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Abstract

In this work, we study the generalizability of diffusion models by looking into
the hidden properties of the learned score functions, which are essentially a series
of deep denoisers trained on various noise levels. We observe that as diffusion
models transition from memorization to generalization, their corresponding non-
linear diffusion denoisers exhibit increasing linearity. This discovery leads us to
investigate the linear counterparts of the nonlinear diffusion models, which are a
series of linear models trained to match the function mappings of the nonlinear
diffusion denoisers. Surprisingly, these linear denoisers are approximately the
optimal denoisers for a multivariate Gaussian distribution characterized by the
empirical mean and covariance of the training dataset. This finding implies that dif-
fusion models have the inductive bias towards capturing and utilizing the Gaussian
structure (covariance information) of the training dataset for data generation. We
empirically demonstrate that this inductive bias is a unique property of diffusion
models in the generalization regime, which becomes increasingly evident when the
model’s capacity is relatively small compared to the training dataset size. In the
case that the model is highly overparameterized, this inductive bias emerges during
the initial training phases before the model fully memorizes its training data. Our
study provides crucial insights into understanding the notable strong generalization
phenomenon recently observed in real-world diffusion models.

1 Introduction
In recent years, diffusion models [1–4] have become one of the leading generative models, powering
the state-of-the-art image generation systems such as Stable Diffusion [5]. To understand the empirical
success of diffusion models, several works [6–12] have focused on their sampling behavior, showing
that the data distribution can be effectively estimated in the reverse sampling process, assuming that
the score function is learned accurately. Meanwhile, other works [13–18] investigate the learning
of score functions, showing that effective approximation can be achieved with score matching loss
under certain assumptions. However, these theoretical insights, grounded in simplified assumptions
about data distribution and neural network architectures, do not fully capture the complex dynamics
of diffusion models in practical scenarios. One significant discrepancy between theory and practice
is that real-world diffusion models are trained only on a finite number of data points. As argued
in [19], theoretically a perfectly learned score function over the empirical data distribution can only
replicate the training data. In contrast, diffusion models trained on finite samples exhibit remarkable
generalizability, producing high-quality images that significantly differ from the training examples.
Therefore, a good understanding of the remarkable generative power of diffusion models is still
lacking.

In this work, we aim to deepen the understanding of generalizability in diffusion models by analyzing
the inherent properties of the learned score functions. Essentially, the score functions can be
interpreted as a series of deep denoisers trained on various noise levels. These denoisers are then
chained together to progressively denoise a randomly sampled Gaussian noise into its corresponding
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clean image, thus, understanding the function mappings of these diffusion denoisers is critical to
demystify the working mechanism of diffusion models. Motivated by the linearity observed in the
diffusion denoisers of effectively generalized diffusion models, we propose to elucidate their function
mappings with a linear distillation approach, where the resulting linear models serve as the linear
approximations of their nonlinear counterparts.

Contributions of this work: Our key findings can be highlighted as follows:

• Inductive bias towards Gaussian structures (Section 3). Diffusion models in the generalization
regime exhibit an inductive bias towards learning diffusion denoisers that are close (but not equal)
to the optimal denoisers for a multivariate Gaussian distribution, defined by the empirical mean and
covariance of the training data. This implies the diffusion models have the inductive bias towards
capturing the Gaussian structure (covariance information) of the training data for image generation.

• Model Capacity and Training Duration (Section 4) We show that this inductive bias is most
pronounced when the model capacity is relatively small compared to the size of the training data.
However, even if the model is highly overparameterized, such inductive bias still emerges during
early training phases, before the model memorizes its training data. This implies that early stopping
can prompt generalization in overparameterized diffusion models.

• Connection between Strong Generalization and Gaussian Structure (Section 5). Lastly, we
argue that the recently observed strong generalization [20] results from diffusion models learning
certain common low-dimensional structural features shared across non-overlapping datasets. We
show that such low-dimensional features can be partially explained through the Gaussian structure.

Relationship with Prior Arts. Recent research [20–24] demonstrates that diffusion models operate
in two distinct regimes: (i) a memorization regime, where models primarily reproduce training
samples and (ii) a generalization regime, where models generate high-quality, novel images that
extend beyond the training data. In the generalization regime, a particularly intriguing phenomenon
is that diffusion models trained on non-overlapping datasets can generate nearly identical samples
[20]. While prior work [20] attributes this ”strong generalization” effect to the structural inductive
bias inherent in diffusion models leading to the optimal denoising basis (geometry-adaptive harmonic
basis), our research advances this understanding by demonstrating diffusion models’ inductive bias
towards capturing the Gaussian structure of the training data. Our findings also corroborate with
observations of earlier study [25] that the learned score functions of well-trained diffusion models
closely align with the optimal score functions of a multivariate Gaussian approximation of the training
data.

2 Preliminary
Basics of Diffusion Models. Given a data distribution pdata(x), where x ∈ Rd, diffusion mod-
els [1–4] define a series of intermediate states p(x;σ(t)) by adding Gaussian noise sampled from
N (0, σ(t)2I) to the data, where σ(t) is a predefined schedule that specifies the noise level at time
t ∈ [0, T ], such that at the end stage the noise mollified distribution p(x;σ(T )) is indistinguishable
from the pure Gaussian distribution. Subsequently, a new sample is generated by progressively
denoising a random noise xT ∼ N (0, σ(T )2I) to its corresponding clean image x0.

Following [4], this forward and backward diffusion process can be expressed with a probabilistic
ODE:

dx = −σ̇(t)σ(t)∇x log p(x;σ(t))dt. (1)

In practice the score function∇x log p(x;σ(t)) can be approximated by

∇x log p(x;σ(t)) = (Dθ(x;σ(t))− x(t))/σ2, (2)

where Dθ(x;σ(t)) is parameterized by a deep network with parameters θ trained with the denoising
score matching objective:

min
θ

Ex∼pdataEϵ∼N (0,σ(t)2I)

[
∥Dθ(x+ ϵ;σ(t))− x∥22

]
. (3)

In the discrete setting, the reverse ODE in (1) takes the following form:

xi+1 ← (1− (ti − ti+1)
σ̇(ti)

σ(ti)
)xi + (ti − ti+1)

σ̇(ti)

σ(ti)
Dθ(xi;σ(ti)), (4)
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where x0 ∼ N (0, σ2(t0)I). Notice that at each iteration i, the intermediate sample xi+1 is the
sum of the scaled xi and the denoising output Dθ(xi;σ(ti)). Obviously, the final sampled image is
largely determined by the denoiser Dθ(x;σ(t)). If we can understand the function mapping of these
diffusion denoisers, we can demystify the working mechanism of diffusion models.

Optimal Diffusion Denoisers under Simplified Data Assumptions. Under certain assumptions
on the data distribution pdata(x), the optimal diffusion denoisers Dθ(x;σ(t)) that minimize the score
matching objective (3) can be derived analytically in closed-forms as we discuss below.

• Multi-delta distribution of the training data. Suppose the training dataset contains a finite number
of data points {y1,y2, ...,yN}, a natural way to model the data distribution is to represent it as a
multi-delta distribution: p(x) = 1

N

∑N
i=1 δ(x− yi). In this case, the optimal denoiser is

DM(x;σ(t)) =

∑N
i=1N (x;yi, σ(t)

2I)yi∑N
i=1N (x;yi, σ(t)2I)

, (5)

which is essentially a softmax-weighted combination of the finite data points. As proved in [24, 17],
such diffusion denoisers DM(x;σ(t)) can only generate exact replicas of the training samples,
therefore they have no generalizability.

• Multivariate Gaussian distribution. Recent work [25] suggests modeling the data distribution
pdata(x) as a multivariate Gaussian distribution p(x) = N (µ,Σ), where the mean µ and the co-
variance Σ are approximated by the empirical mean µ = 1

N

∑N
i=1 yi and the empirical covariance

Σ = 1
N

∑N
i=1(yi − µ)(yi − µ)T of the training dataset. In this case, the optimal denoiser is:

DG(x;σ(t)) = µ+UΛ̃σ(t)U
T (x− µ), (6)

where Σ = UΛUT is the SVD of the empirical covariance matrix, with singular values Λ =

diag (λ1, · · · , λd) and Λ̃σ(t) = diag
(

λ1

λ1+σ(t)2 · · ·
λd

λd+σ(t)2

)
. With this linear Gaussian denoiser,

as proved in [25], the sampling trajectory of the probabilistic ODE (1) has close form:

xt = µ+

d∑
i=1

√
σ(t)2 + λi

σ(T )2 + λi
uT
i (xT − µ)ui, (7)

where ui is the ith singular vector of the empirical covariance matrix. While [25] demonstrate
that the Gaussian scores approximate learned scores at high noise variances, we show that they
are nearly the best linear approximations of learned scores across a much wider range of noise
variances.

Generalization vs. Memorization of Diffusion Models. As the training dataset size increases,
diffusion models transition from the memorization regime—where they can only replicate its training
images—to the generalization regime, where the they produce high-quality, novel images [17]. While
memorization can be interpreted as an overfitting of diffusion models to the training samples, the
mechanisms underlying the generalization regime remain less well-understood. This study aims to
explore and elucidate the inductive bias that enables effective generalization in diffusion models.

3 Hidden Linear and Gaussian Structures in Diffusion Models
In this section, we study the intrinsic structures of the learned score functions of diffusion models in
the generalization regime. Through various experiments and theoretical investigation, we show that

Diffusion models in the generalization regime have inductive bias towards learning the Gaussian
structures of the dataset.

Based on the linearity observed in diffusion denoisers trained in the generalization regime, we
propose to investigate their intrinsic properties through a linear distillation technique, with which
we train a series of linear models to approximate the nonlinear diffusion denoisers (Section 3.1).
Interestingly, these linear models closely resemble the optimal denoisers for a multivariate Gaussian
distribution characterized by the empirical mean and covariance of the training dataset (Section 3.2).
This implies diffusion models have the inductive bias towards learning the Gaussian structure of the
training dataset. We theoretically show that the observed Gaussian structure is the optimal solution to
the denoising score matching objective under the constraint that the model is linear (Section 3.3). In
the subsequent sections, although we mainly demonstrate our results using the FFHQ datasets, our
findings are robust and extend to various architectures and datasets, as detailed in Appendix G.
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3.1 Diffusion Models Exhibit Linearity in the Generalization Regime
Our study is motivated by the emerging linearity observed in diffusion models in the generalization
regime. Specifically, we quantify the linearity of diffusion denoisers at various noise level σ(t) by
jointly assessing their ”Additivity” and ”Homogeneity” with a linearity score (LS) defined by the
cosine similarity between Dθ(αx1 + βx2;σ(t)) and αDθ(x1;σ(t)) + βDθ(x2;σ(t)):

LS(t) = Ex1,x2∼p(x;σ(t))

[∣∣∣∣〈 Dθ(αx1 + βx2;σ(t))

∥Dθ(αx1 + βx2;σ(t))∥2
,

αDθ(x1;σ(t)) + βDθ(x2;σ(t))

∥αDθ(x1;σ(t)) + βDθ(x2;σ(t))∥2

〉∣∣∣∣] ,
where x1,x2 ∼ p(x;σ(t)), and α ∈ R and β ∈ R are scalars. In practice, the expectation is
approximated with its empirical mean over 100 samples. A more detailed discussion on this choice
of measuring linearity is deferred to Appendix A.

Figure 1: Linearity scores of diffusion denoisers.
Solid and dashed lines depict the linearity scores
across noise variances for models in the general-
ization and memorization regimes, respectively,
where α = β = 1/

√
2.

Following the EDM training configuration [4],
we set the noise levels σ(t) within the contin-
uous range [0.002,80]. As shown in Figure 1,
as diffusion models transition from the mem-
orization regime to the generalization regime
(increasing the training dataset size), the corre-
sponding diffusion denoisersDθ exhibit increas-
ing linearity. This phenomenon persists across
diverse datasets1 as well as various training con-
figurations2; see Appendix B for more details.
This emerging linearity motivates us to ask the
following questions:

• To what extent can a diffusion model be ap-
proximated by a linear model?

• If diffusion models can be approximated lin-
early, what are the underlying characteristics
of this linear approximation?

Investigating the Linear Structures via Linear Distillation. To address these questions, we
investigate the hidden linear structure of diffusion denoisers through linear distillation. Specifically,
for a given diffusion denoiserDθ(x;σ(t)) at noise level σ(t), we approximate it with a linear function
(with a bias term) such that:

DL(x;σ(t)) := Wσ(t)x+ bσ(t) ≈ Dθ(x;σ(t)), ∀x ∼ p(x;σ(t)), (8)

where the weight Wσ(t) ∈ Rd×d and bias bσ(t) ∈ Rd are learned by solving the following optimiza-
tion problem with gradient descent:3

min
Wσ(t),bσ(t)

Ex∼pdata(x)Eϵ∼N (0,σ(t)2I)||Wσ(t)(x+ ϵ) + bσ(t) −Dθ(x+ ϵ;σ(t))||22. (9)

If these linear models effectively approximate the nonlinear diffusion denoisers, analyzing their
weights can elucidate the generation mechanism.

While diffusion models are trained on continuous noise variance levels within [0.002,80], we examine
the 10 discrete sampling steps specified by the EDM schedule [4]: [80.0, 42.415, 21.108, 9.723, 4.06,
1.501, 0.469, 0.116, 0.020, 0.002] . These steps are considered sufficient for studying the diffusion
mappings for two reasons: (i) images generated using these 10 steps closely match those generated
with more steps, and (ii) recent research [30] demonstrates that the diffusion denoisers trained on
similar noise variances exhibit analogous function mappings, implying that denoiser behavior at
discrete variances represents their behavior at nearby variances.

1For example, FFHQ [26], CIFAR-10 [27], AFHQ [28] and LSUN-Churches [29].
2For example, EDM-VE, EDM-VP and EDM-ADM.
3For the following, the input is the vectorized version of the noisy image and the expectation is approximated

using finite samples of input-output pairs (xi + ϵi,Dθ(xi + ϵ, σ(t))) with i = 1, ..., N (see distillation details
in Appendix C).
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Figure 2: Score field approximation error and sampling Trajectory. The left and right figures
demonstrate the score field approximation error and the sampling trajectories D(xt;σ(t) of actual
diffusion model (EDM), Multi-Delta model, linear model and Gaussian model respectively. Notice
that the curve corresponding to the Gaussian model almost overlaps with that of the linear model,
suggesting they share similar funciton mappings.

After obtaining the linear modelsDL, we evaluate their differences with the actual nonlinear denoisers
Dθ with the score field approximation error, calculated using the expectation over the root mean
square error (RMSE):

Score-Difference(t) := Ex∼pdata(x),ϵ∼N (0;σ(t)2I)

√
∥DL(x+ ϵ;σ(t))−Dθ(x+ ϵ;σ(t))∥22

d︸ ︷︷ ︸
RMSE of a pair of randomly sampled x and ϵ

, (10)

where d represents the data dimension and the expectation is approximated with its empirical mean.
While we present RMSE-based results in the main text, our findings remain consistent across
alternative metrics, including NMSE, as detailed in Appendix G.

We perform linear distillation on well trained diffusion models operating in the generalization regime.
For comprehensive analysis, we also compute the score approximation error between Dθ and: (i) the
optimal denoisers for the multi-delta distribution DM defined as (5), and (ii) the optimal denoisers for
the multivariate Gaussian distribution DG defined as (6). As shown in Figure 2, our analysis reveals
three distinct regimes:

• High-noise regime [20,80]. In this regime, only coarse image structures are generated (Fig-
ure 2(right)). Quantitatively, as shown in Figure 2(left), the distilled linear model DL closely
approximates its nonlinear counterpart Dθ with RMSE below 0.05. Both Gaussian score DG and
multi-delta score DM also achieve comparable approximation accuracy.

• Low-noise regime [0.002,0.1]. In this regime, only subtle, imperceptible details are added to the
generated images. Here, both DL and DG effectively approximate Dθ with RMSE below 0.05.

• Intermediate-noise regime [0.1,20]: This crucial regime, where realistic image content is primarily
generated, exhibits significant nonlinearity. While DM exhibits high approximation error due to
rapid convergence to training samples—a memorization effect theoretically proved in [24], both
DL and DG maintain relatively lower approximation errors.

Qualitatively, as shown in Figure 2(right), despite the relatively high score approximation error
in the intermediate noise regime, the images generated with DL closely resemble those generated
with Dθ in terms of the overall image structure and certain amount of fine details. This implies (i)
the underlying linear structure within the nonlinear diffusion models plays a pivotal role in their
generalization capabilities and (ii) such linear structure is effectively captured by our distilled linear
models. In the next section, we will explore this linear structure by examining the linear models DL.

3.2 Inductive Bias towards Learning the Gaussian Structures
Notably, the Gaussian denoisers DG exhibit behavior strikingly similar to the linear denoisers DL.
As illustrated in Figure 2(left), they achieve nearly identical score approximation errors, particularly
in the critical intermediate variance region. Furthermore, their sampling trajectories are remarkably
similar (Figure 2(right)), producing nearly identical generated images that closely match those
from the actual diffusion denoisers (Figure 3). These observations suggest that DL and DG share
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Figure 4: Linear model shares similar function mapping with Gaussian model. The left figure
shows the difference between the linear weights and the Gaussian weights w.r.t. 100 training epochs
of the linear distillation process for the 10 discrete noise levels. The right figure shows the correlation
matrices between the first 100 singular vectors of the linear weights and Gaussian weights.

similar function mappings across various noise levels, leading us to hypothesize that the intrinsic
linear structure underlying diffusion models corresponds to the Gaussian structure of the training
data—specifically, its empirical mean and covariance. We validate this hypothesis by empirically
showing that DL is close to DG through the following three complementary experiments:

• Similarity in weight matrices. As illustrated in Figure 4(left), Wσ(t) progressively converge
towards U Λ̃σ(t)U

T throughout the linear distillation process, achieving small normalized MSE
(less than 0.2) for most of the noise levels. The less satisfactory convergence behavior at σ(t) =
80.0 is due to inadequate training of the diffusion models at this particular noise level, which is
minimally sampled during the training of actual diffusion models (see Appendix G.2 for more details).

Figure 3: Images sampled from vari-
ous Models. The figure shows the sam-
ples generated using different models
starting from the same initial noises.

• Similarity in Score functions. Furthermore, Figure 2(left,
gray line) demonstrates that DL and DG maintain small
score differences (RMSE less than 0.05) across all noise
levels, indicating that these denoisers exhibit similar func-
tion mappings throughout the diffusion process.

• Similarity in principle components. As shown in Fig-
ure 4(right), for a wide noise range (σ(t) ∈ [0.116, 80.0]),
the leading singular vectors of the linear weights Wσ(t)
(denoted ULinear) align well with U , the singular vectors of
the Gaussian weights.4 This implies that U , representing
the principal components of the training data, is effectively
captured by the diffusion models. In the low-noise regime
(σ(t) ∈ [0.002, 0.116]), however, Dθ approximates the
identity mapping, leading to ambiguous singular vectors
with minimal impact on image generation. Further analy-
sis of Dθ’s behavior in the low-noise regime is provided in Appendices D and F.1.

Since the optimization problem (9) is convex w.r.t. Wσ(t) and bσ(t), the optimal solution DL

represents the unique optimal linear approximation of Dθ . Our analyses demonstrate that this optimal
linear approximation closely aligns with DG, leading to our central finding: diffusion models in
the generalization regime exhibit an inductive bias (which we term as the Gaussian inductive bias)
towards learning the Gaussian structure of training data. This manifests in two main ways: (i) In
the high-noise variance regime, well-trained diffusion models learn Dθ that closely approximate the
linear Gaussian denoisers DG; (ii) As noise variance decreases, although Dθ diverges from DG, DG

remains nearly identical to the optimal linear approximation DL, and images generated by DG retain
structural similarity to those generated by Dθ.

Finally, we emphasize that the Gaussian inductive bias only emerges in the generalization regime. By
contrast, in the memorization regime, Figure 5 shows that DL significantly diverges from DG, and
both DG and DL provide considerably poorer approximations of Dθ compared to the generalization
regime.

4For σ(t) ∈ [0.116, 80.0], the less well recovered singular vectors have singular values close to 0, whereas
those corresponding to high singular values are well recovered.
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Figure 5: Comparison between the diffusion denoisers in memorization and generalization
regimes. Figure(a) demonstrates that in the memorization regime (trained on small datasets of size
1094 and 68), DL significantly diverges from DG, and both provide substantially poorer approxima-
tions ofDθ compared to the generalization regime (trained on larger datasets of size 35000 and 1094).
Figure(b) qualitatively shows that the denoising outputs of Dθ closely match those of DG only in the
generalization regime—a similarity that persists even when the denoisers process pure noise inputs.

3.3 Theoretical Analysis
In this section, we demonstrate that imposing linear constraints on diffusion models while minimizing
the denoising score matching objective (3) leads to the emergence of Gaussian structure.
Theorem 1. Consider a diffusion denoiser parameterized as a single-layer linear network, defined
as D(xt;σ(t)) = Wσ(t)xt + bσ(t), where Wσ(t) ∈ Rd×d is a linear weight matrix and bσ(t) ∈ Rd

is the bias vector. When the data distribution pdata(x) has finite mean µ and bounded positive
semidefinite covariance Σ, the optimal solution to the score matching objective (3) is exactly the
Gaussian denoiser defined in (6):

DG(xt;σ(t)) = UΛ̃σ(t)U
T (xt − µ) + µ,

with Wσ(t) = UΛ̃σ(t)U
T and bσ(t) =

(
I −UΛ̃σ(t)U

T
)
µ.

The detailed proof is postponed to Appendix E. This optimal solution corresponds to the classical
Wiener filter [31], revealing that diffusion models naturally learn the Gaussian denoisers when
constrained to linear architectures. To understand why highly nonlinear diffusion models operate near
this linear regime, it is helpful to model the training data distribution as the multi-delta distribution
p(x) = 1

N

∑N
i=1 δ(x − yi), where {y1,y2, ...,yN} is the finite training images. Notice that this

formulation better reflects practical scenarios where only a finite number of training samples are
available rather than the ground truth data distribution. Importantly, it is proved in [25] that the
optimal denoisers DM in this case is approximately equivalent to DG for high noise variance σ(t)
and query points far from the finite training data. This equivalence explains the strong similarity
between DG and DM in the high-noise variance regime, and consequently, why Dθ and DG exhibit
high similarity in this regime—deep networks converge to the optimal denoisers for finite training
datasets.

However, this equivalence between DG and DM breaks down at lower σ(t) values. The denoising
outputs of DM are convex combinations of training data points, weighted by a softmax function
with temperature σ(t)2. As σ(t)2 decreases, this softmax function increasingly approximates an
argmax function, effectively retrieving the training point yi closest to the input x. Learning this
optimal solution requires not only sufficient model capacity to memorize the entire training dataset
but also, as shown in [32], an exponentially large number of training samples. Due to these learning
challenges, deep networks instead converge to local minimaDθ that, while differing fromDM, exhibit
better generalization property. Our experiments reveal that these learned Dθ share similar function
mappings with DG. The precise mechanism driving diffusion models trained with gradient descent
towards this particular solution remains an open question for future research.

Notably, modeling pdata(x) as a multi-delta distribution reveals a key insight: while unconstrained
optimal denoisers (5) perfectly capture the scores of the empirical distribution, they have no gen-
eralizability. In contrast, Gaussian denoisers, despite having higher score approximation errors
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Figure 6: Diffusion models learn the Gaussian structure when training dataset is large. Models
with a fixed scale (channel size 128) are trained across various dataset sizes. The left and right figures
show the score difference and the generated images respectively. ”NN” denotes the nearest neighbor
in the training dataset to the images generated by the diffusion models.

due to the linear constraint, can generate novel images that closely match those produced by the
actual diffusion models. This suggests that the generative power of diffusion models stems from the
imperfect learning of the score functions of the empirical distribution.

4 Conditions for the Emergence of Gaussian Structures and Generalizability
In Section 3, we demonstrate that diffusion models exhibit an inductive bias towards learning
denoisers that are close to the Gaussian denoisers. In this section, we investigate the conditions under
which this bias manifests. Our findings reveal that this inductive bias is linked to model generalization
and is governed by (i) the model capacity relative to the dataset size and (ii) the training duration. For
additional results, including experiments on CIFAR-10 dataset, see Appendix F.

4.1 Gaussian Structures Emerge when Model Capacity is Relatively Small
First, we find that the Gaussian inductive bias and the generalization of diffusion models are heavily
influenced by the relative size of the model capacity compared to the training dataset. In particular,
we demonstrate that:

Diffusion models learn the Gaussian structures when the model capacity is relatively small
compared to the size of training dataset.

This argument is supported by the following two key observations:

• Increasing dataset size prompts the emergence of Gaussian structure at fixed model scale. We
train diffusion models using the EDM configuration [4] with a fixed channel size of 128 on datasets of
varying sizes [68, 137, 1094, 8750, 35000, 70000] until FID convergence. Figure 6(left) demonstrates
that the score approximation error between diffusion denoisers Dθ and Gaussian denoisers DG

decreases as the training dataset size grows, particularly in the crucial intermediate noise variance
regime (σ(t) ∈ [0.116, 20]). This increasing similarity between Dθ and DG correlates with a
transition in the models’ behavior: from a memorization regime, where generated images are replicas
of training samples, to a generalization regime, where novel images exhibiting Gaussian structure5

are produced, as shown in Figure 6(b). This correlation underscores the critical role of Gaussian
structure in the generalization capabilities of diffusion models.

• Decreasing model capacity promotes the emergence of Gaussian structure at fixed dataset
sizes. Next, we investigate the impact of model scale by training diffusion models with varying
channel sizes [4, 8, 16, 32, 64, 128], corresponding to [64k, 251k, 992k, 4M, 16M, 64M] parameters,
on a fixed training dataset of 1094 images. Figure 7(left) shows that in the intermediate noise
variance regime (σ(t) ∈ [0.116, 20]), the discrepancy between Dθ and DG decreases with decreasing
model scale, indicating that Gaussian structure emerges in low-capacity models. Figure 7(right)
demonstrates that this trend corresponds to a transition from data memorization to the generation of

5We use the term ”exhibiting Gaussian structure” to describe images that resemble those generated by
Gaussian denoisers.
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Figure 7: Diffusion model learns the Gaussian structure when model scale is small. Models with
different scales are trained on a fixed training dataset of 1094 images. The left and right figures show
the score difference and the generated images respectively.

Generalization Memorization

(a) (b)

Figure 8: Diffusion model learns the Gaussian structure in early training epochs. Diffusion
model with same scale (channel size 128) is trained using 1094 images. The left and right figures
shows the score difference and the generated images respectively.

images exhibiting Gaussian structure. Here we note that smaller models lead to larger discrepancy
between Dθ and DG in the high-noise regime. This phenomenon arises because diffusion models
employ a bell-shaped noise sampling distribution that prioritizes intermediate noise levels, resulting
in insufficient training at high noise variances, especially when model capacity is limited. (see more
details in Appendix F.2).

These two experiments collectively suggest that the inductive bias of diffusion models is governed by
the relative capacity of the model compared to the training dataset size.

4.2 Overparameterized Models Learn Gaussian Structures before Memorization
In the overparameterized regime, where model capacity significantly exceeds training dataset size,
diffusion models eventually memorize the training data when trained to convergence. However,
examining the learning progression reveals a key insight:

Diffusion models learn the Gaussian structures with generalizability before they memorize.

Figure 8(a) demonstrates that during early training epochs (0-841), Dθ progressively converge to
DG in the intermediate noise variance regime, indicating that the diffusion model is progressively
learning the Gaussian structure in the initial stages of training. Notably. By epoch 841, the diffusion
model generates images strongly resembling those produced by the Gaussian model, as shown in
Figure 8(b). However, continued training beyond this point increases the difference between Dθ and
DG as the model transitions toward memorization. This observation suggests that early stopping
could be an effective strategy for promoting generalization in overparameterized diffusion models.

5 Connection between Strong Generalizability and Gaussian Structure
A recent study [20] reveals an intriguing ”strong generalization” phenomenon: diffusion models
trained on large, non-overlapping image datasets generate nearly identical images from the same initial
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Figure 9: Diffusion models in the strong generalization regime generate similar images as
the Gaussian models. Figure(a) Top: Generated images of Gausisan models; Bottom: Generated
images of diffusion models, with model scale 128; S1 and S2 each has 35000 non-overlapping
images. Figure(b) Top: Generated images of Gausisan model; Bottom: Generated images of diffusion
models in the memorization regime, with model scale 128; S1 and S2 each has 1094 non-overlapping
images. Figure(c): Early stopping and reducing model capacity help transition diffusion models from
memorization to generalization.

noise. While this phenomenon might be attributed to deep networks’ inductive bias towards learning
the ”true” continuous distribution of photographic images, we propose an alternative explanation:
rather than learning the complete distribution, deep networks may capture certain low-dimensional
common structural features shared across these datasets and these features can be partially explained
by the Gaussian structure.

To validate this hypothesis, we examine two diffusion models with channel size 128, trained on
non-overlapping datasets S1 and S2 (35,000 images each). Figure 9(a) shows that images generated
by these models (bottom) closely match those from their corresponding Gaussian models (top),
highlighting the Gaussian structure’s role in strong generalization.

Comparing Figure 9(a)(top) and (b)(top), we observe that DG generates nearly identical images
whether the Gaussian structure is calculated on a small dataset (1,094 images) or a much larger one
(70,000 images). This similarity emerges because datasets of the same class can exhibit similar
Gaussian structure (empirical covariance) with relatively few samples—just hundreds for FFHQ.
Given the Gaussian structure’s critical role in generalization, small datasets may already contain much
of the information for generalization, contrasting previous assertions in [20] that strong generalization
requires training on datasets of substantial size (more than 105 images). However, smaller datasets
increase memorization risk, as shown in Figure 9(b). To mitigate this, as discussed in Section 4, we
can either reduce model capacity or implement early stopping (Figure 9(c)). Indeed, models trained
on 1094 and 35000 images generate remarkably similar images, though the smaller dataset yields
lower perceptual quality. This similarity further demonstrates that small datasets contain substantial
generalization-relevant information closely tied to Gaussian structure. Further discussion on the
connections and differences between our work and [20] are detailed in Appendix H.

6 Discussion
In this study, we empirically demonstrate that diffusion models in the generalization regime have
the inductive bias towards learning diffusion denoisers that are close to the the corresponding linear
Gaussian denoisers—the optimal solution under Gaussian data assumptions. While real-world image
distributions are significantly different from Gaussian, our findings imply that diffusion models have
the bias towards learning and utilizing low-dimensional data structures, such as the data covariance,
for image generation. However, the underlying mechanism by which the nonlinear diffusion models,
trained with gradient descent, exhibit such linearity remains unclear and warrants further investigation.

Moreover, the Gaussian structure only partially explains diffusion models’ generalizability. While
models exhibit increasing linearity as they transition from memorization to generalization, a substan-
tial gap persists between the linear Gaussian denoisers and the actual nonlinear diffusion models,
especially in the intermediate noise regime. As a result, images generated by Gaussian denoisers fall
short in perceptual quality compared to those generated by the actual diffusion models especially
for complex dataset such as CIFAR-10. This disparity highlights the critical role of nonlinearity in
high-quality image generation, a topic we aim to investigate further in future research.
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A Measuring the Linearity of Diffusion Denoisers

In this section, we provide a detailed discussion on how to measure the linearity of diffusion model.
For a diffusion denoiser, Dθ(x;σ(t)), to be considered approximately linear, it must fulfill the
following conditions:

• Additivity: The function should satisfy Dθ(x1 + x2;σ(t)) ≈ Dθ(x1;σ(t)) +Dθ(x2;σ(t)).
• Homogeneity: It should also adhere to Dθ(αx;σ(t)) ≈ αDθ(x;σ(t)).

To jointly assess these properties, we propose to measure the difference betweenDθ(αx1+βx2;σ(t))
and αDθ(x1;σ(t)) + βD(x2;σ(t)). While the linearity score is introduced as the cosine similarity
between Dθ(αx1 + βx2;σ(t)) and αDθ(x1;σ(t)) + βD(x2;σ(t)) in the main text:

LS(t) = Ex1,x2∼p(x;σ(t))

[∣∣∣∣〈 Dθ(αx1 + βx2;σ(t))

∥Dθ(αx1 + βx2;σ(t))∥2
,

αDθ(x1;σ(t)) + βDθ(x1;σ(t))

∥αDθ(x1;σ(t)) + βDθ(x1;σ(t))∥2

〉∣∣∣∣] ,
(11)

it can also be defined with the normalized mean square difference (NMSE):

Ex1,x2∼p(x;σ(t))
||Dθ(αx1 + βx2;σ(t))− (αDθ(x1;σ(t)) + βDθ(x1;σ(t)))||2

||Dθ(αx1 + βx2;σ(t))||2
, (12)

where the expectation is approximated with its empirical mean over 100 randomly sampled pairs of
(x1,x2). In the next section, we will demonstrate the linearity score with both metrics.

Since the diffusion denoisers are trained solely on inputs x ∼ p(x;σ(t)), their behaviors on out-
of-distribution inputs can be quite irregular. To produce a denoised output with meaningful image
structure, it is critical that the noise component in the input x matches the correct variance σ(t)2.
Therefore, our analysis of linearity is restricted to in-distribution inputs x1 and x2, which are
randomly sampled images with additive Gaussian noises calibrated to noise variance σ(t)2. We
also need to ensure that the values of α and β are chosen such that α2 + β2 = 1, maintaining the
correct variance for the noise term in the combined input αx1 + βx2. We present the linearity
scores, calculated with varying values of α and β, for diffusion models trained on diverse datasets in
Figure 10. These models are trained with the EDM-VE configuration proposed in [4], which ensures
the resulting models are in the generalization regime. Typically, setting α = β = 1/

√
2 yields the

lowest linearity score; however, even in this scenario, the cosine similarity remains impressively high,
exceeding 0.96. This high value underscores the presence of significant linearity within diffusion
denoisers.

We would like to emphasize that for linearity to manifest in diffusion denoisers, it is crucial that
they are well-trained, achieving a low denoising score matching loss as indicated in (3). As shown
in Figure 11, the linearity notably reduces in a less well trained diffusion model (Baseline-VE)
comapred to its well-trained counterpart (EDM-VE). Although both models utilize the same ’VE’
network architecture Fθ(x;σ(t)) [2], they differ in how the diffusion denoisers are parameterized:

Dθ(x;σ(t)) := cskip(σ(t))x+ cout(Fθ(x;σ(t))), (13)
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where cskip is the skip connection and cout modulate the scale of the network output. With carefully
tailored cskip and cout, the EDM-VE configuration achieves a lower score matching loss compared to
Baseline-VE, resulting in samples with higher quality as illustrated in Figure 11(right).

B Emerging Linearity of Diffusion Models

In this section we provide a detailed discussion on the observation that diffusion models exhibit
increasing linearity as they transition from memorization to generalization, which is briefly described
in Section 3.1.

B.1 Generalization and Memorization Regimes of Diffusion Models

As shown in Figure 12, as the training dataset size increases, diffusion models transition from the
memorization regime—where they can only replicate its training images—to the generalization
regime, where the they produce high-quality, novel images. To measure the generalization capabilities
of diffusion models, it is crucial to assess their ability to generate images that are not mere replications
of the training dataset. This can be quantitatively evaluated by generating a large set of images from
the diffusion model and measuring the average difference between these generated images and
their nearest neighbors in the training set. Specifically, let {x1,x2, ...,xk} represent k randomly
sampled images from the diffusion models (we choose k = 100 in our experiments), and let Y :=
{y1,y2, ...,yN} denote the training dataset consisting of N images. We define the generalization
score as follows:

GL Score :=
1

k

k∑
i=1

||xi − NNY (xi)||2
||xi||2

(14)

where NNY (xi) represents the nearest neighbor of the sample xk in the training dataset Y , determined
by the Euclidean distance on a per-pixel basis. Empirically, a GL score exceeding 0.6 indicates that
the diffusion models are effectively generalizing beyond the training dataset.

B.2 Diffusion Models Exhibit Linearity in the Generalization Regime

As demonstrated in Figure 13(a) and (d), diffusion models transition from the memorization regime
to the generalization regime as the training dataset size increases. Concurrently, as depicted in Fig-
ure 13(b), (c), (e) and (f), the corresponding diffusion denoisers exhibit increasingly linearity. This
phenomenon persists across diverse datasets datasets including FFHQ [26], AFHQ [28] and LSUN-
Churches [29], as well as various model architectures including EDM-VE [3], EDM-VP [2] and
EDM-ADM [34]. This emerging linearity implies that the hidden linear structure plays an important
role in the generalizability of diffusion model.

C Linear Distillation

As discussed in Section 3.1, we propose to study the hidden linearity observed in diffusion denosiers
with linear distillation. Specifically, for a given diffusion denoiser Dθ(x;σ(t)), we aim to approxi-

Figure 10: Linearity scores for varying α and β. The diffusion models are trained with the edm-ve
configuration [4], which ensures the models are in the generalization regime.
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Generation Trajectories  (                     )  for Various Models ((*!; ,(-))

Figure 11: Linearity scores and sampling trajectory. The left and right figures demonstrate the
linearity scores and the sampling trajectories D(xt;σ(t) of actual diffusion model (EDM-VE and
Baseline-VE), Multi Delta model, linear model, and Gaussian model respectively.

70000 images

Generated NN Generated NN Generated NN

Generated NN Generated NN Generated NN

4375 images 1094 images

50000 images 12500 images 782 images
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CIFAR-10
(a) (b) (c)
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Figure 12: Memorization and generalization regimes of diffusion models. Figures(a) to (c) show
the images generated by diffusion models trained on 70000, 4375, 1094 FFHQ images and their
corresponding nearest neighbors in the training dataset respectively. Figures(d) to (f) show the
images generated by diffusion models trained on 50000, 12500, 782 CIFAR-10 images and their
corresponding nearest neighbors in the training dataset respectively. Notice that when the training
dataset size is small, diffusion model can only generate images in the training dataset.

mate it with a linear function (with a bias term for more expressibility):

DL(x;σ(t)) := Wσ(t)x+ bσ(t) ≈ Dθ(x;σ(t)),

for x ∼ p(x;σ(t)). Notice that for three dimensional images with size (c, h, w), x ∈ Rd represents
their vectorized version, where d = c× w × h. Let

L(W , b) =
1

n

n∑
i=1

∥∥Wσ(t){k − 1}(xi + ϵi) + bσ(t){k − 1} − Dθ(xi + ϵi;σ(t))
∥∥2
2

We train 10 independent linear models for each of the selected noise variance level σ(t) with the
procedure summarized in Algorithm 1:

In practice, the gradients on Wσ(t) and bσ(t) are obtained through automatic differentiation. Addi-
tionally, we employ the Adam optimizer [35] for updates. Additional linear distillation results are
provided in Figure 14.
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Figure 13: Diffusion model exhibit increasing linearity as they transition from memorization
to generalization. Figure(a) and (d) demonstrate that for both FFHQ and CIFAR-10 datasets, the
generalization score increases with the training dataset size, indicating progressive model generaliza-
tion. Figure(b), (c), (e), and (f) show that this transition towards generalization is accompanied by
increasing denoiser linearity. Specifically, Figure(b) and (e) display linearity scores calculated using
cosine similarity (11), while Figure(c) and (f) show scores computed using NMSE (12). Both metrics
reveal consistent trends.

D Diffusion Models in Low-noise Regime are Approximately Linear Mapping

It should be noted that the low score difference between DG and Dθ within the low-noise regime
(σ(t) ∈ [0.002, 0.116]) does not imply the diffusion denoisers capture the Gaussian structure, instead,
the similarity arises since both of them are converging to the identity mapping as σ(t) decreases.
As shown in Figure 15, within this regime, the differences between the noisy input x and their
corresponding denoised outputs Dθ(x;σ(t)) quickly approach 0. This indicates that the learned
denoisers Dθ progressively converge to the identity function. Additionally, from (6), it is evident that
the difference between the Gaussian weights and the identity matrix diminishes as σ(t) decreases,
which explains why DG can well approximate Dθ in the low noise variance regime.

We hypothesize that Dθ learns the identity function because of the following two reasons:

(i) within the low-noise regime, since the added noise is negligible compared to the clean image,
the identity function already achieves a small denoising error, thus serving as a shortcut which is
exploited by the deep network.

(ii) As discussed in Appendix A, diffusion models are typically parameterized as follows:

Dθ(x;σ(t)) := cskip(σ(t))x+ cout(Fθ(x;σ(t))),

where Fθ represents the deep network, and cskip(σ(t)) and cout(σ(t)) are adaptive parameters for the
skip connection and output scaling, respectively, which adjust according to the noise variance levels.
For canonical works on diffusion models [2–4, 34], as σ(t) approaches zero, cskip and cout converge to
1 and 0 respectively. Consequently, at low variance levels, the function forms of diffusion denoisers
are approximatly identity mapping: Dθ(x;σ(t)) ≈ x.

This convergence to identity mapping has several implications. First, the weights Wσ(t) of the
distilled linear models DL approach the identity matrix at low variances, leading to ambiguous
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Algorithm 1 Linear Distillation

Require:
(i) the targeted diffusion denoiser Dθ(·;σ(t)),
(ii) weights Wσ(t) and biases bσ(t), both initialized to zero,
(iii) gradient step size η,
(iv) number of training iterations K,
(v) training batch size n,
(vi) image dataset S.
for k = 1 to K do

Randomly sample a batch of training images {x1,x2, . . . ,xn} from S.
Randomly sample a batch of noises {ϵ1, ϵ2, . . . , ϵn} from N (0, σ(t)I).
Update Wσ(t) and bσ(t) with gradient descent:

Wσ(t){k} = Wσ(t){k − 1} − η∇Wσ(t){k−1}L(W , b)

bσ(t){k} = bσ(t){k − 1} − η∇bσ(t){k−1}L(W , b)
end for
Return Wσ(t){K}, bσ(t){K}
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Figure 14: Additional linear distillation results. Figure(a) demonstrates the gradual symmetrization
of linear weights during the distillation process. Figure(b) shows that at convergence, the singular
values of the linear weights closely match those of the Gaussian weights. Figure(c) and Figure(d)
display the leading singular vectors of both linear and Gaussian weights at σ(t) = 4 for FFHQ and
LSUN-Churches datasets, respectively, revealing a strong correlation.

singular vectors. This explains the poor recovery of singular vectors for σ(t) ∈ [0.002, 0.116] shown
in Figure 4. Second, the presence of the bias term in (8) makes it challenging for our linear model to
learn the identity function, resulting in large errors at σ(t) = 0.002 as shown in Figure 4(a).

Finally, from (4), we observe that when Dθ acts as an identity mapping, xi+1 remains unchanged
from xi. This implies that sampling steps in low-variance regions minimally affect the generated
image content, as confirmed in Figure 2, where image content shows negligible variation during these
steps.
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Normalized MSE between 𝑫𝜽 𝒙; 𝜎 𝑡   and  𝒙  Cosine Similarity between 𝑫𝜽 𝒙; 𝜎 𝑡   and  𝒙  

(b)(a) (c) (d)

Figure 15: Difference between Dθ(x;σ(t)) and x for various noise variance levels. Figures(a)
and (c) show the differences between Dθ(x;σ(t)) and x across σ(t) ∈ [0.002, 80], measured by
normalized MSE and cosine similarity, respectively. Figures(b) and (d) provide zoomed-in views
of (a) and (c). The diffusion models were trained on the FFHQ dataset. Notice that the difference
between Dθ(x;σ(t)) and x quickly converges to near zero in the low noise variance regime. The
trend is consistent for various model architectures.

E Theoretical Analysis

E.1 Proof of Theorem 1

In this section, we give the proof of Theorem 1 (Section 3.3). Our theorem is based on the following
two assumptions:
Assumption 1. Suppose that the diffusion denoisers are parameterized as single-layer linear net-
works, defined as D(x;σ(t)) = Wσ(t)x + bσ(t), where Wσ(t) ∈ Rd×d is the linear weight and
bσ(t) ∈ Rd is the bias.

Assumption 2. The data distribution pdata(x) has finite mean µ and bounded positive semidefinite
covariance Σ

Theorem 1. Under Assumption 1 and Assumption 2, the optimal solution to the denoising score
matching objective (3) is exactly the Gaussian denoiser: DG(x, σ(t)) = µ+UΛ̃σ(t)U

T (x− µ),
where Σ = UΛUT represents the SVD of the covariance matrix, with singular values λ{k=1,...,d}

and Λ̃σ(t) = diag[ λk

λk+σ(t)2 ]. Furthermore, this optimal solution can be obtained via gradient descent
with a proper learning rate.

To prove Theorem 1, we first show that the Gaussian denoiser is the optimal solution to the denoising
score matching objective under the linear network constraint. Then we will show that such optimal
solution can be obtained via gradient descent with a proper learning rate.

The Global Optimal Solution. Under the constraint that the diffusion denoiser is restricted to a
single-layer linear network with bias:

D(x;σ(t)) = Wσ(t)x+ bσ(t), (15)

We get the following optimizaiton problem from Equation (3):

W ⋆, b⋆ = arg min
W ,b

L(W , b;σ(t)) := Ex∼pdataEϵ∼N (0,σ(t)2I)||W (x+ ϵ) + b− x||22, (16)

where we omit the footnote σ(t) in Wσ(t) and bσ(t) for simplicity. Since expectation preserves
convexity, the optimization problem Equation (16) is a convex optimization problem. To find the
global optimum, we first eliminate b by requiring the partial derivative ∇bL(W , b;σ(t)) to be 0.
Since

∇bL(W , b;σ(t)) = 2 ∗ Ex∼pdataEϵ∼N (0,σ(t)2I)((W − I)x+Wϵ+ b) (17)

= 2 ∗ Ex∼pdata((W − I)x+ b) (18)
= 2 ∗ ((W − I)µ+ b), (19)

we have

b⋆ = (I −W ∗)µ. (20)
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Utilizing the expression for b, we get the following equivalent form of the optimization problem:

W ⋆ = arg min
W

L(W ;σ(t)) := 2 ∗ Ex∼pdataEϵ∼N (0,σ(t)2I)||W (x− µ+ ϵ)− (x− µ)||22. (21)

The derivative ∇WL(W ;σ(t)) is:

∇WL(W ;σ(t)) = 2 ∗ ExEϵ(W (x− µ+ ϵ)(x− µ+ ϵ)T − (x− µ)(x− µ+ ϵ)T ) (22)

= 2 ∗ Ex((W − I)(x− µ)(x− µ)T + σ(t)2W ) (23)

= 2 ∗W (Σ+ σ(t)2I)− 2 ∗Σ. (24)

Suppose Σ = UΛUT is the SVD of the empirical covariance matrix, with singular values
λ{k=1,...,n}, by setting∇WL(W ;σ(t)) to 0, we get the optimal solution:

W ⋆ = UΛUTU(Λ+ σ(t)2I)−1UT (25)

= UΛ̃σ(t)U
T , (26)

where Λ̃σ(t)[i, i] =
λi

λi+σ(t)2 and λi = Λ[i, i]. Substitute W ⋆ back to Equation (20), we have:

b⋆ = (I −UΛ̃σ(t)U
T )µ. (27)

Notice that the expression for W ⋆ and b⋆ is exactly the Gaussian denoiser. Next, we will show this
optimal solution can be achieved with gradient descent.

Gradient Descent Recovers the Optimal Solution. Consider minimizing the population loss:

L(W , b;σ(t)) := Ex∼pdataEϵ∼N (0,σ(t)2I)||W (x+ ϵ) + b− x||22. (28)

Define W̃ := [W b], x̃ :=

[
x
1

]
and ϵ̃ =

[
ϵ
0

]
, then we can rewrite Equation (28) as:

L(W̃ ;σ(t)) := Ex∼pdataEϵ∼N (0,σ(t)2I)||W̃ (x̃+ ϵ̃)− x||22. (29)

We can compute the gradient in terms of W̃ as:

∇L(W̃ ) = 2 ∗ Ex,ϵ(W̃ (x̃+ ϵ̃)(x̃+ ϵ̃)T − x(x̃+ ϵ̃)T ) (30)

= 2 ∗ Ex,ϵ(W̃ (x̃x̃T + x̃ϵ̃T + ϵ̃x̃T + ϵ̃ϵ̃T )− xx̃T − xϵ̃T ). (31)

Since Eϵ(ϵ̃) = 0 and Eϵ(ϵ̃ϵ̃
T ) =

[
σ(t)2Id×d 0d×1

01×d 0

]
, we have:

∇L(W̃ ) = 2 ∗ Ex(W̃ (x̃x̃T +

[
σ(t)2Id×d 0d×1

01×d 0

]
)− xx̃T ). (32)

Since E(x̃x̃T ) =

[
E(xxT ) E(x)
E(xT ) 1

]
, we have:

∇L(W̃ ) = 2W̃

[
Ex(xx

T ) + σ(t)2I µ
µT 1

]
− 2

[
Ex(x

Tx) µ
]
. (33)

With learning rate η, we can write the update rule as:

W̃ (t+ 1) = W̃ (t)(1− 2η

[
Ex(xx

T ) + σ(t)2I µ
µT 1

]
) + 2η

[
Ex(x

Tx) µ
]

(34)

= W̃ (t)(1− 2ηA) + 2η
[
Ex(x

Tx) µ
]
, (35)

where we define A := I − 2η

[
Ex(xx

T ) + σ(t)2I µ
µT 1

]
for simplicity. By recursively expanding

the expression for W̃ , we have:

W̃ (t+ 1) = W̃ (0)At+1 + 2η
[
Ex(x

Tx) µ
] t∑
i=0

Ai. (36)
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Notice that there exists a η, such that every eigen value of A is smaller than 1 and greater than 0.
In this case, At+1 → 0 as t→∞. Similarly, by the property of matrix geometric series, we have∑t

i=0 A
i → (I −A)−1. Therefore we have:

W̃ →
[
Ex(x

Tx) µ
] [Ex(xx

T ) + σ(t)2I µ
uT 1

]−1

(37)

=
[
Ex(x

Tx) µ
] [B µ

µT 1

]−1

, (38)

where we define B := Ex(xx
T ) + σ(t)2I for simplicity. By the Sherman–Morrison–Woodbury

formula, we have:[
B µ
µT 1

]−1

=

[
(B − µµT )−1 −(B − µµT )−1µ

−(1− µTB−1µ)−1µTB−1 (1− µTB−1µ)−1

]
. (39)

Therefore, we have:

W̃ →
[
Ex[xx

T ](B − µµT )−1 − µµTB−1

1−µTB−1µ
−Ex[xx

T ](B − µµT )−1µ+ µ
1−µTB−1µ

]
,

(40)

from which we have

W → Ex[xx
T ](B − µµT )−1 − µµTB−1

1− µTB−1µ
(41)

b→ −Ex[xx
T ](B − µµT )−1µ+

µ

1− µTB−1µ
(42)

Since Ex[xx
T ] = Ex[(x− µ)((x− µ)T ] + µµT , we have:

W = Σ(Σ+ σ(t)2I)−1 + µµT (B − µµT )−1 − µµTB−1

1− µTB−1µ
. (43)

Applying Sherman-Morrison Formula, we have:

(B − µµT )−1 = B−1 +
B−1µµTB−1

1− µTB−1µ
, (44)

therefore

µµT (B − µµT )−1 − µµTB−1

1− µTB−1µ
=

µµTB−1µµTB−1

1− µTB−1µ
− µµTB−1µTB−1µ

1− µTB−1µ
(45)

=
µTB−1µ

1− µTB−1µ
(µµTB−1 − µµTB−1) (46)

= 0 (47)

, which implies

W → Σ(Σ+ σ(t)2I)−1 (48)

= UΛ̃σ(t)U
T . (49)

Similarly, we have:

b→ (I −UΛ̃σ(t)U
T )µ. (50)

Therefore, gradient descent with a properly chosen learning rate η recovers the Gaussian Denoisers
when time goes to infinity.

E.2 Two Extreme Cases

Our empirical results indicate that the best linear approximation of Dθ is approximately equivalent to
DG. According to the orthogonality principle [36], this requires Dθ to satisfy:

Ex∼pdata(x)Eϵ∼N (0;σ(t)2I){(Dθ(x+ ϵ;σ(t))− (x− µ))(x+ ϵ− µ)T } ≈ 0. (51)

Notice that (51) does not hold for general denoisers. Two extreme cases for this to hold are:
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• Case 1: Dθ(x+ ϵ;σ(t)) ≈ x for ∀x ∼ pdata, ϵ ∼ N (0, σ(t)2I).
• Case 2: Dθ(x+ ϵ;σ(t)) ≈ DG(x+ ϵ;σ(t)) for ∀x ∼ pdata, ϵ ∼ N (0, σ(t)2I).

Case 1 requiresDθ(x+ϵ;σ(t)) to be the oracle denoiser that perfectly recover the ground truth clean
image, which never happens in practice except when σ(t) becomes extremely small. Instead, our
empirical results suggest diffusion models in the generalization regime bias towards Case 2, where
deep networks learn Dθ that approximate (not equal) to DG. This is evidenced in Figure 5(b), where
diffusion models trained on larger datasets (35000 and 7000 images) produce denoising outputs
similar to DG. Notice that this similarity holds even when the denoisers take pure Gaussian noise
as input. The exact mechanism driving diffusion models trained with gradient descent towards this
particular solution remains an open question and we leave it as future work.

F More Discussion on Section 4

While in Section 4 we mainly focus on the discussion of the behavior of diffusion denoisers in the
intermediate-noise regime, in this section we study the denoiser dynamics in both low and high-noise
regime. We also provide additional experiment results on CIFAR-10 dataset.

F.1 Behaviors in Low-noise Regime

We visualize the score differences between DG and Dθ in low-noise regime in Figure 16. The
left figure demonstrates that when the dataset size becomes smaller than a certain threshold, the
score difference at σ = 0 remains persistently non-zero. Moreover, the right figure shows that this
difference depends solely on dataset size rather than model capacity. This phenomenon arises from
two key factors: (i) Dθ converges to the identity mapping at low noise levels, independent of training
dataset size and model capacity, and (ii) DG approximates the identity mapping at low noise levels
only when the empirical covariance matrix is full-rank, as can be seen from (6).

Since the rank of the covariance matrix is upper-bounded by the training dataset size, DG differs
from the identity mapping when the dataset size is smaller than the data dimension. This creates a
persistent gap between DG and Dθ, with smaller datasets leading to lower rank and consequently
larger score differences. These observations align with our discussion in Appendix D.

F.2 Behaviors in High-noise Regime

As shown in Figure 7(a), while a decreased model scale pushes Dθ in the intermediate noise region
towards DG, their differences enlarges in the high noise variance regime. This phenomenon arises be-
cause diffusion models employ a bell-shaped noise sampling distribution that prioritizes intermediate
noise levels, resulting in insufficient training at high noise variances. A shown in Figure 17, for high
σ(t), Dθ converge to DG when trained with sufficient model capacity (Figure 17(b)) and training
time (Figure 17(c)). This behavior is consistent irrespective of the training dataset sizes (Figure 17(a)).
Convergence in the high-noise variance regime is less crucial in practice, since diffusion steps in

Figure 16: Score differences for low-noise variances. The left and right figures are the zoomed-in
views of Figure 6(a) and Figure 7(a) respectively. Notice that when the dataset size is smaller than
the dimension of the image, the score differences are always non-zero at σ = 0.
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Denoising Outputs  for 𝜎 𝑡 = 60 (PSNR = -29.5 dB)
Effect of Model Scale (1094 training images)

Effect of Training Epochs (1094 training images)

Effect of Dataset Size
𝒚 = 𝒙 + 𝜎 𝑡 ∗ 𝝐 𝐷!(𝒚; 𝜎(𝑡)) (68) 𝐷!(𝒚; 𝜎(𝑡)) (1094) 𝐷!(𝒚; 𝜎(𝑡)) (35000) 𝐷!(𝒚; 𝜎(𝑡)) (70000)

𝐷𝜽(𝒚; 𝜎(𝑡)) (68) 𝐷𝜽(𝒚; 𝜎(𝑡)) (1094) 𝐷𝜽(𝒚; 𝜎(𝑡)) (35000) 𝐷𝜽(𝒚; 𝜎(𝑡)) (70000)

𝐷#(𝒚; 𝜎(𝑡)) (68) 𝐷#(𝒚; 𝜎(𝑡)) (1094) 𝐷#(𝒚; 𝜎(𝑡)) (35000) 𝐷#(𝒚; 𝜎(𝑡)) (70000)

𝐷𝜽(𝒚; 𝜎(𝑡)) (4) 𝐷𝜽(𝒚; 𝜎(𝑡)) (8) 𝐷𝜽(𝒚; 𝜎(𝑡)) (64) 𝐷𝜽(𝒚; 𝜎(𝑡)) (128)

𝐷𝜽(𝒚; 𝜎(𝑡)) (187) 𝐷𝜽(𝒚; 𝜎(𝑡)) (841) 𝐷𝜽(𝒚; 𝜎(𝑡)) (9173) 𝐷𝜽(𝒚; 𝜎(𝑡)) (64210)

(a)

(b)

(c)

Figure 17: Dθ converge to DG with no overfitting for high noise variances. Figure(a) shows the
denoising outputs ofDM,DG and well-trained (trained with sufficient model capacity till convergence)
Dθ. Notice that at high noise variance, the three different denoisers are approximately equivalent
despite the training dataset size. Figure(b) shows the denoising outputs of Dθ with different model
scales trained until convergence. Notice that Dθ converges to DG only when the model capacity is
large enough. Figure(c) shows the denoising outputs of Dθ with sufficient large model capacity at
different training epochs. Notice that Dθ converges to DG only when the training duration is long
enough.
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(a)

Figure 18: Denoising outputs of DG and Dθ at σ = 4. Figure(a) shows the clean image x (from
test set), random noise ϵ and the resulting noisy image y. Figure(b) compares denoising outputs of
Dθ across different channel sizes [4, 8, 64, 128] with those of DG. Figure(c) shows the evolution of
Dθ outputs at training epochs [187, 841, 9173, 64210] alongside DG outputs. All models are trained
on a fixed dataset of 1,094 images.

this regime contribute substantially less than those in the intermediate-noise variance regime—a
phenomenon we analyze further in Appendix G.5.

F.3 Similarity between Diffusion Denoiers and Gaussian Denoisers

In Section 4, we demonstrate that the Gaussian inductive bias is most prominent in models with
limited capacity and during early training stages, a finding qualitatively validated in Figure 18.
Specifically, Figure 18(b) shows that larger models (channel sizes 128 and 64) tend to memorize,
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Memorization Generalization

(a) (b)

Figure 19: Large dataset size prompts the Gaussian structure. Models with the same scale
(channel size 64) are trained on CIFAR-10 datasets with varying sizes. Figure(a) shows that larger
dataset size leads to increased similarity between DG and Dθ, resulting in structurally similar
generated images as shown in Figure(b).

Generalization Memorization

(a) (b)

Figure 20: Smaller model scale prompts the Gaussian structure. Models with varying scales are
trained on a fixed CIFAR-10 datasets with 782 images. Figure(a) shows that smaller model scale
leads to increased similarity between DG and Dθ in the intermediate noise regime (σ ∈ [0.1, 10]),
resulting in structurally similar generated images as shown in figure(b). However, smaller scale
leads to larger score differences in high-noise regime due to insufficient training from limited model
capacity.

directly retrieving training data as denoising outputs. In contrast, smaller models (channel sizes 8 and
4) exhibit behavior similar to DG, producing comparable denoising outputs. Similarly, Figure 18(c)
reveals that during early training epochs (0-841), Dθ outputs progressively align with those of DG.
However, extended training beyond this point leads to memorization.

F.4 CIFAR-10 Results

The effects of model capacity and training duration on the Gaussian inductive bias, as demonstrated in
Figures 19 to 21, extend to the CIFAR-10 dataset. These results confirm our findings from Section 4:
the Gaussian inductive bias is most prominent when model scale and training duration are limited.

G Additional Experiment Results

While in the main text we mainly demonstrate our findings using EDM-VE diffusion models trained
on FFHQ, in this section we show our results are robust and extend to various model architectures
and datasets. Furthermore, we demonstrate that the Gaussian inductive bias is not unique to diffusion
models, but it is a fundamental property of denoising autoencoders [37]. Lastly, we verify that our
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Generalization Memorization

(a) (b)

Figure 21: Diffusion model learns the Gaussian structure in early training epochs. Models with
the same scale (channel size 128) are trained on a fixed CIFAR-10 datasets with 782 images. Figure(a)
shows that the similarity between DG and Dθ progressively increases during early training epochs
(0-921) in the intermediate noise regime (σ ∈ [0.1, 10]), resulting in structurally similar generated
images as shown in figure(b). However, continue training beyond this point results in diverged DG

and Dθ, resulting in memorization.

(a) (b) (c)
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Figure 22: Linear model shares similar function mapping with Gaussian model. The figures
demonstrate the evolution of normalized MSE between the linear weights DL and the Gaussian
weights DG w.r.t. linear distillation training epochs. Figures(a), (b) and (c) correspond to diffusion
models trained on FFHQ, with EDM-VE, EDM-ADM and EDM-VP network architectures specified
in [4] respectively.

conclusions remain consistent when using alternative metrics such as NMSE instead of the RMSE
used in the main text.

G.1 Gaussian Structure Emerges across Various Network Architectures

We first demonstrate that diffusion models capture the Gaussian structure of the training dataset,
irrespective of the deep network architectures used. As shown in Figure 22 (a), (b), and (c), although
the actual diffusion models, Dθ , are parameterized with different architectures, for all noise variances
except σ(t) ∈ {0.002, 80.0}, their corresponding linear models, DL, consistently converge towards
the common Gaussian models, DG, determined by the training dataset. Qualitatively, as depicted
in Figure 23, despite variations in network architectures, diffusion models generate nearly identical
images, matching those generated from the Gaussian models.

G.2 Gaussian Inductive Bias as a General Property of DAEs

In previous sections, we explored the properties of diffusion models by interpreting them as collections
of deep denoisers, which are equivalent to the denoising autoencoders (DAEs) [37] trained on various
noise variances by minimizing the denoising score matching objective (3). Although diffusion models
and DAEs are equivalent in the sense that both of them are trying to learn the score function of the
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Figure 23: Images sampled from various model.The figure shows the sampled images from
diffusion models with different network architectures and those from their corresponding Gaussian
models.

noise-mollified data distribution [38], the training objective of diffusion models is more complex [4]:

min
θ

Ex,ϵ,σ[λ(σ)cout(σ)
2||Fθ(x+ ϵ, σ)− 1

cout(σ)
(x− cskip(σ)(x+ ϵ))︸ ︷︷ ︸

linear combination of x and ϵ

||22], (52)

where x ∼ pdata, ϵ ∼ N (0, σ(t)2I) and σ ∼ ptrain. Notice that the training objective of diffusion
models has a few distinct characteristics:

• Diffusion models use a single deep network Fθ to perform denoising score matching across
all noise variances while DAEs are typically trained separately for each noise level.

• Diffusion models are not trained uniformly across all noise variances. Instead, during
training the probability of sampling a given noise level σ is controlled by a predefined
distribution ptrain and the loss is weighted by λ(σ).

• Diffusion models often utilize special parameterizations (13). Therefore, the deep network
Fθ is trained to predict a linear combination of the clean image x and the noise ϵ, whereas
DAEs typically predict the clean image directly.

Given these differences, we investigate whether the Gaussian inductive bias is unique to diffusion
models or a general characteristic of DAEs. To this end, we train separate DAEs (deep denoisers)
using the vanilla denoising score matching objective (3) on each of the 10 discrete noise variances
specified by the EDM schedule [80.0, 42.415, 21.108, 9.723, 4.06, 1.501, 0.469, 0.116, 0.020, 0.002],
and compare the score differences between them and the corresponding Gaussian denoisers DG. We
use no special parameterization so that Dθ = Fθ; that is, the deep network directly predicts the clean
image. Furthermore, the DAEs for each noise variance are trained till convergence, ensuring all noise
levels are trained sufficiently. We consider the following architectural choices:

• DAE-NCSN: In this setting, the network Fθ uses the NCSN architecture [3], the same as
that used in the EDM-VE diffusion model.

• DAE-Skip: In this setting, Fθ is a U-Net [39] consisting of convolutional layers, batch
normalization [40], leaky ReLU activation [41] and convolutional skip connections. We
refer to this network as ”Skip-Net”. Compared to NCSN, which adapts the state of the art
architecture designs, Skip-Net is deliberately constructed to be as simple as possible to test
how architectural complexity affects the Gaussian inductive bias.

• DAE-DiT: In this setting, Fθ is a Diffusion Transformer (DiT) introduced in [42]. Vision
Transformers are known to lack inductive biases such as locality and translation equivariance
that are inherent to convolutional models [43]. Here we are interested in if this affects the
Gaussian inductive bias.
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Generation Trajectories  (                    )  for Various Models )(+#; -(.))

(a) (b)

Figure 24: Comparison between DAEs and diffusion models. Figure(a) compares the score field
approximation error between Gaussian models and both (i) diffusion models (EDM vs. Gaussian)
and (ii) DAEs with varying architectures. Figure(b) illustrates the generation trajectories of different
models initialized from the same noise input.

• DAE-Linear: In this setting we set Fθ to be a linear model with a bias term as in (8).
According to Theorem 1, these models should converge to Gaussian denoisers.

The quantitative results are shown in Figure 24(a). First, the DAE-linear models well approximateDG

across all 10 discrete steps (RMSE smaller than 0.04), consistent with Theorem 1. Second, despite the
differences between diffusion models (EDM) and DAEs, they achieve similar score approximation
errors relative to DG for most noise variances, meaning that they can be similarly approximated
by DG. However, diffusion models exhibit significantly larger deviations from DG at higher noise
variances (σ ∈ {42.415, 80.0}) since they utilize a bell-shaped noise sampling distribution ptrain that
emphasizes training on intermediate noise levels, leading to under-training at high noise variances.
Lastly, the DAEs with different architectures achieve comparable score approximation errors, and
both DAEs and diffusion models generate images matching those from the Gaussian model, as shown
in Figure 24(b). These findings demonstrate that the Gaussian inductive bias is not unique to diffusion
models or specific architectures but is a fundamental property of DAEs.

G.3 Gaussian Structure Emerges across Various datasets

As illustrated in Figure 25, for diffusion models trained on the CIFAR-10, AFHQ and LSUN-Churches
datasets that are in the generalization regime, their generated samples match those produced by the
corresponding Gaussian models. Additionally, their linear approximations, DL, obtained through
linear distillation, align closely with the Gaussian models, DG, resulting in nearly identical generated
images. These findings confirm that the Gaussian structure is prevalent across various datasets.

G.4 Strong Generalization on CIFAR-10

Figure 26 demonstrates the strong generalization effect on CIFAR-10. Similar to the observations
in Section 5, reducing model capacity or early stopping the training process prompts the Gaussian
inductive bias, leading to generalization.

G.5 Measuring Score Approximation Error with NMSE

While in Section 3.1 we define the score field approximation error between denoisers D1 and D2

with RMSE ( (10)), this error can also be quantified using NMSE:

Score-Difference(t) := Ex∼pdata(x),ϵ∼N (0;σ(t)2I)
||D1(x+ ϵ)−D2(x+ ϵ)||2

||D1(x+ ϵ)||2
. (53)

As shown in Figure 27, while the trend in intermediate-noise and low-noise regimes remains
unchanged, NMSE amplifies differences in the high-noise variance regime compared to RMSE.
This amplified score difference between DG and Dθ does not contradict our main finding that
diffusion models in the generalization regime exhibit an inductive bias towards learning denoisers
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Figure 25: Final generated images and sampling trajectories for various models. Figures(a),
(c) and (e) demonstrate the images generated using different models starting from the same noises
for LSUN-Churches, AFHQ and CIFAR-10 respectively. Figures(b), (d) and (f) demonstrate the
corresponding sampling trajectories.

approximately equivalent to DG in the high-noise variance regime. As discussed in Section 3.2
and appendices F.2 and G.2, this large score difference stems from inadequate training in this regime.

Figure 27 (Gaussian vs. DAE) demonstrates that when DAEs are sufficiently trained at specific
noise variances, they still converge to DG. Importantly, the insufficient training in the high-noise
variance regime minimally affects final generation quality. Figure 25(f) shows that while the diffusion
model (EDM) produces noisy trajectories at early timesteps (σ ∈ {80.0, 42.415}), these artifacts
quickly disappear in later stages, indicating that the Gaussian inductive bias is most influential in the
intermediate-noise variance regime.

Notably, even when Dθ are inadequately trained in the high-noise variance regime, they remain
approximable by linear functions, though these functions no longer match DG.
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Figure 26: Strong generalization on CIFAR-10 dataset. Figure(a) Top: Generated images of
Gausisan models; Bottom: Generated images of diffusion models, with model scale 64; S1 and
S2 each has 25000 non-overlapping images. Figure(b) Top: Generated images of Gausisan model;
Bottom: Generated images of diffusion models in the memorization regime, with model scale 128; S1
and S2 each has 782 non-overlapping images. Figure(c): Early stopping and reducing model capacity
help transition diffusion models from memorization to generalization.
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Figure 27: Comparison between RMSE and NMSE score differences. Figures(a) and (c) show the
score field approximation errors measured with RMSE loss while figures(b) and (d) show these errors
measured using NMSE loss. Compared to RMSE, the NMSE metric highlight the score differences
in the high-noise regime, where diffusion models receive the least training.

H Discussion on Geometry-Adaptive Harmonic Bases

H.1 GAHB only Partially Explain the Strong Generalization

Recent work [20] observes that diffusion models trained on sufficiently large non-overlapping datasets
(of the same class) generate nearly identical images. They explain this ”strong generalization”
phenomenon by analyzing bias-free deep diffusion denoisers with piecewise linear input-output
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mappings:

D(xt;σ(t)) = ∇D(xt;σ(t))x (54)

=
∑
k

λk(xt)uk(xt)v
T
k (xt)xt, (55)

where λk(xt), uk(xt), and vk(xt) represent the input-dependent singular values, left and right
singular vectors of the network Jacobian∇D(xt;σ(t)). Under this framework, strong generalization
occurs when two denoisers D1 and D2 have similar Jacobians: ∇D1(xt;σ(t)) ≈ ∇D2(xt;σ(t)).
The authors conjecture this similarity arises from networks’ inductive bias towards learning certain
optimal ∇D(xt;σ(t)) that has sparse singular values and the singular vectors of which are the
geometry-adaptive harmonic bases (GAHB)—near-optimal denoising bases that adapt to input xt.

While [20] provides valuable insights, their bias-free assumption does not reflect real-world diffusion
models, which inherently contain bias terms. For feed forward ReLU networks, the denoisers are
piecewise affine:

D(xt;σ(t)) = ∇D(xt;σ(t))xt + bxt
, (56)

where bxt is the network bias that depends on both network parameterization and the noisy input
xt [44]. Here, similar Jacobians alone cannot explain strong generalization, as networks may differ
significantly in bxt . For more complex network architectures where even piecewise affinity fails, we
consider the local linear expansion of D(xt;σ(t)):

D(xt +∆x;σ(t)) = ∇D(xt;σ(t))∆xt +D(xt;σ(t)), (57)

which approximately holds for small perturbation ∆x. Thus, although∇D(xt;σ(t)) characterizes
D(xt;σ(t))’s local behavior around xt, it does not provide sufficient information on the global
properties.

Our work instead examines global behavior, demonstrating that D(xt;σ(t)) is close to
DG(xt;σ(t))—the optimal linear denoiser under the Gaussian data assumption. This implies that
strong generalization partially stems from networks learning similar Gaussian structures across
non-overlapping datasets of the same class. Since our linear model captures global properties but not
local characteristics, it complements the local analysis in [20].

H.2 GAHB Emerge only in Intermediate-Noise Regime

For completeness, we study the evolution of the Jacobian matrix∇D(xt;σ(t)) across various noise
levels σ(t). The results are presented in Figures 28 and 29, which reveal three distinct regimes:

• High-noise regime [10,80]. In this regime, the leading singular vectors6 of the Jacobian matrix
∇D(xt;σ(t)) well align with those of the Gaussian weights (the leading principle components
of the training dataset), consistent with our finding that diffusion denoisers approximate linear
Gaussian denoisers in this regime. Notice that DAEs trained sufficiently on separate noise levels
(Figure 29) show stronger alignment compared to vanilla diffusion models (Figure 28), which
suffer from insufficient training at high noise levels.

• Intermediate-noise regime [0.1,10]: In this regime, GAHB emerge as singular vectors of
∇D(xt;σ(t)) diverge from the principal components, becoming increasingly adaptive to the
geometry of input image.

• Low-noise regime [0.002,0.1]. In this regime, the leading singular vectors of∇D(xt;σ(t)) show
no clear patterns, consistent with our observation that diffusion denoisers approach the identical
mapping, which has unconstrained singular vectors.

Notice that the leading singular vectors of ∇D(xt;σ(t)) are the input directions that lead to the
maximum variation in denoised outputs, thus revealing meaningful information on the local properties
of D(xt;σ(t)) at xt. As demonstrated in Figure 30, perturbing input xt along these vectors at
difference noise regimes leads to distinct effects on the final generated images: (i) in the high-noise
regime where the leading singular vectors align with the principle components of the training dataset,

6We only care about leading singular vectors since the Jacobians in this regime are highly low-rank. The less
well aligned singular vectors have singular values near 0.
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Figure 28: Evolution of ∇D(xt;σ(t)) across varying noise levels. Figure(a) shows the generation
trajectory. Figure(b) shows the correlation matrix between Jacobian singular vectors U(xt) and
training dataset principal components U . Notice that the leading singular vectors of U(xt) and U
well align in early timesteps but diverge in later timesteps. Figure(c) shows the first three principle
components of the training dataset while figures(d-f) show the evolution of Jacobian’s first three
singular vectors across noise levels. These singular vectors initially match the principle components
but progressively adapt to input image geometry, before losing distinct patterns at very low noise
levels. While we present only left singular vectors, right singular vectors exhibit nearly identical
behavior and yield equivalent results.

perturbing xt along these directions leads to canonical changes such as image class, (ii) in the
intermediate-noise regime where the GAHB emerge, perturbing xt along the leading singular vectors
modify image details such as colors while preserving overall image structure and (iii) in the low-noise
regime where the leading singular vectors have no significant pattern, perturbing xt along these
directions yield no meaningful semantic changes.

These results collectively demonstrate that the singular vectors of the network Jacobian∇D(xt;σ(t))
have distinct properties at different noise regimes, with GAHB emerging specifically in the intermedi-
ate regime. This characterization has significant implications for uncertainty quantification [45] and
image editing [46].
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Figure 29: Evolution of ∇D(xt;σ(t)) across varying noise levels for DAEs. We repeat the
experiments in Figure 28 on DAEs that are sufficiently trained on each discrete noise levels. Notice
that with sufficient training, the Jacobian singular vectors U(xt) show a better alignment with
principle components U in early timesteps.
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Figure 30: Effects of perturbing xt along Jacobian singular vectors. Figure(a)-(c) demonstrate the
effects of perturbing input xt along the first singular vector of the Jacobian matrix (xt±λu1(xt)) on
the final generated images. Perturbing xt in high-noise regime (Figure (a)) leads to canonical image
changes while perturbation in intermediate-noise regime (Figure (b)) leads to change in details but
the overall image structure is preserved. At very low noise variances, perturbation has no significant
effect (Figure (c)). Similar effects are observed in concurrent work [46].

I Computing Resources

All the diffusion models in the experiments are trained on A100 GPUs provided by NCSA Delta
GPU [33].
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of the paper (regardless of whether the code and data are provided or not)?
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to make their results reproducible or verifiable.
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
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faith effort.
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