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ABSTRACT

We propose an unsupervised method for building dynamic representations of se-
quential data, particularly of observed interactions. The method simultaneously
acquires representations of input data and its dynamics. It is based on a hierar-
chical generative model composed of two levels. In the first level, a model learns
representations to generate observed data. In the second level, representational
states encode the dynamics of the lower one. The model is designed as a Bayesian
network with switching variables represented in the higher level, and which gen-
erates transition models. The method actively explores the latent space guided by
its knowledge and the uncertainty about it. That is achieved by updating the latent
variables from prediction error signals backpropagated to the latent space. So,
no encoder or inference models are used since the generators also serve as their
inverse transformations. The method is evaluated in two scenarios, with static im-
ages and with videos. The results show that the adaptation over time leads to better
performance than with similar architectures without temporal dependencies, e.g.,
variational autoencoders. With videos, it is shown that the system extracts the
dynamics of the data in states that highly correlate with the ground truth of the
actions observed.

1 INTRODUCTION

When observing a particular interaction some behaviors tend to repeat over time following specific
dynamics. Understand such behaviors and differentiating the dynamics that define them is a relevant
task that allows to characterize the interactions, acquire knowledge from them, and build reactive
systems that adapt to evolving situations. Those interactions could be, for example, human activities
captured in video, data from a vehicle-mounted camera, or the motion of an agent of interest in a
given environment.

If we consider a video in which different kinds of action sequences can be observed, the task we
aim at for a learning system would be to separate the diverse types of dynamics in the observed
sequences and embed them in representational states. For example, imagine a camera mounted
on a car. In a video from such device, one would observe predictable changes on the frames for
particular actions, for instance, there would be a certain dynamics when the car goes straight, and
other where it curves. Similarly, when observing a human performing different kinds of actions in a
given scenario, the dynamics followed by the person for each action is to be differentiated. However,
such separations should be performed actively during an on-line observation, therefore the system,
and particularly its internal representations, should adapt dynamically to the changing data.

A viable process to achieve that goal implies representing every observation, e.g., each frame, so
that estimating the dynamic evolution of such representations consequently means abstracting the
dynamics of the observations. For example, when observing people performing sets of actions,
one would describe frames regarding the position and the pose of the person acting. Nonetheless,
given an unsupervised framework, such information is not available. So, the way in which the
representations are defined is to depend on the observed dynamics. That is so since the relevance
of what is to be represented comes from its relation to the evolution of the observations, e.g., the
actions being executed.
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Therefore we define our primary goal as to the acquisition of representational states observations
and their dynamics simultaneously in an unsupervised way.

Accordingly, the definition of representations is central and determines how learning is to be under-
stood. In particular, representational states are to be defined as dynamic and capable of adjusting
themselves to changing environments and uncertainty in sensory data. Taking into account such
constraints, we consider an active process where changes in the world and internal states play a pri-
mary role interpreting the observed data. That is in opposition to an entirely passive process where
an input is transformed into static representations, e.g., a classifier. So, the representational process
should be understood in the temporal domain as a mechanism that responds to perceived changes.

To implement that, it would be necessary that a system, e.g., a neural network (NN), adapts itself
over time to the observed data. With NNs the primary way to achieve similar behaviors is through
recurrent networks. When recurrence is involved, the states of previous time steps affect the inter-
pretation of the current inputs, which could include information from different time steps as in the
case of NNs based on LSTM units (Hochreiter & Schmidhuber, 1997).

Nonetheless, it is also possible to define the adaptability of a NN regarding its predictive accuracy. In
general, the prediction error of the network’s output is only used for adapting the NN during training
by adjusting its parameters through, for example, backpropagation. However, a more dynamic view
would include a capability of such kind as part of the inference process. That is, the NN could benefit
from a feature that allows it to modify some of its internal states dynamically to model the sensed
data based on feedback from its prediction error in a backpropagation-like way. That would allow
an active process in which the interpretation of the environment depends also on previous states, or
beliefs, therefore making the system capable of actively adapting to changing scenarios.

The ideas of actively interpreting and adapting to observed data coincide with dynamic views on
conceptual representations in the cognitive science. From such perspectives, representations are
seen more as dynamic and distributed structures than as symbols or static categories. In particular,
Kiefer & Pulvermüller (2012) conclude from neuroimaging studies that concepts might be flexible,
experience-dependent and modality-specific, while distributed across the sensory-motor systems. In
particular, for them, the flexibility is crucial for the capability of adapting to diverse situations.

Olier et al. (2017b) elaborate on how the definition of concepts has evolved and how it impacts
the way in which learning is understood, and how that consequently affects the design of artificial
learning agents. In particular, they argue that concepts are not to be seen as the encapsulation of
knowledge in symbols, but as the structure on which the emergence of behavior occurs. Therefore,
how we represent should be seen as dynamic and time dependent, that is, representations make sense
only when embedded in the interaction process.

Moreover, Olier et al. (2017b) analyze differences between several views on concepts by linking
categorization based approaches to the computational views of cognition, while ideas of concepts as
flexible, distributed and context-dependent to many aspects of embodied Wilson & Golonka (2013)
and grounded cognition (Barsalou, 2008). They describe an approach in which representing implies
an act of actively interpreting and adapting to the world.

Barsalou (2008), from the perspectives of grounded cognition, has elaborated on how simulation is
fundamental for concept’s acquisition and processing, referring to simulation as the re-enactment
of sensorimotor modalities. That can be linked to the ideas on predictive coding (Rao & Ballard,
1999), in which top-down information in the cortex carries predictions about lower levels, while
feed-forward connections carry residual errors. Those notions are further developed by Friston
(2010) with the free energy principle, where it is argued that the primary function of the brain is to
minimize free energy or suppress prediction error.

Those ideas have been developed and interpreted in different ways as algorithms. Frequently, imple-
mentations aim at systems that update internal beliefs about causes of perceived information from
prediction error. Some approaches, particularly given the probabilistic characteristics of the free
energy principle, are based on Bayesian methods and generative models, which are argued to ac-
count for contextual reactions and causality given temporal relations (Chater et al., 2006). Here
we explore some existing techniques and propose a method based on generative models that aims
at constructing representations of observed and its dynamics. Particularly we propose a generative
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model that works simultaneously as an encoder, or its own inverse model, by the use of prediction
error to update internal states.

2 PREVIOUS WORK

Different approaches based on predictive coding and prediction error minimization have been pre-
sented recently. The ideas by (Tani, 2014) focus on such principles to train recurrent networks. In
his work, hierarchical architectures are proposed, where internal states at each level change in dif-
ferent time scales through leaky recursions. Each level in that hierarchy encodes more abstract and
stable representations of observed sequences. Based on those ideas, Choi & Tani (2017) propose a
similar approach based on convolutional neural networks (CNN). In those works, the input to the
system is the prediction error.

Similarly, Lotter et al. (2017) have proposed an architecture based on convolutional LSTMs. In such
model, each level of a hierarchy processes the prediction error of lower ones and sends informa-
tion down to lower levels for predicting future frames. In turn, Canziani & Culurciello (2017) and
Ilin et al. (2017) also propose hierarchical architectures where the activations of layers at the same
level of a coder and a generator, are used laterally, sending information about the last prediction
during inference, and about the inference for the generation. In all of those works, the learning is
unsupervised.

Eyjolfsdottir et al. (2017) present a semi-supervised approach, where motion prediction error and
classification error are minimized simultaneously during training. It is a model based on a recurrent
neural network with LSTMs that simultaneously classifies actions and predicts future motion of
observed agents in video data.

None of those methods focus on building variational representations explicitly. Recent works have
proposed models that combine recurrent NNs with state space models, building methods under the
ideas of Bayesian networks, and particularly of Kalman Filters (Haarnoja et al., 2016; Karl et al.,
2017). Some approaches along those lines learn dynamic latent variables that adapt to the envi-
ronment explicitly from prediction error signals (Olier et al., 2017a). In those works, the ideas of
variational Bayes or Variational Auto-Encoders (VAE) (Kingma & Welling, 2014; Rezende et al.,
2014) are used to model data in terms of probability distributions. Architectures of that kind have
been used to build representations useful for predicting behaviors (Olier et al., 2017c). Nonetheless,
in those methods mentioned so far, knowledge about the dynamics observed is embedded implicitly
in the recursions of the NNs and thus not differentiated nor represented explicitly.

One of the primary goals of the present work is to define internal states that represent different
dynamics, or ways in which the observations change over time. We aim at getting as a result some
internal representational states that are more stable over periods where such dynamics are relatively
constant and change when a new model is needed.

The representations of the dynamics are to be variational, and the best way to achieve that is through
generative models such as the VAE. Those architectures are typically based on an encoder and a
generator. Nonetheless, recently Bojanowski et al. (2017) have proposed an architecture that without
the need for an encoder, aims at obtaining similar advantages to the generative adversarial networks
(GAN) (Goodfellow et al., 2014) by estimating a latent representation of data capable of producing
good samples. That yields more compact models and a direct coupling between representational
states and data only through the generator.

An advantage of that to the problem at hand is that it is not assumed that the parameters of the
distributions are to be defined deterministically by the observation through an encoder, but that can
depend on the relation between the predictions and the data itself. In Bojanowski et al. (2017) that is
done to define the best distribution to generate the data during training; however, that concept could
be extended to the inference process continuing to modify the distributions based on the prediction
error.
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3 METHOD

The model presented is divided in two hierarchical levels and is thought as a Bayesian network. It is
based on a generative model that, in opposition to other methods as VAE or GAN does not assume
an encoder, but all the processing is based only on the decoder or generator, similarly to the method
by Bojanowski et al. (2017).

Figure 1: Left, the general diagram of the architecture, where a prior of Zt+1 is generated from the
current state through the transition model At generated from St (dynamics level). The predicted
observation is denoted as P (Xt+1|Zt+1) (observation level). Right, the prediction process and the
update of Z and S from prediction error.

As can be seen in figure 1 left, in the two levels we consider generative models. We denominate the
lower one the ”observation level”, and in it the observations Xt are generated from the latent vari-
ables Zt. In the second level, denominated ”dynamics level”, a transition models At are generated
from St. Such models are understood as the dynamics defining the transition from Zt to Zt+1.

To develop the ideas we want to introduce, the problem is divided in two parts; a first one where
the inputs are constant and the representations have to adapt to the input over several iterations;
and a second case where the input data is changing over time and internal states are being adapted
to represent the inputs and their dynamics at the same time. In that first case no transition model
is considered, thus only the observation level is described; In the second case, the two levels are
considered.

3.1 CONSTANT INPUT

As the model is based on predictive coding, and we do not consider a specific recognition model or
encoder, the way in which Zt is updated given an observation depends on the prediction error. In
that sense, if Xt was to remain constant, Zt should be adjusted over time to converge to the best
distribution that represents Xt given the knowledge stored in the generator. During both, training
and inference, the updating of Z works as backpropagation, but optimizing Zt and not the weights.
This process can be thought as an active exploration of the latent space guided by the uncertainty
in the knowledge acquired by the generator until a point in time. Moreover, as the latent space
is explored mainly by the dynamic adaptation from prediction error, an inverse transformation is
implicitly learned, which allows to recover the latent representations from a generated sample or to
estimate them from a real one.

The observations Xt are represented through a set of independent Gaussian distributions Zt ∼
N
(
µZt

, diag(σ2
Zt

)
)

as in Kingma & Welling (2014); Rezende et al. (2014). We assume that there

is a generative model ϕX that generates X̂i
t |Zt ∼ N

(
µ̂Xi

t
, diag(σ̂2

Xi
t
)
)

, for each element i in the
observations, e.g., each color component of every pixel in an image. Then, the parameters of such
distributions are defined as µ̂Xi

t
, σ̂Xi

t
= ϕX(Zt).

Assuming the case where the observations are constant (Xt = X), Zt is to be adjusted to reduce
prediction error over time and match the best states to generateX (see figure 2). The error is defined
as the mean Log-Likelihood over all the predicted component i in X , denoted as logL(Xi

t |X̂i
t).

From now on, we assume that X are images with N pixels and c color components. Thus, each
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i represent a color component of a pixel in X , that is, c ∗ N components by image. We define
εt = 1

c∗N
∑
i logL(Xi

t |X̂i
t), and the proportional correction to each component j in µZj

t
given the

observation as δZjt = ∂εt
∂Zj

t

. However, to achieve a better stability, we define the correction in terms
of the one in the previous time step as a way of momentum:

δZjt =
1

2

(
δZjt−1 +

∂εt

∂Zjt

)
(1)

Figure 2: Left, the general description of the update process, where a prediction is generated and the
measured error is used to update Zt. On the right, the same process is unrolled in time as a recurrent
network.

Given that such correction is dependent on the weights of the generator at a given time during
training, the values could produce variations leading to instabilities, or osculations around the op-
timal point if used directly. Then, we use a normalized version that is proportional to the er-
ror. To normalize the correction we take into account all the components of Z. First we rescale
δZt as ∆Zjt = δZjt /argmaxj(δZ

j
t ) and we define a normalized version of the variances as

ςjZt = σjZt
/argmaxj(σ

j
Zt

)

From these normalizations one can defined the correction µZj
t+1

= µZj
t
− ∆Zjt ς

jZt. That
however, would not be proportional to the prediction error. To that end, a normalized mea-
sure of the error is used. In this case we use the normalized likelihood of the predicted image

NLt = 1
cN

∑
i exp

[
−(µ

Xi
t
−Xi

t)
2

(2(σ
Xi

t
)2)

]
, which resides in the interval [0, 1].

Defining NLt is defined as the mean of NLt over all i in X , and LWt = 1−NLt, the correction of
the expected values of Z becomes:

µZj
t+1

= µZj
t
− LWt∆Z

j
t ς
jZt (2)

which means that the value of the correction diminishes as the prediction error gets lower.

In order to update the values of σZ , we assume that it is to increase if the correction goes beyond
the current variance, and get reduced otherwise. That is achieved by:

σjZt+1
= σjZt

(
0.5 + LWt

|∆jZt|
ςjZt

)
(3)

Loss The loss is calculated as the mean log-likelihood and a regularization defined as the Kullback-
Leibler divergence between Z and a prior Pθ(Z), which we assume as a normal distribution for this
constant input case. Then the loss function to be minimized for T iterations of Z updates is given
by:

Lc =
1

T

T∑
t=1

[−εt +KL (P (Zt)||Pθ(Z))] (4)

3.2 TRANSITION MODEL AND PREDICTION

When Xt is changing over time, updating Z at time t will direct the distribution towards the best
representation of the current frame. Nonetheless, as it is necessary to predict the following frame, a
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transition model is needed to encode how the states Z change, and implicitly how X changes over
time. Then, we include the generative model that given St produces the transition model At.

St in the model in figure 1 right acts as a switching variable that determines the transition model in
the observation level. Here, such transition is considered as linear of the kind Zt+1 = AtZt + C,
where At is a matrix, and C is noise. C in this case will be modelled by the sampling of Zt and St,
which are to encode the variance in the observations and transitions.

Considering a video, series of frames are fed as observations, and then the model should represent
the sequences in the training data as a specific semantics that makes sense for the observed interac-
tion. Such segmentation is to be achieved by S regarding how observations change over time in a
given situation.

The proposed process is depicted in figure 1 right. It starts with generating At|St, from which
a prior Ẑt+1 can be estimated given the lineal model assumed. From such prior, a prediction of
the observation in the following time step X̂t+1|Ẑt+1 can be generated. As before, X̂t+1|Ẑt+1 ∼
N
(
µ̂Xt+1

, diag(σ̂2
Xt+1

)
)

and µ̂Xt+1
, σ̂Xt+1

= ϕX(Ẑt+1). Equally, St ∼ N
(
µSt

, diag(σ2
St

)
)

The prior distribution Ẑt+1 ∼ N
(
µ̂Zt+1

, diag(σ̂2
Zt+1

)
)

is estimated as follows: For the expected
value, µ̂Zt+1

= AtµZt
, where At|St = ϕA(St) is a generative model. For the variance, a function

to be learned is defined such that σ̂Zt+1
= ϕσ(σZt

).

As for Z, the updates for the expected values of S are calculated in relation to the prediction error
as:

δSkt =
1

2

(
δSkt−1 +

∂εt+1

∂Skt

)
(5)

Then again, the result of such differentiation should be normalized to ensure more stability and
convergence. Moreover, as we are trying to model switching variables with S, we would need some
kind of non-linearity to make the changes dependent on certain situations, and so S would not vary
constantly as Z. In this case, such condition would be a constant increase in prediction error over a
given period.

To achieve that, we also define the normalized correction of the components of S as ∆Skt =

δSkt /argmaxk(δSkt ), and ςjSt = σjSt
/argmaxj(σ

j
St

). The update of the expected values of S
as:

µSk
t+1

= µSk
t
− γSk

t
∆Skt ςS

k
t (6)

γSk
t

is a weight that determines whether there should be a change, and the amplitude of such change.

γSk
t

= LWtWSt
|δSkt | (7)

WSt
is the way in which the non-linearity is introduced. In this case we use a sigmoid that performs

a gating function, allowing a change when needed and keeping µSk
t

constant otherwise; it is defined
as:

WSt
= 1/

(
1 + exp

[
−
(
(1− pNLt)− (α− 2σLw)

)
β
])

(8)

In that expression, α and σLw are moving averages of the expected value and variance of LWt

weighted over the last 100 iterations. pNLt is a moving average of (NLt)
2/pNLt−1 weighted over

the last 10 iterations. β in turn is defined as ln ((1/0.75− 1)/(σLw/2)).

These parameters are defined to activate the sigmoid when prediction error starts to accumulate
beyond learned normal levels. α and σLw are learned statistics of the error, and can be seen as the
threshold when combined in the exponential. In other words, it is expected that the sigmoid gets
active when the error starts rising beyond the mean plus two standard deviations. β is set so that
the sigmoid reaches, in average, 0.75 when the values is half standard deviation over the threshold.
Finally, pNLt is the variable that is keeping track of the prediction error over time; so it will rise if
there is an increasing or constantly high prediction error, which would activate the sigmoid if higher
than the threshold.

That can be interpreted as switching between transition models, changing them when the current
one is leading to constantly high prediction errors. In other words, the system identifies when the
situation has changed, and estimates in which situation it is, which is represented by S.
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The variance of S is updated such that it diminishes when there is no change, meaning that the
system is more certain about the dynamic model, and would increase when there is a change. That
is achieved by:

σSk
t+1

= `σSk
t

+
(
WStLWt|∆Skt |

)
(9)

` is a positive number in (0, 1); we have set it to 0.9 for the experiments.

Loss As before the loss is composed by the prediction error and a regularization that minimizes
the divergence between the prior and the posterior of Z. So for a sequence of T time steps the loss
is defined as:

Lt =
1

T

T∑
t=1

[
−εt +KL

(
P (Zt)||P (Ẑt)

)]
+KL (P (ZT )||Pθ(Z)) (10)

The last term is added so that the transition models are forced to maintain the values of the priors
low, as otherwise the matrix would increase the values over time.

3.3 MODEL IMPLEMENTATION DETAILS

The generative model of the observation level ϕX is a NN composed of a 500 units fully connected
layer, which inputs are a sample of Zt during training, or the expected value during test. It is
followed by four layers of transposed convolutions. The receptive fields of all the convolutions are
3 by 3, with stride 2, and the stack size of the filters are 128, 64, 64 and 32. The generator ϕA is
composed by two separated fully connected layer of three layers with input size 2 (the size of S),
the first two layers have 500 units, and with output of size 500 (size of Z). The inner product of the
output of these two NNs yields the matrix A. The variance of the prior Ẑt is estimated by ϕσ which
is composed of three fully connected layers, with input and output of size 500, and middle layers
of size 1000. The update process is disconnected from the general backpropagation, as the weights
are optimized for the generation process. The models are optimized using the AdaMax algorithm
Kingma & Ba (2014).

4 EXPERIMENTS

Two experiments are set to evaluate the situations described in 3, constant input and prediction based
on changing transitions models.

4.1 CONSTANT INPUT

For testing the first case, an image is maintained constant as the input to the network in figure 2
during 10 time steps. The aim is to test how the evolution of the internal representations lead to the
best reconstruction possible given the knowledge stored in the generator. That is to be measured
regarding the quality of the samples and the prediction error. The results are also compared to a
VAE based on the same architecture as the network, though with two by two pooling in the encoder
instead of stride. We compare to a VAE as it is a generative model in which representations are
determined regarding probability distributions, and where the loss function is defined in the same
way as we do. As has been explored in other works, sharper images can be achieved with methods
based on GANs, and in general using more complex loss functions as Bojanowski et al. (2017) have
shown. Nonetheless, those approaches do not follow the criteria of variational representations we
are focused on here.

The dataset used is the aligned images of the CelebA Dataset (Liu et al., 2015), consisting of aligned
faces. 4000 images are used for training.

In figure 3 the differences between the results achieved with our method, and with a VAE are de-
picted. In that figure one can see the original image on the left, and the output of 5 of the 10 iterations
in the update process of the observation level given the static input. Clearly, the active exploration
of the latent space leads to better results particularly in terms of color details both of the persons and
the background, as well as in terms of sharper details in the faces. Equally, in cases where the poses
are less common, these are emulated with the iteration, but are not achieved by the VAE.
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Figure 3: Two sets of examples comparing the results achieved with our method and with the VAE.
Five time steps in the iteration process are shown, and the image produced by the VAE compared at
the end.

Table 1: Log-likelihood of reconstructions

Method Log-likelihood

Ours -0.466
VAE -1.34

4.2 DYNAMIC INPUT AND PREDICTION

To test the complete model, including the dynamics level, video sequences of a person performing
different actions are used. The aim is to determine if the changes in S over time correspond to the
variations in motion patterns of the person being observed. We use a dataset where a person sitting
at a table passes an object to other persons, or place it on defined points on the table. The dataset has
been introduced by Schydlo et al.. The scenario is a table with four marked spots on the table, and
four participants are sat around it. Only one participant is fully visible, and is the one performing
the actions. That person performs six different actions that consist os sequences of sub-action as
handing a ball to someone else, placing the ball on a marked spot, or resting the hand on the table.
Sequences of those sub actions are classified, and the initial time of each actions have been labelled
in the dataset. The six actions are performed randomly in sequence. A whole video is divided in
three, one of the sequences is used for training, and the others for validation and testing.

We have trained the method proposed with these video sequences, and the results show a high
correlations between the changes in the values of S, and the initial times marked for each action in
the ground truth.

To visualize the results, we aligned the frames of the video to the values of µSt over time. That can
be seen in figure 4. The initial action is handing the ball to someone on the right (from t = 0 to
t = 20), followed by the action of receiving the ball back (from t = 20 to t = 55). Later, the ball
is placed on the table to then be handed to the person on the bottom of the frame (from t = 125 to
t = 155), who later returns it (from t = 165 to t = 200). Finally, the ball is placed on the table
again.

This shows how the model is successfully segmenting the actions in the video sequence in a way
that can be even semantically useful for a human observer.

In figure 5 the values of µSt
over time are plotted together with the action labels of the ground truth.

This shows the relation between the changes in S and the predefined actions. Though they do not
coincide exactly, most of the changes in S happen in synchrony with the ground truth. That implies
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Figure 4: The values of µSt
over time and alignd frames depicting the corresponding actions.

that the model is extracting the regularity of the predefined actions and learning transition models
for each of them. However, there are actions that are similar among them, and thus are represented
with very similar values in S.

Figure 5: The values of µSt over time and the actions given as the ground truth rescaled to fit in the
same graph.

5 CONCLUSIONS

We have presented a method for representing dynamic data, and we have tested it on videos of
interactions. The states are organized in two levels representing the observations and their dynamics
respectively. It has been shown that the method proposed is capable of learning generative models
by exploring the latent space through an active adaptation based on prediction error propagation. In
the model, the representations make sense in the temporal domain, as to serve their function they
have to evolve with the observed data dynamically.

Two experiments have been performed to test the model. The first one on static data showing how
the adaptation leads to better results than an entirely static model, e.g., a VAE. The process evaluated
in that case takes more processing that the static method, yet it shows that the accuracy is not only
dependent on the generalization capability of the model, but also on its ability to adapt temporally to
the data. In a second experiment, videos of actions performed in a given scenario are used to learn
representations of the images and the dynamics of the activities observed. The results show that the
model is capable of extracting a semantics similar to the one defined as ground truth for the data
used.

These ideas have been connected with definitions positions from different branches of the cognitive
and brain sciences, which state that interpreting the world is an active process. That suggests that a
possible path towards better machine learning algorithms may imply understanding representations
and their processing as a temporal process embedded in a dynamic interaction with the environment,
or the evolution of the data itself.
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