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ABSTRACT

The goal of statistical compressive sensing is to efficiently acquire and reconstruct
high-dimensional signals with much fewer measurements, given access to a finite
set of training signals from the underlying domain being sensed. We present a
novel algorithmic framework based on autoencoders that jointly learns the acqui-
sition (a.k.a. encoding) and recovery (a.k.a. decoding) functions while implicitly
modeling domain structure. Our learning objective maximizes a variational lower
bound to the mutual information between the signal and the measurements. Em-
pirically, we show 20− 46% improvement in reconstruction accuracies over com-
peting approaches on the MNIST dataset for the same number of measurements.

1 INTRODUCTION

Efficient acquisition and recovery of high-dimensional signals is important for many machine learn-
ing applications such as magnetic resonance imaging and remote sensing (Lustig et al., 2007; Her-
man & Strohmer, 2009). In compressive sensing, we formalize this problem as solving a system of
linear equations for an n-dimensional signal x∗ ∈ Rn using m measurements y ∈ Rm related as:

y = Ax∗ + ε (1)

where the linear map A ∈ Rm×n is referred to as the measurement matrix and ε ∈ Rm is the
measurement noise. If m << n, then the system is underdetermined and additional assumptions
are required to guarantee a unique recovery. The celebrated results in the compressive sensing
literature posit that a k-sparse signal can be recovered with high probability using only O(k log n

k )
measurements acquired via a measurement matrix A satisfying certain conditions (Candès & Tao,
2005; Donoho, 2006; Candès et al., 2006). Algorithmically, recovery is done via LASSO which
solves for a convex optimization problem (Tibshirani, 1996; Bickel et al., 2009).

In statistical compressive sensing (Yu & Sapiro, 2011), we are given a finite set of training signals
sampled i.i.d. from an unknown data distribution pdata and the goal is to design an algorithm that
minimizes the reconstruction error. Intuitively, there are two external factors to consider while
designing a compressive sensing pipeline: the distribution of signals pdata and the measurement
noise ε. The pipeline itself is a two step procedure, wherein the first step is the acquisition of the
measurements for the signals under the measurement matrix A, and the second step is the efficient
reconstruction of the signal by solving for an appropriate inverse optimization problem.

We propose Uncertainty Autoencoders (UAE), a framework that learns both the acquisition (a.k.a.
encoding) and the recovery (a.k.a. decoding) procedures for compressive sensing given a fixed
budget on the number of measurements (i.e., m). For learning a UAE, we design an objective that
maximizes for a variational lower bound on the empirical mutual information between x∗ and y. The
encoders and decoders are parameterized via neural networks and optimized jointly in an end-to-end
manner. Unlike the vast majority of prior work in statistical compressive sensing, our framework
does not explicitly model strong assumptions such as sparsity (Baraniuk et al., 2010), or restricts the
recovered signals to lie on a range determined by a generative model (Bora et al., 2017).

Our proposed algorithmic framework is both computationally and statistically efficient. By amortiz-
ing the recovery procedure, UAEs can scale to massive datasets, unlike prior frameworks that solve
an optimization problem at test time for each new data signal. In terms of statistical performance, we
demonstrate 20−46% improvements in L2 reconstruction accuracies over competing approaches in
the reconstruction errors for compressive sensing on the MNIST dataset.
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2 LEARNING AND INFERENCE IN UNCERTAINTY AUTOENCODERS

We use upper-case symbols to denote probability distributions and assume they admit absolutely
continuous densities on a suitable reference measure, denoted by the corresponding lower-case no-
tation. Consider two multivariate random variables X and Y defined over Rn and Rm respectively.
Our goal is to learn a forward mapping fθ : Rn → Rm from X to Y such that:

Y = fθ(X) + ε (2)

where we assume a suitable noise model for ε, for e.g., centered Gaussian noise with fixed variance.
If fθ is linear in X (such as a neural network with no hidden layers), then we recover the system of
equations in Eq. (1). In order to learn θ that permits easy acquisition and recovery of x, we propose
to maximize the mutual information between X and Y :

max
θ
Iθ(X,Y ) = H(X)−Hθ(X|Y ) (3)

where H denotes the differential entropy.1 Since the first term does not depend on X , we can
equivalently minimize the conditional entropy Hθ(X|Y ) as:

min
θ
Hθ(X|Y ) = Ex∗,y∼Pθ(X,Y )[log pθ(x

∗|y)]

= Ex∗,y∼Pθ(X,Y )[log pθ(x
∗, y)− log pθ(y)] (4)

where Pθ(X,Y ) is a joint distribution over the signals and the measurements. Moreover, we assume
that the joint distribution factorizes, i.e., Pθ(X,Y ) = P (X)Pθ(Y |X). The observation model
Pθ(Y |X) depends on the noise model for ε. A common choice is to assume a Gaussian noise
model, and hence we have Pθ(Y |X) = N (fθ(X), σ2Im) for some positive scalar σ.

The data distribution P (X) is however unknown and accessible only via a finite set of D inde-
pendent samples X = {x∗i ∈ Rn}Di=1. Consequently, an estimate of the joint density pθ(x∗, y)
in Eq. (4) based on an empirical estimate of P (X) can have high variance in practice. Hence, we
introduce a factorized, variational approximation Qθ,φ(X,Y ) = Qφ(X|Y )Pθ(Y ) parameterized by
φ. Substituting for the variational approximation, we get a lower bound to the objective in Eq. (4):

Ex∗,y∼Pθ(X,Y )[log pθ(x
∗, y)− log pθ(y)] ≥ Ex∗,y∼Pθ(X,Y )[log qθ,φ(x

∗, y)− log pθ(y)]

= Ex∗,y∼Pθ(X,Y )[log qφ(x
∗|y)]

where the inequality follows from non-negativity of KL-divergence. Hence, our proposed frame-
work optimizes for the following objective:

min
θ,φ

1

D

D∑
i=1

Ey∼Pθ(Y |X=x∗
i )
[log qφ(x

∗
i |y)] . (5)

We parameterize both the encoder and decoder using feedforward neural networks and learn these
parameters jointly via gradient methods. We refer to the above modeling and learning framework
as Uncertainty Autoencoder (UAE) because it explicitly seeks to minimize the uncertainty in signal
recovery from the measurements. If we assume no measurement noise (i.e., ε = 0) and assume the
observation model qφ(x∗i |y) to be a Gaussian with mean µφ(y) and a fixed variance σ, then the UAE
objective reduces to minimizing the mean squared error between x∗ and µφ(y). This special case
of a UAE corresponds to a regular autoencoder (Bengio et al., 2009) where the measurements Y
signifying a hidden representation for X .

During test time, we directly observe the measurements ytest that are assumed to be satisfying Eq. (2)
for a target x∗test. Hence, we can directly recover the signal by performing a forward pass through
the decoder. For a Gaussian observation model, the mean and the mode coincide and hence the
reconstruction x̂ based on an MLE or MAP decoding is simply given as x̂ = µφ(ytest) with the L2
reconstruction error given by ‖x∗test − x̂‖2.

1Our analysis extends to the discrete setting as well, where one would consider the Shannon entropy.
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Table 1: Average test L2 reconstruction errors (per image) for the MNIST dataset.

Number of measurements (m) 2 5 10 25

Gaussian + LASSO 8.81 8.85 8.85 8.89
Gaussian + VAE 8.95 8.06 7.09 3.95

UAE 7.06 4.39 3.80 2.78

3 RELATED WORK

The UAE framework is deceptively close to that of denoising autoencoders (DAE) and variational
autoencoders (VAE). However, a DAE (Vincent et al., 2008) is different in the sense that it adds
noise at the level of the input signal X , unlike a UAE where noise is assumed to be added at the
level of the mapped signal fθ(X). A VAE (Kingma & Welling, 2014)) on the other hand explicitly
models the prior on the latent variables during decoding while the decoding phase of a UAE only
models the likelihood Qφ(X|Y ).

The UAE objective, is closely related to the information maximizing objective, also referred to
as InfoMax (Bell & Sejnowski, 1997). The InfoMax objective seeks to optimize for projections
of the data that maximize the mutual information. A variant of the objective has been applied for
compressive sensing (Weiss et al., 2007; Chang et al., 2009). However, these works considers a non-
amortized setting and hence does not learn a decoder. Instead, it fits a linear measurement matrix
to a per-data point variational approximation of the true posterior and is hence computationally
expensive both during training and test time recovery.

4 EXPERIMENTS

The goal of our experiments is to evaluate the the effect of jointly learning the acquisition and the
reconstruction procedures using uncertainty autoencoders. In order to do so, we performed com-
pressive sensing on the MNIST dataset of handwritten digits (LeCun et al., 2010) with extremely
low number of measurements. In particular we considered m ∈ {2, 5, 10, 25}. We assume a Gaus-
sian noise model with σ = 0.01. Given a set of fixed budgets on the number of measurements, we
evaluated the reconstruction error for the following benchmark measurement matrices and decoders.

• LASSO decoding with random Gaussian matrices. This decoder is based on a sparsity
assumption on the underlying signal and solves for a convex L1-minimization problem
such that x̂ = argminx ‖y −Ax‖1

• VAE decoding with random Gaussian matrices. Consider a trained variational autoen-
coder P(X,Z) over X and latent variables Z ∈ Rk. Letting the mean function of the
observation model P(X|Z) be denoted as G : Rk → Rn, then this decoder solves for
x̂ = G(argminz ‖y −AG(z)‖2).

• UAE encoding and decoding. As discussed in Section 2, x̂ = µφ(y).

The UAE encoder contains a hidden layer with 500 units. The decoder contains two hidden layers
with 500 units each. We used ReLU activations and trained using Adam optimizer (Kingma &
Ba, 2015) with a learning rate of 0.01 and a batch size of 100 trained over 100 epochs. The L2
reconstruction errors averaged over 100 test instances for all m considered are shown in Table 1.

We observe that UAEs drastically outperforms both LASSO and VAE based decoding with random
Gaussian matrices. In ongoing work, we are testing the UAE framework on more complex datasets.
We are also excited about exploring connections of our learning objective with classic dimensional-
ity reduction techniques such as principal component analysis and independent component analysis.
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