State Space Prompting via Gathering and Spreading
Spatio-Temporal Information for Video Understanding

Jiahuan Zhou', Kai Zhu', Zhenyu Cui', Zichen Liu', Xu Zou?; Gang Hua>
!Wangxuan Institute of Computer Technology, Peking University, Beijing 100871, China
2the Huazhong University of Science and Technology, Wuhan 430074,China
3 Amazon.com, Inc, Bellevue, WA 98004, USA
jiahuanzhou@pku.edu.cn, zhukai2022@ruc.edu.cn
{cuizhenyu,12c20180720}@stu.pku.edu. cn, zx@zoux .me, ganghuaGgmail . com

Abstract

Recently, pre-trained state space models have shown great potential for video
classification, which sequentially compresses visual tokens in videos with linear
complexity, thereby improving the processing efficiency of video data while main-
taining high performance. To apply powerful pre-trained models to downstream
tasks, prompt learning is proposed to achieve efficient downstream task adaptation
with only a small number of fine-tuned parameters. However, the sequentially
compressed visual prompt tokens fail to capture the spatial and temporal contextual
information in the video, thus limiting the effective propagation of spatial informa-
tion within a video frame and temporal information between frames in the state
compression model and the extraction of discriminative information. To tackle the
above issue, we proposed a State Space Prompting (SSP) method for video under-
standing, which combines intra-frame and inter-frame prompts to aggregate and
propagate key spatiotemporal information in the video. Specifically, an Intra-Frame
Gathering (IFG) module is designed to aggregate spatial key information within
each frame. Besides, an Inter-Frame Spreading (IFS) module is designed to spread
discriminative spatio-temporal information across different frames. By adaptively
balancing and compressing key spatio-temporal information within and between
frames, our SSP effectively propagates discriminative information in videos in a
complementary manner. Extensive experiments on four video benchmark datasets
verify that our SSP significantly outperforms existing SOTA methods by 2.76%
on average while reducing the overhead of fine-tuning parameters. The code is
available at https://github.com/zhoujiahuan1991/NeurlPS2025-SSP.

1 Introduction

In recent years, the Vision Transformer (ViT) has demonstrated its promising performance in video
understanding due to its powerful attention-based context modelling capabilities [1}[2} 3} 4} 1516} (7} 8 9L
10]. However, the computational cost of the attention mechanism, which increases quadratically with
the length of the input data, incurs huge computational and memory costs, especially when processing
long video sequences. To achieve efficient video processing, a state space modelling method,
called VideoMamba, is introduced to achieve comparable performance to the ViT while maintaining
linear computational complexity [[11}[12]. Despite some progress in model pre-training[[13\ [14} [15]],
it still suffers from the heavy overhead of downstream task adaptation through parameter fine-
tuning. Therefore, Parameter-Efficient Fine-Tuning (PEFT) has aroused extensive attention to achieve
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comparable or even higher performance than Full Fine-Tuning (FFT) and reduce the adaptation costs
by optimizing only a few set of parameters [16, (17, [18]].

Early PEFT methods mainly focused on parameter-level efficient fine-tuning, e.g., Adapter [19, 20,
21, 122]] or LoRA [23\ 124], but still suffered from inefficiency with the additional introduction of
model parameters. To this end, visual prompt learning technology aims to embed a small set of
learnable prompting tokens at the input level, enabling efficient downstream task adaptation without
extending internal model parameters [25, 26} 27, 28}, 29, 130} [31} 132} 33} 134]. However, as shown
in Figure[Tfa), existing video prompting methods are typically ViT-oriented, which exploit global
attention mechanisms to propagate key information in intra- and inter-frame prompts [35} 36} 37,
38|, ignoring the requirement to balance efficiency and effectiveness in video understanding for
VideoMamba. Specifically, ignoring the sequential compression state space [39, 40, 41} 142 143]],
existing video prompting methods fail to gather spatial information in long video token sequences for
Mamba. In addition, the global attention-oriented prompting method mitigates the high efficiency
in VideoMamba, leading to the dissemination of key spatial and temporal information in the long
video token sequence. Consequently, as shown in Figure [[(b), the embedded prompts mitigate
the aggregation of discriminative spatio-temporal information due to the information decay after
long-term compression [44]].

Y | ( Intra-Frame Prompt ) i Information Decay
1 1 e ! -l
Klslsl ey & ‘»--l 2
1 g g ﬁ 1 d—> ‘
1 1
1 1 ":_T: Z el
: Learnable : e g L T L +1 +2
1 Prompt Token | - . L ! !
: :—> g - g -» . (b) Visualization of Exnstmg Video Prompting
! ! ® 5 : Information Enhancement
1 1 o] <« »
: 1 g Q “ 7™\
1 :

I ] -E 'S > —
H i Video Token
1 1 Frame—__hb 1
l ] t+1 ) 1

(a) Existing Video Prompting on Mamba (c) Vlsuallzatlon of Our SSP

Figure 1: Existing video prompting methods on Mamba and its visualization results of updating
date compared to our SSP. Existing methods directly concatenate learnable prompts to video tokens,
resulting in the information decay problem after the long-term state space compression. However,
our SSP achieves information enhancement through spatial gathering and temporal spreading.

To address the above challenges, we propose a State Space Prompting (SSP) framework for video
understanding, which gathers and spreads spatio-temporal information in an efficient and effective
manner, as shown in Figure Ekc). Specifically, an Intra-Frame Gathering (IFG) module is designed
to exploit a low-rank local convolution to aggregate spatial information within each video frame.
Sequentially, a low-rank attention-oriented Inter-Frame Spreading (IFS) module is further proposed
to spread key information at the temporal level, which develops a low-rank attention module to refine
the temporal information that is gradually aggregated between frames, where long-term context
information is effectively spread within global temporal prompts. Among them, the information
entropy of each frame adjusts the attention given to each frame when refining the temporal information,
and the frame-specific spatial variance is employed to gate the influence strength from the spreading
information to each frame.

In summary, our contributions are three-fold: (1) We proposed a State Space Prompting method
for Video Understanding, called SSP, which gathers and spreads discriminative spatio-temporal
information compressed by the state space model to achieve high effectiveness while maintaining
its computational efficiency. (2) We design an Intra-Frame Gathering module and an Inter-Frame
Spreading module to facilitate spatio-temporal contextual information interaction by spreading
gathered local spatial information in a temporal manner. (3) Extensive experiments on multiple
video understanding benchmarks demonstrate that our method achieves superior performance against
existing methods with only ~3% of tunable parameters compared to full tuning.



2 Related Work

2.1 State Space Model (SSM)

In recent years, State Space Models (SSMs) have emerged as a promising approach for sequence
modeling, offering the ability to capture long-range dependencies with linear computational complex-
ity [139,140, 141} 1421 143]]. Building on this foundation, Mamba and Mamba?2 introduced input-dependent
update and forget gates to address limitations in content-based reasoning [45|46]. Unlike Transformer
architectures, this allows SSM parameters to be dynamically modulated by input, significantly im-
proving expressiveness in discrete modalities. Coupled with hardware-friendly parallelization, these
advances lead to notable gains in computational efficiency and performance in language modeling.

Building on this progress, Vision Mamba extended the Mamba framework to 2D image modeling via
bidirectional spatial scanning, achieving strong results in image understanding tasks [47, 48]]. More
recently, VideoMamba further generalized this approach to video by introducing spatio-temporal
scanning, enabling efficient modeling of global dependencies across both spatial and temporal
dimensions with linear complexity [11} 49]]. This architecture rivals or surpasses traditional CNN
and Transformer models [12, 50, 51, 152f], establishing itself as a competitive backbone for video
understanding. However, applying pre-trained models like VideoMamba to downstream tasks using
full fine-tuning typically requires large data and high computational cost. Thus, developing parameter-
efficient fine-tuning strategies for VideoMamba remains an important and urgent challenge.

2.2 Parameter-Efficient Fine-Tuning for SSM

Parameter-efficient fine-tuning techniques aim to reduce learnable parameters while maintaining
model performance, thereby reducing storage and computational costs when adapting pre-trained
models to downstream tasks [[16]. Several studies have attempted to apply parameter-efficient fine-
tuning methods to Mamba architecture models [53] 54, 55)]. These methods can be categorized into
partial-based, addition-based, and prompt-based approaches.

Partial-based methods typically fine-tune only a subset of parameters in the pre-trained Mamba
model, such as projection layers, convolution layers, or forget gates [54}55]. These methods are
straightforward and easy to implement. However, partial-based approaches are constrained by the
model’s inherent parameter space, limiting their adaptability to downstream tasks across different
domains. Addition-based methods generally freeze the original model parameters and incorporate
learnable components, such as adapter modules [19} 21]]. While these plug-and-play modules can be
readily transferred to the Mamba model architecture, they simply apply transformations to the input
data without considering the sequential progression characteristics inherent to Mamba’s architecture.
The Additional-Scan approach attempts to learn downstream knowledge by increasing the state
dimensions of the SSM [55]]. However, when applied to video domains, merely increasing state
dimensions proves insufficient for effectively extracting critical spatio-temporal information. Prompt-
based methods add a small number of learnable prompt vectors, optimizing only these parameters
during training. Existing work such as SVP has transferred prompt learning methods to Mamba
models by generating prompts for each token, effectively activating Mamba’s update and forget
gates during fine-tuning [S3]]. However, such methods are designed exclusively for static 2D images.
When transferred to video tasks, they similarly struggle with the challenge of modeling long-context
spatio-temporal relationships.

2.3 Video Prompting

Prompt learning methods were first introduced in natural language processing (NLP) to transfer
pre-trained models to various downstream tasks [56, 157,58} 159]]. Inspired by the success of prompt
learning in NLP, these methods have been extended to the visual domain[60}|61]]. VPT and VFPT fine-
tune models by concatenating token-based prompts with input data to capture image features [25, 26].
More recently, methods like DGL and STOP have applied prompt learning to video tasks, using
intra-frame and inter-frame prompt modules to capture temporal information [35} 136, 37, 38]]. For
instance, DGL employs prompt vectors as query, key and value vectors to model both local features
and global features in videos [36]]. MPT utilizes prompts as query vectors, leveraging the Q-Former
mechanism to extract spatial, temporal, and global features [37]. STOP generates inter-frame prompts
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Figure 2: The pipeline of our SSP. We embed videos into image tokens with spatial prompts. After the initial
Mamba layer, our complementary IFG and IFS modules operate - [FG aggregates spatial information while IFS
spreads temporal information. Information entropy and frame-specific spatial variance bridge these modules.
The prompted tokens and CLS token then pass through subsequent Mamba layers for video classification.

from all tokens while using intra-frame prompts to highlight the varying importance of frames,
dynamically inserting prompts between frames [38].

However, these methods were originally designed for the Transformer architecture, leveraging its
unique structure by connecting prompts to query and key-value vectors to store task information.
Transformer-based video prompting methods use a global attention mechanism [62], allowing tokens
within the sequence to interact at any position. In contrast, the Mamba architecture propagates
tokens sequentially [63] 164} 65], causing adjacent tokens to contain more overlapping information.
As a result, when applying existing video prompting methods to Mamba, feeding all tokens into
the inter-frame prompt module introduces redundant contextual information. This issue is more
pronounced in video data with high spatiotemporal redundancy, making it difficult for the prompt
module to effectively capture and propagate discriminative spatiotemporal context, ultimately limiting
the model’s performance.

3 Methodology

In this section, we illustrate the proposed SSP comprehensively, and the overall pipeline is depicted
in Figure[2]

3.1 Preliminary of Mamba

The SSM-based models, Mamba, Vision Mamba (ViM), and VideoMamba, are inspired by continuous
systems that map one-dimensional equations or sequences z(t) € R — y(t) € R through a D-
dimensional hidden state h(t) € RP. These hidden states evolve over time via parameter matrices A,
B, and C, following a linear ordinary differential equation:

B'(t) = Ah(t) + Bx(t), y(t) = Ch(t), (1)

where parameter A € RP*P represents the forgetting gate matrix, B € RP*! denotes the update
gate matrix, and C € R'*P serves as the output projection matrix.

To facilitate application in deep learning, SSMs are discretized into discrete-time systems using the
zero-order hold technique. The continuous parameters A and B are transformed into their discrete

counterparts A € RP>*P and B € RP*!, employing a sampling time interval A € R:
A =exp(AA), B = (AA) '(exp(AA) —1I)- AB. )
Consequently, the discretized SSM can be expressed as follows:
hi = Ah;_y + Bz, y; = Ch,, 3

where h;_1,h; € RP*4 and 2;,1; € R4, d is the dimension of the input sequences.



3.2 State Space Prompting

The backbone of our method is VideoMamba [49], the input is a video V' € RTXCXHXW where T
represents the number of frames, C represents the number of channels, and H x W is spatial size.

Each video frame {F;}7_, is split into N = ZXW fixed-size patches of size h x w and these patches

are flattened into a sequence of vectors I; = {I;; € RE* hx“’} §V:1, where i denotes the frame index

while j denotes the patch index. These vectors are then projected into input tokens x; = {x;; }é\’:l,
where z;; € R?, and d is the hidden dimension of the input sequence. For video classification tasks,
the class token @ is prepended to the sequence of input tokens, which is [z, 1, X2, . .., ZT].
Then the input tokens are fed into the VideoMamba backbone, which consists of L layers of Mamba
block. The class token x;s from the last layer is used for classification tasks. The final output of the

VideoMamba backbone is obtained by applying a linear classifier head on x ;5.

Our SSP consists of two complementary modules: an intra-frame gathering module (IFG) and an
inter-frame spreading module (IFS). These modules interact complementarily to aggregate spatial
information and spread discriminative long-term context information at the temporal level during
fine-tuning.

3.2.1 Intra-Frame Gathering Module

The IFG P* processes each frame F'; to generate intra-frame prompts p{ € R4, information
entropy weights w; € R'*?, and spatial variance measurements v; € R'*?. The intra-frame prompts
are then overlaid to the input tokens to produce spatial prompted tokens x5 € RV>4:

pf7wZavl:,PS($z)7 mf:mz+pf “4)

The IFG takes the tokens from each frame
x; = {x;;}]_, as input. These tokens are pro-
cessed through a downsampling layer £¢o%"
followed by a 2D convolutional layer A to
generate low-rank feature maps I; € RV*®
for each frame, where d* represents the internal
dimension of the intra-frame gathering module.
The low-rank feature maps I; are subsequently
upsampled via a linear layer £1” to match the
dimensionality of the input tokens, resulting in
intra-frame prompts p?. Concurrently, the low-
rank feature maps undergo additional 2D con-
volution and upsampling operations to produce
spatial variance v;. The intra-frame prompts
p; are then fed into an entropy calculation mod-
ule £ to calculate information entropy weights
w;.

Video
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Figure 3: Visualization of our intra-frame prompts,
which capture discriminative local features.
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The entropy calculation module £ evaluates the informational significance of intra-frame prompts

and generates frame-level weights. This module first transforms the intra-frame prompts p; into

probability distributions, then calculates the information entropy, which is subsequently scaled by a

learnable factor a.. A small positive constant € is incorporated to prevent taking the logarithm of zero:
H.:
P; = soft $,Hi:— P;-1 P; ,Eizl.O——Z,
softmax(p;) Zd: og(P; + €) (1)) ©

w; = o - softmax(E), where E is the mean of E; across tokens per frame.

The intra-frame prompts p; gather the model’s attention to local features during downstream fine-
tuning, as shown in Figure[3] Information entropy weights w; adjust the attention given to each frame
during inter-frame prompt generation based on the certainty of information distribution, while spatial
variance v; gates the influence strength from the long-term context information to local features.



3.2.2 Inter-Frame Spreading Module

After processing through the first Mamba layer, the inter-frame spreading module (IFS) activates.
This module first samples the last token s; € R'*? from frame F'; in the Mamba forward scanning
sequence. This token is Hadamard multiplied with the information entropy weights w; generated by
the intra-frame gathering module and fed into the inter-frame spreading module P?. The module’s
output is then Hadamard multiplied with the spatial variance v; to produce inter-frame prompts
pt € R4
S; = X;N, pf» :’Pt(siQwi)Qvi. @)
The IFS processes the input through a sequence of operations including a downsampling linear
transformation £4°™, an attention computation .4, and an upsampling linear transformation £”. The
resulting output is then computed Hadamard product with the spatial variance v;, and subsequently
scaled by a learnable factor /3 to produce the inter-frame prompts p!. This architecture facilitates
the spreading of long-term context information across video frames while preserving local context
information:
i = B L5 (AL (50))) © wi ®

The last token of each frame s; aggregates contextual information from both the current frame and
preceding frames during forward scanning, as well as subsequent frames during backward scanning.
As shown in FigureEI, the generated inter-frame prompts p! represent temporal inductive biases that
spread the gathered temporal information from all frames to the current frame.
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Figure 4: Visualization of our inter-frame prompts. The action "catch" can be parsed into two distinct
phases: preparation for the catch and the actual reception of the ball. Our inter-frame prompts
effectively locate the key transitional moments between these critical phases.

Subsequently, the inter-frame prompts p! are concatenated with the spatial prompted tokens @3,
along with the class token @, are fed into the following L — 1 Mamba layers {5; }]L:2 to extract
spatio-temporal features. Inspired by VPT-deep [23], we overlay the intra-frame prompt on the input
of each layer and embed the inter-frame prompt in the input of all layers after the first layer. To obtain
the final predicted probability distribution y, we apply a linear classification head H on x ;5.

3.2.3 Overall Optimization

As mentioned above, our SSP introduces only a few additional parameters:
M = {P* P'}. ©)]

Following prior works, we keep the pre-trained model frozen during training, allowing only the
classification head # and the newly added modules M to be trainable. The optimization objective is
defined as follows:
argmin Lec(Y, ygt), (10)
MH

where L. is the cross-entropy loss, and y; is the ground truth video label.

4 Experiments

4.1 Datasets

HMDB51 [[67] contains 6849 clips across 51 action categories, with an average duration of 3.15
seconds and 91.49 frames per video. It was collected from various sources, mostly from movies, and
a small proportion from public databases such as the Prelinger archive, YouTube and Google videos,
featuring diverse real-world actions with variations in background and camera angles.



Table 1: The comparison results on K400 pretrained VideoMamba-S (Parameters 25.42M).

Method Venue Param HMDB51 SSV2 UCF101 Breakfast
Full [49] ECCV24 25.42M 67.58 58.57 92.96 94.27
Adapter [19] NeurIPS’22 2.40M 73.79 36.45 94.18 84.89
‘:-; ST-Adapter [21]] NeurIPS’22 2.6OM 70.52 30.94 94.87 77.60
@ VPT [23] ECCV’22 1.50M 72.74 30.68 95.16 81.25
§ VFPT [26] NeurIPS’24 1.50M 72.41 30.37 95.08 79.68
_§ SVP [53] AAAD25 2.76M 69.93 38.01 95.58 80.72
= Additional-Scan [55] ICLR’25 0.66M 73.20 33.71 95.63 78.64
STOP [38]] CVPR’25 1.49M 70.06 21.22 93.44 65.62
SSP(Ours) This Paper 0.98M 74.38 38.68 95.69 85.41

Table 2: The comparison results on CLIP-400M pretrained CLIP-ViT-B/32 [66] (Parameters 88.00M)
and K400 pretrained VideoMamba-M (Parameters 74.00M).

Method Venue | Param | HMDBSI SSV2 UCF101  Breakfast
o DGL-Linear [36] AAAP24 0.83M 67.20 18.30 92.50 -
5 DGL-Transformer [36] AAAI’24 9.57M 69.80 18.10 93.60 -
STOP [38] CVPR25 7.53M 72.00 21.40 95.30 -
Full [49] ECCV'24 74.00M 76.30 67.30 96.00 95.31
Adapter [19] NeurIPS?22 | 2.40M 73.59 46.98 96.24 89.06
§ ST-Adapter [21]) NewPS22 |  2.69M 71.96 31.91 94.81 67.70
£ VPT[25] ECCV’22 1.50M 73.59 40.58 95.45 81.77
< VFPT[26] NeurIPS24 | 1.50M 71.89 39.68 95.71 86.97
§ SVP[E3 AAAD25 2.76M 73.66 49.08 96.77 90.10
i Additional-Scan [53] ICLR’25 1.33M 73.52 44.65 96.32 86.97
STOP [38] CVPR25 1.49M 71.96 23.44 94.60 71.35
SSP(Ours) This Paper 2.41M 76.66 53.72 97.03 93.23

UCF101 [68] is an action recognition data set of realistic action videos, collected from YouTube,
having 13320 video clips across 101 action categories. The average video length is 7.21 seconds with
186.5 frames per video.

Something-Something V2 (SSV2) [69] is a large-scale dataset for action recognition, containing
220,847 videos across 174 action categories. The dataset is designed to capture fine-grained actions
and interactions between objects, with an average video length of 3.82 seconds and 45.84 frames.

Breakfast [70] is a long video understanding dataset containing 1989 video clips divided into 10
categories related to breakfast preparation. The dataset has an average video length of 137.53 seconds,
with an average of 2062.89 frames per video.

4.2 Comparison Methods

We compare our SSP with both adapter-based and prompt-based parameter-efficient finetuning meth-
ods. We also report the fully tuning results as a baseline, i.e., VideoMamba [49]. For adapter-based
methods, we compare with the following methods: Adapter [19] and ST-Adapter [21]. For prompt-
based methods, we compare with the following methods: DGL-Linear [36]], DGL-Transformer [36],
VPT [25], VFPT [26], SVP [53]], and STOP [38]].

4.3 Implementation Details

Following [49]], all video frames are resized to 224 x 224 and split into 14 x 14 patches. For HMDBS1,
UCF101 and SSV2 datasets, each video is uniformly sampled to 8 frames, while for Breakfast, we
sample 32 frames. We set the learning rates to 3e-3, 5e-3, 2e-4, and le-3 for HMDBS51, UCF101,



SSV2, and Breakfast respectively. Meanwhile, we set the batch size to 32 for HMDBS51 and UCF101,
64 for Breakfast and 512 for SSV2. All the dataset splits are consistent with the official annotation
files. The model is fine-tuned with the AdamW optimizer on 4 NVIDIA 4090-24G GPUs, with a
cosine decay scheduler. Additionally, we adopt a warm-up strategy within the first 5 training epochs.

4.4 Comparison with State-of-the-arts

We evaluated our SSP method on four popular video datasets: HMDBS51, UCF101, SSV2,
and Breakfast. For fair comparison, we used CLIP-400M pretrained CLIP-ViT-B/32 as the
backbone for ViT-oriented methods, while for methods fine-tuned on the Mamba architecture,
we employed Kinetics-400 [71] pretrained VideoMamba-M and VideoMamba-S as backbones.
Our method achieves state-of-the-art performance across all datasets, as shown in Table
When fine-tuned on VideoMamba-M, our ap-
proach attains top-1 accuracies of 76.66%,
53.72%, 97.03%, and 93.23% on HMDBS51,
Something-Something V2, UCF101, and
Breakfast respectively, representing improve-
ments of 3.00%, 4.64%, 0.26 %, and 3.13%
over existing parameter-efficient video fine-
tuning methods. As demonstrated in Table|[I]
even with the parameter constraints of smaller-
scale models, our method still delivers supe-
rior results when fine-tuned on VideoMamba-S.
This effectiveness stems from our tailored de-
sign for the VideoMamba architecture, which STOP (LA9M, 71.3%)
enables efficient gathering and spreading of dis-
criminative spatio-temporal information within 10 5 17 24 78 32
state space models, through the complemen- Parameters (M)

tary IFG and IFS modules. Notably, our ap-
proach demonstrates particularly significant
improvements on the challenging large-scale
Something-Something V2 dataset and the long-
video Breakfast dataset, as shown in Figure 3]
our method exceeds others when tuning only 1.30M parameters (using only one IFS module as shown
in Figure[7). This is because our SSP can gather local information on key regions in complex video
data and spread critical global information in long contexts.
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Figure 5: Comparison on Breakfast. SSP outper-
forms existing methods while tuning minimal pa-
rameters.

4.5 Ablation
4.5.1 Influence of Different Components

To verify the effectiveness of the intra-frame gathering (IFG) module and inter-frame spreading (IFS)
module, we conducted ablation experiments on three datasets: HMDBS51, UCF101, and Breakfast, as
shown in TableE} As demonstrated, when neither component is used, SSP achieves the lowest accu-
racy on all datasets. When the intra-frame gathering module is used alone, the model’s performance
improves by 9.78% on average. This is because the intra-frame spatial prompts effectively capture
local features and enhance the model’s ability to focus on discriminative information within each
frame. When the inter-frame spreading module is used alone, the model’s performance improves
by 9.20% on average. This can be attributed to that the inter-frame temporal prompts effectively
aggregate and spread global contextual information across frames. When both components are used
together, the model achieves the best performance by an average improvement of 13.46% across all
datasets, as they complement each other in gathering and spreading both local and global information.
When the spatial variance gate or the entropy gate (denoted as v;, w; in Equation[7) is removed, the
model’s performance drops by 2.33% and 2.27% respectively on average across all datasets. This
indicates that both gates play a crucial role in facilitating the inter-frame prompts to propagate spatial
information in a complementary manner based on the key local features of each frame.



Table 3: Ablation of different prompting modules and gates.

Different Prompting Modules Different Gates
IFG IFS | HMDB51 UCF101 Breakfast || Entropy Spatial | HMDBS1 UCF101 Breakfast
- - 59.34 90.64 76.56 - - 74.70 96.56 89.58
4 - 74.44 96.56 84.89 4 - 75.09 96.29 88.54
- v 72.61 96.14 85.41 - v 74.96 96.61 88.54
4 v 76.66 97.03 93.23 4 4 76.66 97.03 93.23

4.5.2 The Visualization Results of Update Gate
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Figure 6: Visualization of the update gate. In SSP, the key region is activated effectively.
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Figure 7: Ablation of the number of IFSs in our SSP.

To further explore the
impact of our intra-frame
gathering module and
inter-frame spreading
module, we visualize the
normalized update gate
values in VideoMamba
on the last layer, which
contribute to the final
classification results di-
rectly. As shown in Figure
[6l existing prompting
methods designed for

Mamba like SVP can’t effectively gather and spread the discriminative spatio-temporal information.
This caused the pre-trained VideoMamba model to focus on irrelevant regions in each frame. As a
result, the model struggles to accurately understand dynamic key features in the video. In contrast,
our SSP method highlight the key regions with dynamic changes in the video, leading to a more
accurate understanding of the video content.

4.5.3 Influence of Hyperparameters

The number of the inter-frame spreading modules (P?) is one of important hyperparameters in our
method. To assess its impact, we conduct extensive ablation experiments. As shown in Figure[7} the
model’s performance initially improves but then fluctuates as the number of inter-frame spreading
modules increases.



To balance performance and tunable parameters, we set the number of inter-frame spreading modules
to 3 when using VideoMamba-M as backbone, and when using VideoMamba-S as backbone, we set
the number to 1.

5 Conclusion

In this paper, we propose a novel State Space Prompting (SSP) approach for efficient adaptation
of pre-trained state space models to video understanding tasks. SSP combines complementary
intra-frame gathering module and inter-frame spreading module to aggregate key spatial information
within frames and spread discriminative temporal information between frames, enabling effective
propagation of crucial spatio-temporal features in state space models. By employing the two modules,
we can adaptively balance and compress discriminative information in videos. The effectiveness of
our proposed SSP has been validated on four video benchmarks compared to other parameter-efficient
fine-tuning methods.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We propose SSP, a state space prompting method for video understanding. The
main contributions of SSP (i.e., the fine tuning effectiveness and the parameter efficiency)
are claimed in both the abstract and introduction accurately.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation in appendix [H
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: All theorems used in the paper are properly referenced.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We claim reproducibility in section § @} Our code will be publicly available
after acceptance.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We claim reproducibility in § @ All the datasets included in our study are
publicly available. Our code will be publicly available after acceptance. The publicly
available code should be adequate to replicate the primary experimental results.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We specify experimental and implementation details in § 4
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Considering the large size of the datasets, the experiments are too expensive
to repeat many times. Additionally, by fixing random seeds and releasing our code after
publication, our main experimental results are reproducible.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The compute resources are provided in § [4.3]
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: This paper complies with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes] .
Justification: The social impact of our research is discussed in appendix [G|
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We show related asset license and consent to our work in appendix [F}
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Discussion and Analysis

In this section, we discuss and analyze the effectiveness of our SSP method for parameter-efficient
fine-tuning the VideoMamba architecture in downstream task adaptation.

For each Mamba layer’s input, we denote the ¢-th input token along the scanning order as «;. The
hidden state computation for the subsequent Mamba layer is formulated as:

hi = Ahy o +Bial, @ =, + 1}, an

where h; is the i-th compressed hidden state token of the Mamba layer. In the Mamba architecture,
each layer’s parameter matrices B € RP>*1, C € R'*P, and A € R are derived from the input token
x; through functions Sg, Sc, and Sa, respectively:

A; =exp(AA;), B;=S8p(x)), C;=38c(z), A;=S8a(z]). (12)

In our proposed SSP method, the intra-frame prompt p; enables direct fine-tuning of the parameter
matrices generated by each token:

A = exp(Sa(@; + pi)OA), B = Sa(zi +p})Ss(zi + p}), (13)

where Kf € RP*P and Ef € RP*! represent the forget and update gates directly controlled by
the intra-frame prompt p;, facilitating the extraction of locally discriminative information, thereby
gathering the spatial information effectively when fine-tuning on downstream tasks.

For the inter-frame prompt p§- of the j-th frame, this prompt vector aggregates global spatio-temporal
information and is gated through Hadamard multiplication with the spatial variance v;. It is inserted
between the j-th and (j + 1)-th frames, directly influencing the hidden state at that position:

hji10= K§+1,Oth +§§+1,0p§-7 (14)

where N denotes the number of tokens per frame. Tokens following the j-th frame can access global
discriminative information through the hidden state h ;1 o of inter-frame prompt pﬁ», overcoming the
sequential spatio-temporal information transfer limitation of the original VideoMamba model and
achieving efficient gathering and spreading of spatio-temporal information.

Next, we further analyze the impact of inter-frame prompts on long-range spatio-temporal information
transmission. By expanding Equation [TT] we obtain:

—~P RP..s _ AP (AP B? s B'x®
hj =Ajh; 1 +Bjz] =A; (Ajflhj—? T B47*1$j*1> + B

j j j (15)
- 11 wtnee 3 (11 ) e

k=i+1 t=i+1 \k=t+1

where ¢ < j. The coefficient of the first term in the above equation, Hi:l 11 K,Z, represents the
influence strength from the ¢-th hidden state token to the j-th hidden state token along the scanning
sequence. We denote this as the transmission matrix T';_, ;:

J J
Tioj= ] AizeXp< > Ak6A>7 (16)

k=it+1 k=i+1

where A is a negative matrix. Examining the equation above, we observe that the mutual influence
strength between tokens at different positions in the sequence exponentially decays to zero as the
distance j — ¢ increases. Without the insertion of inter-frame prompts, the maximum information
transmission path length in the sequence equals the sequence length O(T'N), where T is the number
of video frames and N is the number of tokens per frame. However, after inserting inter-frame
prompts, information from tokens at different positions can be transmitted through the inter-frame
prompts inserted after each frame, reducing the maximum information transmission path length to
O(N). This significant reduction in information transmission path length facilitates the aggregation
and propagation of global spatio-temporal information.
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B Visualization of More Cases

B.1 Update Gate Value Visualization

Video

SVP

SSP (Ours)

Video

SVP

SSP (Ours)

Video

SVP

]

i

SSP (Ours)

Figure 8: Visualization of the values of the update gate over the last layer in VideoMamba.

The update gate value of each token, denoted as Ef in Equation represents the degree of influence
each token exerts on the hidden states of VideoMamba. By visualizing the update gate values
across tokens, we can observe which specific tokens receive greater attention from the VideoMamba
architecture during processing.
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As illustrated in Figure 8] existing prompting approaches for Mamba architecture (e.g., SVP) employ
static prompts for each frame. This limitation prevents the pre-trained VideoMamba model from
effectively integrating and modeling global video contextual information, thereby hindering accurate
interpretation of human actions within the video sequence. In contrast, our SSP method, through
the complementary application of intra-frame gathering and inter-frame spreading modules, dynam-
ically emphasizes regions exhibiting significant temporal variations in the video. This approach
enables more precise comprehension of video content by capturing the most relevant spatio-temporal
information.

B.2 Intra-Frame Prompts Visualization

In our SSP method, the intra-frame prompts, which are overlaid on the input tokens fed into each
Mamba layer, are employed to capture the discriminative local features and gather the spatial
information of each frame. To visualize the intra-frame prompts, we plot the values of intra-frame
prompts of all frames in a video over the last Mamba layer as heatmaps, and overlay them on the
original video frames.
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Figure 9: Visualization of our intra-frame prompts over the last layer in VideoMamba.

As shown in Figure[0] when existing parameter-efficient fine-tuning methods (e.g., ST-Adapter) are
applied to VideoMambea, they fail to effectively capture the local feature maps of individual frames,

24



preventing the model from attending to local features that undergo temporal variations. In contrast,
our approach, through efficient spreading of global temporal information, enables intra-frame prompts
to more accurately capture discriminative local features, thereby achieving effective gathering of
spatially relevant information.

B.3 Inter-Frame Prompts Visualization

The inter-frame prompts in our SSP method facilitate the propagation of temporal information across
sequential frames. Through visualization of these inter-frame prompts, we can identify which specific
frames receive heightened attention from the model during global context integration, providing
insights into the temporal dynamics of information processing within the architecture.
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Figure 10: Visualization of our inter-frame prompts over the last layer in VideoMamba.

As demonstrated in Figure [I0] compared to existing video prompting methods (e.g., STOP), the
inter-frame prompts of our SSP method effectively identify key frames exhibiting temporal variations
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within the video sequence. This enhanced capability stems from our approach being specifically
engineered for the Mamba architecture, enabling efficient refinement and propagation of temporal
information from compressed hidden states.

C Discussion on Different Method Designs

In our methodology design’ we generate Table 4: Ablation of Different Sample Methods.
inter-frame prompts by sampling the last
token. from each frame in the .foryvard Method HMDB51 UCFIOl Breakfast
scanning sequence, as illustrated in Figure Middle 7444 05.87 0114
[[Tfa). This section explores how different .

. . . Bidirection 75.81 96.00 89.06
sampling strategies affect the generation )
of inter-frame prompts, with supplemen- Bi-Independent | 75.16 96.06 90.10
tary experimental results presented in Ta- SSP(Ours) 76.66 97.03 93.23

ble[] We discovered that sampling tokens

from the middle of each frame (Figure[TT(b)) leads to an average accuracy decrease of 1.82%. We
attribute this decline to the fragmentation of semantic information within each frame during prompt
generation. When sampling the last tokens separately from the forward and backward scanning
sequences to generate prompts (Figure [[T|c)), the accuracy decreases by an average of 2.01%. We
posit that sampling before the superposition of bidirectional sequences causes the inter-frame prompts
to overlook complementary information from both directions, resulting in a separation of forward
and backward contextual cues. Additionally, employing independent inter-frame spreading modules
to generate prompts for forward and backward directions (Figure[IT[d)) still results in an accuracy
drop of 1.86%. Although this approach introduces more learnable parameters to separately model
contextual relationships in forward and backward scanning, it fails to address the fundamental issue
of separated forward and backward contextual cues.
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Figure 11: Different methods for inter-frame prompting. For simplicity, irrelevant computational
processes in the Mamba block and intra-frame gathering modules have been omitted.

D More Ablation Studies on Hyperparameters

The internal dimensions of our intra-frame gathering module (IFG) and inter-frame spreading module
(IFS) are also hyper-parameters of our method. To balance efficiency and effectiveness, we set the
internal dimension of IFG to 384 and the internal dimension of IFS to 256. We conducted extensive
experiments on HMDBS51 and Breakfast datasets to investigate the impact of different dimension
settings on fine-tuning performance.

As shown in Figure[I2] naively increasing the internal dimension of the IFG module does not improve
model performance. When the dimension is too large, model performance actually decreases due to
increased optimization difficulty. Regarding the internal dimension of the IFS module, the long-video
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Breakfast dataset is more sensitive to this setting. From the perspective of reducing training time and
parameter costs, setting the internal dimension of the IFS to 32 is also an acceptable option, which
demonstrates the robustness of our method to the choices of hyperparameters.
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Figure 12: Ablation on the Internal Dimensions of IFG and IFS.

E More Clarifications

We first clarify the role of spatial variance in our approach. Given that different video frames exhibit
varying degrees of association with global information, we learn the spatial variance v, through the
spatial features aggregated by IFG. The spatial variance gates the weight of each inter-frame prompt,
thereby controlling the degree of influence each video frame has on global information and achieving
more refined temporal information propagation.

To further elaborate on the spreading mechanism, we describe how IFG and IFS work collaboratively.
The IFG module aggregates spatial information from each frame into intra-frame prompts and
superimposes the intra-frame prompts onto tokens. While the IFS module performs global attention
computation through sampled tokens, enabling global interaction of the aggregated spatial information
to generate inter-frame prompts. The inter-frame prompt corresponding to each frame thus contains
spatial information from other frames, thereby propagating the aggregated local spatial information
in a temporal manner.

F Asset License and Consent

DGL!, VPT and VFPT are licensed under CC-BY-NC 4.0. Adapter, ST-Adapter, and |CLIP-ViT are
licensed under MIT. STOP, Additional-Scan and the VideoMamba are licensed under Apache 2.0.

All the datasets included in our study are publicly available, and all the models are publicly available.
We would like to state that the contents in the dataset do NOT represent our views or opinions.

G Broader Impacts

This study presents SSP, which improves the performance of pre-trained Mamba models when
fine-tuned on downstream video tasks. Thanks to the reduced parameter count, our research enables
deployment of video foundation models on resource-constrained devices, reduced environmental
impact of Al training, and rapid adaptation to specialized domains.

H Limitations

For potential limitations, our method introduces Intra-Frame Gathering (IFG) module and Inter-Frame
Spreading (IFS) module to facilitate spatio-temporal contextual information, which brings additional
hyperparameters, such as the number of IFSs. However, according to extensive experiments in § {.5.3]
we observe that in most cases, simply setting this parameter to 3 is sufficient. Regarding the internal
dimensions of IFG and IFS, as shown in the extensive experiments in appendix D} we recommend
setting the internal dimension of IFG to 384 and the internal dimension of IFS to 256.
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