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ABSTRACT

We propose a novel deep network architecture for lifelong learning which we refer
to as Dynamically Expandable Network (DEN), that can dynamically decide its
network capacity as it trains on a sequence of tasks, to learn a compact overlapping
knowledge sharing structure among tasks. DEN is efficiently trained in an online
manner by performing selective retraining, dynamically expands network capacity
upon arrival of each task with only the necessary number of units, and effectively
prevents semantic drift by splitting/duplicating units and timestamping them. We
validate DEN on multiple public datasets under lifelong learning scenarios, on
which it not only significantly outperforms existing lifelong learning methods
for deep networks, but also achieves the same level of performance as the batch
counterparts with substantially fewer number of parameters. Further, the obtained
network fine-tuned on all tasks obtained siginficantly better performance over the
batch models, which shows that it can be used to estimate the optimal network
structure even when all tasks are available in the first place.

1 INTRODUCTION

Lifelong learning (Thrun, |1995)), the problem of continual learning where tasks arrive in sequence, is
an important topic in transfer learning. The primary goal of lifelong learning is to leverage knowledge
from earlier tasks for obtaining better performance, or faster convergence/training speed on models
for later tasks. While there exist many different approaches to tackle this problem, we consider
lifelong learning under deep learning to exploit the power of deep neural networks. Fortunately, for
deep learning, storing and transferring knowledge can be done in a straightforward manner through
the learned network weights. The learned weights can serve as the knowledge for the existing tasks,
and the new task can leverage this by simply sharing these weights.

Therefore, we can consider lifelong learning simply as a special case of online or incremental learning,
in case of deep neural networks. There are multiple ways to perform such incremental learning (Rusu
et al.;|2016; Zhou et al.l 2012). The simplest way is to incrementally fine-tune the network to new
tasks by continuing to train the network with new training data. However, such simple retraining
of the network can degenerate the performance for both the new tasks and the old ones. If the new
task is largely different from the older ones, such as in the case where previous tasks are classifying
images of animals and the new task is to classify images of cars, then the features learned on the
previous tasks may not be useful for the new one. At the same time, the retrained representations
for the new task could adversely affect the old tasks, as they may have drifted from their original
meanings and are no longer optimal for them. For example, the feature describing stripe pattern from
zebra, may changes its meaning for the later classification task for classes such as striped t-shirt or
fence, which can fit to the feature and drastically change its meaning.

Then how can we ensure that the knowledge sharing through the network is beneficial for all tasks,
in the online/incremental learning of a deep neural network? Recent work suggests to either use
a regularizer that prevents the parameters from drastic changes in their values yet still enables to
find a good solution for the new task (Kirkpatrick et al., 2017), or block any changes to the old task
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(a) Retraining w/o expansion  (b) No-retraining w/ expansion  (c) Partial retraining w/ expansion

Figure 1: Concept: (a) Retraining models such as Elastic Weight Consoliation Kirkpatrick et al.|(2017) retrains
the entire network learned on previous tasks while regularizing it to prevent large deviation from the original
model. Units and weights colored in red denote the ones that are retrained, and black ones are ones that remain
fixed. (b) Non-retraining models such as Progressive Network (Rusu et al.,2016) expands the network for the
new task ¢, while withholding modification of network weights for previous tasks. (c) Our DEN selectively
retrains the old network, expanding its capacity when necessary, and thus dynamically deciding its optimal
capacity as it trains on.

parameters (Rusu et al.,|2016)). Our strategy is different from both approaches, since we retrain the
network at each task ¢ such that each new task utilizes and changes only the relevant part of the
previous trained network, while still allowing to expand the network capacity when necessary. In
this way, each task ¢ will use a different subnetwork from the previous tasks, while still sharing a
considerable part of the subnetwork with them. Figure [T)illustrates our model in comparison with
existing deep lifelong learning methods.

There are a number of challenges that need to be tackled for such incremental deep learning setting
with selective parameter sharing and dynamic layer expansion.

1) Achieving scalability and efficiency in training: If the network grows in capacity, training cost per
task will increasingly grow as well, since the later tasks will establish connections to a much larger
network. Thus, we need a way to keep the computational overhead of retraining to be low.

2) Deciding when to expand the network, and how many neurons to add: The network might not need
to expand its size, if the old network sufficiently explains the new task. On the other hand, it might
need to add in many neurons if the task is very different from the existing ones. Hence, the model
needs to dynamically add in only the necessary number of neurons.

3) Preventing semantic drift, or catastrophic forgetting, where the network drifts away from the initial
configuration as it trains on, and thus shows degenerate performance for earlier examples/tasks. As
our method retrains the network, even partially, to fit to later learned tasks, and add in new neurons
which might also negatively affect the prior tasks by establishing connections to old subnetwork, we
need a mechanism to prevent potential semantic drift.

To overcome such challenges, we propose a novel deep network model along with an efficient and
effective incremental learning algorithm, which we name as Dynamically Expandable Networks
(DEN). In a lifelong learning scenario, DEN maximally utilizes the network learned on all previous
tasks to efficiently learn to predict for the new task, while dynamically increasing the network capacity
by adding in or splitting/duplicating neurons when necessary. Our method is applicable to any generic
deep networks, including convolutional networks.

We validate our incremental deep neural network for lifelong learning on multiple public datasets,
on which it achieves similar or better performance than the model that trains a separate network for
each task, while using only 11.9%p — 60.3%p of its parameters. Further, fine-tuning of the learned
network on all tasks obtains even better performance, outperforming the batch model by as much
as 0.05%p — 4.8%p. Thus, our model can be also used for structure estimation to obtain optimal
performance over network capacity even when batch training is possible, which is a more general
setup.

2 RELATED WORK

Lifelong learning Lifelong learning (Thrunl [1995)) is the learning paradigm for continual learning
where the model learns from a sequence of tasks while transferring knowledge obtained from earlier
tasks to later ones. Since its inception of idea by Thrun|(1995), it has been extensively studied due
to its practicality in scenarios where the data arrives in streams, such as in autonomous driving or
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learning of robotic agents. Lifelong learning is often tackled as an online multi-task learning problem,
where the focus is on efficient training as well as on knowledge transfer. [Eaton & Ruvolo| (2013))
suggest an online lifelong learning framework (ELLA) that is based on an existing multi-task learning
formulation (Kumar & Daume III, 2012) that efficiently updates latent parameter bases for a sequence
of tasks, by removing dependency to previous tasks for the learning of each task predictor, and
preventing retraining previous task predictors. Recently, lifelong learning is studied in deep learning
frameworks; since lifelong learning of a deep network can be straightforwardly done by simple
re-training, the primary focus of research is on overcoming catastrophic forgetting (Kirkpatrick et al.|
2017; Rusu et al., 20165 [Zenke et al., 2017 [Lee et al., 2017).

Preventing catastrophic forgetting Incremental or lifelong learning of deep networks results in
the problem known as catastrophic forgetting, which describes the case where the retraining of the
network for new tasks results in the network forgetting what are learned for previous tasks. One
solution to this problem is to use a regularizer that prevents the new model from deviating too much
from the previous one, such as ¢5-regularizer. However, use of the simple ¢5-regularizer prevents the
model from learning new knowledge for the new tasks, which results in suboptimal performances
on later tasks. To overcome this limitation, Kirkpatrick et al.| (2017) proposed a method called
Elastic Weight Consolidation (EWC) that regularizes the model parameter at each step with the model
parameter at previous iteration via the Fisher information matrix for the current task, which enables
to find a good solution for both tasks. [Zenke et al.|(2017)) proposed a similar approach, but their
approach computes the per-synapse consolidation online, and considers the entire learning trajectory
rather than the final parameter value. Another way to prevent catastrophic forgetting is to completely
block any modifications to the previous network, as done inRusu et al.|(2016), where at each learning
stage the network is expanded with a subnetwork with fixed capacity that is trained with incoming
weights from the original network, but without backpropagating to it.

Dynamic network expansion There are few existing works that explored neural networks that can
dynamically increase its capacity during training. |[Zhou et al.|(2012)) propose to incrementally train a
denoising autoencoder by adding in new neurons for a group of difficult examples with high loss,
and later merging them with other neurons to prevent redundancy. Recently, |Philipp & Carbonell
(2017) propose a nonparametric neural network model which not only learns to minimize the loss but
also find the minimum dimensionality of each layer that can reduce the loss, with the assumption
that each layer has infinite number of neurons. (Cortes et al.|(2016)) also propose a network that can
adaptively learn both the structure and the weights to minimize the given loss, based on boosting
theory. However, none of these work considered multi-task setting and involves iterative process of
adding in neurons (or sets of neurons), while our method only needs to train the network once for
each task, to decide how many neurons to add. Xiao et al.|(2014) propose a method to incrementally
train a network for multi-class classification, where the network not only grows in capacity, but forms
a hierarchical structure as new classes arrive at the model. The model, however, grows and branches
only the topmost layers, while our method can increase the number of neurons at any layer.

3 INCREMENTAL LEARNING OF A DYNAMICALLY EXPANDABLE NETWORK

We consider the problem of incremental training of a deep neural network under the lifelong learning
scenario, where unknown number of tasks with unknown distributions of training data arrive at
the model in sequence. Specifically, our goal is to learn models for a sequence of 7' tasks, ¢t =
1,...,t,...,T for unbounded T where the task at time point ¢ comes with training data D; =
{x;, yi}f\gl. Note that each task ¢ can be either a single task, or comprised of set of subtasks.
While our method is generic to any kinds of tasks, for simplification, we only consider the binary
classification task, that is, y € {0, 1} for input feature € R%. It is the main challenge in the lifelong
learning setting that all the previous training datasets up to ¢ — 1 are not available at the current time ¢
(only the model parameters for the previous tasks are accessible, if any). The lifelong learning agent
at time ¢ aims to learn the model parameter W by solving following problem:

mi%pizec(wf; WD)+ AQ(WY), t=1,... (1)
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Figure 2: Incremental learning of a dynamically expandable network: Left: Selective retraining. DEN first
identifies neurons that are relevant to the new tasks, and selectively retrains the network parameters associated
with them. Center: Dynamic network expansion. If the selective retraining fails to obtain desired loss below set
threshold, we expand the network capacity in a top-down manner, while eliminating any unnecessary neurons
using group-sparsity regularization. Right: Network split/duplication. DEN calculates the drift p! for each unit
to identify units that have drifted too much from their original values during training and duplicate them.

where L is task specific loss function, W is the parameter for task ¢, and Q(W?) is the regularization
(e.g. element-wise £5 norm) to enforce our model W appropriately. In case of a neural network
which is our primary interest, W' = {W;}, is the weight tensor.

To tackle these challenges of lifelong learning, we let the network to maximally utilize the knowledge
obtained from the previous tasks, while allowing it to dynamically expand its capacity when the
accumulated knowledge alone cannot sufficiently explain the new task. Figure [2Jand Algorithm 1
describes our incremental learning process.

Algorithm 1 Incremental Learning of a Dynamically Expandable Network

Input: Dataset D = (Ds, ..., Dr), Thresholds 7, o
Output: W7
fort=1,...,Tdo
if t = 1 then
Train the network weights W using Eq.
else
W' = SelectiveRetraining(W'™') {Selectively retrain the previous network using Algorithm 2 }
if £; > 7 then
W' = DynamicExpansion(W*) {Expand the network capacity using Algorithm 3}
W' = Split(W*) {Split and duplicate the units using Algorithm 4 }

In following subsections, we describe each component of our incremental learning algorithm in
detail: 1) Selective retraining, 2) Dynamic network expansion, and 3) Network split/duplication.

Selective Retraining. A most naive way to train the model for a sequence of tasks would be
retraining the entire model every time a new task arrives. However, such retraining will be very
costly for a deep neural network. Thus, we suggest to perform selective retraining of the model, by
retraining only the weights that are affected by the new task. Initially(f=1), we train the network with
¢ -regularization to promote sparsity in the weights, such that each neuron is connected to only few
neurons in the layer below:

L
minimize £(W'=" D) + ulZ Wi @
=1

where 1<I<L denotes the l;;, layer of the network, VVlt is the network parameter at layer [, and p
is the regularization parameter of the element-wise ¢; norm for sparsity on W. For convolutional
layers, we apply (2, 1)-norm on the filters, to select only few filters from the previous layer.

Throughout our incremental learning procedure, we maintain W*~! to be sparse, thus we can
drastically reduce the computation overheads if we can focus on the subnetwork connected new task.
To this end, when a new task ¢ arrives at the model, we first fit a sparse linear model to predict task ¢
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using topmost hidden units of the neural network via solving the following problem:
minimize (W, s Wiy Do) + Wi G)

L,t

where W/ ;! | denotes the set of all other parameters except W} .. Thatis, we solve this optimization
to obtain the connections between output unit o, and the hidden units at layer L-1 (fixing all other
parameters up to layer L-1 as W*~1). Once we build the sparse connection at this layer, we can
identify all units and weights in the network that are affected by the training, while leaving the part of
the network that are not connected to o, unchanged. Specifically, we perform breadth-first search on
the network starting from those selected nodes, to identify all units (and input feature) that have paths
to o;. Then, we train only the weights of the selected subnetwork S, denoted as W:

minimize L(WE ; WL Dy) + pul|[ Wil )
w5

We use the element-wise /5 regularizer since the sparse connections have been already establishe
This partial retraining will result in lower computational overhead and also help with avoiding
negative transfer, since neurons that are not selected will not get affected by the retraining process.
Algorithm 2 describes the selective retraining process.

Algorithm 2 Selective Retraining

Input: Datatset D;, Previous parameter W'+
Output: network parameter W'*
Initialize { <~ L — 1, S = {o¢}
Solve Eq. to obtain W7 ,
Add neuron i to S if the weight between ¢ and o; in Wf,t is not zero.
forl=L—-1,...,1do
Add neuron ¢ to S if there exists some neuron j € S such that VVltZ ]1 #0.
Solve Eq. [4|to obtain W

Dynamic Network Expansion. In case where the new task is highly relevant to the old ones, or
aggregated partial knowledge obtained from each task is sufficient to explain the new task, selective
retraining alone will be sufficient for the new task. However, when the learned features cannot
accurately represent the new task, additional neurons need to be introduced to the network, in order
to account for the features that are necessary for the new task. Some existing work (Zhou et al., |2012;
Rusu et al., |2016) are based on a similar idea. However, they are either inefficient due to iterative
training that requires repeated forward pass (Zhou et al.,2012), or adds in constant number of units at
each task ¢ without consideration of the task difficulty (Rusu et al., 2016) and thus are suboptimal in
terms of performance and network capacity utility.

To overcome these limitations, we instead propose an efficient way of using group sparse regulariza-
tion to dynamically decide how many neurons to add at which layer, for each task without repeated
retraining of the network for each unit. Suppose that we expand the I, layer of a network with a
constant number of units, say k, inducing two parameter matrices expansions: W} = [Wt L, WN ]
and W/ |, = [mtjll; VV/\_[ 1] for outgoing and incoming layers respectively, where W s the
expanded weight matrix involved with added neurons. Since we do not always want to add in all
k units (depending on the relatedness between the new task and the old tasks), we perform group
sparsity regularization on the added parameters as follows:

N . t—1 N
mlrvlé,mlzeﬁ(W Wi D) + pl| W ||1+ng:HW gll2 )

where g € G is a group defined on the incoming weights for each neuron. For convolutional
layers, we defined each group as the activation map for each convolutional filter. This group sparsity
regularization was used in/Wen et al.|(2016) and |Alvarez & Salzmann|(2016) to find the right number
of neurons for a full network, while we apply it to the partial network. Algorithm [3|describes the
details on how expansion works.

"We can add in 1 -norm here for further identification of necessary weights
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After selective retraining is done, the network checks if the loss is below certain threshold. If not,
then at each layer we expand its capacity by k neurons and solve for Eq.[5] Due to group sparsity
regularization in Eq. 5] hidden units (or convolutional filters) that are deemed unnecessary from the
training will be dropped altogether. We expect that from this dynamic network expansion process,
the model captures new features that were not previously represented by VVlt_l to minimize residual
errors, while maximizing the utilization of the network capacity by avoiding to add in too many units.

Algorithm 3 Dynamic Network Expansion

Input: Datatset D, Threshold 7
Perform Algorithm 2]and compute £
if £ > 7 then

Add k units A at all layers

Solve for Eq.[3]at all layers
forl=L—-1,...,1do

Remove useless units in h{\/

Network Split/Duplication. A crucial challenge in lifelong learning is the problem of semantic
drift, or catastrophic forgetting, which describes the problem where the model gradually fits to
the later learned tasks and thus forgets what it learned for earlier tasks, resulting in degenerate
performance for them. The most popular yet simple way of preventing semantic drift is to regularize
the parameters from deviating too much from its original values using ¢5-regularization, as follows:

minimize LWED,) + A\|WE— W13 (6)
where t is the current task, and W'~ is the weight tensor of the network trained for tasks {1, ... ¢ —

1}, and ) is the regularization parameter. This £5 regularization will enforce the solution W* to be
found close to W!~1, by the degree given by \; if ) is small, then the network will be learned to
reflect the new task more while forgetting about the old tasks, and if A is high, then W* will try to
preserve the knowledge learned at previous tasks as much as possible. Rather than placing simple ¢
regularization, it is also possible to weight each element with Fisher information (Kirkpatrick et al.,
2017). Nonetheless, if number of tasks is large, or if the later tasks are semantically disparate from
the previous tasks, it may become difficult to find a good solution for both previous and new tasks.

A Dbetter solution in such a case, is to split the neuron such that we have features that are optimal
for two different tasks. After performing Eq. [6] we measure the amount of semantic drift for each
hidden unit i, p!, as the /»-distance between the incoming weights at t-1 and at t. Then if p! > o,
we consider that the meaning of the feature have significantly changed during training, and split this
neuron ¢ into two copies (properly introducing new edges from and to duplicate). This operation can
be performed for all hidden units in parallel. After this duplication of the neurons, the network needs
to train the weights again by solving Eq. [6] since split changes the overall structure. However, in
practice this secondary training usually converges fast due to the reasonable parameter initialization
from the initial training. Algorithm 4 describes the algorithm for split operation.

Algorithm 4 Network Split/Duplication

Input: Weight W'=1, Threshold &
Perform Eq. B]to obtain W*
for all hidden unit ¢ do
pi = [[wi — w2
if p! > o then
Copy i into ¢’ (w’ introduction of edges for i’)
Perform Eq. E]with the initialization of W* to obtain W

Timestamped Inference. In both the network expansion and network split procedures, we times-
tamp each newly added unit j by setting {z}; = ¢ to record the training stage ¢ when it is added to
the network, to further prevent semantic drift caused by the introduction of new hidden units. At
inference time, each task will only use the parameters that were introduced up to stage ¢, to prevent
the old tasks from using new hidden units added in the training process. This is a more flexible
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strategy than fixing the weights learned up to each learning stage as in Rusu et al.| (2016), since early
tasks can still benefit from the learning at later tasks, via units that are further trained, but not split.

4 EXPERIMENT

Baselines and our model. 1) DNN-STL. Base deep neural network, either feedforward or convo-
lutional, trained for each task separately.

2) DNN-MTL. Base DNN trained for all tasks at once.
3) DNN. Base DNN. All incremental models use ¢5-regularizations.

3) DNN-L2. Base DNN, where at each task ¢, W is initialized as W*~! and continuously trained
with f5-regularization between Wt and Wt—1,

4) DNN-EWC. Deep network trained with elastic weight consolidation (Kirkpatrick et al.,|2017)
for regularization.

5) DNN-Progressive. Our implementation of the progressive network (Rusu et al.|[2016), whose
network weights for each task remain fixed for the later arrived tasks.

6) DEN. Our dynamically expandable network.

Base network settings. 1) Feedforward networks: We use a two-layer network with 312-128
neurons with ReL.U activations. 2) Convolutional networks. For experiments on the CIFAR-100
dataset, we use a modified version of AlexNet (Krizhevsky et al.,2012)) that has five convolutional
layers (64-128-256-256-128 depth with 5 x 5 filter size), and three fully-connected layers (384-192-
100 neurons at each layer).

All models and algorithms are implemented using the Tensorflow (Abadi et al.,2016)) library. We
will release our codes upon acceptance of our paper, for reproduction of the results.

Datasets. 1) MNIST-Variation. This dataset consists of 62,000 images of handwritten digits from
0 to 9. Unlike MNIST, the handwritten digits are rotated to arbitrary angles and has noise in the
background, which makes the prediction task more challenging. We use 1,000/200/5, 000 images
for train/val/test split for each class. We form each task to be one-versus-rest binary classification.

2) CIFAR-100. This dataset consists of 60, 000 images of 100 generic object classes(Krizhevsky &
Hinton, [2009). Each class has 500 images for training and 100 images for test. We used a CNN as
the base network for the experiments on this dataset, to show that our method is applicable to a CNN.
Further, we considered each task as a set of 10 subtasks, each of which is a binary classification task
on each class.

3) AWA (Animals with Attributes). This dataset consists of 30, 475 images of 50 animals (Lampert
et al., [2009). For features, we use DECAF features provided with the dataset, whose dimensionality
is reduced to 500 by PCA. We use random splits of 30/30/30 images for training/validation/test.

4.1 QUANTITATIVE EVALUATION

We validate our models for both prediction accuracy and efficiency, where we measure the efficiency
by network size at the end of training and training time. We first report the average per-task
performance of baselines and our models in the top row of Figure 3] DNN-STL showed best
performances on AWA and CIFAR-100 dataset; they are expected to perform well, since they are
trained to be optimal for each task, while all other models are trained online which might cause
semantic drift. When the number of tasks is small, MTL works the best from knowledge sharing
via multi-task learning, but when the number of tasks is large, STL works better since it has larger
learning capacity than MTL. Our model, DEN, performs almost the same as these batch models, and
even outperforms them on MNIST-Variation dataset. Retraining models combined with regularization,
such as L2 and EWC do not perform well, although the latter outperforms the former. This is expected
as the two models cannot dynamically increase their capacity. Progressive network works better than
the two, but it underperforms DEN on all datasets. The performance gap is most significant on AWA,
as larger number of tasks (7" = 50) may have made it more difficult to find the appropriate network
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Figure 3: Top row:Average per-task performance of the models over number of task ¢, averaged over five
random splits. The numbers in the legend denote average per-task performance after the model has finished
learning (¢t = T'). Bottom row: Accuracy over network capacity. The network capacity is given relative to the
capacity of MTL, which we consider as 100%.
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Figure 4: Effect of selective retraining. (a) shows AUROC over actual training time and (b) shows the number
of selected neurons by selective retraining. (¢) Expansion performance. We report both the prediction AUROC
and network capacity measured by the relative number of parameters to that of DNN-MTL on MNIST-Variance
dataset. Reported numbers are mean and standard error for five random splits.

capacity. If the network is too small, then it will not have sufficient learning capacity to represent
new tasks, and if too large, it will become prone to overfitting.

We further report the performance of each model over network capacity measured relative to MTL
on each dataset, in Figure [3] (bottom row). For baselines, we report the performance of multiple
models with different network capacity. DEN obtains much better performance with substantially
fewer number of parameters than Progressive network or obtain significantly better performance using
similar number of parameters. DEN also obtains the same level of performance as STL using only
18.0%, 60.3%, and 11.9% of its capacity on MNIST-Variation, CIFAR-100, and AWA respectively.
This also shows the main advantage of DEN, which is being able to dynamically find its optimal
capacity, since it learns a very compact model on MNIST-Variation, whilst learning a substantially
large network on CIFAR-100. Further fine-tuning of DEN on all tasks (DEN-Finetune) obtains the
best performing model on all datasets, which shows that DEN is not only useful for lifelong learning,
but can be also used for network capacity estimation when all tasks are available in the first place.

Effect of selective retraining. We further examine how efficient and effective the selective training
is, by measuring the training speed and the area under ROC curve on MNIST-Variation dataset. To
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Figure 5: Semantic drift experiment on the MNIST-Variation dataset. We report the AUROC of different
modelsont = 1,¢ = 4, and ¢t = 7 at each training stage to see how the model performance changes over time
for these tasks. Reported AUROC is the average over five random splits.

this end, we compare the model without network expansion, which we refer to as DNN-Selective,
against retraining on DNN-L2 and DNN-L1 (Eq.(2)), for both the accuracy and efficiency. Figure 4(a)
shows both the accuracy over training time measured as actual time spent with GPU computation, for
each model. We observe that selective retraining takes significantly less time than the full retraining
of the network, and even less than DNN-L1 that comes with sparse network weights. Further, whereas
DNN-L1 obtained slightly less accuracy than DNN-L2, DNN-Selective improves the accuracy over
the base network by 2%p. This accuracy gain may be due to the suppression of catastrophic forgetting,
as DEN trains only a partial subnetwork for each newly introduced task. Figure 4(b) shows the
number of selected neurons at each layer with selective retraining. Note that DNN-selective mostly
selects less portion of upper level units which are more task-specific, while selecting larger portion of
more generic lower layer units.

Effect of network expansion. We also compare the effectiveness of the network expansion against
the model with a variant of our model that does selective retraining and layer expansion, but without
network split. We refer to this model as DNN-Dynamic. We compare DNN-Dynamic with DNN-L2
used in the main experiment, and DNN-Constant, which is a version of our model that expands its
capacity at each layer with fixed number of units, on MNIST-Variation dataset. Figure 4(c) shows
the experimetal results. DNN-Dynamic obtains the best mean AU-ROC, significantly outperforming
all models including DNN-Constant, while increasing the size of the network substantially less than
DNN-Constant (k=20). This may be because having less number of parameters is not only beneficial
in terms of training efficiency, but also advantageous in preventing the model from overfitting. We
can set the network capacity of DNN-Constant to be similar (k=13) to obtain better accuracy, but it
still underperforms DEN which can dynamically adjust the number of neurons at each layer.

Effect of network split/duplication and timestamped inference. To see how network
split/duplication and unit timestamping help prevent semantic drift (or catastrophic forgetting),
while allowing to obtain good performances on later tasks, we compare the performance of our model
against baselines and also a variant of our DEN without timestamped inference (DEN-No-Stamp) at
different learning stages. Each figure in Figure E] (a), (b), and (c) shows how the performance of the
model changes at each training stage ¢, for tasks ¢=1, t=4, and ¢=7.

We observe that DNN-L2 prevents semantic drift of the models learned at early stages, but results
in increasingly worse performance on later tasks ({=4, 7). DNN-EWC, on the other hand, has better
performance on later tasks than DNN-L2, as reported in Kirkpatrick et al.|(2017)). However, it shows
significantly lower performance than both DNN-Progressive and our model, which may be due to its
inability to increase network capacity, that may result in limited expressive power. DNN-Progressive
shows no semantic drift on old tasks, which is expected because it does not retrain parameters for them.
DEN w/o Timestamping works better than DNN-Progressive on later tasks, with slight performance
degeneration over time. Finally, our full model with timestamped inference, DEN, shows no sign
of noticeable performance degeneration at any learning stage, while significantly outperforming
DNN-Progressive. This results show that DEN is highly effective in preventing semantic drift as well.
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5 CONCLUSION

We proposed a novel deep neural network for lifelong learning, Dynamically Expandable Network
(DEN). DEN performs partial retraining of the network trained on old tasks by exploiting task
relatedness, while increasing its capacity when necessary to account for new knowledge required
to account for new tasks, to find the optimal capacity for itself, while also effectively preventing
semantic drift. We implement both feedforward and convolutional neural network version of our
DEN, and validate them on multiple classification datasets under lifelong learning scenarios, on
which they significantly outperform the existing lifelong learning methods, achieving almost the
same performance as the network trained in batch while using as little as 11.9%p — 60.3%p of its
capacity. Further fine-tuning of the models on all tasks results in obtaining models that outperform
the batch models, which shows that DEN is useful for network structure estimation as well.
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APPENDIX A

A.1 RESULTS ON PERMUTED MNIST

We provide additional experimental results on Permuted MNIST dataset|Lecun et al.[(1998). This
dataset consists of 70,000 images of handwritten digits from 0 to 9, where 60, 000 images are used
for training, and 10, 000 images for test. The difference of this dataset from the original MNIST
is that each of the ten tasks is the multi-class classification of a different random permutation of
the input pixels. Figure [6]shows the results of this experiment. Our DEN outperforms all lifelong
learning baselines while using only 1.39 times of base network capacity. Further, DEN-Finetune
achieves the best AUROC among all models, including DNN-STL and DNN-MTL.
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Figure 6: Results on the Permuted MNIST. Average per-task AUROC and network capacity of all models
relative to MTL on Permuted MNIST.
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