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ABSTRACT

Deep learning systems have become ubiquitous in many aspects of our lives. Un-
fortunately, it has been shown that such systems are vulnerable to adversarial
attacks, making them prone to potential unlawful uses. Designing deep neural
networks that are robust to adversarial attacks is a fundamental step in making such
systems safer and deployable in a broader variety of applications (e.g. autonomous
driving), but more importantly is a necessary step to design novel and more ad-
vanced architectures built on new computational paradigms rather than marginally
building on the existing ones. In this paper we introduce PeerNets, a novel family
of convolutional networks alternating classical Euclidean convolutions with graph
convolutions to harness information from a graph of peer samples. This results
in a form of non-local forward propagation in the model, where latent features
are conditioned on the global structure induced by the graph, that is up to 3×
more robust to a variety of white- and black-box adversarial attacks compared to
conventional architectures with almost no drop in accuracy.

1 INTRODUCTION

Deep convolutional networks (CNN) are the de-facto standard in almost any computer vision applica-
tion, ranging from image recognition (Krizhevsky et al., 2012; He et al., 2015), object detection (Yuan
et al., 2017; Redmon et al., 2016; Ren et al., 2015), semantic segmentation (He et al., 2017; Badri-
narayanan et al., 2017) and motion estimation (Liu et al., 2017; Vijayanarasimhan et al., 2017; Niklaus
et al., 2017). The ground breaking results of deep learning for industry-relevant problems have made
them also an important ingredient in many real world systems for applications such as autonomous
driving and user authentication. Unfortunately, it has been shown (Szegedy et al., 2013) that such
systems are vulnerable to easy to fabricate adversarial examples opening potential ways for their
untraceable and unlawful exploitation.

Adversarial attacks. Szegedy et al. (2013) found that deep neural networks employed in computer
vision tasks tend to learn very discontinuous input-output mappings, and can be caused to misclassify
an image by applying an almost imperceptible ‘adversarial’ perturbation, which is found by maxi-
mizing the network’s prediction error. While it was expected that addition of noise to the input can
ruin the classification accuracy of a neural network, only tiny adversarial perturbations are needed
as a great surprise to the machine learning community. Multiple methods for designing adversarial
perturbations have been proposed, perhaps the most dramatic being single pixel perturbation by
Su et al. (2017). Because of its potentially dramatic implications on the security of deep learning
technology (which are employed for example, in face recognition systems Sharif et al. (2016) or
autonomously driving cars), adversarial attacks and defenses against them have become a very active
topic of research (Rauber et al., 2017; Kurakin et al., 2018).

Adversarial attacks can be categorized as targeted and non-targeted. The former aim at changing
a source data sample in a way to make the network classify it as some pre-specified target class
(imagine as an illustration a villain that would like a computer vision system in a car to classify all
traffic signs as STOP signs). The latter type of attacks, on the other hand, aims simply at making
the classifier predict some different class. Furthermore, we can also distinguish between the ways in
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which the attacks are generated: white box attacks assume the full knowledge of the model and of all
its parameters and gradient, while in black box attacks, the adversary can observe only the output of a
given generated sample and has no access to the model. It has been recently found that for a given
model and a given dataset there exists a universal adversarial perturbation by Moosavi-Dezfooli et al.
(2016) that is network-specific but input-agnostic, i.e., a single noise image that can be applied to
any input of the network. Such perturbations were furthermore shown to be insensitive to geometric
transformations.

Defense against adversarial attacks. There has been significant recent effort trying to understand
the theoretical nature (Goodfellow et al., 2015; Fawzi et al., 2018) and strategies against adversarial
perturbations. The search for solution has focused on the network architecture, training procedure,
and data pre-processing (Gu & Rigazio, 2014). Intuitively, one could argue that robustness to
adversarial noise could be achieved by adding adversarial examples during training. However,
recent work showed that this brute-force approach does not work in this case and that it forces
the network to converge to a bad local minimum (Tramèr et al., 2018). As an alternative, Tramèr
et al. (2017) introduced ensemble adversarial training augmenting training data with perturbations
transferred from other models. Papernot & McDaniel (2016) proposed defensive distillation training.
Mahdizadehaghdam et al. (2018) showed that deep dictionary learning architecture provides greater
robustness against adversarial noise. Lately, Athalye et al. (2018) have pointed to the problem of so
called gradient obfuscation, which has to be carefully treated during design of a new defense method.
They have proven it to be the main reason why many state-of-the-art methods work, which further
emphasizes the fact that defense against adversarial attacks are still an open question.

Main contributions. In this paper, we introduce Peer-Regularized Networks (PeerNet), a new family
of deep models that uses a graph of samples to perform non-local forward propagation. The output of
the network depends not only by the given test sample at hand, but also by its interaction with several
training samples. We experimentally show that such a novel paradigm leads to substantially higher
robustness (up to 3×) to adversarial attacks at the cost of a minor classification accuracy drop when
using the same architecture. We also show that the proposed non-local propagation acts as a strong
regularizer that makes possible to increase the model capacity to match the current state-of-the-art
without incurring in overfitting. We provide experimental validation on established benchmarks such
as MNIST, CIFAR10 and CIFAR100 using various types of adversarial attacks.

2 RELATED WORKS

Our approach is related to three classes of approaches: deep learning on graphs, deep learning models
combined with manifold regularization, and non-local filtering. In this section, we review the related
literature and provide the necessary background.

2.1 DEEP LEARNING ON GRAPHS

In the recent years, there has been a surge of interest in generalizing successful deep learning models
to non-Euclidean structured data such as graphs and manifolds, a field referred to as geometric deep
learning in Bronstein et al. (2017). First attempts of learning on graphs date back to the works of
Gori et al. (2005); Scarselli et al. (2009), where the authors considered steady state of learnable
diffusion process (more recent works Li et al. (2016); Gilmer et al. (2017) improved this approach
using modern deep learning schemes).

Spectral domain graph CNNs. Bruna et al. (2013); Henaff et al. (2015) proposed formulating
convolution-like operations in the spectral domain, defined by the eigenvectors of the graph Laplacian.
Among the drawbacks of this architecture is O(n2) computational complexity due to the cost of
computing the forward and inverse graph Fourier transform, O(n) parameters per layer, and no
guarantee of spatial localization of the filters.

A more efficient class of spectral graph CNNs was introduced in Defferrard et al. (2016); Kipf &
Welling (2016) and follow up works, who proposed spectral filters that can be expressed in terms
of simple operations (such as additions, scalar- and matrix multiplications) w.r.t. the Laplacian. In
particular, Defferrard et al. (2016) considered polynomial filters of degree p, which incur only p
times multiplication by the Laplacian matrix (which costs O(|E|) in general or O(n) if the graph
is sparsely connected), also guaranteeing filters that are supported in p-hop neighborhoods. Levie
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et al. (2017) proposed rational filter functions including additional inversions of the Laplacian, which
were carried our approximately using an iterative method. Monti et al. (2018) used multivariate
polynomials w.r.t. multiple Laplacians defined by graph motifs; Monti et al. (2017b) used Laplacians
defined on products of graphs in the context of matrix completion problems.

Spatial domain graph CNNs. On the other hand, spatial formulations of graph CNNs operate on
local neighborhoods on the graph (Duvenaud et al., 2015; Monti et al., 2017a; Atwood & Towsley,
2016; Hamilton et al., 2017; Veličković et al., 2017; Wang et al., 2018). Monti et al. (2017a) proposed
the Mixture Model networks (MoNet), generalizing the notion of image ‘patches’ to graphs. The
centerpiece of this construction is a system of local pseudo-coordinates uij ∈ Rd assigned to a
neighbor j of each vertex i. The spatial analogue of a convolution is then defined as a Gaussian
mixture in these coordinates. Veličković et al. (2017) reinterpreted this scheme as graph attention
(GAT), learning the relevance of neighbor vertices for the filter result,

x̃i = ReLU

∑
j∈Ni

αijxj

 , αij =
exp(LeakyReLU(b>[Axi, Axj ])∑

k∈Ni
exp(LeakyReLU(b>[Axi, Axj ])

(1)

where αij are attention scores representing the importance of vertex j w.r.t. i, and the p× q′ matrix
A and 2p-dimensional vector b are the learnable parameters.

2.2 LOW-DIMENSIONAL REGULARIZATION

There have recently been several attempts to marry deep learning with classical manifold learning
methods (Belkin & Niyogi, 2003; Coifman & Lafon, 2006) based on the assumption of local regularity
of the data, that can be modeled as a low-dimensional manifold in the data space. Zhu et al. (2017)
proposed a feature regularization method that makes input and output features to lie on a low
dimensional manifold. Garcia & Bruna (2017) cast few shot learning as supervised message passing
task which is trained end-to-end using graph neural networks. One of the key disadvantages of such
approaches is the difficulty to factor out global transformations (such as translations) to which the
network output should be invariant, but which ruin the local similarity.

2.3 NON-LOCAL IMAGE FILTERING

The last class of methods related to our approach are non-local filters Sochen et al. (1998); Tomasi &
Manduchi (1998); Buades et al. (2005) that gained popularity in the image processing community
about two decades ago. Such non-shift-invariant filters produce, for every location of the image, a
result that depends not only on the pixel intensities around the point, but also on a set of neighboring
pixels and their relative locations. For example, the bilateral filter uses radiometric differences
together with Euclidean distance of pixels to determine the averaging weights. The same paradigm
has brought into Non-local networks by Wang et al. (2017), where the response at a given position
is defined as a weighted sum of all the features across different spatio-temporal locations, whose
interpolation coefficients are inferred by a parametric model, usually another neural network.

3 PEER REGULARIZATION

In this paper, we propose a new deep neural network architecture that takes advantage of the data
space structure. The centerpiece of our model is the Peer Regularization (PR) layer, designed as
follows. Let X1, . . . ,XN be n× d matrices representing the feature maps of N images, to which we
refer as peers (here n denotes the number of pixels and d is the dimension of the feature in each pixel).
Given a pixel of image i, we consider its K nearest neighbor graph in the space of d-dimensional
feature maps of all pixels of all the peer images, where the neighbors are computed using e.g. the
cosine distance. The kth nearest neighbor of the pth pixel xi

p taken from image i is the qkth pixel xjk
qk

taken from peer image jk, with k = 1, . . . ,K and jk ∈ {1, . . . , N}, qk ∈ {1, . . . , n}.
We apply a variant of graph attention network (GAT) by Veličković et al. (2017) to the nearest-
neighbor graph constructed this way,

x̃i
p =

K∑
k=1

αijkpqkx
jk
qk
, αijkpqk =

LeakyReLU(exp(a(xi
p,x

jk
qk
)))∑K

k′=1 LeakyReLU(exp(a(xi
p,x

jk′
qk′ )))

(2)
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where a() denotes a fully connected layer mapping from 2d-dimensional input to scalar output, and
αijkpqk are attention scores determining the importance of contribution of the qkth pixel of image j
to the output pth pixel x̃i

p of image i. This way, the output feature map X̃i is pixel-wise weighted
aggregate of the peers. Peer Regularization is reminiscent of non-local means denoising of Buades
et al. (2005), with the important difference that the neighbors are taken from multiple images rather
than from the same image, and the combination weights are learnable.

Full graph approximation. In principle, one would use a graph built out of a nearest neighbor
search across all the available training samples. Unfortunately, this is not feasible due to memory
and computation limitations. We therefore use a Monte Carlo approximation, as follows. Let
X1, . . . ,XN ′

denote the images of the training set. We select randomly with uniform distribution M
smaller batches of N � N ′ peers, batch m containing images {lm1, . . . , lmN} ⊂ {1, . . . , N ′}. The
nearest-neighbor graph is constructed separately for each batch m, such that the kth nearest neighbor
of pixel p in image i is pixel qmk in image jmk, where m = 1, . . . ,M , jmk ∈ {lm1, . . . , lmN},
and qmk ∈ {1, . . . , n}. The output of the filter is approximated by empirical expectation on the M
batches, estimation as follows

x̃i
p =

1

M

M∑
m=1

K∑
k=1

αijmkpqmk
xjmk
qmk

. (3)

In order to limit the computational overhead, M = 1 is used during training, whereas larger values of
M are used during inference (see Section 4 for details).

Figure 1: Our Peer Regularization illustrated on three pixels (red, green, blue) of a CIFAR image
(center). For each pixel, five nearest neighbors are found in peer images. Plots represent the feature
maps in the respective pixels; numbers represent the attention scores.

4 EXPERIMENTS

We evaluate the robustness of Peer Regularization to adversarial perturbations on standard benchmarks
(MNIST LeCun (1998), CIFAR-10, and CIFAR-100 Krizhevsky (2009)) using a selection of common
architectures (LeNet by LeCun et al. (1998) and ResNet by He et al. (2015)). The modifications
of the aforementioned architectures with the additional PR layers are referred to as PR-LeNet and
PR-ResNet and depicted in Figure 2. Additional details and results appear in the appendices.
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4.1 GRAPH CONSTRUCTION

Training. During training, the graph is constructed using all the images of the current batch as
peers. We compute all-pairs distances and select K-nearest neighbors. To mitigate the influence of
the small batch sizes during training of PR-Nets, we introduce high level of stochasticity inside the
PR layer, by using dropout of 0.2 on the all-pairs distances while performing K-nearest neighbors
and 0.5 on the attention weights right before the softmax nonlinearity. We used K = 10 for all the
experiments.

Testing. For testing, we select N fixed peer images and then compute distances between each
testing sample and all the N peers. Feeding a batch of test samples, each test sample can be adjacent
only to the N samples in the fixed graph, and not to other test samples. Because of the approximation
in the graph construction (see Section 3), we have to ensure that our random pre-selection of the
graph nodes does not influence the performance. We therefore perform a Monte Carlo sampling over
M forward passes with different uniformly sampled graphs with N nodes and we average over the M
runs. We used N = 50 for MNIST and CIFAR-10 and N = 500 for CIFAR-100, over M = 10 runs.

4.2 ARCHITECTURES

Figure 2: Top: PR-LeNet architecture used on the MNIST dataset; Bottom: PR-ResNet architecture
used for the CIFAR experiments, letters A, B, and C indicate the number of feature maps in each
residual block. The respective baseline models are produced by simply removing the PR layers.

MNIST. We modify the LeNet-5 architecture by adding two PR layers, after each convolutional layer
and before max-pooling (Figure 2, top).

CIFAR-10. We modify the ResNet-32 model, with A = 16, B = 32 and C = 64, as depicted in
Fig. 2 by adding two PR layers at the last change of dimensionality and before the classifier. Each
ResNet block is a sequence of Conv + BatchNorm + ReLU + Conv + BatchNorm + ReLU layers.

CIFAR-100. For this dataset we take ResNet-110 (A = 16, B = 32 and C = 64) and modify it in
the same way as for CIFAR-10. Each block is of size 18.

4.3 RESULTS

We tested robustness against several different types of white-box adversarial attacks: gradient descent,
fast-gradient sign method of Goodfellow et al. (2015), projected gradient descent and universal
adversarial perturbation of Moosavi-Dezfooli et al. (2015). Similarly to previous works on adversarial
attacks, we evaluate robustness in terms of the fooling rate, defined as the ratio of images for which the
network predicts a different label as the result of the perturbation. As suggested in Moosavi-Dezfooli
et al. (2016), random perturbations aim to shift the data points to the decision boundaries of the
classifiers. For the method of Moosavi-Dezfooli et al. (2016), even if the perturbations should be
universal across different models, we generated it for each model separately to achieve the fairest
comparison.

Timing. On CIFAR-10 our unoptimized PR-ResNet-32 implementation, during training, processes
a batch of 64 samples in 0.15s compared to the ResNet-32 baseline that takes 0.07s. At inference
time a batch of 100 samples with a graph of size 100 is processed in 1.5s whereas the baseline takes
0.4s. However, it should be noted that much can be done to speed-up the PR layer, we leave it for
future work.
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Figure 3: Examples of “Franken-images” (second row) constructed by backpropagating the attention
scores to the input and using them to compose a new image as weighted sum of the peer pixels.
Original images are shown in the first row.

Figure 4: Examples of generated universal adversarial perturbations for CIFAR-10 dataset (left) and
their applications to a sample image (right) for different values of ρ. Shown are results of ResNet-32
(top) and PR-ResNet-32 (bottom).

Gradient obfuscation. With regard to recent work of Athalye et al. (2018), we make sure that
PeerNet models yield reasonable gradients during perturbation generation, and therefore do not suffer
from this phenomenon. Following experiments further support our claim, as they show that PeerNets
do not exhibit the behaviour that typically accompanies this problem (e.g. our model can be always
fooled with an unbounded attack, iterative attacks are more efficient than the single-step ones, etc. ).

4.3.1 SAMPLE-SPECIFIC ATTACKS

Let us first evaluate our model on sample-specific non-targeted attacks. This means, having a testing
sample with label y, we aim to generate an adversarial sample particularly for this testing sample,
which will have label ŷ 6= y, while satisfying ||x− x̂||∞ ≤ ε, where ε is some small value to produce
a perturbation v that is nearly perceivable. For best reproducibility we used implementations of the
following methods provided in Foolbox by Rauber et al. (2017).

Gradient Descent attack. Generation of the adversarial example is posed as a constrained op-
timization problem and solved using gradient descent. It can be summarized by the following
formula:

x̂← x̂+ ε · ∇ log p(ŷ|x̂)
where ten ε values are scanned in ascending order, until the algorithm either succeeds or fails.
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Figure 5: Comparison of PeerNet and classical CNN on the CIFAR-10 dataset using various
gradient-based sample-specific attacks.

(a) Gradient Descent (b) FGSM (c) PGD

Figure 6: Comparison of perturbation strength sufficient to fool the network, as generated by
different sample-specific gradient-based attacks. ResNet-32 is always shown on the left, whereas
PR-ResNet-32 on the right.

Fast Gradient Sign method. For the next series of experiments, we test against the Fast Gradient
Sign Method (FGSM) of Goodfellow et al. (2015). FGSM generates an adversarial example x̂ for an
input x with label y as follows:

x̂← x+ ε sign(∇xJ(θ,x, y)),

where J(θ,x, y) is the cost used during training (cross-entropy in our case), and ε controls the
magnitude of the perturbation.

Projected Gradient Descent. Compared to the previous, this is a much stronger adversary, often
referred to as a multi-step method FGSMk (Madry et al. (2017)). Formally, given an input x with
label y, single iteration generating adversarial sample xt+1 is defined:

xt+1 ←
∏
x+S

(xt + ε sign(∇xJ(θ,x, y))),

where J(θ,x, y) is the cost used during training (cross-entropy in our case), and ε controls the
magnitude of the perturbation and operator

∏
defines the projection on a S-ball around x.

Discussion of results. From Figure 5, we can clearly see that sample-specific gradient-based
attacks have to generate much stronger perturbation in order to fool the PeerNet architectures. Some
qualitative examples are shown in Figure 6. Careful reader will notice that PeerNet often cannot be
fooled without generating attack observable by a human eye.

As expected, the strongest PGD attack is able to generate a perturbation for all the samples in the test
set even for PeerNet. However, much stronger perturbations need to be generated. For ResNet-32, it
is sufficient to set ε ≥ 0.013, while for PR-Resnet-32 we need ε ≥ 0.651, which obviously results
in much stronger perturbation. This is caused by the iterative nature of PGD and also supports the
fact that our method does not suffer from gradient obfuscation, as a viable perturbation can be found
based on the iterative processing of network gradients for any test sample.

7



Published as a conference paper at ICLR 2019

4.3.2 UNIVERSAL ADVERSARIAL PERTURBATIONS

Finally, we used the method of Moosavi-Dezfooli et al. (2016), implemented in their DeepFool toolbox
to generate a non-targeted universal adversarial perturbation v. The strength of the perturbation was
bound by ||v||2 ≤ ρE||x||2, where the expectation is taken over the set of training images and the
parameter ρ controls the strength.

We first evaluted on MNIST dataset by LeCun (1998) and compared to LeNet-5 as baseline. The same
evaluations were performed on CIFAR-10 and CIFAR-100 datasets, using ResNet-32 and ResNet-110
as baselines, respectively. We additionally compare our method on CIFAR-10 to other baselines,
namely BRELU with Gaussian Additive Noise by Zantedeschi et al. (2017), and MagNet of Meng &
Chen (2017). PeerNet performs significantly better than MagNet and better than BRELU for strong
noise. Compared to MagNet in particular, the key advantage of our architecture is that it is fully
trained end-to-end together with regularization layers instead of as a separate independent module.
We argue that learned features are more discriminative and robust if trained end-to-end. Moreover, it
is worth mentioning that training a separate module is very prone to gradient obfuscation problem
mentioned before. Results in Figure 7 clearly show that our PeerNet variants are much more robust
than the respective baselines.

We observe minor loss in accuracy at ρ = 0, which is a consequence of the regularization due to the
averaging in feature space, and we argue that it could be mitigated by increasing the model capacity.
For this purpose, the same configuration with double number of maps in PR layers (marked as v2)
was trained, and results show indeed a sensible improvement that does not come at the cost of a much
higher fooling rate as for the ResNet baselines.
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Figure 7: Fooling rate on various datasets for different levels ρ of universal adversarial noise. The
NetArch is Lenet-5, ResNet-32 and ResNet-110 for MNIST, CIFAR-10 and CIFAR-100 datasets
respectively.

A visual comparison of perturbations generated for classical CNN and our PR-Net is depicted in
Figure 4. It can be immediately appreciated that the perturbations for PR-Net have more localized
structures. We argue that this is due to the attempt of fooling the KNN mechanism of the PR layers,
resulting in strong noise in ‘background’ areas rather than in the central parts usually containing the
object.

5 CONCLUSIONS

We introduced PeerNets, a novel family of deep networks alternating Euclidean and Graph convolu-
tions to harness information from peer images and showed their robustness to adversarial attacks in a
variety of scenarios through extensive experiments for white-box attacks in targeted and non-targeted
settings. PeerNets are simple to use and can be added to any baseline model with minimal changes and
are able to deliver remarkably lower fooling rates with negligible loss in performance. Interestingly,
the amount of noise required to fool PeerNets is much higher and results in the generation of new
images where the noise has clear structure and is significantly more perceivable to the human eye. In
future work, we plan to provide a theoretical analysis of the method and scale it to ImageNet-like
benchmarks.
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F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda, and M. M. Bronstein. Geometric deep
learning on graphs and manifolds using mixture model CNNs. In Proc. CVPR, 2017a.

F. Monti, M. M. Bronstein, and X. Bresson. Geometric matrix completion with recurrent multi-graph
neural networks. In Proc. NIPS, 2017b.

F. Monti, K. Otness, and M. M Bronstein. Motifnet: a motif-based graph convolutional network for
directed graphs. arXiv:1802.01572, 2018.

S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. Deepfool: a simple and accurate method to fool
deep neural networks. arXiv:1511.04599, 2015.

S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard. Universal adversarial perturbations.
arXiv:1610.08401, 2016.

S. Niklaus, L. Mai, and F. Liu. Video frame interpolation via adaptive convolution. In Proc. CVPR,
2017.

N. Papernot and P. McDaniel. On the effectiveness of defensive distillation. arXiv:1607.05113, 2016.

J. Rauber, W. Brendel, and M. Bethge. Foolbox v0.8.0: A python toolbox to benchmark the robustness
of machine learning models. arXiv:1707.04131, 2017.

J. Redmon, S. Kumar Divvala, R. B. Girshick, and A. Farhadi. You only look once: Unified, real-time
object detection. In Proc. CVPR, 2016.

10



Published as a conference paper at ICLR 2019

S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object detection with
region proposal networks. In Proc. NIPS, 2015.

F. Scarselli, M. Gori, Ah C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural network
model. IEEE Trans. Neural Netw., 20(1):61–80, 2009.

M. Sharif, S. Bhagavatula, L. Bauer, and M. K Reiter. Accessorize to a crime: Real and stealthy
attacks on state-of-the-art face recognition. In Proc. CCS, 2016.

N. Sochen, R. Kimmel, and R. Malladi. A general framework for low level vision. IEEE Trans.
Image Proc., 7(3):310–318, 1998.

J. Su, D. Vasconcellos Vargas, and K. Sakurai. One pixel attack for fooling deep neural networks.
arXiv:1710.08864, 2017.

Ch. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intriguing
properties of neural networks. arXiv:1312.6199, 2013.

C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In Proc. ICCV, 1998.
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arXiv:1710.10903, 2017.

S. Vijayanarasimhan, S. Ricco, C. Schmid, R. Sukthankar, and K. Fragkiadaki. SfM-Net: Learning
of structure and motion from video. arXiv:1704.07804, 2017.

X. Wang, R. Girshick, A. Gupta, and K. He. Non-local neural networks. arXiv:1711.07971, 2017.

Y. Wang, Y. Sun, Z. Liu, S. E Sarma, M. M Bronstein, and J. M Solomon. Dynamic graph CNN for
learning on point clouds. arXiv:1801.07829, 2018.

Y. Yuan, X. Liang, X. Wang, D.-Y. Yeung, and A. Gupta. Temporal dynamic graph LSTM for
action-driven video object detection. In Proc. ICCV, 2017.

V. Zantedeschi, M.-I. Nicolae, and A. Rawat. Efficient defenses against adversarial attacks. 2017.

W. Zhu, Q. Qiu, J. Huang, R. Calderbank, G. Sapiro, and I. Daubechies. Ldmnet: Low dimensional
manifold regularized neural networks. arXiv:1711.06246, 2017.

11



Published as a conference paper at ICLR 2019

A TRAINING HYPER-PARAMETERS

The training hyper-parameters used in our experiments are summarized in Table 1.

Table 1: Optimization parameters for different architectures and datasets. Learning rate is decreased
at epochs 100, 175, and 250 with a step factor of 10−1.

Model Optimizer Epochs Batch Momentum LR L2 reg. LR decay

LeNet-5 Adam 100 128 — 10−3 10−4 —
PR-LeNet-5 Adam 100 32 — 10−3 10−4 —
ResNet-32 Momentum 350 128 0.9 10−1 10−3 step
PR-ResNet-32 Momentum 350 64 0.9 10−2 10−3 step
ResNet-110 Momentum 350 128 0.9 10−1 2× 10−3 step
PR-ResNet-110 Momentum 350 64 0.9 10−2 2× 10−3 step

It worths noticing that due to the limited GPU memory, we typically had to decrease the batch size
for the PR network architectures.

B SAMPLE-SPECIFIC GRADIENT-BASED PERTURBATIONS

Attack
ResNet-32 PR-ResNet-32

Fool. rate [%] E||v||2 E||v||∞ Fool. rate [%] E||v||2 E||v||∞
Grad.Desc. 74.90 118.39 15.69 29.80 238.72 39.39
FGSM 98.97 213.22 3.93 93.04 627.41 11.90
PGD 100 30.06 0.62 100 400.32 16.25

Table 2: Comparison of PeerNet and classical CNN on the CIFAR-10 dataset using various gradient-
based sample-specific attacks.
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C UNIVERSAL ADVERSARIAL PERTURBATIONS

Results for universal adversarial perturbations attacks using dataset MNIST are in Table 3, for
CIFAR-10 in Table 4 and CIFAR-100 in Table 5.

Table 3: Performance and fooling rates on the MNIST dataset for different levels ρ of universal
adversarial noise.

Method Original
Accuracy

Accuracy / Fooling Rate

ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 ρ = 1.0

LeNet-5 98.6% 92.7% / 7.1% 33.9% / 66.0% 14.1% / 85.9% 7.9% / 92.2% 8.2% / 91.7%
PR-LeNet-5 98.2% 94.8% / 4.6% 93.3% / 6.0% 87.7% / 11.7% 53.2% / 46.4% 50.1% / 50.1%

Table 4: Performance and fooling rates on the CIFAR-10 dataset. ResNet-32 v2 and PR-ResNet-32
v2 have double the amount of feature maps after the last two convolutional blocks, meaning instead
of (16, 16, 32, 64), it has (16, 16, 64, 128).

Method Graph size MC runs Acc. orig
[%]

Acc pert. [%] / Fool rate [%]

ρ = 0.04 ρ = 0.08 ρ = 0.10

ResNet-32 N/A N/A 92.73 55.27 / 44.42 26.84 / 73.14 22.74 / 77.34
ResNet-32 v2 N/A N/A 94.17 44.51 / 55.32 16.65 / 83.40 12.58 / 87.58

BRELU + GDA N/A N/A 87.44 87.01 / 6.30 74.57 / 23.99 61.91 / 37.48
MagNet N/A N/A 92.70 57.09 / 42.50 29.48 / 70.50 25.61 / 74.35

PR-ResNet-32 50 1 88.18 87.27 / 7.98 82.43 / 14.08 69.33 / 28.80
PR-ResNet-32 50 10 89.30 87.27 / 7.13 83.32 / 12.99 70.01 / 28.31
PR-ResNet-32 100 5 89.19 87.33 / 7.43 83.37 / 13.20 70.11 / 28.19

PR-ResNet-32 v2 50 10 90.72 85.26 / 11.05 75.46 / 22.20 60.75 / 38.14
PR-ResNet-32 v2 100 5 90.65 85.35 / 11.25 75.94 / 21.82 61.10 / 37.77

Table 5: Performance and fooling rates on the CIFAR-100 dataset. PR-ResNet-110 v2 has double the
amount of feature maps after the last two convolutional blocks, meaning instead of (16, 16, 32, 64), it
has (16, 16, 64, 128).

Method Graph size MC runs Acc. orig
[%]

Acc pert. [%] / Fool rate [%]

ρ = 0.02 ρ = 0.04 ρ = 0.06

ResNet-110 N/A N/A 71.63 45.49 / 49.78 20.99 / 77.64 12.74 / 86.56
PR-ResNet-110 500 5 66.40 61.47 / 23.65 52.61 / 38.59 44.64 / 49.54

PR-ResNet-110 v2 500 5 70.66 63.71 / 22.84 56.40 / 35.01 36.74 / 59.76
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D ADVERSARIAL TRAINING

We have compared our approach to adversarial training method using the code1 provided by Madry
et al. (2017). The ResNet-32 baseline model provided by TensorFlow (the same we use as CNN
baseline in our paper) was trained using the script provided in the repository mentioned above. We
have used two training configurations producing two baseline models:

1. ResNet-32 A - the default hyperparameters provided by the repository
2. ResNet-32 B - the same hyperparameters as in our paper

PeerNet model was trained traditionally using SGD with momentum without adversarial training.

Selection and configuration of the attack was left as provided by the repository mentioned above.

Results shown in the Table 6 show superiority of PeerNet on this benchmark. Moreover, PR-ResNet
was trained without considering any specific attacks and still outperforms ResNet-32, which was
adversarially trained using this specific attack, by margin of 20%.

Table 6: Comparison of PeerNets to adversarially trained version of ResNet-32 baseline on CIFAR-10
dataset.

Method Acc. orig. [%] Acc. pert. [%]

ResNet-32 A 78.86 45.47
ResNet-32 B 75.59 42.53
PR-ResNet 77.44 64.76

E BLACK-BOX ATTACKS

For completeness, additional comparison of our method to some of the strong black box attacks has
been carried out using repository2 by Bhagoji et al. (2017).

The evaluation has been done on small subset of 100 test samples. We have used untargeted both
single-step and iterative query black-box attack computed using finite difference method, compared
to CW-loss based white-box attack. The results are listed in the Table 7.

Table 7: Evaluation of PeerNets on finite-difference based query black-box attacks using CIFAR-10
dataset.

Method Attack type ε
Fooling rate [%]

White-box Black-box

ResNet-32 single step 8.0 82.00 82.00
PR-ResNet single step 8.0 34.00 14.00

ResNet-32 iterative 0.5 41.00 41.00
ResNet-32 iterative 8.0 100.00 100.00
PR-ResNet iterative 8.0 45.00 28.00
PR-ResNet iterative 12.0 63.00 37.00

The results above show that our method is efficient of black-box attacks as well. Moreover, it verifies
that our method does not cause gradient masking. Athalye et al. (2018) mentions that iterative attacks
should be stronger than single step, which in the results above holds. Also, it states that black-box
attacks should be strict subset of white-box attacks, which is confirmed as well.

1https://github.com/MadryLab/cifar10 challenge
2https://github.com/sunblaze-ucb/blackbox-attacks
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F UNIVERSAL ADVERSARIAL PERTURBATIONS FOR CIFAR-10 VISUALLY

Figure 8: Examples of applying universal perturbations to different images from the CIFAR-10 test
set. For each sample, the leftmost is the original image, then adversarial examples for ResNet-32 are
shown in the top row, whereas for PR-ResNet-32 in the bottom row.
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G NON-TARGETED SAMPLE-SPECIFIC PERTURBATIONS FOR CIFAR-10
VISUALLY

(a) FGSM (b) Gadient descent

(c) FGSM (d) Gradient descent

Figure 9: Examples of sample-specific gradient-based perturbations for different images from the
CIFAR-10 test set using FGSM((a), (c)) and gradient descent((b), (d)). For each sample, results
for ResNet-32 are shown in the top row, whereas for PR-ResNet-32 in the bottom row. In order to
successfully generate adversarial samples for PR-Nets, the magnitude of the perturbation has to be
much higher.
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