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ABSTRACT

How to discriminate visual stimuli based on the activity they evoke in sensory
neurons is still an open challenge. To measure discriminability power, we search
for a neural metric that preserves distances in stimulus space, so that responses to
different stimuli are far apart and responses to the same stimulus are close. Here,
we show that Restricted Boltzmann Machines (RBMs) provide such a distance-
preserving neural metric. Even when learned in a unsupervised way, RBM-based
metric can discriminate stimuli with higher resolution than classical metrics.

1 INTRODUCTION

The precision with which stimuli are encoded by a population of sensory neurons is still a matter
of debate. Sensory neurons process visual stimuli in a highly non-linear manner, and in most cases
there is no general model to accurately predict the population response to any given stimulus (Gol-
lisch & Meister,|2010). A possible way to estimate the discriminability power of neural populations
is to use a neural metric. A metric measure differences in responses triggered by different stimuli,
and thus provides a lower bound on how well two stimuli can be discriminated based on responses.

Many definitions of neural metrics have been proposed (Houghton & Victor, 2012)). [Machens et al.
(2003) used a neural metric to measure experimentally the accuracy of grasshoppers auditory re-
ceptors, and Narayan et al.| (2006) used the same one to study sound-processing cortical neurons in
zebra finches cortex. Although these studies focused on single neurons, some information can only
be retrieved by considering populations of neurons (Mazor & Laurent, |2005; [Fujisawa et al., 2008]).
Ganmor et al.| (2015) proposed a neural metric for population of neurons, learned in a supervised
way, so that it preserves distances in the stimulus space. But it requires to learn the distribution of
responses to any stimulus, which is not feasible experimentally when the space of stimuli is large.
Tkacik et al.| (2013) used a similar metric for a high-dimensional stimulus using a model to map
stimuli to parametrized response distributions. But such a accurate model is rarely available.

We are interested in deriving a metric directly from the distribution of responses, in an unsupervised
way. Recently, using tools from information theory, (Humplik & Tkacik} [2016) showed that Re-
stricted Boltzmann Machines (RBMs) could describe the distribution of responses better than other
classical models. Also using information theory, (Zanotto et al.| 2017) showed that a variant of
RBM could convey information about the stimulus, even when learned in an unsupervised way. But
in both cases this was only made possible by the small number of stimuli, and a method to measure
the sensitivity of the neural population was still lacking.

We recorded a population of 60 rat retinal ganglion cells (RGCs) stimulated by a bar in motion. We
use RBMs to learn the distribution of responses represented by binary strings of spikes and silences.
We show that RBMs are capable of reproducing the correlated activity of neurons (see |Schwab
et al.| (2013)for similar results). Even though this learning is unsupervised, the resulting RBM can
discriminate visual stimuli with high accuracy: we define a neural metric as a distance between
the hidden units of the RBM conditioned by responses, and show that this RBM-based metric can
discriminate stimuli based on the neural responses, much better than other classical neural metric.
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2 METHODS

2.1 EXPERIMENTAL SETUP

We analyzed previously published ex vivo recordings from rat retinal ganglion cells (RGCs) (Ferrari
et al., |2016), i.e. cells that form the output of the retina and send their spikes to the brain. Any
visual information accessible to the brain is necessarily represented by RGCs. In brief, we recorded
with a multielectrode array a population of 60 RGCs stimulated by a bar in motion (Fig. [I]left). The
stimulus is composed of two parts. In the first part, the bar has a Brownian motion with a restoring
force, lasting 15331 s. The second part is composed of 391 repetitions of two trajectories of length
0.9 s, called reference trajectories. We also presented perturbations of the reference trajectories, i.e.
small changes affecting that trajectory in its middle portion, between 300 and 630 ms. Perturbations
varied both in shape and in amplitude: we used 16 different perturbation shapes, each presented at
different amplitudes (Fig.[[|right). The amplitude was adapted online: large enough so perturbations
could be discriminated from reference trajectories, but small enough so they would not be discrim-
inated perfectly with any metric. The response is considered from the start of the perturbation until
280 ms after its end. We assess the discriminating power of a neural metric by measuring how well
it can discriminate responses to perturbations from responses to reference stimuli.
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Figure 1: Experimental setup. Left: we stimulated a rat retina with a moving bar. Retinal ganglion
cells (in green) were recorded with a multielectrode array. For the computation of the Hamming
metric and the RBM, we binarized spike trains in 20 ms time bins. Right: the stimulus consists
in a reference stimulus (the bar trajectory in blue), and in perturbations of different shapes and
amplitudes. Purple and red perturbations have same shape, with small and large amplitude.

2.1.1 RESTRICTED BOLTZMANN MACHINE-BASED METRIC

The response of N neurons over time is binarized into B time bins: o;, = 1 if cell ¢ spiked during
time bin b, and 0 otherwise (Fig. |l|left). o is a binary vector of size N B, labeled by a joint index
ib. We learned a RBM with 40 hidden units, taking as visible units the population response within
a single time bin. The inference was done on responses to random bar trajectories, using persistent
contrastive divergence (Tieleman, 2008)). The RBM-based metric is defined as the L; distance
between the conditional probabilities of the hidden units / given responses:

drem(o,0') =Y > | p(hy = 1]ow) — p(h; = 1]03) | (1)

bbin j hidden

2.2 DISCRIMINABILITY

To assess the distance-preserving properties of retinal metrics, we measure how well they can dis-
criminate between different stimuli based on their responses. Ideally, responses to different stimuli
should be far apart and responses to the same stimulus should be close. As neural responses are
noisy, for each stimulus s we define a probability of responses o, P(c|s). Given two stimuli s and
s’ and a metric d, we define the probability of discriminating s’ from s as:

Dd(sa S/) =P [d(gv OJ) > d(O’, Oﬂ) }a,a”NP(.\s)p'NP(.\s’) 2

It is equal to 1 if stimuli are perfectly discriminable by neural responses, as measured by metric d.
If stimuli are not discriminable, i.e. P(.|s) = P(.|s’), Dy is equal to 1/2.
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Figure 2: RBM reproduces well different statistics of population responses. Left: firing rate of
neurons (i.e. visible units), in data and predicted by the RBM. Each point corresponds to one neuron.
Middle: Pearson correlation between pairs of neurons, in data and predicted by the RBM. Each point
corresponds to one pair of neurons. Right: probability distribution of the population rate K (see
Methods), in the data or predicted by independent, Ising and RBM models.

3 RESULTS

We trained a RBM to reproduce the distribution of population responses within 20 ms time bins. The
RBM could reproduce well the spiking probability of each neuron (called firing rate, Fig. [2]left) and
the Pearson correlation between pairs of neurons (Fig. 2] middle). We also tested how well it could
reproduce the population rate (Okun et al.l 2015} |Gardella et al., [2016)), defined as the total number
of neurons firing within a time bin: K = ), 5;. We compared with the predictions of a model with
independent neurons only reproducing firing rates, and a Boltzmann machine (Ackley et al.| [1985)
with no hidden units (termed Ising model in the following), which has been extensively used to
model neural population statistics (Schneidman et al., [2006} |[Ferrari, 2016). We found that the RBM
outperformed both independent and Ising models at reproducing the distribution of the population
rate (Fig.[2]right). RBMs can thus capture well the distribution of neural population responses.

Next we use the RBM to define a neural metric and to discriminate stimuli based on that metric (see
Methods). For each of the 2 reference trajectories and each of the 16 perturbation directions, we
separate perturbation amplitudes in 3 classes: small, medium and large amplitudes (approximately
100 amplitudes each). We compute the mean discriminability for each class (Eq. [2)) for the RBM-
based metric and for other metrics often encountered in the literature: the Hamming, van Rossum
and Victor Purpura metrics. We found that the RBM-based metric outperformed all three other
metrics. Note that during the computation of the RBM-based metric spikes are binned in time, which
is likely to be a lossy transformation. Thus it has access to less information than van Rossum and
Victor Purpura metrics, which act directly on spike trains. The RBM was trained in an unsupervised
way, with a training set corresponding to random bar trajectories, and thus could not learn any
stimulus-response relationship. We have thus shown that the RBM, even learned in an unsupervised
way, can recover explicitly accurate information about the stimulus from the structure of responses.
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Figure 3: RBM-based metric outperforms all three other metrics at discriminating perturbations.
Each point represents the mean discriminability for a reference stimulus and a perturbation direction
at small, medium or large amplitude, for the RBM-based metric versus another metric.
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APPENDIX : NEURAL METRICS

We used three neural metrics classically encountered in the literature (Houghton & Victor, [2012):
a metric on binned responses, a kernel-based metric, and an edit-length metric. We then present a
metric based on a Restricted Boltzmann Machine.

The response of a neuron ¢ consists in a series of action potentials, or spike train. The spikes are
stereotypical, so most of the information in the neural response is contained in the spike times (¢ ;)
(Fig. [T]1eft).

HAMMING METRIC

The Hamming metric between responses is the L distance between binned responses:

dHamming(o—v 0/) = Z Z ‘Ubi - Ul/>z| (3)

b bin 7 neuron

VAN ROSSUM METRIC

The van Rossum metric is a kernel-based metric (van Rossum, 2001)). In order to avoid binning the
spike times, which may lose information, we convolve each neuron’s spike train with a kernel G:
v;i(t) = Y, G(t — ty,i). We then take the Euclidean distance between convolved spike trains. Here
we set (G as Gaussian with a standard deviation of 10 ms.

dyan Rossum (U7 U/)Q = Z ‘Ui(t) — Ug(t)|2 dt 4)

ineuron V¢

VICTOR PURPURA METRIC

The Victor Purpura metric (Victor & Purpura, |1996)) is an edit-length metric. The distance between
two spike trains is the minimal cost necessary to transform a spike train into another using a series
of transformations. Deleting or adding a spikes costs +1, whereas moving a spike of At has a linear
cost gAt. Here we used ¢ = 0.01 s~ 1.
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