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ABSTRACT

Iterative optimization-based methods have dominated the field of stereo matching
with extraordinary precision and speed. However, these methods still suffer from
low iteration efficiency and insufficient correlation volume with low utilization
rates. As the countermeasure, we propose grouped correlation aggregation with
propagation, aka., GCAP-STEREO, a novel stereo matching method inspired by
traditional methods. We design an efficient updater to improve the performance
of single iteration optimization. To alleviate the problems of correlation volume, a
novel grouped window shifting mechanism and a contour-aware aggregation mod-
ified from semi-global matching (SGM) have been introduced. Our method out-
performs all methods in zero-shot generalization and ranks 1st on ETH3D among
published works. Additionally, we conducted targeted inference optimization on
the video stream and demonstrated the improvement in frame rate without sacrific-
ing accuracy through experiments on the simulator. Finally, a real-world binocular
system is deployed to qualitatively demonstrate the practicality of our method.

1 INTRODUCTION

Stereo matching is a vital task in computer vision that has numerous practical fields such as 3D
reconstruction, autonomous driving, and AR/VR (Jamiy & Marsh, 2019; Fan et al., 2018). It aims to
obtain the pixel-level matching relationships between two images captured by the calibrated binoc-
ular system, namely the disparity.

Many popular traditional methods have demonstrated significant effectiveness in both theory and
practice. Semi-Glocal Matching (SGM) (Hirschmüller, 2005) uses mutual information to evaluate
matching cost, and approximates a global two-dimensional smoothing constraint by aggregating
one-dimensional constraints. PatchMatch Stereo (Bleyer et al., 2011) randomly initializes disparity,
then propagates and optimizes disparity between pixels, gradually obtaining a high-quality disparity
map. However, due to the lack of parallelism and insufficient perception of image information, these
methods cannot meet the real-time and accuracy requirements in practical scenarios.

With the development of deep neural networks, learning-based methods have demonstrated abso-
lute advantages in the field. CNN-based methods such as PSMNet (Chang & Chen, 2018) use an
amount of convolutions to complete information extraction and the matching cost calculation. These
methods has improved computational efficiency and accuracy, but they still cannot meet the require-
ments for high pixel-level tasks due to the high memory and computing power demands. Moreover,
the iterative optimization-based method adopts a storage instead of computation approach to store
the matching cost volumes between all pixels of images and uses lightweight convolutional recur-
rent neural network (convRNN) units for iterative updates. It can balance accuracy and time by
dynamically setting the number of iterations, and the memory overhead is also relatively small.

However, there are still some points to consider in optimization-based methods. Firstly, a single
iteration update is not efficient enough and the methods require a sufficient number of iterations to
achieve the required accuracy. Secondly, the matching cost volume only considers the matching
cost between single pixels, which leads to frequent occurrences of noise points and matching errors.
Finally, the methods store the matching relationships of all pixels, but a large part of the relationships
are not accessed at all and occupy memory.
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(a) Left Image (b) RAFT-Stereo (c) Selective-IGEV (d) GCAP-Stereo

Figure 1: Examples of our predictions ETH3D benchmark with RAFT-Stereo (Lipson et al., 2021)
and Selective-IGEV (Wang et al., 2024). Our method is particularly outstanding in areas with holes
and weak textures.
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Figure 2: Comparisons with state-of-the-art stereo
methods on ETH3D leaderboards

In this paper, we propose GCAP-Stereo,
namely grouped correlation aggregation with
propagation to deal with the above consider-
ations. We design a new iterative updater
based on PatchMatch Stereo (Bleyer et al.,
2011) to improve the single quality of optimiza-
tion. Moreover, a modified SGM cost aggre-
gation (Hirschmüller, 2005) has been utilized
in the cost volume. Considering the situation
where there are a large number of matching
costs that will not be accessed, we introduce
the grouped window-shifting mechanism to re-
tain all valid points and discard the vast major-
ity of invalid points. Finally, we perform tar-
geted inference optimization on video streams
to achieve higher frame rates in practical sce-
narios without affecting the accuracy.

So far, GCAP-Stereo ranks 1st on ETH3D
two-view stereo (Schöps et al., 2017) bench-
marks and achieves competitive performance
on KITTI 2012/2015 (Geiger et al., 2012) and
Middlebury (Scharstein et al., 2014) among
published methods. As shown in fig. 2, our
method is ahead of all other methods in terms
of speed and accuracy. Moreover, our method

demonstrates excellent performance advantages in video stream testing and zero-shot generalization,
which has superior cross-domain generalization and real-time performance. Our main contributions
can be summarized as follows:

• We design a novel updater based on PatchMatch Stereo for iterative stereo matching meth-
ods which improves the single optimization performance.

• We propose a modified SGM-based cost aggregation to improve the robustness of cost
volume with little time consumption.

• We introduce the grouped window-shifting mechanism to greatly reduce the cost volume
and decrease the probability of using incorrect matching points.

• Our method outperforms existing methods on public benchmarks such as ETH3D and
demonstrates advantages in zero-shot generalization and video stream inference.

2 RELATED WORK

2.1 TRADITIONAL METHODS

Stereo matching is a fundamental issue and there are many crucial research achievements. Tradi-
tional methods generally consist of several steps, including matching cost calculation, cost aggre-
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Figure 3: An overview of our proposed method. For a pair of stereo images, they will be fed into
the feature network and the context network to generate the multi-level correlations and context
feature. The correlations will go through the grouped window shifting (GWS) and contour-aware
aggregation (CA) to improve accuracy. Then the method will frequently updates the disparity from
the beginning of the zero initialization with propagation updater (P-Updater) which use two different
candidate searching methods to improve disparity.

gation, disparity calculation, and disparity optimization. The classic algorithm SGM (Hirschmüller,
2005) selects the disparity of each pixel to form a disparity map, sets a global energy function re-
lated to the disparity map, and minimizes this energy function to achieve the goal of finding the
optimal dispersion for each pixel. Additionally, some other classic algorithms do not strictly follow
the above steps. In PatchMatch Stereo (Bleyer et al., 2011), it continuously iterates to optimize the
initial disparity map. In each iteration, each pixel exchanges its disparity value with its neighboring
pixels for new cost calculations and retains the disparity value with the lowest cost as its disparity
value. However, these algorithms generally have poor parallelism and cannot meet the accuracy and
time requirements in practical scenarios when processing high-resolution images.

2.2 LEARNING-BASED METHODS

When deep neural networks were first used in the field of stereo matching, they demonstrated sig-
nificant advantages. In the beginning, this learning-based method was mainly used for feature ex-
traction and matching cost calculation of images. DispNet (Mayer et al., 2016a) concats image pair
into a series of convolution operations, while its correlation version DispNetC first performs fea-
ture extraction on each image, calculates the correlation, and then performs multi-layer convolution
operations. Subsequently, deep neural networks were incorporated into other traditional algorithm
steps. IResnet (Duta et al., 2021) introduced a residual layer structure during the disparity optimiza-
tion phase. AAnet (Xu & Zhang, 2020) introduces deformable convolution in calculating matching
cost and cost aggregation. Stereonet (Khamis et al., 2018) uses multi-stage hierarchical refinement
from coarse to fine, making the network more lightweight while maintaining good accuracy. Hit-
net (Tankovich et al., 2021) has added a slanted window mechanism called tile, which allows the
disparity to have two gradients and achieves sub-pixel level accuracy. DeepPruner (Duggal et al.,
2019) originates from PatchMatch Stereo (Bleyer et al., 2011) which randomly initializes and prop-
agates within neighbors for narrow cost volume correction. Recently, iterative optimization-based
methods have dominated the entire field. Inherited from the optical flow network RAFT (Zhang
et al., 2024), RAFT-Stereo (Lipson et al., 2021) constructs a massive cost volume for all relation-
ships between two images called all pair correlation (APC∈ RB×H×W×W) which represents W
matching relationships for B×H×W points in the reference image . Moreover, it uses ConvRNN
units which gradually optimize from the zero initial states. Subsequently, many improved methods
based on this approach emerged and continued to optimize the accuracy. DLNR (Zhao et al., 2023)
holds detailed information in feature maps using a decoupled Long Short-Term Memory (LSTM)
and achieves remarkable performance. CREStereo (Li et al., 2022) designs a coarse-to-fine network
and a special stacked cascaded architecture for inference to improve accuracy. IGEV-Stereo (Xu
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Figure 4: Distribution map of disparity truth maps for three real-world datasets. Obviously, the
candidate searching area is much smaller than the width of the image, only 10%− 30% of it.

et al., 2023a) constructed an additional cost volume and used the WTA method to obtain the initial
disparity. Additionally, the cost volume will combine with APC to obtain more accurate cost values.

2.3 GENERALIZATION OF STEREO MATCHING

In the absence of massive binocular real datasets, how to make models trained on a large number of
simulation datasets perform well in real scenes is an important issue. Depth anything (Yang et al.,
2024) uses a data engine approach to train a teacher model with real datasets and then let the model
produce predictions for a large number of samples without truth maps to train a student model. Fi-
nally, extraordinary accuracy and generalization are achieved. Adastereo (Song et al., 2021) attempts
to normalize the cost volume and designs a targeted loss function to solve the problem of domain
adaptation. MADNet (Lan et al., 2021) only updates specific modules during adaptive learning,
keeping the network constantly in a training state, further improving model accuracy and speed.

3 METHOD

Figure 5: The illustration of grouped window
shifting (GWS). The left is the volume contain-
ing all the matching relationships of a row of pix-
els, the correlations of W×W matching relation-
ships. Note that, the blue area is the valid candi-
date area. The right is the correlation volume that
removes most invalid candidate points by setting
a window size (ws) much smaller than W.

In this section, we present the structure of
GCAP-Stereo. It consists of several parts:
a feature extractor, a group window shifting
mechanism (GWS), a contour-aware correla-
tion aggregation volume (CA), a multi-level it-
erative updater with Propagation (P-Updater)
and an upsampling module.

3.1 FEATURE EXTRACTOR

The feature extraction network is consistent
with RAFT-Stereo (Lipson et al., 2021). There
are two components in the extractor: a con-
text network that extracts multi-scale contex-
tual features for updating the hidden states of
ConvGRUs and a feature network that extracts
multi-scale features used for constructing the
correlation volume. For context network, it
consists of several residual blocks and down-
sampling layers and outputs multi-scale context
features with designed channels. Then we can
get target hidden and context features of the ref-
erence image with tanh(·) and relu(·). For

feature network, Given the left and the right images Il/r ∈ R3×H×W, several additional resid-
ual blocks will be utilized to generate the feature map at 1/4 of the original size. Note that, the
multi-scale (1/8,1/16) of features are implemented by some avgpool(·) operations which can be
represented by Fl/r,i ∈ RCi×H

i ×W
i (i = 4, 8, 16 and Ci for designed channels).
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3.2 GROUP WINDOW SHIFTING

Although the APC designed by RAFT-Stereo (Lipson et al., 2021) contains amounts of information,
many matching relationships will never be used in iterative updates. As shown in fig. 4, for an APC∈
RB×H×W×W , only about 10%−30% of the matching relationships are potential candidate matching
points while other matching relationships may potentially affect the accuracy of the method and
occupy unnecessary memory. The grouped window shifting mechanism (GWS) is illustrated in
the fig. 5. Specifically, for an APC, we set a designed window size ws and group size L that can
contain all potential matching relationships and discard the vast majority of useless information.
The shifting mechanism can be formulated as:

∆s = (W − ws)L/((W −D)) (1)

where W is the width of image and D is the preset max disparity. For each group which contains L
rows, we select ws elements to be candidate points. After selecting each group, the selected window
will be shifted by ∆s pixels until it reaches the margin. Note that ws will be set to a value larger
than d (usually 1.5 or 2 times) to ensure that potential candidates will not lost.

3.3 CONTOUR-AWARE CORRELATION AGGREGATION VOLUME

In order to obtain a more accurate cost volume, we are inspired by SGM (Hirschmüller, 2005) cost
aggregation and perform contour-aware cost aggregation on the correlation volume. Specifically, for
the cost aggregation formula of SGM (Hirschmüller, 2005):

Lr(p, d) = C(p, d) + min(Lr(p− 1, d),

Lr(p− 1, d− 1) +P1,

Lr(p− 1, d+ 1) +P1,

min
i

Lr(p− 1, i) +P2) [(Lr(1, d) = C(1, d))]

(2)

which is a dynamic programming equation that simulates two-dimensional cost aggregation by cal-
culating the same distance in multiple one-dimensional directions. Lr(p, d) is the cost along a path
traversed in the direction r of the pixel p at disparity d and P1 and P2 are the penalities of choosing
other disparity. The aggregation cost is the sum of paths which is:

S(d) =
∑
r∈R

Lr(p,d) (3)

Considering parallelism and accuracy, we performed approximate calculations on it. We assume
that when calculating in one direction, if the path is in the same object contour, the same disparity
will always be chosen and these disparities often have approximate cost. Therefore, we approximate
the value of the points along the path with the cost value of the starting point. Moreover, inspired
by CenterNet (Zhou et al., 2019), a method applied to object detection, we aim to make the path in
each direction learnable to touch the contour of object illustrated in fig. 3. At this point, we only
need to calculate the value of the path endpoint once, which can be formulated as:

Lr(d) = aC(1, ds) + min
i

C(p, ie) +P2 (4)

where ds is the disparity of the original point and ie is the disparity of the end point. However, it
needs to perform such a calculation on all the disparities of each pixel which is still time-consuming.
We observed that the approximated dynamic equation is only related to the values of the starting
point and the endpoints in various directions. We consider introducing deformable convolution to
directly perform the calculation which can be represented by:

L(d) =
∑
i∈D

(w1C(1, is) + w2C(p− a, ie)) +P2 (5)

It improves parallelism and makes the selection of path aggregation more learnable rather than a
simple min operation, resulting in a more accurate and robust aggregation cost.
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(a) RAFT Updater (b) Propagation Updater

Figure 6: Two different candidate point searching methods. The RAFT updater always selects
several points around for searching, without considering the provided image information which is
not efficient. On the contrary, the propagation updater focuses more on local features and selects
candidate points in a more targeted way by propagating with its neighbors.

3.4 MULTI-LEVEL PROPAGATION UPDATER

For previous RAFT-Stereo based work, the procedure on multiple iterations to optimize disparity
can be summarized as the following formula,

∆f, hi+1 = R(f ; cor;hi) (6)

f
′
= f +∆f (7)

where f is the disparity of the current state, corr is the correlation matrix obtained based on its
searching in the correlation pyramids, and hi is the current hidden layer. Based on these parame-
ters, a new hidden layer hi+1 and the corresponding increment of flow will be output through the
RNN network R(·; ·; ·). By continuously changing the flow and generating new hidden layers, the
disparity will be iteratively optimized. As discussed above, we consider that such a single iteration
is not efficient, mainly due to the selection of searching points. Therefore, inspired by PatchMatch
Stereo (Bleyer et al., 2011), we have introduced a new iterative update method called propagation
updater (P-Updater). As illustrated in fig. 6, if the orange area is the valid candidate point area, for
each point, RAFT updater (Zhang et al., 2024) will select several points on both sides, namely the
green area, for searching. This not only lacks perception of image information, but also makes it
easier to obtain many invalid candidate points. Contrarily, the propagation updater directly prop-
agates with neighbors, searching within a small range of these neighboring points, which can be
more targeted and reduce the possibility of selecting invalid candidate points. Considering that mul-
tiple iterations of a single level can easily trap the updater in local optima, we adopted a multi-level
update approach, where each scale is swapped with different neighbors and two types of updaters
are utilized alternately for updates. Finally, the first two low levels updaters use standard bilin-
ear interpolation for upsampling, while the final 1/4 resolution employs the convex combination in
RAFT-Stereo (Lipson et al., 2021).

3.5 INFERENCE OPTIMIZATION FOR VIDEO STREAM

Figure 7: Inference optimization (IO) for the video stream.
For the ith pair of images, we can directly use the previous
result (such as the i− 1th disparity map) as the initial value,
and then perform the 1/4 level update directly, which can
greatly improve the frame rate without losing accuracy.

As is discussed in previous sections,
during training we use a three-level
updater at different resolutions to do
coarse-to-fine refinement. However,
in the inference of video streams
in practical scenarios, our method
does not need to start from rough re-
sults every time. Inspired by Patch-
match Stereo (Bleyer et al., 2011),
the results between frames have a
strong correlation. Therefore, we
choose the results of the previous
frame of the video stream as the
initial result of the current image,
skip coarse-grained optimization and
directly perform fine-grained opera-

tion. The procedure is interpreted in fig. 7. After starting for a period of time, our method will
not start from zero initialization with 1/16- and 1/8-level updates, but instead directly use the previ-
ous results to optimize directly with 1/4-level updates. our method will skip the 1/16- and 1/8- level
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updaters, and instead use the previous results to make subtle adjustments using the 1/4 level updater
each time. This can greatly improve our speed without sacrificing accuracy.

3.6 LOSS FUNCTION

Due to our multi-level results in training, the loss function has been modified accordingly. After
obtaining intermediate results of 1/16, 1/8, and 1/4 of results , we will upsample the image size to
full resolution by bilinear interpolation for the first two levels of the updater, while for the last level
of the updater, additional learning will be done through learnable upsampling to full resolution. The
exponentially weighted L1 distance will be used in the training with γ set to 0.9. Given ground truth
dgt and the lth level upsampling prediction dli, the total loss is defined as:

L =
∑

l∈ 1
16 ,

1
8 ,

1
4

n∑
i=1

γn−i||dgt − dli||1 (8)

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION METRICS

Following previous works, we evaluate our method on three common public benchmarks. Middle-
bury dataset is a high-resolution stereo dataset consisting of 23 image pairs captured under various
lighting conditions with large-baseline stereo cameras, with disparities reaching up to 600 pixels. It
includes 15 training pairs and 15 testing pairs of indoor scenes, providing a challenging benchmark
for stereo matching algorithms. KITTI 2012 and KITTI 2015 datasets are real-world driving scene
datasets consisting of wide-angle stereo image pairs of street views, with sparse disparity ground
truth from lidar data. KITTI 2012 contains 194 training and 195 testing pairs, while KITTI 2015
provides 200 training and 200 testing pairs. ETH3D dataset consists of gray-scale stereo image
pairs with laser-scanned disparity ground truth, featuring a mix of 27 training pairs and 20 testing
pairs for both indoor and outdoor scenes, which provides a valuable benchmark for stereo vision
tasks in diverse environments.

4.2 ZERO-SHOT GENERALIZATION

method KITTI-15 Middlebury Q Middlebury H ETH3D

SGM (Hirschmüller, 2005) 23.8 10.7 25.2 12.9
PatchMatch Stereo (Bleyer et al., 2011) 27.3 16.1 38.6 24.1

HD3 (Yin et al., 2019) 26.5 18.1 34.2 30.1
PSMNet (Chang & Chen, 2018) 16.3 14.2 25.1 23.8

DSMNet (Zhang et al., 2020) 6.5 8.1 13.8 6.2
GANet (Wang, 2022) 11.7 11.2 20.3 14.1

RAFT-Stereo (Lipson et al., 2021) 5.74 9.36 12.59 3.28
IGEV-Stereo (Xu et al., 2023a) 6.8 6.2 7.1 3.6

Selective-IGEV (Wang et al., 2024) 6.31 5.33 7.03 4.17
GCAP-Stereo(Ours) 5.68 4.93 7.21 1.52

Table 1: Zero-shot generalization experiments. All methods were sorely trained on Scene-
Flow (Mayer et al., 2016b) and directly tested on the KITTI2015 (Geiger et al., 2012), Middle-
bury (Scharstein et al., 2014) quarter and half, and ETH3D (Schöps et al., 2017) validation datasets.
The values are the percent of pixels that EPE scores larger than a specified value. In this table, it is
set as bad 3.0 for KITTI, bad 2.0 for the Middlebury quarter and half and bad 1.0 for ETH3D.

Firstly, we focused on evaluating the zero-shot generalization ability of GCAP-Stereo from synthetic
training data to unseen real-world datasets. Due to the current difficulty of binocular camera cali-
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Model P-Updater Multi-level CA GWS Bad 1.0(32) Bad 1.0(8) epe
Baseline - - - - 8.32 12.66 0.27

P ✓ - - - 6.55 7.35 0.22
P+M ✓ ✓ - - 6.44 7.11 0.18

P+M+C ✓ ✓ ✓ - 4.52 5.28 0.15
GCAP-Stereo ✓ ✓ ✓ ✓ 4.47 4.91 0.14

Table 2: Ablation study of proposed method on the sceneflow validate set. The baseline is RAFT-
Stereo and the table shows the two bad 1.0 metrics after 8 iterations and 32 iterations.

bration, there is no large-scale real dataset available, making this ability crucial to the field of stereo
matching. In this experiment, we trained on a simulation dataset sceneflow (Mayer et al., 2016b) for
200000 steps and directly verified its performance on three real datasets, as shown in Table 1. Our
method has demonstrated absolute advantages on various datasets, especially on ETH3D (Schöps
et al., 2017), with the zero-shot performance alone surpassing the performance of networks such as
RAFT-Stereo, GMStereo, and HITNet fine-tuning on eth3d.

4.3 ABLATION STUDY

In this subsection, we mainly focus on the influence of the proposed methods on the accuracy and
inference time. All training procedures are held on the sceneflow dataset with 200000 steps and a
learning rate of 0.0002. Eventually, different models will be validated on the ETH3D validation set.
Note that, the baseline used in this experiment is RAFT-Stereo (Lipson et al., 2021).

Effectiveness of Multi-level P-Updater. To compare the performance of P-updater, we first per-
formed a single-level updater replacement. As shown in table 2, by simply improving the search
method of RAFT-Stereo, the accuracy was significantly improved. This is because the searching
method of P-Updater is more related to the image information, making the final updated results un-
doubtedly more ideal. Furthermore, we transformed the single -evel P-Updater into a multi-level
updater while maintaining the same number of iterations. As shown in table 1, even with the use of
a lighter coarse-grained updater, the accuracy did not decrease but instead increased. This is because
the propagation method at multi-level are different, and compared to a single-level fixed propagation
method, the receptive field is larger, which can make it easier for the final result to be out of local
optima and achieve better results.

Effectiveness of CA and GWS. As shown in the table 2, by approximating the SGM equation and
using deformable convolution for calculation, the accuracy can be further improved with little cost.
This is because the CA is not limited to small-area neighbor convolutions, but rather extends as
much as possible around the object contour boundary like CenterNet (Zhou et al., 2019), resulting
in more abundant information obtained through aggregation. Furthermore, GWS can greatly reduce
the volume of the correlation, thereby reducing the computational cost brought by CA and make the
searching area more concentrated and targeted. The combination of the two makes our method more
effective.

Effectiveness of single optimization. Our method can still perform well at a low number of itera-
tions. As shown in table 2, we report the bad 1.0 score with different iterations. In the case of only 8
iterations, the accuracy of RAFT-Stereo will sharply decrease, but our method can still maintain sta-
bility, indicating that our single iteration is more efficient and robust. Moreover,in just 8 iterations,
even with the addition of only one single-level P-Updater to our method, it has already surpassed
RAFT-Stereo, which has undergone 32 iterations.

4.4 COMPARISONS WITH STATE-OF-THE-ART

Middlebury. Unlike previous works which leverage multiple datasets to finetune, we only finetune
our Scene Flow pre-trained model on the mixed InStereo2k and Middlebury datasets using a crop
size of 384× 768 with a batch size of 8 for 100k steps. We then adopt 2-stage inference to evaluate
our method on the test set at 1536× 2048 using resized full-resolution images. As shown in table 3,
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ETH3D Middlebury
Bad 1.0 Bad 2.0 EPE Bad 1.0 Bad 2.0 Bad 4.0

HITNet (Tankovich et al., 2021) 2.79 0.80 0.20 13.30 6.46 3.81
RAFT-Stereo (Lipson et al., 2021) 2.44 0.44 0.18 9.37 8.07 2.75

CroCo-Stereo (Weinzaepfel et al., 2022) 0.99 0.39 0.14 16.90 7.29 4.18
AdaStereo (Song et al., 2021) 3.09 0.65 0.25 29.50 13.70 6.35
GMStereo (Xu et al., 2023b) 1.83 0.25 0.19 23.60 7.14 2.96

IGEV-Stereo (Xu et al., 2023a) 1.12 0.21 0.14 9.41 4.83 3.33
GCAP-Stereo(ours) 0.95 0.24 0.14 10.00 4.31 2.46

Table 3: Quantitative results on ETH3D and Middlebury benchmark.

our GCAP-Stereo surpasses the published state-of-the-art by 10.77% on the bad 2.0 metric, 10.55%
on the bad 4.0 metric, and ranks 3rd place on the bad 1.0 metric.

ETH3D. Unlike Selective-Stereo which applies a mixed dataset of CREStereo, InStereo2k and
ETH3D to finetune for 90k steps, we only finetune our Scene Flow pre-trained model on the mixed
InStereo2k and ETH3D datasets using a crop size of 384 × 512 with a batch size of 8 for 20k
steps. We evaluate our method on the test set with the size of 768 × 1024 where 2-stage inference
is adopted. We achieve the 1st place on the majority of the metrics among all published methods,
surpassing the published state-of-the-art by 4.04% on the bad 1.0 metric. Our GCAP-Stereo ranks
2nd place on the bad 1.0 metric and 1st place on EPE metric respectively. Quantitative comparisons
are tabulated in table 3.

KITTI. We fine-tune the model for another 50K iterations on KITTI 2012 and 2015 training sets.
The initial learning rate is set to 0.0001. Finally, we achieve competitive performance on both
datasets and show a visual comparison of KITTI 2015 in fig. 8.

(a) Left Image (b) AANet

(c) Selective-IGEV (d) GCAP-Stereo

Figure 8: Visual comparisons with other methods on the case of KITTI 2015 leaderboard. Our
method performs better with less distortion and incorrect matching illustrated by green boxes.

4.5 INFERENCE FOR VIDEO STEAM

To verify the feasibility of our inference optimization on video streams, we chose to conduct our
simulation experiments on the CARLA simulator (Dosovitskiy et al., 2017), an autonomous driving
simulator. This simulator can not only output real-time disparity maps, but it also can perform
automatic navigation at any selected location. Specifically, we will conduct experiments directly on
the simulator using the baseline and GCAP-Stereo trained on the sceneflow dataset. Each method
will run on the same road for the same time, and finally calculate the average result of all obtained
disparity maps during this period. The result is shown in table 4. It proves again that our method has
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better ability of the zero-shot genealization and the inference optimization of video streams does not
lead to a decrease in accuracy but can bring huge speed improvement.

Bad 2.0 EPE Time(frames/s)
RAFT-Stereo 13.07 2.67 6
GCAP-Stereo 9.35 1.73 8

GCAP-Stereo with IO 9.41 1.75 15

Table 4: Performance and frame rate comparison in CARLA simulator

4.6 PRACTICAL PERFORMANCE

To further validate the generalization ability of our model, we will transfer the model trained on
the sceneflow dataset to real-world scenarios for testing. Specifically, we have built a simple demo
and will conduct a visual verification using the Jetson Orin Nano (Süzen et al., 2020) and a designed
binocular camera system. The visualization results are shown in fig. 9 and illustrated that our method
has a more global accuracy optimization for the overall contour of the object and the small gaps
between objects, resulting in a significant improvement in the disparity accuracy of the object, as
shown in the red ”0” and the several gears in the set of images.

(a) Left Images (b) RAFT-Stereo (c) GCAP-Stereo

Figure 9: Visialization comparison of real-world demo between RAFT-Stereo and GCAP-Stereo.

5 CONCLUSION

To solve the common problems in iterative networks for stereo matching, we propose Grouped
Correlation Aggregation with PropagationI (GCAP-Stereo), a new solution for stereo matching. The
efficiency of single iteration optimization has been improved by introducing a new propagation-
based updater. Through improving traditional algorithms, targeted modifications have been made
to the correlation volume to make it more robust and accurate. Finally, targeted optimization was
carried out on the inference of the video stream. GCAP-Stereo ranks 1st on ETH3D two-view stereo
benchmarks and achieves competitive performance on KITTI 2012/2015 and Middlebury among
published methods. Moreover, our method demonstrates excellent performance advantages in video
stream testing and zero-shot generalization, which has superior cross-domain generalization and
real-time performance. We believe our work will be an important technique empowering the high-
precision binocular vision system.
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