparse partitions (e.g., 4 or larger) typically increases the PIM-Host data transfer and
merge overheads, since PIM clusters create more partial results for the output matrix. Third, our
proposed PaF strategy effectively provides low data transfer costs to/from PIM memory modules.
We observe that in the best-performing configurations (e.g., 1-32-1 for ogbn-proteins dataset),
the Host-PIM and PIM-Host data transfers account for ∼14% of the total time, while most of the
time (∼67%) is the actual sparse matrix matrix multiplication. Fourth, we identify two patterns:
in ogbn-proteins, best performance is achieved using CP with 1 sparse partition, while in Reddit,
best performance is achieved using CP with 2 sparse partitions (1.11× better over having 1 sparse
partition). In ogbn-proteins, there is a high disparity in the number of vertices assigned to PIM
cores, causing a large amount of zero padding in PIM-Host transfers. When increasing the sparse
partitions from 1 to 2, the vertex disparity and amount of zero padding increase, thus incurringworse
performance. Thus, we find the graph’s characteristics affect the best-performing parallelization
strategy. Our analysis shows that tuning mechanisms and ML compilers need to be developed to
optimize performance of sparse workloads in PIM systems based on the characteristics of each
particular input.
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Recommendation 5:
System performance of sparse workloads in PIM systems highly depends on the

particular patterns of each input given. Therefore, software and system engineers can
deploy intelligent heuristics, prediction and automation tools (similar to our proposed
tuner) that tune the optimization strategies of sparse workloads at each particular given
input at low cost, such that to provide high system performance on real PIM systems.

Scalability of PyGim Implementations. Fig. 11 presents the scalability of PyGim’s edge-balance
schemes, i.e., RE, CE and CP, using int32 data type in SpMM. In these experiments, we have 1
sparse partition, 128 hidden size and 2 PIM clusters per PIM device, and increase the number of PIM
devices: we evaluate 8, 16, and 32 PIM devices, i.e., the number of PIM cores increases from 456 up
to 1992 (each PIM device has ∼56 PIM cores). We find that all PyGim’s edge-balance schemes scale
well: when we double the number of PIM devices used (double the PIM cores used), the kernel time
and total performance improve by on average 1.47× and 1.38×, respectively. Thus, we conclude
that PyGim is a scalable GNN library for real PIM systems with a very large number of PIM cores
and PIM devices.
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Fig. 11. Scalability of edge-balance schemes, as the number of PIM devices (PIM cores) increases.

4.5 PyGim Tuner Efficiency
Fig. 12 evaluates the PyGim tuner efficiency for CSR (See Fig. 16 in Appendix for COO) by comparing
the performance slowdown achieved by its predicted aggregation configuration (predicted) versus
an oracle prediction using various datasets and hidden sizes. For the oracle prediction performance,
we exhaustively collect the execution times of all possible configurations, and we present in Fig. 12
the best-performing execution time among them (oracle). The predicted aggregation configuration
by the tuner achieves similar performance with the oracle configuration, being only 0.72% and
1% worse on average across all datasets and hidden sizes for CSR and COO, respectively. Thus,
PyGim tuner effectively tunes the aggregation configuration in GNN executions, eliminating the
programmer’s intervention and providing high performance.
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Fig. 12. Slowdown of the predicted CSR aggregation configuration by tuner over oracle prediction.
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4.6 GNN Aggregation Performance
Fig. 13 shows the performance of all comparison points described in §4.1, in one aggregation
operator using real-world graph datasets and common hidden sizes in feature matrix (x-axis).
In PIM executions, we use 32 PIM devices (∼56 cores per cluster). In PyGim, we evaluate both
CSR and COO schemes and we enable the tuner to set the aggregation configuration. Please see
Appendix A.2 (Fig. 17) for energy consumption evaluation in GNN aggregation.
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Fig. 13. Performance of all comparison points in one aggregation, using various graphs and hidden sizes.

We draw fourth findings. First, GraNDe’s [141] optimized scheme for simulated near-rank PIM
systems achieves very low performance in real near-bank PIM systems, being up to 0.57× of
PyTorch implementation. PyGim provides significant performance benefits over GraNDe, because
the GraNDe’s parallelization strategy is tailored for near-rank PIM systems, rather than real near-
bank PIM systems. Second, SP1 and SP2 achieve small speedups over PyTorch (on average 1.13×),
since they are optimized for SpMV kernel. Instead, aggregation by its nature performs SpMM, thus
PyGim schemes provide significant performance speedups, on average 3.09× and up to 4.00× over
PyTorch implementation. PyGim outperforms prior PIM-based schemes (SP1, SP2, GraNDe) by on
average 4.10× and up to 7.70×. Third, we find that the best-performing PyGim scheme selected by
the tuner varies across datasets due to different connection characteristics between vertices of the
graph. Fourth, in Fig. 17 (Appendix A.2), we show that PyGim provides higher energy efficiency
by on average 4.08× and 1.39× over prior PIM-based schemes (SP1, SP2, GraNDe) and PyTorch,
respectively. Overall, PyGim provides high performance and energy efficiency benefits in GNN
aggregation, significantly outperforming prior existing schemes across various graph datasets and
hidden sizes.

4.7 End-to-End GNN Inference
Performance. Fig. 14 evaluates all comparison points in GNN inference using int32 data type and
various graph datasets. We evaluate 3 GNN models, each model has 3 layers of 256 hidden size. In
PIM executions, we use 32 PIM devices, having in total 1992 cores. In PyGim, we evaluate both
CSR and COO schemes and enable the tuner to set the aggregation configuration. All comparison
points of Fig. 14 produce correct output data values and provide the same accuracy, as presented
in Appendix A.4. Note that PyGim can be also used to execute GNN training. Please also see
Appendix A.5 for GNN training results.

From Fig. 14, we find that PyGim schemes provide significant performance speedups over PyTorch
running on Host by 3.04× (up to 3.44×). PyGim outperforms prior state-of-the-art PIM schemes,
being 2.46× (up to 2.68×) better compared to SP1 and SP2, and 6.3× (up to 7.2×) better over GraNDe.
Note that the UPMEM PIM core does not include a complete 32 × 32-bit multiplier to efficiently
support int32 data type in hardware: multiplications of 32-bit operands are implemented using
bit shifting and addition and take ∼32 cycles. Thus, in Appendix A.3, we also evaluate end-to-end
GNN inference using int8 and int16 data types, in which the arithmetic operations are natively
supported by PIM hardware, as well as using the fp32 data type, in which the arithmetic operations
are software emulated. PIM GNN execution achieves low performance with fp32 values, since their
arithmetic operations are software emulated in the UPMEM PIM hardware. However, ML-oriented
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PIM systems [4, 74] are expected to be in the market, and natively support higher precision data
types. Instead, Figs. 19, 20 in Appendix evaluate int8 and int16 values (their multiplications are
natively supported by PIM hardware), and show that PyGim provides superior speedups: PyGim
outperforms prior state-of-the-art PIM approaches by 3.59× (up to 9.89×) and 3.60× (up to 8.90×)
for int8 and int16, respectively, and outperforms PyTorch running on Host by on average 4.49× (up
to 5.54×) and 4.03× (up to 4.63×) for int8 and int16, respectively. We conclude that PyGim provides
significant performance benefits in GNN inference over prior approaches.
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Fig. 14. Performance of all comparison points in GNN inference, using various graph datasets and models.

Energy Consumption. Fig. 15 presents the energy consumption (in Joules) of all comparison
points in end-to-end GNN inference using int32 data type, and various GNN models and datasets.
In PIM executions, we use 32 PIM devices, having in total 1992 cores, and PyGim’s tuner is enabled.
We use Intel RAPL [65] to measure energy in CPU execution parts, which are (i) the whole PyTorch
scheme, and (ii) in PIM schemes, the combination operator as well as the load, retrieve, and merge
steps of the aggregation operator. For the kernel step of aggregation, we measure the energy
consumed in PIM-enabled chips using the methodology described in a recent paper [28] written by
the UPMEM PIM manufacturer: the power of each UPMEM PIM DIMM is 23.22W, thus the total
energy of kernel time is conservatively calculated as the 𝑘𝑒𝑟𝑛𝑒𝑙_𝑡𝑖𝑚𝑒 × #𝑃𝐼𝑀_𝐷𝐼𝑀𝑀𝑠 × 𝑝𝑜𝑤𝑒𝑟 .
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Fig. 15. Energy consumption of all comparison points in the end-to-end inference, using various models.

We draw three findings. First, PyGim provides significant energy benefits on average 2.86× (up to
3.68×) over prior PIM schemes. Second, PyGim improves energy efficiency over PyTorch scheme by
on average 1.55× (up to 1.75×). Although PyGim provides 3.04× better performance over PyTorch,
it provides 1.55× better energy efficiency, because the manufacturing process of PIM chips is still in
an early stage. For example, UPMEM PIM chips have been manufactured with a larger technology
node, i.e., at least 20nm, than the 14nm technology node used for CPU hardware (See Table 1).
Future real PIM products could advance the technology node to become more energy-efficient.
Third, in aggregation, SP1 and SP2 schemes have a time-consuming kernel step executed on PIM
cores. GraNDe has a more time-consuming merge step executed on Host. Thus, although SP1 and
SP2 improve performance over GraNDe by on average 2.56×, they are on average 1.25× better than
than GraNDe in energy efficiency.

4.8 Evaluation of GNN Aggregation in GPU Systems
We propose a GNN library for real near-bank PIM systems, and evaluate it over prior software
parallelization schemes/libraries running on the same computing system, the UPMEMPIM server. To
judge and compare different libraries tailored for different types of computing systems, we present
the resource utilization as a representative metric: resource utilization measures how well the
software maps and uses the available capabilities of the underlying hardware. With this metric, we
compare how well PyGim library maps to the evaluated PIM system versus how well the PyTorch’s
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backend libraries map to GPU systems. Resource utilization is defined as the number of operations
performed divided by the execution time, and normalized as a percentage of the theoretical peak
performance of the system. We focus our evaluations in GNN aggregation operator, because GNN
combination uses implementations from existing ML frameworks (e.g., PyTorch) executed on Host
side, and thus characterizing the efficiency of existing implementations in various Host systems
is out of the scope of our work. In GNN aggregation, for fairness among all implementations, we
calculate the number of operations performed as 𝑒𝑑𝑔𝑒𝑠 × ℎ𝑖𝑑𝑑𝑒𝑛_𝑠𝑖𝑧𝑒 , which is the theoretical
arithmetic operations of SpMM. Table 1 shows the characteristics of various computing systems. For
peak performance and memory bandwidth, we use peakperf [106] and stream [123] in CPUs/GPUs,
and the microbenchmarks from open-source works [39, 48] for UPMEM PIM system.

INT32 Peak FP32 Peak Memory Total TechnologySystem Total Cores Freq. Performance Performance Capacity Bandwidth Node
CPU Intel Xeon 4215 2x8 x86 cores 2.5 GHz 0.64 TOPS 1.28 TFLOPS 128 GB 23.1 GB/s 14nm
UPMEM PIM 1992 PIM cores 350 MHz 115.93 GOPS 24.85 GFLOPS 124.5 GB 1.39 TB/s at least 20nm
GPU GTX 1080 Ti 3584 CUDA cores 1.48 GHz 13.25 TOPS 13.25 TFLOPS 11 GB 359.9 GB/s 16nm
GPU RTX 2080 Ti 4352 CUDA cores 1.35 GHz 16.94 TOPS 16.94 TFLOPS 11 GB 558.1 GB/s 12nm
GPU RTX 3090 10496 CUDA cores 1.40 GHz 17.79 TOPS 35.58 TFLOPS 24 GB 936.2 GB/s 8nm

Table 1. Characteristics of CPU, PIM and GPU systems.

Table 2 shows the hardware utilization achieved by different libraries executed on the correspond-
ing computing system in one aggregation operator using int32 and fp32 data types, various datasets,
and with 256 hidden size. For CPU and GPU systems, we evaluate PyTorch’s pytorch_sparse li-
brary [32], which employs SpMM implementations from Intel MKL library for CPUs, and optimized
CUDA implementations for GPUs. For the UPMEM PIM system, we evaluate PyGim and account
for all breakdown steps of Fig. 4.

Dataset and data type / OGBN RDT AMZ OGBN RDT AMZ
Software library INT32 INT32 INT32 FP32 FP32 FP32
pytorch_sparse - Intel MKL (CPU Intel Xeon 4215) 0.74% 0.63% 0.67% 0.26% 0.22% 0.20%
pytorch_sparse - CUDA (GPU GTX 1080 Ti) 2.15% 0.62% 0.71% 2.02% 0.62% 0.71%
pytorch_sparse - CUDA (GPU RTX 2080 Ti) 1.45% 0.68% 0.71% 1.45% 0.67% 0.71%
pytorch_sparse - CUDA (GPU RTX 3090) 3.03% 1.56% 1.32% 1.58% 0.78% 0.67%
PyGim (UPMEM PIM) 14.09% 13.86% 12.32% 8.21% 9.13% 8.84%

Table 2. Resource utilization in various systems for GNN aggregation with 256 hidden size, the ogbn-proteins
(OGBN), Reddit (RDT), and AmazonProducts (AMZ) datasets, and INT32 and FP32 data types.

We make two observations. First, PyGim achieves 12.9×, 13.2×, and 8.8× larger utilization on the
UPMEM PIM system than that of the pytorch_sparse CUDA library on GTX 1080 Ti, RTX 2080 Ti
and RTX 3090 GPUs, respectively, and provides 29.4× larger utilization on the UPMEM PIM than
that of pytorch_sparse Intel MKL library on Intel Xeon CPU. Thus, PyGim uses the PIM system
more effectively than PyTorch’s optimized backend libraries use the CPU and GPU systems. Second,
across three GPU generations (Table 1), GPU architects advance the technology node, and increase
the number of cores and the available memory bandwidth. However, the resource utilization in the
memory-intensive GNN aggregation still remains low in all GPUs. Comparing RTX 2080 Ti over
GTX 1080 Ti, both the compute throughput and the memory bandwidth increased by 1.30× and
1.55×, respectively, however resource utilization in aggregation is similar: on average 0.95% for
RTX 2080 Ti and 1.13% for GTX 1080 Ti. Comparing RTX 3090 over RTX 2080 Ti, the fp32 compute
throughput and memory bandwidth increased by 2.1× and 1.68×, respectively, however resource
utilization in fp32 aggregation remains similarly low: on average 1.01% for RTX 3090 and 0.94% for
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RTX 2080 Ti. Resource utilization in int32 aggregation is ∼2× compared that in fp32 aggregation in
RTX 3090, since the int32 compute throughput from RTX 2080 Ti to RTX 3090 is similar (1.05×),
while memory bandwidth increases by 1.68×. These observations show that GPU architectures are
not necessarily evolving to better support memory-intensive workloads, such as GNN aggregation.
Overall, we conclude that PyGim running GNN aggregation on real PIM systems provides a more
cost-effective solution than PyTorch running GNN on Host systems.
Finally, we also report the performance (seconds) and energy consumption (Joules) metrics to

show the readers how much absolute performance and energy efficiency the evaluated UPMEM
PIM system achieves on GNN aggregation over commodity GPU systems. UPMEM PIM with PyGim
library is worse than GPUs with pytorch_sparse library by 9.9×, 10.5× and 25.8× in performance
and by 5.0×, 5.3× and 11.6× energy consumption over 1080Ti, 2080Ti, and 3090 GPUs, respectively,
for int32 data type. In int8 data type (natively supported in UPMEM hardware), UPMEM PIM with
PyGim provides better performance and energy efficiency compared to that provided in int32 data
type: e.g., in Reddit data set with 256 hidden size, it is 2.5×, 4.0×, 9.5×worse in performance and 2.4×,
2.9×, 5.6× worse in energy consumption than 1080Ti, 2080Ti, and 3090 GPU with pytorch_sparse
library, respectively2.
In Appendix A.6, we present the detailed evaluation results over GPUs in GNN aggregation

and end-to-end GNN inference. Please note that these results are provided for completeness and
not for competition purposes. Directly comparing this UPMEM PIM system over GPU systems is
not a fair comparison. The evaluated UPMEM PIM system is available on the market only ∼1.5
years, it is in its first generation manufactured with a large technology node of at least 20nm, and
is not yet well optimized for multiplication operations [47, 55]. Instead, GPU systems have been
optimized for 15+ years, especially in multiplication operations, and there has been invested large
financial budgets from major technology industry leaders to improve GPU architecture across its
generations. Moreover, although our goal in this work is to quantify the potential of a real PIM
system in GNN executions, our proposed PaF optimizations cover near-bank PIM systems (See the
described characteristics in §2.2), and thus could be evaluated on other near-bank PIM systems
with potentially better computation capabilities and energy efficiency than the evaluated UPMEM
PIM system. UPMEM [130] has already announced a second generation product (expected to be
released in the market), where PIM-enabled DIMMs are integrated with a more powerful CPU
server (Ice Lake platform instead of Intel Xeon), the system will support 28 PIM DIMMs with ∼1.8×
more cores, i.e., 3584 cores (instead of 16 PIM DIMMs with 2K cores) and each PIM core will have
∼1.7× higher frequency, i.e., 600MHz core frequency (instead of 350MHz). The current evaluated
UPMEM PIM also uses a relatively large technology node of at least 20nm for manufacturing
(GPU RTX2080 Ti uses 12nm), and advancing the technology node could improve energy efficiency.
Additionally, according to [80], the near-bank HBM-PIM and AiM (both have been prototyped)
systems can achieve 1.2 TFLOPS and 1 TFLOPS compute throughput, which is 48.3× and 40.2×
higher than that of the evaluated UPMEM PIM system. Hence, running GNN aggregation with
our proposed PaF optimizations in upcoming real PIM systems could potentially lead to better
performance and energy efficiency compared to the results reported in the above GPU comparisons.
Finally, HBM-based PIM memory modules [50, 74, 75] can be integrated into modern GPUs and
provide much larger memory bandwidth for the PIM cores than the memory bandwidth available
for GPU cores. In such HBM-based PIM systems, when executing GNN aggregation in PIM cores,
we could potentially expect important performance and energy benefits compared to executing
GNN aggregation on the GPU cores.

2In same aggregation configuration, PyGim on UPMEM PIM improves performance and energy efficiency by 2.3× and 1.3×
respectively, over an Intel Xeon 4314 CPU (10nm technology) with 2x16 cores (2.4GHz) and 227 GB/s memory bandwidth.
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5 Related Work
To our knowledge, our work is the first to design an ML library and tuner for GNN executions on
near-bank PIM systems, propose efficient GNN aggregation schemes tailored for such systems, and
extensively characterize GNNs on the first real-world PIM system. We briefly discuss prior work.
PIM-Based Accelerators. A few works [13, 128, 141, 148] design PIM-based GNN accelerators.
Their custom microarchitecture designs for host and PIM cores are orthogonal to PyGim software
library. These works target near-rank PIM architectures and use simulators for their evaluations.
PyGim targets near-bank PIM systems, which typically provide much larger memory bandwidth
than near-rank PIMs [75], and evaluates GNNs on a real system. Finally, implementing the software
data mappings of these works to near-bank PIM systems would cause out-of-memory errors
(See § 2.3) or would be inefficient: as shown in our evaluations, PyGim significantly outperforms
the best-performing strategy of GraNDe [141]. Li et al. [79] design a tool to explore PIM design
configurations (e.g., near-DIMM, near-rank, near-bank) for different application scenarios, which
is orthogonal to our work. A few works [76, 78, 104] propose in-storage PIM designs that sample
the large graphs inside the disk (SSDs) to reduce the amount of graph data sent from disk to host
CPU/GPU cores. These works can work synergistically with ours: PyGim can be used to efficiently
process the produced smaller graph in DRAM. Finally, a few works [51, 80, 81, 103] design custom
PIM-based architectures for large language models, however they do not support GNNs and the
SpMM kernel.
System Support and Software for PIM Systems. Prior works [14, 23, 26, 38, 39, 47, 48, 57,
60, 84, 112, 116] design optimized linear algebra, graph processing, database, array iterators, ML
training, bioinformatics, and image processing kernels for PIM systems. The closest work to ours is
SparseP [39], that is an efficient SpMV library for PIM systems. We use the best-performing SparseP
kernel in GNNs, show that it has worse performance and energy efficiency than PyGim. A few
works [101, 127] propose efficient communication collectives for future PIM systems. Moreover, a
few works [55, 61] discuss scalability issues and hardware limitations of real near-bank PIM systems,
and propose architectural features for future PIM systems. These prior works [55, 61, 101, 127] are
orthogonal to PyGim: PyGim can be used in their proposed future PIM designs and/or leverage
optimized communication collectives to enable high efficiency in GNN executions.
GNNs and SpMM in Commodity Systems. Prior works optimize GNNs and SpMM on CPUs [3,
43, 52, 68, 131, 133, 139], GPUs [22, 33, 54, 68, 88, 99, 100, 136, 138] by leveraging the shared
memory model of CPUs/GPUs and deep cache hierarchies (on-chip caches). Their optimizations
cannot be applied in PIM systems, that have a distributed memory model and shallow cache
hierarchy. Prior works [8, 11, 59, 69, 85, 87, 91, 92, 111, 113, 129, 147] optimize GNNs and SpMM
on CPU-GPU, multi-CPU/multi-GPU systems by minimizing communication costs among cores,
and/or overlapping computation with communication. However, real PIM systems may not support
direct communication among PIM cores [61], and there are no real PIM systems that can overlap
computation with communication across on PIM cores. Thus, well-tuned GNN and SpMM kernels
for distributed processor-centric systems either cannot be directly applied in PIM systems, or
their fine-grained inter-PIM-core communication (e.g., implemented over Host) would cause high
performance overheads.
Custom Accelerators for GNNs and SpMM. Prior works [5, 6, 36, 62, 66, 82, 83, 102, 117–
120] propose custom hardware accelerators for GNNs and SpMM, but they target processor-
centric systems with low available memory bandwidth. Instead, PyGim provides software-level
optimizations for GNNs, and targets memory-centric PIM systems.
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6 Conclusion
We propose PyGim, an efficient ML library for GNNs executions in PIM systems, and conduct a
comprehensive characterization study of GNNs on a real-world PIM system. We design a hybrid
GNN execution on processor- and memory-centric computing systems, intelligent parallelization
techniques for GNN aggregation in near-bank PIM systems and a lightweight tuner to enable
programming ease in GNN deployment for PIM systems. In GNN inference, PyGim achieves 3.04×
(up to 3.44×) and 4.38× (up to 7.20×) speedup over the state-of-the-art PyTorch and PIM-based
schemes, respectively, and 1.55× (up to 1.75×) and 2.86× (up to 3.68×) higher energy efficiency than
PyTorch and PIM-based schemes, respectively. In GNN aggregation, PyGim provides on average
11.6× higher resource utilization in PIM system than that of the PyTorch CUDA library in GPUs. We
hope that our parallelization strategies for GNNs, in-depth PIM analysis, and open-source library
will enable further research on optimizing GNNs and other sparse ML models in memory-centric
computing systems.
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A Appendix
A.1 PyGim Tuner Efficiency
Fig. 16 evaluates the PyGim tuner efficiency for COO format by comparing the performance
slowdown achieved by the predicted aggregation configuration (predicted) of tuner versus the
oracle prediction using various datasets and hidden sizes. For the oracle prediction performance,
we exhaustively iterate and collect the execution times of all possible aggregation configurations,
then we select and present in Fig. 16 the best-performing execution time among them (oracle).
The selected aggregation configuration by the tuner achieves only 1% worse performance over the
oracle-predicted configuration on average across all datasets and hidden sizes, when using COO
format for GNN aggregation. We conclude that PyGim tuner effectively tunes the aggregation
configuration in GNN executions for both CSR (Fig. 12) and COO formats.
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Fig. 16. Performance slowdown of the predicted COO aggregation configuration by tuner over oracle predic-
tion.

A.2 GNN Aggregation Energy Consumption
Fig. 17 presents the energy consumption (in Joules) for all comparison points (See §4.1) in one
GNN aggregation using int32 data type, and various datasets and hidden sizes. In PIM executions,
we use 32 PIM devices, having in total 1992 cores, and we enable the PyGim’s tuner. We use
Intel RAPL [65] to measure energy in CPU execution parts, which are (i) the PyTorch scheme,
and (ii) in PIM schemes, the load, retrieve, and merge steps of aggregation. For the kernel step
of aggregation, we measure the energy consumed in PIM-enabled chips using the methodology
suggested by the UPMEM PIM manufacturer, which is described in a recent paper [28]: the power
of each PIM DIMM is 23.22W, thus the total energy of kernel time is calculated as 𝑘𝑒𝑟𝑛𝑒𝑙_𝑡𝑖𝑚𝑒 ×
#𝑃𝐼𝑀_𝐷𝐼𝑀𝑀𝑠 × 𝑝𝑜𝑤𝑒𝑟 . PyGim provides higher energy efficiency by on average 4.08× and 1.39×
over prior PIM-based and PyTorch schemes, respectively.
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Fig. 17. Energy consumption of all comparison in the one aggregation, using various graph datasets and
hidden sizes.

A.3 GNN Inference Performance
Figs. 18, 19 and 20 compare the performance of all comparison points (See §4.1) in the end-to-end
GNN inference, using 32-bit float (fp32), 8-bit integer (int8) and 16-bit integer (int16) data types
for data values, respectively. We evaluate various graph datasets and three different GNN models,
where each model has 3 layers of 256 hidden size. In PIM executions, we use 32 PIM devices, having
in total ∼1992 cores. In PyGim, we evaluate both CSR and COO schemes and we enable the tuner
to set the aggregation configuration.
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Fig. 18. Performance of all comparison points in the end-to-end GNN inference, using various graph datasets
and GNN models for fp32 data type.
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Fig. 19. Performance of all comparison points in the end-to-end GNN inference, using various graph datasets
and GNN models for int8 data type.
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Fig. 20. Performance of all comparison points in the end-to-end GNN inference, using various graph datasets
and GNN models for int16 data type.

We find that when using fp32 values, PIM GNN execution achieves low performance, being
worse than that of PyTorch by on average 41.6%. This is because UPMEM PIM hardware does not
support floating-point operations, which are software emulated, thus they incur high performance
overheads. However, we expect that ML-oriented PIM systems will be available in the market
(e.g., [74, 75]), and will hopefully support in hardware high precision data types. Instead, when
using int8 and int16 data types, PyGim schemes significantly outperform PyTorch scheme by
4.49× (up to 5.54×) and 4.03× (up to 4.63×), respectively. Moreover, PyGim outperforms prior
state-of-the-art PIM approaches by 3.59× (up to 9.89×) and 3.60× (up to 8.90×) for int8 and int16
data types, respectively. When arithmetic operations are natively supported by the PIM hardware,
as it happens for the int8 and int16 data type in UPMEM PIM system, PyGim execution provides
significant performance benefits over prior schemes.

A.4 GNN Inference Accuracy
Table 3 shows the test accuracy achieved in GNN inference with int32 and fp32 data types. We
evaluate the accuracy of the experiments presented in Fig. 14 and Fig. 18. These models have been
trained with fp32 data type, and then we run and evaluate inference using either int32 or fp32 data
type. All the comparison points compared in Fig. 14 and Fig. 18, i.e., both the CPU-based scheme
(PyTorch) and the PIM-based schemes (SP1, SP2, GraNDe, PyGim_CSR, PyGim_COO) achieve the
same accuracy, shown in Table 3 for int32 and fp32 data types. The GNN models are relatively
simple, having only 3 layers, thus int32 and fp32 data types provide the same accuracy.

ogbn-proteins Reddit AmazonProducts
GIN GCN SAGE GIN GCN SAGE GIN GCN SAGE

INT32 79.89% 78.20% 73.38% 94.08% 91.90% 94.39% 26.04% 26.04% 26.04%
FP32 79.89% 78.20% 73.38% 94.08% 91.90% 94.39% 26.04% 26.04% 26.04%

Table 3. Inference accuracy achieved by all comparison points using various graph datasets and GNN models
for int32 and fp32 data types.
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A.5 GNN Training Performance
Table 4 shows the execution time of PyTorch (CPU) and PyGim CSR (UPMEM PIM) schemes, when
training a 2-layer GCN model for 10 epochs with 256 hidden size, int32 data type and evaluating all
three datasets. Note that UPMEM PIM does not support fp32 operations in hardware. Thus, for a
fair comparison, we evaluate GNN training using int32 data type only, so that the data type used is
fully supported by hardware in both evaluated systems. Table 5 shows the test accuracy achieved
in the GCN model after the model is trained for 1000 epochs and learning rate of 0.01 with either
PyTorch or PyGim CSR scheme for int32 data type. Both PyTorch and PyGim CSR schemes achieve
the same accuracy in int32 data type. PyGim improves the training performance by on average
1.25× over the PyTorch scheme. Therefore, PyGim provides high performance benefits even for
GNN training, without degrading accuracy.

INT32 OGBN INT32 RDT INT32 AMZ
pytorch_sparse (Intel Xeon 4215 CPU) 203.982 s 339.023 s 440.899 s
PyGim (UPMEM PIM) 164.709 s 242.789 s 400.998 s

Table 4. Execution time of GCN training for 10 epochs using pytorch_sparse (CPU) and PyGim (PIM cores for
aggregation) libraries in aggregation step for the ogbn-proteins (OGBN), Reddit (RDT), and AmazonProducts
(AMZ) datasets.

INT32 OGBN INT32 RDT INT32 AMZ
pytorch_sparse (Intel Xeon 4215 CPU) 70.34% 84.25% 26.04%
PyGim (UPMEM PIM) 70.34% 84.25% 26.04%

Table 5. Test accuracy achieved after training the GCN for 1000 epochs and a learning rate of 0.01 with either
PyTorch or PyGim CSR scheme using int32 data type and the ogbn-proteins (OGBN), Reddit (RDT), and
AmazonProducts (AMZ) datasets.

A.6 Evaluation of GNN Executions in GPU Systems
We present the performance and energy efficiency metrics to show the readers how much perfor-
mance and energy efficiency the evaluated UPMEM PIM system can achieve when it is compared
over commodity GPU systems. In Table 6, we present the performance in GNN aggregation com-
paring three GPU systems over the evaluated UPMEM PIM system. Similarly, in Table 7, we present
the performance in GNN inference comparing two GPU systems over the evaluated UPMEM PIM
system. For UPMEM PIM, we use PyGim library, and for GPU systems we use pytorch_sparse
library that provides optimized CUDA implementations. Please note that these evaluation results
are provided for completeness and not competition purposes, since real PIM systems are still in
early manufacturing and design stages (especially compared to commercial CPU and GPU systems),
and PyGim can be evaluated on other current and future real PIM systems with potentially better
computation capabilities and energy efficiency than the evaluated UPMEM PIM system.

Dataset and data type OGBN INT32 RDT INT32 AMZ INT32 OGBN FP32 RDT FP32 AMZ FP32
GPU GTX 1080 Ti over UPMEM PIM 17.7× | 8.0× 5.3× | 3.3× 6.9× | 3.8× 112.0× | 69.9× 35.9× | 28.1× 44.0× | 31.7×
GPU RTX 2080 Ti over UPMEM PIM 15.3× | 8.0× 7.3× | 3.8× 8.9× | 4.2× 102.5× | 66.4× 49.8× | 33.4× 56.3× | 35.9×
GPU RTX 3090 over UPMEM PIM 39.8× | 21.2× 19.3× | 6.9× 18.4× | 6.6× 240.4× | 200.1× 122.4× | 55.1× 111.3× | 46.1×

Table 6. Performance speedup (left number in each cell) and energy efficiency improvement (right number in
each cell) of the three GPU generations over the UPMEM PIM system in GNN aggregation using INT32 and
FP32 data types and the ogbn-proteins (OGBN), Reddit (RDT), and AmazonProducts (AMZ) datasets.
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Dataset and GNN model OGBN GIN RDT GIN AMZ GIN OGBN GCN RDT GCN AMZ GCN
GPU RTX 2080 Ti over UPMEM PIM 17.4× | 88.1× 9.1× | 42.5× 11.2× | 45.3× 17.2× | 107.3× 8.5× | 51.8× 10.4× | 56.9×
GPU RTX 3090 over UPMEM PIM 37.2× | 188.7× 20.7× | 97.2× 20.8× | 84.4× 38.2× | 238.2× 19.9× | 121.2× 19.6× | 106.7×

Table 7. Performance speedup for int32 data type (left number in each cell) and for fp32 data type (right
number in each cell) of two GPU generations over the UPMEM PIM system in the end-to-end GNN inference
using GIN and GCN models and the ogbn-proteins (OGBN), Reddit (RDT), and AmazonProducts (AMZ)
datasets.

A.7 Datasets
Sparse Matrices. We present the characteristics of the real-world matrices that we use in our
experiments to evaluate PyGim when using one PIM core and when using one PIM cluster. The
sparse matrices are taken from the Sparse Matrix Suite Collection [24]. Table 8 presents the number
of rows, the number of non-zero elements (NNZs), the minimum number (min) of non-zero elements
among rows, the maximum number (max) of non-zero elements among rows, the average number
(avg) of non-zero elements among rows and standard deviation (std) of non-zero elements among
rows.

Matrix Name Rows NNZ Min NNZ Max NNZ Avg NNZ Std NNZ
raefsky4 19779 1328611 18 177 67.17 15.96
wing_nodal 10937 150976 5 28 13.80 2.86
Dubcova2 65025 1030225 4 25 15.84 5.76
mosfet2 46994 1499460 4 162 31.91 11.71
poisson3Db 85623 2374949 6 145 27.74 14.71
smt 25710 3753184 52 414 145.98 47.52
av41092 41092 1683902 2 2135 40.98 167.04
Zd_Jac6 22835 1711983 1 1050 74.97 175.48
mycielskian15 24575 11111110 14 12287 452.13 664.17

Table 8. Sparse matrix dataset used for one PIM core and one PIM cluster analysis.

Graph Datasets.We present the characteristics of the real-world graph datasets that we use in our
large-scale experiments to evaluate PyGim using multiple PIM DIMMs and devices, as well as to
evaluate CPU and PIM schemes in aggregation operator and end-to-end GNN inference. The real-
world graph datasets are taken from ogbn-proteins [124], Reddit [49] and AmazonProducts [142].
The original AmazonProducts dataset is too large to fit in a single machine, thus we split the dataset
using cluster partition [17], and evaluate the largest subgraph in our experiments, its detailed
characteristics are shown in Table 9. Specifically, Table 9 presents the number of vertices, the
number of edges (EDGs), the minimum number (min) of edges among vertices, the maximum
number (max) of edges among vertices, the average number (avg) of edges among vertices and
standard deviation (std) of edges among vertices.

Graph Name Vertices EDGs Min EDG Max EDG Avg EDG Std EDG
ogbn-proteins 132534 79122504 1 7750 597.00 621.48
Reddit 232965 114615892 1 21657 492.00 799.82
AmazonProducts 403598 156149176 1 53864 386.89 1140.91

Table 9. Real-world graph datasets used for our large-scale experiments, when using multiple PIM DIMMs.
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