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ABSTRACT

Deep learning systems have become ubiquitous in many aspects of our lives. Un-
fortunately, it has been shown that such systems are vulnerable to adversarial
attacks, making them prone to potential unlawful uses. Designing deep neural
networks that are robust to adversarial attacks is a fundamental step in making such
systems safer and deployable in a broader variety of applications (e.g. autonomous
driving), but more importantly is a necessary step to design novel and more ad-
vanced architectures built on new computational paradigms rather than marginally
building on the existing ones. In this paper we introduce PeerNets, a novel family
of convolutional networks alternating classical Euclidean convolutions with graph
convolutions to harness information from a graph of peer samples. This results
in a form of non-local forward propagation in the model, where latent features
are conditioned on the global structure induced by the graph, that is up to 3×
more robust to a variety of white- and black-box adversarial attacks compared to
conventional architectures with almost no drop in accuracy.

1 INTRODUCTION

Deep convolutional networks (CNN) are the de-facto standard in almost any computer vision applica-
tion, ranging from image recognition (Krizhevsky et al., 2012; He et al., 2015), object detection (Yuan
et al., 2017; Redmon et al., 2016; Ren et al., 2015), semantic segmentation (He et al., 2017; Badri-
narayanan et al., 2017) and motion estimation (Liu et al., 2017; Vijayanarasimhan et al., 2017; Niklaus
et al., 2017). The ground breaking results of deep learning for industry-relevant problems have made
them also an important ingredient in many real world systems for applications such as autonomous
driving and user authentication. Unfortunately, it has been shown (Szegedy et al., 2013) that such
systems are vulnerable to easy to fabricate adversarial examples opening potential ways for their
untraceable and unlawful exploitation.

Adversarial attacks. Szegedy et al. (2013) found that deep neural networks employed in computer
vision tasks tend to learn very discontinuous input-output mappings, and can be caused to misclassify
an image by applying an almost imperceptible ‘adversarial’ perturbation, which is found by maxi-
mizing the network’s prediction error. While it was expected that addition of noise to the input can
ruin the classification accuracy of a neural network, only tiny adversarial perturbations are needed
as a great surprise to the machine learning community. Multiple methods for designing adversarial
perturbations have been proposed, perhaps the most dramatic being single pixel perturbation by
Su et al. (2017). Because of its potentially dramatic implications on the security of deep learning
technology (which are employed for example, in face recognition systems Sharif et al. (2016) or
autonomously driving cars), adversarial attacks and defenses against them have become a very active
topic of research (Rauber et al., 2017; Kurakin et al., 2018).

Adversarial attacks can be categorized as targeted and non-targeted. The former aim at changing
a source data sample in a way to make the network classify it as some pre-specified target class
(imagine as an illustration a villain that would like a computer vision system in a car to classify all
traffic signs as STOP signs). The latter type of attacks, on the other hand, aims simply at making
the classifier predict some different class. Furthermore, we can also distinguish between the ways in
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which the attacks are generated:white boxattacks assume the full knowledge of the model and of all
its parameters and gradient, while inblack boxattacks, the adversary can observe only the output of a
given generated sample and has no access to the model. It has been recently found that for a given
model and a given dataset there exists auniversal adversarial perturbationby Moosavi-Dezfooli et al.
(2016) that is network-speci�c but input-agnostic, i.e., a single noise image that can be applied to
any input of the network. Such perturbations were furthermore shown to be insensitive to geometric
transformations.

Defense against adversarial attacks.There has been signi�cant recent effort trying to understand
the theoretical nature (Goodfellow et al., 2015; Fawzi et al., 2018) and strategies against adversarial
perturbations. The search for solution has focused on the network architecture, training procedure,
and data pre-processing (Gu & Rigazio, 2014). Intuitively, one could argue that robustness to
adversarial noise could be achieved by adding adversarial examples during training. However,
recent work showed that this brute-force approach does not work in this case and that it forces
the network to converge to a bad local minimum (Tram�er et al., 2018). As an alternative, Tram�er
et al. (2017) introduced ensemble adversarial training augmenting training data with perturbations
transferred from other models. Papernot & McDaniel (2016) proposed defensive distillation training.
Mahdizadehaghdam et al. (2018) showed that deep dictionary learning architecture provides greater
robustness against adversarial noise. Lately, Athalye et al. (2018) have pointed to the problem of so
calledgradient obfuscation, which has to be carefully treated during design of a new defense method.
They have proven it to be the main reason why many state-of-the-art methods work, which further
emphasizes the fact that defense against adversarial attacks are still an open question.

Main contributions. In this paper, we introducePeer-Regularized Networks(PeerNet), a new family
of deep models that uses a graph of samples to performnon-local forward propagation. The output of
the network depends not only by the given test sample at hand, but also by its interaction with several
training samples. We experimentally show that such a novel paradigm leads to substantially higher
robustness (up to3� ) to adversarial attacks at the cost of a minor classi�cation accuracy drop when
using the same architecture. We also show that the proposed non-local propagation acts as a strong
regularizer that makes possible to increase the model capacity to match the current state-of-the-art
without incurring in over�tting. We provide experimental validation on established benchmarks such
as MNIST, CIFAR10 and CIFAR100 using various types of adversarial attacks.

2 RELATED WORKS

Our approach is related to three classes of approaches: deep learning on graphs, deep learning models
combined with manifold regularization, and non-local �ltering. In this section, we review the related
literature and provide the necessary background.

2.1 DEEPLEARNING ON GRAPHS

In the recent years, there has been a surge of interest in generalizing successful deep learning models
to non-Euclidean structured data such as graphs and manifolds, a �eld referred to asgeometric deep
learningin Bronstein et al. (2017). First attempts of learning on graphs date back to the works of
Gori et al. (2005); Scarselli et al. (2009), where the authors considered steady state of learnable
diffusion process (more recent works Li et al. (2016); Gilmer et al. (2017) improved this approach
using modern deep learning schemes).

Spectral domain graph CNNs. Bruna et al. (2013); Henaff et al. (2015) proposed formulating
convolution-like operations in the spectral domain, de�ned by the eigenvectors of the graph Laplacian.
Among the drawbacks of this architecture isO(n2) computational complexity due to the cost of
computing the forward and inverse graph Fourier transform,O(n) parameters per layer, and no
guarantee of spatial localization of the �lters.

A more ef�cient class of spectral graph CNNs was introduced in Defferrard et al. (2016); Kipf &
Welling (2016) and follow up works, who proposed spectral �lters that can be expressed in terms
of simple operations (such as additions, scalar- and matrix multiplications) w.r.t. the Laplacian. In
particular, Defferrard et al. (2016) considered polynomial �lters of degreep, which incur onlyp
times multiplication by the Laplacian matrix (which costsO(jEj) in general orO(n) if the graph
is sparsely connected), also guaranteeing �lters that are supported inp-hop neighborhoods. Levie
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et al. (2017) proposed rational �lter functions including additional inversions of the Laplacian, which
were carried our approximately using an iterative method. Monti et al. (2018) used multivariate
polynomials w.r.t. multiple Laplacians de�ned by graph motifs; Monti et al. (2017b) used Laplacians
de�ned on products of graphs in the context of matrix completion problems.

Spatial domain graph CNNs. On the other hand, spatial formulations of graph CNNs operate on
local neighborhoods on the graph (Duvenaud et al., 2015; Monti et al., 2017a; Atwood & Towsley,
2016; Hamilton et al., 2017; Veli�cković et al., 2017; Wang et al., 2018). Monti et al. (2017a) proposed
the Mixture Model networks (MoNet), generalizing the notion of image `patches' to graphs. The
centerpiece of this construction is a system of local pseudo-coordinatesu ij 2 Rd assigned to a
neighborj of each vertexi . The spatial analogue of a convolution is then de�ned as a Gaussian
mixture in these coordinates. Veli�cković et al. (2017) reinterpreted this scheme asgraph attention
(GAT), learning the relevance of neighbor vertices for the �lter result,

~x i = ReLU

0
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� ij x j
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exp(LeakyReLU(b> [Ax i ; Ax j ])
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where� ij are attention scores representing the importance of vertexj w.r.t. i , and thep � q0 matrix
A and2p-dimensional vectorb are the learnable parameters.

2.2 LOW-DIMENSIONAL REGULARIZATION

There have recently been several attempts to marry deep learning with classical manifold learning
methods (Belkin & Niyogi, 2003; Coifman & Lafon, 2006) based on the assumption of local regularity
of the data, that can be modeled as a low-dimensional manifold in the data space. Zhu et al. (2017)
proposed a feature regularization method that makes input and output features to lie on a low
dimensional manifold. Garcia & Bruna (2017) cast few shot learning as supervised message passing
task which is trained end-to-end using graph neural networks. One of the key disadvantages of such
approaches is the dif�culty to factor out global transformations (such as translations) to which the
network output should be invariant, but which ruin the local similarity.

2.3 NON-LOCAL IMAGE FILTERING

The last class of methods related to our approach are non-local �lters Sochen et al. (1998); Tomasi &
Manduchi (1998); Buades et al. (2005) that gained popularity in the image processing community
about two decades ago. Such non-shift-invariant �lters produce, for every location of the image, a
result that depends not only on the pixel intensities around the point, but also on a set of neighboring
pixels and their relative locations. For example, the bilateral �lter uses radiometric differences
together with Euclidean distance of pixels to determine the averaging weights. The same paradigm
has brought into Non-local networks by Wang et al. (2017), where the response at a given position
is de�ned as a weighted sum of all the features across different spatio-temporal locations, whose
interpolation coef�cients are inferred by a parametric model, usually another neural network.

3 PEER REGULARIZATION

In this paper, we propose a new deep neural network architecture that takes advantage of the data
space structure. The centerpiece of our model is thePeer Regularization(PR) layer, designed as
follows. LetX 1; : : : ; X N ben � d matrices representing the feature maps ofN images, to which we
refer aspeers(heren denotes the number of pixels andd is the dimension of the feature in each pixel).
Given a pixel of imagei , we consider itsK nearest neighbor graph in the space ofd-dimensional
feature maps of all pixels of all the peer images, where the neighbors are computed using e.g. the
cosine distance. Thekth nearest neighbor of thepth pixel x i

p taken from imagei is theqk th pixel x j k
qk

taken from peer imagej k , with k = 1 ; : : : ; K andj k 2 f 1; : : : ; N g, qk 2 f 1; : : : ; ng.

We apply a variant of graph attention network (GAT) by Veli�cković et al. (2017) to the nearest-
neighbor graph constructed this way,
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wherea() denotes a fully connected layer mapping from2d-dimensional input to scalar output, and
� ij k pqk are attention scores determining the importance of contribution of theqk th pixel of imagej
to the outputpth pixel ~x i

p of imagei . This way, the output feature map~X i is pixel-wise weighted
aggregate of the peers. Peer Regularization is reminiscent of non-local means denoising of Buades
et al. (2005), with the important difference that the neighbors are taken from multiple images rather
than from the same image, and the combination weights are learnable.

Full graph approximation. In principle, one would use a graph built out of a nearest neighbor
search across all the available training samples. Unfortunately, this is not feasible due to memory
and computation limitations. We therefore use a Monte Carlo approximation, as follows. Let
X 1; : : : ; X N 0

denote the images of the training set. We select randomly with uniform distributionM
smaller batches ofN � N 0 peers, batchm containing imagesf lm 1; : : : ; lmN g � f 1; : : : ; N 0g. The
nearest-neighbor graph is constructed separately for each batchm, such that thekth nearest neighbor
of pixel p in imagei is pixel qmk in imagej mk , wherem = 1 ; : : : ; M , j mk 2 f lm 1; : : : ; lmN g,
andqmk 2 f 1; : : : ; ng. The output of the �lter is approximated by empirical expectation on theM
batches, estimation as follows

~x i
p =

1
M

MX

m =1

KX

k=1

� ij mk pqmk x j mk
qmk

: (3)

In order to limit the computational overhead,M = 1 is used during training, whereas larger values of
M are used during inference (see Section 4 for details).

Figure 1: Our Peer Regularization illustrated on three pixels (red, green, blue) of a CIFAR image
(center). For each pixel, �ve nearest neighbors are found in peer images. Plots represent the feature
maps in the respective pixels; numbers represent the attention scores.

4 EXPERIMENTS

We evaluate the robustness of Peer Regularization to adversarial perturbations on standard benchmarks
(MNIST LeCun (1998), CIFAR-10, and CIFAR-100 Krizhevsky (2009)) using a selection of common
architectures (LeNet by LeCun et al. (1998) and ResNet by He et al. (2015)). The modi�cations
of the aforementioned architectures with the additional PR layers are referred to as PR-LeNet and
PR-ResNet and depicted in Figure 2. Additional details and results appear in the appendices.
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4.1 GRAPH CONSTRUCTION

Training. During training, the graph is constructed using all the images of the current batch as
peers. We compute all-pairs distances and selectK -nearest neighbors. To mitigate the in�uence of
the small batch sizes during training of PR-Nets, we introduce high level of stochasticity inside the
PR layer, by using dropout of0:2 on the all-pairs distances while performingK -nearest neighbors
and0:5 on the attention weights right before thesoftmaxnonlinearity. We usedK = 10 for all the
experiments.

Testing. For testing, we selectN �xed peer images and then compute distances between each
testing sample and all theN peers. Feeding a batch of test samples, each test sample can be adjacent
only to theN samples in the �xed graph, and not to other test samples. Because of the approximation
in the graph construction (see Section 3), we have to ensure that our random pre-selection of the
graph nodes does not in�uence the performance. We therefore perform a Monte Carlo sampling over
M forward passes with different uniformly sampled graphs withN nodes and we average over theM
runs. We usedN = 50 for MNIST and CIFAR-10 andN = 500 for CIFAR-100, overM = 10 runs.

4.2 ARCHITECTURES

Figure 2: Top: PR-LeNet architecture used on the MNIST dataset;Bottom:PR-ResNet architecture
used for the CIFAR experiments, letters A, B, and C indicate the number of feature maps in each
residual block. The respective baseline models are produced by simply removing the PR layers.

MNIST. We modify the LeNet-5 architecture by adding two PR layers, after each convolutional layer
and before max-pooling (Figure 2, top).

CIFAR-10. We modify the ResNet-32 model, withA = 16, B = 32 andC = 64, as depicted in
Fig. 2 by adding two PR layers at the last change of dimensionality and before the classi�er. Each
ResNet block is a sequence of Conv + BatchNorm + ReLU + Conv + BatchNorm + ReLU layers.

CIFAR-100. For this dataset we take ResNet-110 (A = 16, B = 32 andC = 64) and modify it in
the same way as for CIFAR-10. Each block is of size 18.

4.3 RESULTS

We tested robustness against several different types of white-box adversarial attacks: gradient descent,
fast-gradient sign method of Goodfellow et al. (2015), projected gradient descent and universal
adversarial perturbation of Moosavi-Dezfooli et al. (2015). Similarly to previous works on adversarial
attacks, we evaluate robustness in terms of thefooling rate, de�ned as the ratio of images for which the
network predicts a different label as the result of the perturbation. As suggested in Moosavi-Dezfooli
et al. (2016), random perturbations aim to shift the data points to the decision boundaries of the
classi�ers. For the method of Moosavi-Dezfooli et al. (2016), even if the perturbations should be
universal across different models, we generated it for each model separately to achieve the fairest
comparison.

Timing. On CIFAR-10 our unoptimized PR-ResNet-32 implementation, during training, processes
a batch of64 samples in0:15s compared to the ResNet-32 baseline that takes0:07s. At inference
time a batch of100samples with a graph of size100is processed in1:5s whereas the baseline takes
0:4s. However, it should be noted that much can be done to speed-up the PR layer, we leave it for
future work.
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