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Abstract

In recent years, graph prompting has emerged as
a promising research direction, enabling the learn-
ing of additional tokens or subgraphs appended
to the original graphs without requiring retrain-
ing of pre-trained graph models across various
applications. This novel paradigm, shifting from
the traditional “pre-training and fine-tuning” to
“pre-training and prompting” has shown signifi-
cant empirical success in simulating graph data
operations, with applications ranging from rec-
ommendation systems to biological networks and
graph transferring. However, despite its potential,
the theoretical underpinnings of graph prompt-
ing remain underexplored, raising critical ques-
tions about its fundamental effectiveness. The
lack of rigorous theoretical proof of why and how
much it works is more like a “dark cloud” over
the graph prompt area to go further. To fill this
gap, this paper introduces a theoretical framework
that rigorously analyzes graph prompting from a
data operation perspective. Our contributions are
threefold: First, we provide a formal guarantee
theorem, demonstrating graph prompts’ capacity
to approximate graph transformation operators, ef-
fectively linking upstream and downstream tasks.
Second, we derive upper bounds on the error of
these data operations by graph prompts for a sin-
gle graph and extend this discussion to batches of
graphs, which are common in graph model train-
ing. Third, we analyze the distribution of data
operation errors, extending our theoretical find-
ings from linear graph aggregations (e.g., GCN) to
non-linear graph aggregations (e.g., GAT). Exten-
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sive experiments support our theoretical results
and confirm the practical implications of these
guarantees.

1 Introduction

Graph Neural Networks (GNNs) have been widely used
in analyzing various graph-structured data. A standard
workflow using GNNs is the “pre-training and fine-tuning’
paradigm, where a model is first trained on a large-scale,
general-purpose dataset and then fine-tuned on a specific
downstream task. While this method has been effective in
transferring learned representations, it often needs many ad-
vanced tricks to retrain the model parameters for each new
task, which can be computationally intensive and may not
fully capture the unique characteristics of the downstream
tasks, potentially limiting the model’s generalization.

>

Inspired by the success of prompting techniques in natu-
ral language processing (NLP), there has been a growing
interest in adapting similar ideas to graph data through “pre-
training and prompting”. Graph prompts (Sun et al., 2023b)
modify the input graphs by adding learnable tokens or sub-
graphs, enabling the pre-trained GNN to better align with
the requirements of downstream tasks without tuning the
model parameters. Many empirical works (Sun et al., 2022;
Liu et al., 2023; Tan et al., 2023; Huang et al., 2023; Ma
et al., 2023) have found that graph prompting can reduce
computational overhead, preserve the generality of the pre-
trained model, and allow for seamless application across
multiple tasks to achieve better expressive capability than
the traditional paradigm.

Recently, some studies (Fang et al., 2024; Sun et al., 2023a)
have realized that the reason why graph prompts work may
relate to their capability in simulating various data opera-
tions like deleting/adding nodes/edges, changing node fea-
tures, and even removing subgraphs. This makes graph
prompts stand out from their counterpart in the NLP area
and inspires many empirical applications like recommenda-
tion systems (Yang et al., 2023; 2024), biological networks
(Diao et al., 2022), transferring knowledge across differ-
ent graph domains (Guo et al., 2023; Zhu et al., 2024b),
and more. Unfortunately, despite these promising results,
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the theoretical basis of graph prompting remains underex-
plored. Existing works primarily rely on empirical valida-
tion and lack rigorous theoretical analysis to explain why
graph prompts are effective and how they can be systemat-
ically designed. This gap is just like a “dark could” over
the graph prompt area, raising critical questions about their
broader applications and the development of more advanced
methods that could leverage their full potential.

In light of these limitations, this paper provides a compre-
hensive theoretical framework for graph prompting from
a data operation perspective. First, we establish rigorous
guarantee theorems that demonstrate the underlying rea-
son why graph prompts work is their capacity to simulate
various graph data operations, and our theorems further an-
swer why such capacity can make the pre-trained model
meet new task requirements without retraining. Second,
we derive upper bounds on the error introduced by graph
prompts when simulating these data operations. We analyze
this error for individual graphs and extend our discussion
to batches of graphs, which is crucial for understanding the
scalability and generalization of graph prompts in practi-
cal scenarios where models are usually trained on multiple
graphs. Third, we explore the distribution of the data oper-
ation error and extend our theoretical findings from linear
graph aggregations, such as Graph Convolutional Networks
(GCNs), to non-linear aggregations like Graph Attention
Networks (GATs). This extension demonstrates the robust-
ness of our theoretical framework across different GNN
architectures and provides insights into how non-linearity
affects the effectiveness of graph prompts. We conduct
extensive experiments to confirm our theoretical findings.
By offering such a solid theoretical foundation for graph
prompting, our work advances the understanding of how
and why graph prompts work, guides for designing more
effective prompting techniques, and empowers researchers
and practitioners to leverage them with greater confidence
in various applications.

2 Background

Graph Prompt. Compared with “pre-training and fine-
tuning”, which first trains a graph model via some easily
accessible task on the graph dataset and then tries to adapt
the model to a new task (or even a new graph dataset), “pre-
training and prompting” aims to keep the pre-trained model
unchanged but adjust the input data to make the downstream
task compatible with the pre-training task. Mathematically,
let Fp- be a graph model where its parameters (™) have
been pre-trained and frozen; T);,,, be the downstream task,
in which the task objective is measured by a loss function
L, .- Let G be a graph dataset and each graph instance
G € G can be denoted as G = (V, &, X, A) where V de-
notes the node set with a node feature matrix X € RIVIX¥:

& denotes the edge set and the connection of nodes can be
further indicated by the adjacent matrix A € {0, 1}/VI*IVI,
Let P, denote a parameterized graph prompt function with
learnable w. In most cases, graph prompts consist of some
token vectors or subgraphs which will be integrated into the
original graph G. P, indicates how to define such graph
prompts and how to combine them with the original graph
to generate a new graph: G, = P, (G). Graph prompt
learning aims to optimize the following target:

w* = argmin Z Lr,,. (Fo-(P,(Q)) (1)
Geg

Without loss of generality, we assume all these tasks are
graph level (e.g., graph classification). That means Fy(G)
will output a graph-level embedding for the downstream
task. For node-level and edge-level tasks, many studies
(Sun et al., 2023a; Liu et al., 2023) have proved that we can
always find solutions to translate these tasks to the graph-
level task.

GPF and All-in-One. Current graph prompt designs, as
described in the review by Sun et al. (2023b), can be pri-
marily categorized into two types: prompt as token vectors
added to node features, and prompt as additional graph in-
serted to the original graph. In the rest of this paper, we
focus on two representative frameworks: GPF (Fang et al.,
2022) as an example of adding extra prompt vectors, and
All-in-One (Sun et al., 2023a) as an example of adding
prompt subgraphs. Our choice is motivated by our interest
in simulating graph operations at a theoretical level. The
GPF and All-in-One frameworks provide the most funda-
mental approaches among these methods. The rest graph
prompt designs can usually be treated as their special cases
or natural extensions (Sun et al., 2023b).

Specifically, GPF aims to learn a token vector w € R'*F
where F' is the same dimension of the node features in
the original graph, then the prompt token is directly added
to each node’s feature vector, making the original fea-
ture matrix X = {xy,--- ,zn} changed to X, = {z; +
w, &N + w}. In this way, the original graph G =
(V,€,X,A)ischanged to P, (G) = G, = (V, &, X, A).

All-in-One offers the prompt as a graph format by defin-
ing prompt tokens, token structures and inserting patterns.
Let 2 € RF*F be the learnable matrix corresponding to K
prompt tokens. Let A;,, € {0, 1}*** indicate token struc-
tures where A;; = 1 means there is an inner link connecting
the ¢-th and the j-th tokens and vice versa. A;, can be
calculated by the inner product of these tokens. Similarly,
the inserting pattern tells us how to connect each token to
the original graph nodes, which is denoted by a cross matrix
Ao € {0,1}**N_ Then the graph prompt changes the
original graph G to G, = (V,,,, £, X, Q, A,) where V,, is
the collection of the original nodes and the token nodes; &,
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includes the original edges, inner links among tokens and
the cross links between tokens and the original nodes; A,
is the collection of A, A;,,, and A,,.

Motivations. Initially, Fang et al. (2022) have proved that
graph prompt can simulate any graph data operation (e.g.,
deleting/adding nodes/edges, changing node features, or
removing subgraphs, etc). That means for any graph data
operation t(-), we can always learn a graph prompt reach-
ing Fy-(G,,) = Fp-(t(G)). However, this equivalence
needs a very strong precondition: the graph model F' should
not contain any non-linear layer, which is apparently very
hard to meet in the practical solutions. Later, Sun et al.
(2023a) extended this finding with more advanced prompts
and empirically observed that the error to such approxima-
tion Fyp»(G,) — Fp«(t(G)) may relate to the non-linear
layers of the graph model and the prompt design. How-
ever, these observations are not followed by a critical theory
proof. Recently, there has been an increasing number of
empirical works on graph prompts achieving success in var-
ious applications. Unfortunately, the theoretical basis of
graph prompt is still very tumbledown and we still have
not figured out why graph prompts work in theory, espe-

In this paper, we go deeper in theory for the graph prompt
capability of manipulating data. We conduct a comprehen-
sive effectiveness analysis of general graph prompt learn-
ing through the concepts of “bridge sets” and “e-extended
bridge sets” (see in section 3.3). Based on extensive the-
oretical derivations and substantial experimental evidence,
we establish theorems related to the error bound of graph
prompts in simulating graph data operations. Our goal is
to figure out in theory how this error changes from a single
graph to a batch of graphs, from a linear model to a non-
linear model, and which factors relate to this error. Through
this work, we wish to push forward the graph prompt area
with a more solid theory basis, help researchers to design
more scientific graph prompt techniques, and offer them
theory confidence for their further usage.

3  Why Graph Prompt Works? A Data
Operation Perspective

Let Fp- be any given GNN model that has been pre-trained
on a given task 7,.. Here 8* means the parameters have
been determined and frozen. For a given graph instance
G,ri, We can expect the model to output appropriate graph-
level embedding on 7). because this model has already
been trained on this task. However, when we try to use
this model on a new task Ty,,, the output embedding,
Fy+(Gori), can not guarantee acceptable performance be-
cause the pre-training task 7. may be incompatible with

downstream tasks 7., .

3.1 Perspective from Model Tuning

To fill this gap, “pre-training and fine-tuning” aims to adapt
the pre-trained model to a new version and wish it could
perform better. Assume there exists an optimal function,
say C, which can map G,,; to the embedding C(G,,;) to
achieve good performance on T,,,. The nature of “pre-
training and fine-tuning” is to hope the fine-tuned graph
model could approximate to C'(G;):

FG*%G# (Gori) — C(Gori) (2)

However, achieving this goal usually requires fine-tuning
the graph model, which is not always efficient and needs
many empirical tuning tricks. The tuning course may be
even harder if the pre-trained model is ill-designed for the
downstream task. In addition, we can not guarantee that
fine-tuning the pre-trained model (i.e. 8* — 6#) can al-
ways surpass training the model from scratch because the
preserved knowledge may contribute negatively to the down-
stream task.

3.2 Perspective from Data Operation

Instead of the above model-level tricks, graph prompts pro-
vide a data-level alternative. Some prior works (Fang et al.,
2024; Sun et al., 2023a) have initially proved that graph
prompts can simulate any graph operations (e.g., delet-
ing/adding nodes/edges/subgraphs, changing node features,
etc). However, how effective of graph prompt is and why
this works for the new task are still not yet answered. To
answer these questions, we first explain our data operation
perspective by a theorem as follows:

Theorem 1. Let Fy« be a GNN model pre-trained on task
Tpre With frozen parameters (0%); let Ty, be the down-
stream task and C' is an optimal function to Tye,,. Given any
graph G o, C(Gyyi) denotes the optimal embedding vector
to the downstream task (i.e. can be parsed to yield correct
results for G,,; in the downstream task), then there always
exists a bridge graph Gy,.; such that Fy«(Gpri) = C(Gori)-

A detailed proof of Theorem 1 can be seen in Appendix
A.3.1, from which we can find that for any given graph
Gori» there always exists a bridge graph, say Gj,-;, making
the following equation hold:

Fo (Gpri) = C(Gors) 3

That means, without needing to tune the model, we can
try to find a data operation method that translates G,,; to
Gy with the pre-trained model unchanged. Graph prompts
can be treated as a learnable data operation framework to
help us manipulate these graph data. In this way, we can
significantly reduce the difficulty of traditional fine-tuning
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work, improve the performance on a new task (or even a new
dataset), and further enhance the generalization of graph
neural networks. With this perspective, our next question

3.3 Measuring the Difficulty of Finding Bridge
Graphs via Graph Prompts

Graph prompts can be viewed as a type of graph transfor-
mation operator. For example, the simplest graph prompt is
just adding a specific prompt token vector p,, to each node
feature of the graph and then we can transform this graph
G into a family of graphs {P,,(G)|w € R}, where P,,(G)
represents the output graph obtained by graph prompt on G.
Once w is determined, the corresponding data transforma-
tion rule and unique output graph data are also defined. This
family can be understood as the “transformation space” of
graph G under prompt P, denoted as Dp(G). If the prompt
operator maps the original graph G to a bridge graph Gl
(i.e., P(Goi) = Ghyi), then applying the pre-trained model
Fy« yields Fy«(P(Goi)) = Fp=(Grri), which conforms to
the downstream task. In this process, we achieve seamless
alignment of upstream and downstream tasks solely through
data transformation operators, without relying on tuning the
model’s parameters.

Definition 1 (Bridge Set and c-extended Bridge Set). The
bridge set of a graph G is defined as:

Ba ={G, | F4-(G,) = C(G)}

where Fy« is the frozen graph model from the pre-training
task, and C'is the optimal function for the downstream task.
The e-extended bridge set of G is a relaxed version of the
bridge set, which is defined as:

eBa = {G, | ¢ = | F-(G,) - C(G)] < €'},

Achieving a transformation exactly equivalent to C'(G) is
highly non-parametric and nonlinear. Finding the corre-
sponding Gy, or even the bridge set for any G,; involves
solving complex, high-order nonlinear equations. This task
becomes virtually impossible manually, especially if the
pre-training method integrates multiple tasks or intricate
mechanisms. Fortunately, graph prompts P,, can be viewed
as parameterized fitting for these operators and they usu-
ally contain very lightweight parameters, which dramati-
cally simplify the search space compared with manually
designed strategies. The effectiveness of graph prompting
methods hinges on their ability to approximate these opera-
tors closely—whether they can uniformly project G in the
dataset into the bridge set B¢, or at least map them into the
extended bridge set with a small upper error bound €*.

4 The Upper Bound of Data Operation Error
via Graph Prompt

4.1 Upper Bound of the Error on A Single Graph

Here we aim to demonstrate that using graph prompts pro-
vided by frameworks such as GPF and All-in-One, denoted
as parameterized operators P,, with parameter w, can con-
sistently project GG into an e-extended B¢, where € has a
uniform upper bound. This would initially validate the ef-
fectiveness of graph prompting methods in leveraging the
potential of pre-trained models without compromising their
expressive power. If G can be seamlessly projected into
B¢ or an e-extended Bg (for small €), it would indicate
excellent performance and full utilization of the model’s
capabilities.

To this end, we first conduct a quantitative analysis of
P,,’s graph transformation approximation ability on a single
graph. With our proposed data operation perspective, we

Theorem 2. Given a GPF-like prompt vector p,,, if a GCN
model Fy does not have any non-linear transformations,
then there exists an optimal w for any input graph G such
that P,,(G) € Bg.

This theorem is proved by Fang et al. (2022) but it’s impor-
tant to note that all GNN models employ non-linear transfor-
mations. According to the function approximation theorem
for neural networks (Hornik et al., 1989), the core of im-
proving a model’s approximation and simulation ability lies
in its non-linear components. Removing these non-linear
parts would limit the model to approximating only linear
transformations and functions. To demonstrate the effective-
ness of graph prompt learning in real downstream tasks, we
offer the following theorems further:

Theorem 3. Given a GPF-like prompt vector p,, if a GCN
model Fy has non-linear function layers but the model’s
weight matrix is row full-rank, then there exists an optimal
w for any input graph G such that F,,(G) € Bg.

Theorem 4. Given the All-in-One-like prompt graph SG.,,
(a subgraph containing prompt tokens and token structures),
if a GCN model Fy does not have any non-linear transfor-
mations, or has non-linear layers but the model’s weight
matrix is row full-rank, then there exists an optimal w for
any input graph G such that P,,(G) € Bg.

Theorems 3 and 4 are proved in Appendix A.3.2. Although
we’ve only added the row full-rank condition, these two
theorems significantly expand the applicability of Theorem
2. According to Pennington & Worah (2017), well-trained
models mostly contain full-rank matrices, which can be
easily guaranteed by some tricks like orthogonal initializa-
tion, He initialization, etc. Raghu et al. (2017) also find
that a full-rank parameter matrix in the model usually indi-
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cates stronger expressiveness. Intuitively, a weight matrix in
the graph model usually indicates how to project the input
graph into some latent embedding for the downstream task.
According to the basic knowledge of linear algebra, when
the weight matrix is row full-rank, we can always restore
the input from the output. That means we can always find
an appropriate input format to meet various downstream
requirements. Therefore, from a practical empirical per-
spective, we can assume that in most cases, both GPF-like
and All-in-One-like frameworks can achieve seamless pro-
jection of GG into B, demonstrating the effectiveness and
rationality of graph prompting.

For the cases where weight matrices are not full-rank, we
have found that the error value (¢) of the extended bridge
set (e-Bg), into which the prompting framework can map
G, is positively correlated with the distance of the graph
model parameter matrix from being full-rank. However,
a consistent upper bound does exist for the error € of the
extended bridge set when the matrix rank is determined.
This means that even in some extreme cases, graph prompt
learning can still guarantee a certain level of performance
without experiencing extremely unexpectedly poor results:

Theorem 5. For a GCN model Fy, assume at least one
layer’s parameter matrix is not full rank, for GPF or All-
in-One prompt, there exists an upper bound of € such that
for any input graph G, there exists an optimal w where
P,(G) € e-Bg, with e < ((0) - k(G), where ((0) is an
implicit function corresponding to the model and k(G) is
an implicit function corresponding to graph G, denoting the
two parts of the error boundaries.

We recommend the readers go further to see the details of
Theorem 5 as proved in Appendix A.3.3, where the upper
bound has two terms: one part (¢(6)) is only related to
the model itself and increases as the model’s expressive
power decreases, such as increasing with decreasing rank;
The other part (k(G)) is related to the complexity of the
solution space of downstream task on the given graph. Note
that this is the upper bound of the error, not the error itself.
In practice, we use the graph prompt to approximate such
solution space, which means a better prompt design makes
the real error even less than this upper bound. In this way,

(2023a) as mentioned in our motivation section.

4.2 Extend the Error Bound Discussion to A Batch of
Graphs

In Sections 3 and 4.1, we have proved that graph prompting
frameworks can indeed fit graph transformation operators
given a single graph, thereby exploiting model capabilities.
However, in other cases, we often train the model via a
batch of graphs and seek to find better performance over the
whole graph dataset. Correspondingly, we should aspire to

transform each graph G in the downstream dataset into its
corresponding B¢ or e-Bg (for small €). If such a uniform
upper bound €* exists, it would theoretically validate the
excellent performance of graph prompting in general down-
stream tasks, confirming the rational utilization of powerful
upstream models.

For a batch of graphs, the complexity and information con-
tained in the graph prompt become particularly important.
For instance, the increased number of prompt vectors in
GPF (a.k.a GPF-Plus) and the selection of a larger size of
the prompt graph in All-in-One greatly expand the trans-
formation space of graph G under prompt P (see Dp(-) in
section 3.3). A larger transformation space corresponds to
a smaller e upper bound. In our theoretical analysis, we
found that when the prompt takes an overly simple form,
the capability of prompt learning is limited. This manifests
as a theoretical lower bound of the bridge set extension as
suggested in Theorem 6:

Theorem 6. For a GCN model Fy, for GPF with
a single prompt vector or All-in-One with a single-
token graph prompt, given a batch of graphs G =
{G1,--+,Gi,--+ ,Gp}, the root mean squared error
(RMSE) over {€1,- -+ ,€,} has a lower bound €° such that
RMSE(e1,- -+ ,€) > €°.

Theorem 6 is proved in Appendix A.3.4 and we also give
the detailed formulation of €° in the proof, from which we
can find that €° is related to graph data and the prompt to-
ken. This indicates that when the downstream task dataset is
relatively large, we must correspondingly increase the trans-
formation space of the prompt to better utilize the model’s
capabilities, which also aligns with existing empirical obser-

Intuitively, a good graph prompt should not increase its com-
plexity faster than the growth of the dataset because in that
case the effectiveness of prompt learning in practical applica-
tions would be significantly compromised. Fortunately, we
found that for relatively large datasets, the scale of prompts
required for prompt learning is highly controllable with the
number of needed tokens for the prompt almost constant,
far from the increase of graphs. This explains why even
with relatively large downstream datasets, as reflected in
Sun et al. (2023a), empirical results using medium-scale
prompts can still achieve excellent outcomes. Compared
to fine-tuning the entire model parameters, Theorem 7 (see
the proof in Appendix A.3.4) indicates why graph prompt-
ing can achieve comparable or even better results with less
parameter adjustment scale:

Theorem 7. Given a GCN model Fy, an All-in-One-like
graph prompt with multiple prompt tokens, and a dataset
G with M graphs, there exists an upper bound denoted by
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€*, making an optimal P,, such that VG, € G, P, (G;) €

€;-Bg,, and \/Zfi{l €2/M < €*. €* can be further calcu-

lated as follows:

M
> N/M )

i=k+1

Here for the M graphs in G, we first construct an opti-
mal solution matrix according to function C, thus have:
S = [C(G1), ey C(G]\/[)] ThenV =578 € RMXM {e.
notes the correlation matrix of downstream solutions upon
such graph dataset. The eigenvalues of V' sorted by the de-
scending order can be denoted as {\1,- -, Aps}. Then the
upper bound €* can be treated as the mean square over the
smallest M — k eigenvalues. In practice, the eigenvalues of
V' in datasets often exhibit an exponential decay (Johnstone,
2001). This explains the rapid decrease in error rate as k
increases, proving that prompts are not only effective but
also efficient. With the increasing number of graphs M in
the dataset, the largest k (k < M) eigenvalues can almost
explain most of the matrix, which means using small-scaled
prompt tokens can achieve reasonably accurate results. This
finding is also consistent with many existing empirical re-
searches (Liu et al., 2023; Sun et al., 2023a; Wang et al.,
2024; Zhu et al., 2024a).

4.3 Value Distribution of the Data Operation Error
with Graph Prompt

In the previous sections, we established a theoretical upper
bound of ¢ < €*, allowing the graph prompt P,, to map
a given graph G into the e-extended B¢ range. However,
the conditions to reach this upper bound are often difficult
to meet, making the theoretical upper bound usually corre-
spond to some corner cases which may be not that practical
in processing empirical experimental analysis. To offer
stronger practical guidance for researchers’ general exper-
imental purposes, the value distribution of € (a.k.a “error
range”’), comes to our next point of interest. The error range
analysis indicates a quantitative degree of the bridge set ex-
tension, which includes estimating the mean, and variance,
and finding the approximate distribution pattern.

Definition 2 (Graph Embedding Residual Vector). Con-
sider a graph model with Leaky-Relu as their activation
function, we denote the graph embedding residual vector
as 3 € RYF where F is the graph embedding dimensions.
Each entry of 3 is related to the bridge graph embedding,
graph prompt, and the original graph, which is mathemati-
cally defined as follows:

18 =D _(—a*wivij) Q)
where « is the parameter of Leaky-Relu; v;; is the j-th ele-
ment in the i-th node embedding of the bridge graph Gy,.;;

Probability Density Functions

Cumulative Distribution Functions

Error Error

Figure 1. Real € distribution and fitted curves.

w; is the weight of the i-th node for graph pooling (e.g.,
summation graph pooling means for any node i in Gp;,
we have w; = 1); k can be either 0 or —1 and depends on
the original graph, graph prompt, and the bridge graph, the
details of which can be seen in Appendix A.3.5. Here, we as-
sume that 3 should follow an i.i.d. normal distribution with
mean 0 and variance c (we carefully discuss the rational-
ity of this assumption in Appendix A.3.5): 3 ~ N(0, cI},)
where I, is the n x n identity matrix and c is a positive
constant. Then we theoretically find that e conforms to the
Chi distribution (xx):

Theorem 8. Given a GCN model Fy with the last layer
parameter matrix having rank F' — r (F' is the graph embed-
ding dimension, r is the rank lost), an input graph G, for the
optimal w, P,,(G) € €-Bg. If the Graph Embedding Resid-
uals follow the i.i.d. normal distribution, then € follows a
Chi distribution X, with r free variables.

We give the proof of Theorem 8 in Appendix A.3.5. In the
practical settings, the distribution of graph residual terms
may slightly diverge from i.i.d. normal distribution, making
the real distribution of e a little different from standard
X% Besides, there is also a theoretical upper bound €*,
making the real distribution of € more like a truncated .
The statistical measures of this distribution can be easily
obtained as follows:

Corollary 1 (Statistical Measures and Confidence Val-
ues of €). The mean of € is cﬂw, the variance

(r/2)
is 2 (r— 2%), and confidence values can be

obtained through C\;? using numerical methods or table
lookup, where c is the scaling factor compared to the stan-
dard distribution, and r is the number of dimensions lost
compared to a full-rank matrix.

To further confirm our theoretical findings, we compare the
real-world distribution of € with 4 commonly used distribu-
tion patterns (Chi, Chi-square, Exponential, and Gamma).
Figure 1 presents the fitting results and Table 1 shows the
p-value significance, from which we can see that the Chi
distribution provides the best approximation within a non-
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Distribution Notation p-value
Chi X 0.65
Gamma T 0.23
Chi-squared X2 0.04
Exponential ~ Exp 0.01

Table 1. p-values w.r.t distributions

extreme range of e.

4.4 Extend the Discussion from Linear to Non-linear

While our previous analysis focused on GCN or linear ag-
gregation models that can be represented in the form of
“diffusion matrices”, many advanced models utilizing atten-
tion mechanisms exhibit distinctly different characteristics.
Their aggregation methods involve the computation of at-
tention matrices, which in turn depend on the node feature
vectors of G. This can be considered as a non-linear model
w.r.t G’s feature matrix. In our analysis, we use Graph At-
tention Networks (GAT) as an exemplar, as the attention
mechanism in GAT is a common component in many non-
linear models. Fortunately, the guarantees provided by our
theorems do not differ significantly for these models. This
indicates that even as models become more non-linear and
complex, graph prompting can still effectively harness the
powerful capabilities of pre-trained models:

Theorem 9. Let Fy be a GAT model. If any layer of the
model has a full row rank parameter matrix, then for the
All-in-One prompting framework, for any input graph G,
there exists an optimal w such that P,,(G) € Bg. When the

parameter matrix is not full rank, there is an upper bound
¢(8) - k(G) making P, (G) € e-Bg, € < ((8) - k(G).

We give a detailed proof in Appendix A.3.6. The above
theorem demonstrates the robustness of graph prompting
methods across different types of GNN architectures, in-
cluding those with non-linear attention mechanisms. The
consistency of these results with our earlier findings for
linear models suggests that the fundamental principles of
graph prompting remain effective even as we move towards
more complex and non-linear model architectures.

5 Experiments

5.1 Experimental Settings

Data Preparation: We first confirm our theoretical findings
on synthetic datasets because these datasets offer controlled
environments, allowing us to isolate specific variables and
study their impacts. We generate these datasets by defin-
ing the dimension of graph feature vector ('), average of
graph node numbers (N, 4), average of graph edge numbers
(Eavg), and number of graphs in the dataset (M). These pa-
rameters characterize both individual graphs and the entire

dataset, facilitating our study of the relationship between
these features and e. We further conduct the experiments on
the real-world dataset in Appendix B, from which we can
find similar observations.

Model Settings: We utilize two GNN frameworks: GCN
(representing linear models) and GAT (representing non-
linear models). We limit our experiments to these two
models as other models follow similar patterns. Unless
otherwise specified, we use a 3-layer GNN with Leaky-
ReLU activation function and feature dimension F' = 25.
For full-rank matrix studies, we ensure each layer’s matrix
is full-rank (selected after pre-training). For non-full-rank
matrix studies, we set the rank loss to 5 by default. The
default ReadOut method is mean pooling. For more de-
tailed experimental settings, please check in the Appendix
C. We open our testing code at https://github.com/
qunzhongwang/dgpw
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Figure 2. Convergence rate analysis. GCN (left) and GAT (right).

5.2 On mapping to B with single graph

According to Theorems 3, 4, and 9, error-free projection can
be achieved in full-rank situations. Here we investigate con-
vergence properties with a maximum of 5,000 epochs. Fig-
ure 2 presents the results for GPF and All-in-One prompts
with GCN and GAT, respectively. From the results we can
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find that for single-graph, full-rank matrix scenarios, both
GPF and All-in-one approaches show loss converging to
zero, which is consistent with our theoretical findings.

5.3 On mapping to e- B; with single graph

Theorem 5 states that in non-full-rank situations, there exists
an upper bound on the error. Here we extensively examine
the relationship between various parameters and the error
upper bounds in the context of non-full-rank matrices given
a single graph. Since showing this upper bound in prac-
tice is usually intractable, we fix all other parameters and
employ five pre-trained models. For each fixed pre-trained
model, we conduct experiments and repeat each experiment
30 times. Then we take the maximum loss from these repe-
titions as the approximation to the upper bound.

1| |- - Fitepr: 0.301x%0.5
—=— GPF-Plus.
- - Fit GPF-Plus: 0259 x40.5

Empirical Max Error
Empirical Max Error

5 18 21 24 2 30 3 % % 4
Feature Number

o 1 2 3 4 5 6 7 8 9 10

Rank lost

(a) Error w.r.t matrices rank. (b) Feature Number vs. €

Empirical Max Error
Empirical Max Error

15 18 21 24 27 30 33 36 39 42 12 3 a4 5 6 7 8 9 10

Graph Size GNN Layer

(c) Graph Size vs. € (d) Layer Number vs. €

Figure 3. epsilon range analysis

The parameters of interest include weight rank (Figure 3a),
node feature dimension (Figure 3b), graph size (Figure 3c),
and model layer number (Figure 3d). Here All-in-One-Plus
extends All-in-One model by treating the inserting pattern
as free parameters. and GPF-plus extends GPF by adding
more than one tokens. Intuitively, with the increase of data
complexity (e.g., larger features and graph size), the upper
bound becomes larger in general. As the graph model be-
comes more complicated (e.g., layer number increase), the
projected space becomes larger making the error bound in-
tend to be smaller. When weight rank declines, the model’s
capacity intends to poor results, making the error bound
increase. More advanced graph prompts (e.g., All-in-One)
usually have a lower error bound than the naive one (e.g.,
GPF). These observations can be naturally inferred from our

theoretical analysis in section 4.1.

5.4 On mapping to ¢- B; with multiple graphs

Theorem 6 discusses a lower bound on the RMSE over the
errors on multiple graphs with a single prompt token. In this
section, we conducted experiments on the number of graphs
in the dataset w.r.t the empirical minimum error. As shown
in Figure 4, the minimum error shows an upward trend and
then tends to saturate, which is highly consistent with the
findings in Theorem 6.
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Figure 4. € range with a simple prompt token

Theorem 7 suggests that for the graph prompt with multiple
tokens and multiple graphs, a small k tokens is sufficient to
achieve good performance. In particular, we wish to see how
the error (loss) changes as M (number of graphs) increases
while k remains fixed, and its counterpart case: how does the
error change as k increases while M remains fixed? Here
we explored the relationship between the number of prompt
tokens, the number of graphs in the dataset, and the error.
We present experimental results in Figure 5a and Figure 5b,
which indicate two surfaces. From these figures we can find
that both GPF and All-in-One show similar effects: when
the number of prompt tokens exceeds 10, the error becomes
relatively small. As the number of prompt tokens increases
further, the loss does not significantly decrease. Similarly,
when the number of graphs increases and the number of
prompt tokens is large, the decrease in error is also not that
obvious.

6 Conclusion

This paper addresses the theoretical gap in graph prompt-
ing by introducing a comprehensive framework from a
data operation perspective. We introduced the concepts
of “bridge sets” and “e-extended bridge sets” to formally
demonstrate that graph prompts can approximate graph
transformation operators, effectively bridging pre-trained
models with downstream tasks without retraining. Our con-
tributions are threefold: first, we established guarantee the-
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orems confirming that graph prompts can simulate various
graph data operations, explaining their effectiveness in align-
ing upstream and downstream tasks. Second, we derived up-
per bounds on the approximation errors introduced by graph
prompts for both individual graphs and batches of graphs,
highlighting how factors like model rank and prompt com-
plexity influence these errors. Third, we analyzed the distri-
bution of these errors and extended our theoretical findings
from linear models like GCNss to non-linear models such as
GATs, showcasing the robustness of graph prompting across
different architectures. Our extensive experiments validate
these theoretical results and confirm their practical impli-
cations, demonstrating that graph prompts can effectively
leverage pre-trained models in various settings. By provid-
ing solid theoretical foundations, our work not only explains
why graph prompts work but also guides the design of more
effective prompting techniques. This empowers researchers
and practitioners to utilize graph prompts with greater confi-
dence, potentially leading to more efficient and generalized
graph neural network models across diverse applications.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal

consequences of our work, none which we feel must be
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Appendix

The appendix of this paper is organized as follows: Ap-
pendix A presents the detailed theoretical content on the
main findings in the paper. In order to reduce the bar of
reading this content, we first give some preliminaries and
definitions in Appendix A.1, followed by fundamental lem-
mas (Appendix A.2) that will be used to prove our theorems.
In Appendix A.3, we carefully prove the theorems in the
main body of this paper, followed by a further mathematical
discussion in Appendix A.4. Beyond theoretical analysis,
Appendix B presents additional experimental results on the
real-world datasets, which have similar observations to the
main experiments in the paper. Appendix C introduces more
details on the settings of the experiment.

A Theoretical Analysis And Proofs

Reading Guideline: Appendix A “Theoretical Results and
Proofs” is divided into four subsections:

¢ A.1 Definitions and Preliminaries: Readers are ad-
vised to initially skip this subsection. It serves as a
reference for unfamiliar terms encountered later in the
text.

¢ A.2 Fundamental Lemmas: These properties are es-
sential components for proving the main theorems. We
will clearly express what each lemma demonstrates.
Readers are recommended to refer to this subsection
when encountering these lemmas while reading the
theorem proofs.

* A.3 Detailed Proofs of Main Theorems: This subsec-
tion is recommended as the primary focus for readers.
It contains the core ideas behind why prompts work,
even though some lemmas may be required for com-
plete understanding.

* A.4 Additional Mathematical Lemmas: This subsec-
tion includes purely mathematical lemmas encountered
during the proofs in A.2 or A.3. These lemmas are not
directly related to GNN models or prompts. Readers
are advised to review this subsection after reading the
previous content.

A.1 Preliminaries And Definitions

A.1.1 PRELIMINARIES

Preliminary 1 (GCN and GAT).

Graph Convolutional Networks (GCN) (Kipf & Welling,
2016) perform convolution operations on graph-structured
data by aggregating feature information from a node’s neigh-
bors. The recursive update rule for a GCN layer is:
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HOD — o ( AH@)w(i)) ’ (6)
where A = D~1/2AD~1/2 is the normalized adjacency
matrix, H® is the node feature matrix at layer 3, W is
the learnable weight matrix, and o is a nonlinear activation
function.

Graph Attention Networks (GAT) (Velickovic et al., 2017)
enhance GCNs by introducing attention mechanisms to
weigh the importance of neighboring nodes during aggre-
coefficient between node j ‘and node  is based on the inner
product of their feature vectors:

ejp =HYOTHY, )
exp(ejk)
Ak = ; (®)
! Z'rnEN(j) exp(ejm)
H* Y =6 3 apH)WO )

kEN ()

where N (j) denotes the neighbors of node j, oy, is the
normalized attention coefficient, and W ) is the learnable
weight matrix at layer ¢, Hj is the embedding vector of the
j-th node. This mechanism allows the model to focus on
the most relevant neighbors when updating node representa-
tions.

Preliminary 2 (Pre-training and Fine-tuning vs Pre-training
and Prompt).

Pre-training and Fine-tuning (Zhu et al., 2021)involves
two stages: first, a model is pre-trained on a large dataset to
learn general representations, and then it is fine-tuned on a
specific downstream task.

Formally, let Fy- be the pre-trained model and C'(-) be the
optimal mapping function that maps the original graph to
the embedding vector of the downstream task (i.e., can be
parsed to yield correct results for G,ri in the downstream
task)

Fine-tuning aims to adjust the model parameters from 6* to
67 so that:

FQ*—>9# (Gori) — C(Gori)~ (10)
Pre-training and Prompting keeps the pre-trained model
parameters fixed and instead modifies the input data to
bridge the pre-training and downstream tasks. Specifically,
it seeks a transformation from the original graph G to a
prompt-enhanced graph Gh,; such that:

Fy- (Gbri) = C(Gori>- (11)
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This approach leverages the frozen pre-trained model by
adapting the input data through graph prompts, eliminating
the need to fine-tune the model parameters.

Preliminary 3 (GPF and All-in-One).

Graph Prompt Frameworks introduce learnable modifica-
tions to input graphs to enhance the performance of frozen
pre-trained GNNs on downstream tasks. Two primary frame-
works are prompt token vectors like GPF/GPF-Plus (Fang
et al., 2022) and prompt subgraph like All-in-One (Sun
et al., 2023a).

GPF (Graph Prompt Feature) adds a prompt vector to
each node’s feature vectors. Let w = {p}, p € RF"*! be the
learnable prompt vector, then the updated node features are:

Xuli =X +p (12)
The original graph G = (X, A) becomes the prompt-
enhanced graph G,, = (X, A). The prompt vector p
is optimized to minimize the loss on the downstream task:

p* = arg Irgn Z Ly, (Fop-(Pu(G))) (13)

Geg

GPF-Plus adds a combination of multiple prompt vectors
to each node’s features, with different combinations for
different graphs.. Letw = p1,- - - , pi, Q, where p; € RF <1
represents a learnable prompt vector, and @ € RM*¥ is a
matrix in which the ¢-th row corresponds to the combination
coefficients of the k& prompt vectors for graph ¢. Here, M
denotes the number of graphs in the dataset 2. Let P =

Pl

. |. The node features are updated in such a way:
2

Xuli = Xi + QiP (14)
The original graph G; = (X, A) becomes the prompt-
enhanced graph G, ,, = (X,,, A).

All-in-One incorporates entire prompt subgraphs into the
original graph. Let P € R¥*F represent K learnable
prompt token vectors, and A;, € {0,1}*** denote the
internal adjacency among prompt tokens. The connections
between prompt tokens and original nodes are defined by
a cross adjacency matrix A, € {0,1}**Y . The prompt-
enhanced graph is:

Go=(AUA,,UA,,XUQ). (15)
All-in-One optimizes the prompt tokens and their connec-
tions to adapt the pre-trained model to downstream tasks
without altering the model parameters. For computational
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convenience, in the proof section below, we often use the
equivalent form of All-In-One similar to Equation:23.

Preliminary 4 (Diffusion Matrix).

Diffusion Matrix (Gasteiger et al., 2019) plays a crucial
role in representing the diffusion process on a graph. Specif-
ically, many GNN architectures can be expressed using the
following formulation:

H=S-X-W, (16)
Where: S is the diffusion matrix, derived from the graph’s
adjacency matrix and model structure, which governs how
information propagates across the graph. X is the original
node feature matrix. W is the learnable weight matrix asso-
ciated with the GNN layer. H is the node feature embedding
matrix after message transformation and aggregation.

A.1.2 DEFINITIONS

We provide a glossary and default symbols meanings here
for the reader’s convenience.

A.2 Fundamental Lemmas

This lemma serves as a foundational component for proving
the theorem. However, readers may choose to skip the
lemma initially and return to it when it is referenced in the
theorem’s proof.

Default Case By default, we consider the GNN model as
a surjective mapping operator from the graph set {G} to R,
obtained after pre-training tasks. This operator can provide
sufficient information to express the correct results of the
graph in the pre-training task. (For instance, through a task-
specific head mapping to the likelihood of a 0/1 decision.)

Notations Here and in subsequent related content, we use
Fy to represent a GNN model whose aggregation process
can be described by a diffusion matrix S. Here, S is derived
from the model type and the adjacency matrix A. For in-
stance, in GCN, S = A + 71, where 7 controls the strength
of the self-loop for gathering information from the node
itself. The graph aggregation process is described as:

HY =g(5-HY . W) (17)
Where H© is exactly the node feature matrix X, and H (0
is referred to as the i-th order embedding matrix. With-
out loss of generality, we analyze the non-linear function
o using Leaky ReLU. Other non-linear functions such as
sigmoid can be analyzed similarly.

Denote the transformation space of F, and G by
Dp(G) = {P,(G)|w € RI*I}, where w is the parameter
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Term Explanation

Bridge Set Bg
e-extended Bridge Set e-Bg
Adjacency matrix

Bg = {Gp | F9*(Gl))
e-Bg = {Gp | [|[Fp-(Gp) = C(G)]| < ¢}
A square matrix used to represent a finite graph, where A;; = 1 if there is an

CG)}

edge from vertex ¢ to vertex j, and O otherwise.

Diffusion matrix

Span

1-th order embedding matrix
GNN.

Cone

Convex set

Convex hull

Graph Embedding Residual Vector

The matrix equivalent to graph aggregation in GNNS.
For a set V, we say “p spans V' if p can take any value in V.
The embedding matrix after ¢ iterations of message passing and aggregation in a

A set C such that forany x € Cand o > 0, ax € C.

A set S such that forany 2,y € Sand a € [0,1], ax + (1 — @)y € S.

The smallest convex set containing a given set of points.

A vector representing the additional error in graph fitting due to non-linear

components. For details, refer to the related A.3.5.

Table 2. Glossary

The optimal embedding vector for the downstream task. C'(-) can be understood as the optimal downstream

Symbol Description
Gori The original graph without prompting.
P, Graph prompting method with parameter w.
C(GOM)
task model.
Guri The bridge graph that can be used to obtain C'(G,,;) using the original model.
G, The graph after prompting.
G, The graph after prompting with parameter w.
€ Represents the extent of Bridge set expansion, i.e., the “error.”
n Generally represents the number of layers in the GNN.
F Represents the dimension of the graph feature vector.
N Represents the number of nodes in the graph.
M Represents the number of graphs in the dataset €.
)

Represents the aperture of the convex cone, which can be understood as the maximum opening angle.

Table 3. Symbol Table

of method P, |w| denotes the dimensionality of the param-
eter w, and P represents either GPF or All In One prompt
method. We denote P, (G) as G, and the corresponding
diffusion matrix and node feature matrix .S and X after
prompt as S, and X, respectively.

Hence, the graph embedding vector obtained from graph
G, prompted by P, after passing through the GNN model
Fy can be denoted as Fy(G,,).

Then, we can take each graph G, from the transformation
space Dp(G) and pass it through the GNN model F to
obtain the corresponding embedding vector. These embed-
ding vectors can be collected into a set, the transformation
embedding vector set:

{Fy(G,,)| forall G, € Dp(G)} (18)
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Here, Fy(G,,) can be expressed in formula form as:

Fy(G.y) = ReadOut(o(Sy(- - 0(S X W) - - )W)
(19)

= ReadOut(H™) (20)

Where, the dots (---) indicate that the parentheses are
nested n times, representing n iterations of the message
passaging and aggregation. n is the number of layers. H (")
is the n-th embedding matrix.

ReadOut process is viewed as the linear combination of
the embedding matrix H, i.e. ReadOut(H™) = wH),
where w is determined by the pre-trained model.

Specifically, we denote the process of obtaining the n-th
order embedding matrix (i.e. final embedding matrix) as:

Kg(Gy) = H™ = (S,(---0(Su X, W) -- - )W) (21)
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A.2.1 ON THE RANGE OF GRAPH EMBEDDING
MATRIX AFTER GRAPH PROMPTING, ONE

PROMPT NODE CASE

Lemma 1 (Transformation of Graph after Prompt).

Here we consider GPF and All-in-One methods. Without
loss of generality, we assume that the prompt subgraph in
All-in-One has only one node.

For GPF, the prompt vector is added to each node of graph
G, while the topological connections of the graph remain
unchanged. Therefore:

S,=85, X,=X+1yp" (22)

Where N is the number of nodes in the graph, p is the
prompt vector, p € RY, F represents the dimension of the
parameter vector, 1 is a vector € RV with every compo-
nent to be 1.

For All-in-One, the prompt subgraph is connected to graph
G in a parameterized way, i.e. there exist parameters that
control the connection relationship between any two nodes
in the prompt subgraph and the original graph.(as defined in
A.1.1). Therefore:

w

S I x1 .
S, = , +
(ZT 5(N+1><N+1>) {OF] e
(23)

Where [ € RY is a column vector, [; > 0, Vi € {1,---,N},
€n1 18 a vector € RN+1 with (N+1)-th component to be 1
and others to be 0. O € RF with every component to be
0. Please note that we can shift the number of nodes(/V):
the original number of nodes at this point can be denoted as
N — 1, to maintain consistency format with GPF case.

In summary, the transformation of X, can be denoted as:

X, = X + cpT, where c; > 0 (24)

Where c can be referred to as the coefficient vector, X can
X

Op|"
Lemma 2 (Range of Embedding Matrix after Nonlinear
Transformation).

be either X or the natural extension of X: [

Consider a weight matrix W € RF*¥ and let R(W) denote
its row space. Suppose there exists a matrix R such that
each row of matrix R is taken from the space R(W). Let
c be a vector with ¢; > 0, and let Z be the set of indices
where c takes strictly positive values. Let p be vector spans
R(W)(.e. could take any value in R(W)).

Now, we consider R + cp'. For i € Z, the i-th row of
R+cp'is: R +¢p' wheree; > 0, R, € R(W), p
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spans R(W). Therefore, R} + ¢;p" € R(W), and spans
R(W). Fori ¢ T,c =0, the i-throw of R+cp is simply
Rl

Hence, R+ cp ' can be written in the form of R’ 4+ (AR +
cp'), where p spans R(W), R’ represents the matrix with
the rows whose index ¢ ¢ Z, and all other rows set to zero.
AR=R-R.

Noted that every row of AR + cp | with index i € Z, such
row vector spans R(W), as shown above, regardless of what
the specific matrix AR is. Hence, the expressive power of
graph prompting does not fundamentally differ for different
AR. We claim that from the perspective of embedding
vectors (i.e., if the same embedding vectors can be produced
through Readout, we don’t distinguish the specific form
of the matrix), we can simplify AR into cp, , where c is
exactly the same c as the c in the assumption in the lemma,
po € R(W) is a vector with the same size as c. More
detailed discussion refer to A.4. In this way, the calculation
is greatly simplified.

Now, consider adding a nonlinear function o(-)

Leaky-ReLU(-). We examine o(R' + AR +cp'):
Scenario 1: When W has full row rank, i.e., p', o(p ")
spans R In this case, for each row, we have:

Forie Tl

o(RI"+ AR+ c¢p') =0(R," +ep” +¢ipg)

=o(ci(p" +po’))

since R, 0. After the Leaky-ReLU transformation,
o(ci(p" + po')) can still span RF. Let’s denote o(p " +
po')asp'l ie o(p’ +po’)=p'"

p
Fori ¢ Z,

o(R" +¢ip" +epg) =0 (R

AT
we use R/, to denote o(R.") .

In conclusion, o(R’' + AR + cp ) can be written as R +
cp’", where p, p’ spans R”. Note that the property of p
and p’ is the same and there is a natural bijection between
them as pointed out A.4. Without causing confusion in
notation, we can use p to represent p’ here.

Scenario 2: When W is not full rank, p spans R(W) space.
In this case, row-wise, similar to Scenario 1:

o(R +cp') =R +cp'’ (25)
where the set of all possible values of p’ is V,,, defined as:

Vo = {Leaky-ReLU(v) | v € R(W)} (26)
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Lemma 3 (Range of Embedding Matrix after Prompt, Sin-
gle Layer Case).

Consider a single-layer GNN model Fy. Ky represents the
embedding process for obtaining graph embedding matrix
H. Then, we have:

KO(Pw(G))

o(SuX,W)

o(Su(X +cpNW)
(S, XW + S,cp' W)
o(R+c'p'")

Where R = Swf( W, each row of R is a vector in the row
space R(W). ¢’ = S,¢c, ¢, > 0, p'W = p'". Here, p’
spans R(W) since p spans RYV. (¢, > 0 since each element
of S, is non-negative, the sum of each column in S, is
strictly greater than O and the initial value of c is either €y
or 1. Note that the number of positive terms increases in
c.)

According to lemma 2, (R + ¢/p’") can be written as
R +¢ p?. Here R/ represents the element-wise Leaky-
ReLu of the rows of R with index ¢ € Z and other rows
take O.p;Lr represents p ' (p spans RY) if W is of full row
rank; pTT represents p’ | (p’ spans V,,) if W is non-full-rank,
Vo = {Leaky-ReLU(v) | v € R(W)}.

Hence, in conclusion, we have: Ky(P,(G)) = R’ + c’p;r

Lemma 4 (Range of Embedding Matrix after Prompt, Mul-
tiple Layer Full Rank Case).

Consider a multiple-layer GNN model Fj. Then, we have:

Ko(Gy) = o(Su(--o(Su X Wh) -+ )Wy) 27
According to lemma 3, we have:
o(SuXuW1) = R +c'p{ (28)

We are considering the full-rank case, i.e. W is a full-rank
matrix, according to lemma 3, we should take the equation
for the full-rank case, which is:

0(SuP.Wi) =R, +cip’ (29)
where p spans RY, [c1]; > 0.
For this output, consider:
O’(Sw(Rll +cip)Ws) = U(SWRQWQ +cp’)  (30)
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where ¢y = S, ¢1, [c2]; > 0. Compared with the equation
in lemma 3, we find only R has been replaced by S,, ]:2'1 Wa,
and components remain unchanged, so this lemma can be
used again. Hence, we have:

0(Su (R, +c1p " )Wa) = 0(S, R, Wa+cap ") = Ry+cop |
(€29

where p spans RY.

Iteratively, we complete the entire n aggregation processes
of the GNN, and obtain:

Ko(P,(G) =R, +c,p’ (32)

where p spans the RYV. (This formula can represent the
expressiveness of prompt F,, in the full-rank case)

Remark 1. We can interpret this result as follows: (1) Rﬁl
is related to the embedding matrix of the original graph G
(2) c,p ' describes the additional range of the expression
of GNN model after adding prompt.

A.2.2 ON THE RANGE OF GRAPH EMBEDDING
MATRIX AFTER GRAPH PROMPTING, MULTIPLE
PROMPT NODE CASE

Lemma 5 (Range of Embedding Matrix after multiple
prompt, Single Layer Case).

We are considering single layer GNN Fj here.

For the GPF or All in one Prompt Method, we can use the

following uniform formula: we have k independent prompt

vectors p; € RY (or equivalently k& prompt nodes with p;

as its nod?l_ feature), which form a & x F' matrix P, where
P:

P = . Denote by M the number of graphs in the

pl
dataset Q.kThere exists an M X k coefficient matrix (), each
row vector of this coefficient matrix, denoted as Q; € R,
express how to linearly combine these k vectors to add them
to 44, graph, i.e.:

Giw=(A,, X +c-Q/P)

According to lemma 3, the embedding matrix for the i,
graph is:
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H; = Ky(Giw)

=0(S;wXiwW)
0(Siw(Xiw +1NQ] P)W)
o(R+c1,Q; P)
o(R+c1.p;)
=R+ C1,z’P/1;T

Where p/, spans RY". (Implicit assumption is W is full rank.
we are discussing the upper limit of the expressive power of
graph prompting, so we should use the full-rank model with
stronger expressive power)

As discussed in lemma 2, we are considering from the per-
spective of embedding vectors. We claim that we can write
p. = (Q)) T P', where Q’l-T denotes the i;, row of Q’, Q' is
a linear combination coefficient matrix, which is a mapping
of Q. P’ spans R**F, which is a mapping of P. More
detailed discussion is referred to A.4.

Without causing confusion in notation, we can directly use
P, Q to denote P’, ' here.

In summary, for a single-layer GNN with multiple prompts,
the embedding matrix takes the form:

H; = K(Gi.) =R +ciip;

where for any i € {1,...,M}, p; = Q;P, and R’ is de-
fined consistently with Lemma 3.

Lemma 6 (Range of Embedding Matrix after Prompt, Mul-
tiple Layer Case).

We now consider a multiple-layer GNN model. For this
model, we have:

Ko(Gio) = H™ = 0(S;.0(- - 0(SiwXi W) - )W)

where, according to lemma 5,

0(SiwXiWwW) = (S 0(Xi+1INQ;P)W) = R'4c1ip"

withp” = Q; P, and P is the collection of k prompts, spans
R¥*F space.

This form is consistent with lemma 5, except R is replaced
by R’ and ¢ is replaced by c1 ;. Applying this result again,
we get:
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(85,00 (SiwXiwW1)Wa) = 0(S; (R + ¢1,,Q:P) W)
= R" +¢y,Q;P

Where P spans R¥* I,

Iterativly applying lemma 5 n times, we obtain:

Ko(Giw) = H™
= R™ 4 epipl = R™ +¢,,Q7 P

where P spans R¥*¥" and @ spans RM**,

In summary, for a multi-layer GNN with full-rank W matri-
ces in each layer, and for a dataset {2 with multiple graphs
and use multiple prompts P, we have:

K&(Gi,w) = R(n) + Cn,iPiT = R(n) + Cn,iQIP

where P spans R¥*F (Q spans RM*k  for any i €
{1,....M).

A.2.3 ON THE RANGE OF GRAPH EMBEDDING
MATRIX AFTER GRAPH PROMPTING, NOT
FULL-RANK CASE

Lemma 7 (Range of Embedding after Prompt, Multiple
Layer Non-Full Rank Case).

We consider a multiple-layer GNN model Fj with a poten-
tial non-full-rank weight matrix.

We have:
Ko(Gy) =0(S,(-+-o(Su X W)-- )W)  (33)
According to lemma 3, we have:
o(SuXuW) =R +c'pf (34)

Since we are considering the non-full rank case, according
to lemma 3, we should consider the non-full rank equation:

o(SuP,W) =R, +cip’ (35)

where p spans the set V! as defined in lemma 3.

At this point, we can consider R’l equal to zero. Since, for
GPF, ¢y = 1y, and the monotonicity of ¢ implies that each
component of the vector c is strictly greater than 0. For
All-in-One, ¢ = éy. We have S,, = [s1,...,Sn], where
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l
SN = , ¢ = sy. we assume | > 0 component-
Snn

wise(This can be achieved by adjusting parameters in All in
one), then ¢’ is component-wise > 0.

Recall that R} only preserves rows where the corresponding
component of ¢ = 0. Hence, R} can be considered to be
ZEero.

For this output, we consider:

0(Sy (R +c1p )W) = o(Su(cip" )W) (36)

= cr(ch'T) = ch”T 37)

Here, p’ T = p ' W. This demonstrates that: (1). p’ spans
VIW (2). p’ € R(W). Hence, the set of the range of p’ is

only a linear transformation to V!, i.e. V.!W. The set of
the range of p” is operating Leaky-ReLU to the set V! W,
i.e. o(VIW), denoted by V2.

Iteratively, We have:

Fy(Gu) = eap™T (38)
where p(™ spans V. Specifically, according to lemma 12,

V7 is a cone surface, i.e., forany v € V' and \ € R,
Av e V.

Remark 2. Choosing R'l to be zero is to simplify the calcu-
lation without affecting the theorem. Based on the principle
that the minimum of the whole is less than or equal to the
minimum of a part, under this assumption, we have obtained
that the upper bound of the error for the prompt satisfy our
assumption is certainly the upper bound for the optimal
prompt.

Lemma 8 (Embedding Matrix Property, Multiple Layer
GNN Non-Full Rank Case).

We consider the GNN model Fjy be multi-layered and could
have not a full-rank weight matrix. Then, the embedding

matrix of graph G, according to the iterative formula of
GNN, is:

Ko(Gu) = o(S(---o(S-X-W)-- )W) (39)
Let S - X be denoted as X’. Then X'W isan N x F
embedding matrix where each row is in the row space of
W. According to the properties of Leaky-ReLLU and the
definition of V!, o(X'W) = Y’ where each row vector is

a’

in the set V1.

Then SY' = H’, where each row of H' is a positive linear
combination of rows in Y’. Hence, each row of H’ should
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also be in the convex hull of cone surface V!. We name
such a convex hull to be Colé , and further, C; is a convex
cone. Based on lemmal?2, iteratively, we have each row of
H() should also be in the convex hull C, of cone surface
Vi,

We conclude the following: For any graph G, each row vec-
tor of the embedding matrix H ("), obtained after applying
the GNN model Fj to G, lies within a specific convex cone,
whose surface is exactly V' mentioned in lemma 7

Remark 3. Lemma 8 characterizes the properties of each
row vector in the embedding matrix after it has been pro-
cessed by a non-full rank GNN model.

A.3 Proof of Theorem in the Paper

A.3.1 BRIDGE GRAPH EXISTENCE THEOREM

Proof of Theorem 1

Proof. For a given G,,.; and a downstream task Ty, the
embedding vector corresponding to the downstream task is
formally defined as the embedding vector produced by the
optimal downstream model for T};,,,, which is thus uniquely
determined.

Given our previous definition for the default case A.2, the
Fy discussed here is a surjective mapping from the graph
space {G'} to RY'. According to the properties of surjective
mappings, for this particular C'(Gori) € RY, there must exist
a special graph Ghsi such that:

Fy(Guri) = C(Gor) (40)
Upon examining the definition of Gy, we find that Gbri =
Ghyri- Theorem 1 is thereby proved. O]

A.3.2 ON ERROR-FREE MAPPING TO BRIDGE SET

Proof of Theorem 3 and 4

Proof. We aim to prove that there exists an optimal parame-
ter wg such that the transformed graph obtained through the
graph prompting method P,,, (G) € Bg. This is equivalent
to proving that there exists wq such that Fy(P,,,(Gori)) =
Fy(Gyri) = C(Gori), where the existence of Gy,.; is guar-
anteed by Theorem 1.

Consider a multi-layer GNN model Fp where each layer has
full-rank matrices and non-linear function o (-). According
to lemma 4, regardless GPF or All-in-One prompt method,
we have:

KG(Pw(Gori)) = H(n) = R(n) + Cp—r

Where ¢; > 0, |[c|| > 0, p spans R, Ky(-) denote the
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process of obtaining the embedding matrix, R(™ a matrix
€ RNXF which is related to the embedding matrix of the
original graph G without prompting, w denotes the parame-
ter of the Prompt method.

Then, Fy(P,(Gori)) = Readout(H (™). Considering the
readout function as linearly combines the embedding vectors
of nodes 1 to n with certain weights: w = [wy,...,w,],
where w; > 0, as defined in A.2, we have:

Fy(Po(Gor)) = Y wiH™

Then:

Fy(Po(Gori)) =wWR™ +w'ep' =RJ +Ap"

where Rj = wR(™, A = w'c () > 0), since p spans RY,
we know that Fy(P,,(G,i)) = R4 + Ap' is a surjective
mapping from the range of w to R”". Meanwhile, Fy(G,;)
is a fixed vector in R,

By the surjective property, there must exist an wq such that:

F@(Pwo (Gori)) - FQ(Gbridge) = C(G)

This completes the proof.

A.3.3 ON ERROR UPPER BOUND ANALYSIS OF
MAPPING TO BRIDGE SET AT SINGLE GRAPH
LEVEL

Proof of Theorems 5

Proof. (Prompt Error Upper Bound on Single Graph With
GCN model with layers containing non-linear functions and
possibly non-full rank matrices)

Consider the optimal wy such that the transformed graph
P,,(G) € e-Bg, where the “error” e takes the minimum
possible value: €.

We aim to prove Theorems 5 by showing that for any graph
G there exists an d; such that:

[ Fo(Puy (Gori)) — Fo(Grri) ||
[ £ (Grri) |

< dp

According to lemma 7 and 8, for both GPF and All-in-One
prompts, there exists a convex cone C' such that:

KG(Gw) = H(n) = cpT

where p is on the surface of such convex cone, i.e., 0C, and
Fy(Ghrs) is a vector inside the convex cone C.
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Using the same readout method as in A.3.2, we have:

FB(PUJ(GOM)) = Zlez(n) = W—rcp—r = )\pT

where p spans surface of the convex cone (0C). Based on
the properties of the cone surface, Ap is on the cone surface
for any A > 0, so we have Fy(P,(G,;)) spans the cone
surface 0C'.

Consider || Fy(Gpri) —Fp(P.,(Gori))||- The minimum value
of this distance, according to definition 3, is the distance
from an element in the convex cone to the cone surface,
which is sin()||v||, where 6 represents the angle of v to the
surface.

t [ Fo(Pu(Gori))—Fo(Goridge)

Iy
as a u cr
TFo (Crriage)l pp

This proves tha

bound, sin(#), where 0 is related to both v and C.

According to definition 4, we know that § < ®/2, where ®
represents the aperture of the cone C.

In summary:
HFG(PW(GOM')) - C(Gori)” (41)
= [[Fo(Pu(Gori)) — Fo(Guri) || 42)
<sin(®/2) - || Fop(Gori) || (43)
=sin(®/2) - [C(Gori)|| (44)

The left part of the error upper bound (sin(®/2)) is only
related to the model, while the right part is only related to the
data (G,,;). This indicates that the error upper bound grows
linearly with ||C(G,;)|| by a coefficient, i.e. sin(®/2).

Since the features magnitude and number of node of the
graph data in the dataset have upper bounds, ||C(Go)||
also has an upper bound C'.Hence, for the dataset, there is a
uniform upper bound, which demonstrates that the model
is effective and can utilize the powerful pre-trained model
within a certain error range. O

A.3.4 ERROR BOUND ANALYSIS OF MAPPING TO
BRIDGE SET AT MULTIPLE GRAPH LEVEL

Proof of Theorems 6

Proof. We prove this theorem by considering the sum of
squared of €, where e denotes the degree of the bridge set
extension. For simplicity, we will refer to it as the “error”.

Consider a dataset with M graphs. We use either a single
prompt vector GPF or a single node-prompted subgraph
All-in-one approach. According to lemma 4, for each graph,
we have the following formula:

Ko(Gi,w) = H™ = R™ 4 ¢;pT (45)
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where c; have the subscript ¢ to indicate that different graphs
produce different c, p spans R”. Note that p does not have
a subscript ¢ because single Prompt Vector is used for all
graphs, despite different graphs having different diffusion
matrices .S and feature matrices X.

After performing the ReadOut operation, we get:

Fy(G)) =w' H™
WTREn) + W—rcip—r = RJ + )\ipT

(40)
(47)

Where \; = w'c;. We can assume R is a zero matrix

without loss of generality as discussed in lemma 7.

Now, consider the sum of squared “errors’:

M M
D_NIC(G:) = xipl* = 3 ATI(A/A)C(Gs) — plf®

(48)

M
=Y " N|Cx (G — I @9)
=1

The optimal wy corresponds to correspond to minimizing
the following loss value.

M
J=3"22|Cx(G) — bl (50)
=1

Which is the weighted sum of squared distances from
p to M different points in the space, denoted as:
D((C/\1 (Gl)v EEE) O)\n (Gn))a (/\17 B /\n))

The optimal p is the weighted centroid of these n vectors
(C»,(G:))M,, as pointed out at (Boyd & Vandenberghe,

2004), i.e.

p = (51)
it N
The closed-form expression for J,,,;,, is:
M
Tmin = »_ [IC(Gs) = Xip™|)? (52)
i=1
Therefore, the minimum root mean squared of ¢
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value(“RMSE”) I(G, . .., G,,) satisfies

I(Gy,...,Gnm) (53)

M
min(,| Y N[Oy, (G) —pl2/M)  (54)
i=1

M

=\ D_lC(G) = \ip* |2/ M (55)
=1
Jmin

=V (56)

Here, I(G4,...,Gy) is a lower bound that is independent
of the value of w, but is related to the distances between
C(G;). This proves that the capability of a single prompt
has an upper limit in this case, which proves Theorem 6. [

Proof of Theorem 7

Proof. We validate this theorem by minimizing the sum of
squared of €, where e denotes the degree of the bridge set
extension. For simplicity, we will refer to it as the “error”.
Consider a dataset with M graphs. We use k prompt vec-
tors for GPF or k node-prompted subgraphs. According to
lemma 6, for each graph, we have:

H™ = Ky(Gy,w) = R™ + ¢,Q] P (57)
where P spans R¥*¥'| () represents the combination coeffi-
cients of different Prompts, and spans R **_ As discussed
in Proof for Theorem 6, we can assume R,(;”) is a zero matrix
for simplicity.

After the ReadOut operation:

Fp(G)=w H™ =w'c,Q] P=MQ/ P (58)
Since Q; spans R¥, \;Q; = Q! also spans R* (\; > 0).
Thus, Fy(G;) spans the row space R(P), which is (at most)
a k-dimensional vector space determined by & independent
prompt vectors.

Consider:

M M
STCT(G) - PIP =3 1C(G) - PP (59
=1 =1

where p’; spans the row space of P. Equation 59 is the sum
of squared distances from n vectors to the vector space P.
We want to minimize:
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M
J= l0G) vl (60)
i=1

Let S = [C(Gy),...,C(Gy)and V = STS. According
to lemma 11, the minimum value of .J is the sum of the
(k + 1)-th to M -th largest eigenvalues of V:

(61)

M

i=k+1

Where \! denotes the i, largest eigenvalue of symmetric
matrix V. Therefore, there exists an optimal wy such that
the mean squared epsilon(error) is:

M \%
Zi:k-ﬁ-l )‘z

% (62)

‘C(Gla"' aGM):

This indicates that in the multiple prompt framework, the op-
timal mean squared ¢ has an upper bound £(G1, -+ ,G ),
which proves Theorem 7.

Notably, if & > n, we can find a suitable P such that Fy(G;)
and C(G;) are error-free for any ¢ € {1,--- , M }. This can
be seen as an extension of Theorems 3 and 4. ]

Remark 4. As Johnstone (2001) pointed out, the eigenval-
ues of V.= C'T C in datasets often exhibit a truncated eigen-
value distribution. The first ko eigenvalues explain most of
the variance. Furthermore, Jolliffe & Cadima (2016) shows
that in many datasets, eigenvalues may exhibit exponential
decay. Hence, the sum of remaining eigenvalues decreases
rapidly as k increases. This could explain why moderate-
scale prompts are sufficient to achieve good results on large
graph datasets.

A.3.5 ERROR DISTRIBUTION ANALYSIS OF MAPPING
TO BRIDGE SET

Proof of Theorem 8

Proof. Consider a GNN model Fy where the W matrix in
the last layer is not full rank. Denote by I’ — r the rank
of the W weight matrix in the last layer. Consider a GPF
prompt or a single node prompt in an All-in-one framework.

According to lemma 4, we have:

H(TL—I) — R(’n—l) +CpT (63)
where H("~1 is the (n — 1), order embedding matrix, p
spans RY'. As discussed in lemma 7, for simplicity, we can
assume R("~1) = 0. Then:
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Ko(Gu) = H'(Go) = o(Su(R™Y + ep" )W)
=0o(S,cp' W) (64)
=o(cp')

where p’ spans the row space R(W).
vi
Consider Kg(Gpyi) = H™ (Gypi) = , where v; €
\
R¥. Then,
AFy(Gori) = Fy(Go,) — C(Gors)
=w! HMW(G,) —w H™(Gys)
=w' (H"(Gy) — H™ (Gyri))
=w'AH. (65)

Here, AH;j = o(cip}) — vij = o(ciply — o~ Hvig)).

Therefore, [AFy(G)]; = Y2, wio(c;iply — o~ (vi;)). This
is a piecewise linear function of p, denoted as g(p)
a(p)p — B(p) for simplicity, where « and S are the coef-
ficients of this piecewise linear function when z takes the
value p.

When w (the graph prompt coefficient) is optimal, due to
the independence of p, all [AFy(G)]’ should take the min-
imum absolute value. That is, p* minimizes |g(p})|, for any
je{l,-- F}

At this point, [[AFy(G)|| Zleg(p;)z, where
* N * — *
g(pj) =i wio(cipj -0 1(”%&')) = Qjp; — Bj.

(5] 0

Letp/* p* andﬁ: [ﬂlf"?ﬂF}T'

0 ap
Then p'* € R(W), hence ||AFy(G)|| = ||p"™ — B||. This
value represents the distance between 3 and p™*. Since
p’* already minimizes ||Ap’ — B|| and Ap’ € R(AW),
Vp' € R(W), where A denotes diag(aq,- -, ap),we can

estimate ||[p* — || using the distance from 3 to the space
R(AW).

Consider the projection matrix P onto the space R(AW).
Then |AFy(G)|| = [[(I - P)B.

We make the following assumption: when p; = p7, B;
follows an i.i.d. normal distribution.
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N
i=1
if o — o= (v
Where, k = 0 i U(Cz?] o (v5)) >0 67
—1 otherwise

Where « is the is the parameter of the Leaky-ReLU. Ac-
cording to the Central Limit Theorem and the independence
of different components in (3, it is reasonable to assume
that 3 follows an n-dimensional i.i.d. normal distribution
with mean 0 and variance ¢ for some positive constant c as
discussed in A.3.5.

Since P is an (F' — r)-dimensional projection matrix, ac-
cording to lemma 13,we know that ||(I — P)g3]|| follows a
Chi distribution with r degrees of freedom and scalar c, i.e.
CXr- O

Remark 5. Here, our (63) implicitly assumes that the first
N — 1 layers of GNN are of full rank. However, even if the
rank of the first N — 1 layers of GNN could be non-full-rank,
we still have p’ € R(W), according to lemma 3. Therefore,
we can still use this theorem for approximation.

Normal Distribution Assumption

We assume that the vector 3, which we call the graph embed-
ding residual vector, follows an F’-dimensional i.i.d. normal
distribution with mean 0 and variance c:

B ~N(0,clr) (68)

where I is the F' x F identity matrix.

Intuitively, this graph embedding residual vector 3 repre-
sents the additional term that the graph needs to fit due
to non-full-rank and non-linear components. Formally, its
components are defined as:

N
=1
. T
Where, k= 0 lfO'(CZZ.)J o (vzj)) >0 (70)
—1 otherwise

The reasons behind this assumption are as follows: (1). Sym-
metry (2). The sum of random variables and Central Limit
Theorem: Each 3, is a sum of multiple terms, each of which
can be considered a random variable. The Central Limit
Theorem suggests that its distribution should approach a nor-
mal distribution. (3). Continuous and smooth distribution

(4). Independence: The components of 3 are assumed to be
independent due to the independence of the input features
and the structure of the GNN.

Therefore, it is reasonable to assume that 3 follows an
F'-dimensional i.i.d. normal distribution with mean 0 and
variance c for some positive constant c.

A.3.6 ANALYSIS OF NONLINEAR GRAPH NEURAL
NETWORKS

Proof of Theorem 9

Proof. According to Preliminary A.1.1, we choose the sim-
plest form of GAT here, with only a self-attention mech-
anism. We consider the diffusion matrix S as a weighted
adjacency matrix, where each entry .S;; represents the co-
efficient of the edge between node ¢ and node j. Such
coefficient is a non-negative scalar, which can be under-
stood as the weight of the edge connecting node ¢ and node
4, S €10,1]V*N  Here, single-node All-in-one connection

matrices Az, € [0,1]'*1 and A, € [0, 1]V *! respectively.
Then, we have such an iterative formula:

H=0((S, ®(Xu,X,)) X, W)
where © denotes the Hadamard product, representing

element-wise multiplication of two matrices, (-,-) repre-
sents the inner product of 2 matrices. In this case, we have:

e

XTX Xp
Xwan -
(X0 X.) (pTXT pr)

S
= (7 o)

Where [ denotes the cross adjacency matrix A, € [0, l]N .
We set A, to 0, hence, Sy is 0. p is the prompted vector
or node feature. Then, we have:

Sw © (X, X)W (71)
S (FofE, ) (XY w o
_ ( S@(X,.X)>T X~(é®P)) , <;(T> W (73)
For simplification, we consider only updating the embed-

ding of rows of original nodes in the embedding matrix.
Then we can obtain:
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H[1:N,] (74)
So(X,X) X-(op)\ (X

_[(ZTG(X p)" (pr)p> (pT) WL

(75)

—o((SO(X,X) X(op))- (;‘}) W) (76)

HIN +1]=p" (77)

, Wi i = =, , W ve:
Here, we can choose [ ;? Then, we have

H[1:N,]=0((S®(X,X) c)- (;‘;) W) (78)

=o(S'XW +c'p'W) (79)

=R+cp' (80)
HIN+1,]=p' @1)
H=R+cp' (82)

(83)

where ¢ is chosen independent of p, ¢/ = ©). This

1

translates to the iterative formula we have discussed earlier
in 2. By analogy with the proofs of Theorems 3, 4, and 5,
we can obtain similar Theorem 9. O

A.4 Further Mathematical Discussion

Discussion on p: In lemma 2, we rely on the claim that
assumes AR = cp, won’t lose the generality. This as-
sumption is mainly for simplification, allowing us to obtain
o(AR+cp')=cp'’, p,p’ spans RY.

The core purpose of this assumption is that when AR =
cp ', the 7;; below is invariant to i.

[R+cp i
Oé[R + CpT]ij

when pj > Tij

[o(R+ep")lij = {

when p; < 7,

Use 7;; is independent of 4, we can immediately estab-
lish a one-to-one mapping between p’ and p, (i.e., pj =

Py when p; 2 7 ), thereby successfully es-
(pj — 7j)/oc whenp; < ;
tablishing an equivalence between changes in p at the input
end and the p’ at the output end. This is what lemma 2 is
doing. Noted that AR = cp, don’t hold in general.

Now let us prove that the specific form of R does not affect
the results based on ReadOut. This is equivalent to proving
the following lemma:

Lemma 9 (Equivalence of R under ReadOut). Consider-
ing a vector p spans RY, then (1) ReadOut(c(R +cp'))
spans RY'. (2) Given p; is independent of each other, then
[ReadOut(a(R + cp"))]; is independent of each other.

Consider the ReadOut of the Output Matrix o(R + cpg) ),
i.e. ReadOut(c(R + cp')). Then the j;;, compoenet of
such a R vector is:

N
Z w;lo(R + Cp Z Rij(p;) + cij(pj)pj)]

=1

Rij WhCIlp > _Rij/ci

, ¢;i like-
R J
Qulig;

where R;;(p) = {

wise.

otherwise

Here, subscript ¢ indicates summing by row. Then, consid-
ering each column j, we have F' independent functions of

pj:

N
P;(py) = Z w;(Rij(pj) + cij(p;)p;s)
= R}(p;j) + Cj(p;)p;

Where p/;(-) is a piece-wise linear function of p; and C;
and R are corresponding piecewise linear coefficients of p;.
such a piecewise linear function takes values in (—oco, +00).
Considering the independence of F' columns, it follows that
(1) ReadOut(c(R + cpT)) spans R (2) each component
of [ReadOut(c(R + cp"))] is independent of each other.
Which is what we need for the proofs of Theorems 3 and 4.

Discussion on Q and P: As lemma 7 pointed out, we
may use the same notations ) and P in the preceding and
following layers, but they have different meanings. We write
it to simplify the expressions. To verify it is valid under
ReadOut perspective, as A.4 pointed out, the following
lemma is required:

Lemma 10. (Equivalence of P and () under ReadOut)

Consider a matrix P € R**F | g matrix Qe RMxk piT =
Q, P then ReadOut(o(cpy )) spans RE.
According to lemma 9, we have:
[C(pi)]; = [ReadOut( (cpi'))l;
= szcz = Ao([pil;)

Where p; = Q; P, w; is the coefficient of ReadOut pro-
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cess, C'(pi) denotes the embedding vector after ReadOut, A
denotes S | wic;.

Hence, every component (with subscript 7) of the embed-
ding vector C(-) is a piece-wise linear function of [p;);.
Specifically, this function is:

P (p;) = {

where « is the coefficient of the leaky ReLU. range of such
a function is (—oo, +00). Since F' components of C(p;) is
independent, ReadOut(o(cp;' )) = C(p;) spans RF".

otherwise

)\pj
QaAp;

Specific form of the bijective mapping of P and ()

Then, for each i € {1,---, M}, we have a Embedding
Vector C(p;). Considering putting such Embedding Vectors

C(p1)
into a matrix, i.e., C' = : . Then:
Clpm)
a(pi)
C = diag(A1,. .., \n) : (84)
o(Par)
ol [py]i - al'F[pa]p
= diag(A1, ..., A\n)
aMipyply - afME [puv) e
(85)
(86)

Here, we claim that we can take I;; = I; by 6, i.e. for any
1€ {1, 7M}slij :I]

Then we have:

. Ar o0 0 [P1]1 -+ [P1lF alr... 0
C=1{: P Do
0 - A\ [PMm]1 -+ [PM]F 0 . aolF
87)
p1'
= diag(A1,..., \n) - -diag(a®t,--- ,alF)
pM
(88)
= diag(\1,...,\,) - QP - diag(a, - -, alF) (89)
=Q'P (90)

Where P’ and Q' give out the specific form of the bijective
mapping between P and () in lemma 5.

Remark 6. We demonstrate that the claim in Explanation
A.4 does not affect the results in Theorems 6 and 7.

Theorem 6 is about the case of a single prompt, making the
claim trivially true.
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For Theorem 7, we are seeking an upper bound for the
optimal case. Among all prompt parameters satisfying the
claim, if we can obtain the result in 7. Then, based on the
principle that the global minimum is less than or equal to
any partial minimum, the error in the optimal prompt would
only be smaller, making such upper bound smaller.

In conclusion, our assumption is valid.
Lemma 11 (Minimum Sum of Squared Distances from M

Vectors to a k-dimensional Subspace).

Suppose we have M vectors in R and a k-dimensional sub-
space of RE". We consider the minimum sum of squared dis-
tances from these M vectors to the k-dimensional subspace.
This is equivalent to minimizing the following objective:

J =X - xww’|%
=Tr(X - XWWhHT(X — xWwwT))

Where W is a k x F' matrix. According to Hotelling (1933),
let: XTX = VAVT where V is the matrix of eigenvectors
and A is the diagonal matrix of eigenvalues. The optimal W
is then the first k columns of V: W = V[, : k]. Substituting
this into the objective function:

J=Te(VAVT —VAVIVV, KV, k)T
—VV[,: KV, KTAVT 4
VV[,: KV k) TAVIV KV K]

Simplifying, we get:
J=Tr(A—=Al: k,: k] — Al k, K]+ Al k, - K])
=Tr(A) — Tr(A[: k,: k])

M
:Z)‘i

i=k+1

Therefore, the minimum sum of squared distances from M
. . LM

vectors to a k-dimensional subspace is ) ., 41 Ai» Where

\; is the i-th eigenvalue of X7 X.

Remark 7. This result is essentially the property of dimen-
sionality reduction of M vectors to k-dimensional.

Definition 3 (Minimum Projection Distance to Cone Sur-
face).

Given a cone C' C R™ with surface C', and any vector v €
C, we define L(v, 9C') as the minimum distance (projection
distance) from v to the surface of C'. Formally:

L(v,d0)

oD

min ||v —x||
x€dC
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Definition 4 (The angle to boundary and the aperture of the
cone).

For any interior point = of a convex cone C, we define:

(i) The minimum distance from « to the boundary of C":
d(z,0C) = min{||lz — y| | y € 0C} = d(z, projo(z)),

where proj () is the projection of x onto C.

(ii) The cosine of the angle 6 between = and the boundary
of C: i
(z, proj¢ (x))

coslyc = -
7 lelllproie ()]

(iii) The relationship between the distance and the angle 6:
d(z,0C) = ||z| sin b, c.

(iv) The aperture ® of the cone

<v,u >

o
sin(2) Tl Tl

)

max (|
v,ueC

Moreover, for any interior point z, we have 6, ¢ < ®/2.
This formulation is based on the Distance-Support Theorem
by Rockafellar (1970).

Lemma 12 (Relationship between Range of Prompted and
Embedding matrix).

As mentioned in lemma 3, V! = V, = {o(v) | v €
R(W)}. In lemma 8, under the alternating action of the
non-linear function Leaky-ReLU and linear transformation
W, we have V! = o(VI71W).

First prove V! is a cone surface. For V1, given A > 0 and
v € R(W), we have o(Av) = Ao(v). Thus, if o(v) €
V1>, then YA > 0, A\o(v) € V.. Furthermore, consider
v € V7L YN > 0, o((AW)W) = Aa(vIV). It follows
that, Vv € VI, VA > 0, A\v € V!, hence, V! is a cone
surface. Iteratively, we obtain that Vof is a cone surface for
ie{l,...,n}.

Next, consider C", as the convex hull of V!. Specifically,
since V! is a cone surface, C, is a convex cone. By lin-
earity of multiple a matrix, C, W remains a convex cone.
After applying o (+), this convex hull transforms into another
convex cone or cone surface, namely, U(C&W), and the
corresponding V/*1 is the surface of CiL. o(C?) is then
the convex hull of o(CL W).

After n iterations of the aggregation, we can conclude that:
V2 is a cone surface, C?, is a convex cone, and V_ is the
surface of C,.

Remark 8. Here we assume that the process of obtain-
ing the convex hull C:t1 from o(CLW) keeps the Vit1
to be the surface of C:L. This always holds true unless

24

the nonlinear transformation o(-) turns the convex cone
VIW non-convex, which is unlikely when piece-wise linear
function Leaky-ReL U is used as the nonlinear function as
discussed in Ben-Tal & Nemirovski (2001 ).

Lemma 13 (Distribution of the Norm of an n-Dimensional
i.i.d. Normal Vector After Multiplying Projection Matrix).

Let P be a projection matrix onto a linear subspace V. Then
I— P is a projection matrix onto the orthogonal complement
of V. Assume ¢ is an n-dimensional random vector follow-
ing a normal distribution with mean 0 and covariance matrix
clr, where c is a positive constant. i.e., s ~ N (0, cIp

Let { = (I — P) -, according to the linear property of
Gaussian Random vector, we have ( ~ N (u/, X'), where:
pW=I-P)p
=
Y=(I-P)".-%-(I-P)
=c(I—P)*=¢(I—-P)
Denote by r the rank of matrix I — P.
Apply decorrelation to ¢, we have . = UT'-(, 1 ~ N(0,%"),

2.7 0]
where 3/ = (€ 17 , U is a orthogonal
( O Op yxrr &
matrix. Hence,
(I = P)s|l = [|e]| = i

~

Since >, 2
x(r)
It follows that the norm of an n-dimensional i.i.d. normal

vector after multiplying projection matrix: ||(I — P)g|| obey
Chi-Distribution with r degrees of freedom.

22:1 %2

~ x2(r), we have: (|| =
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B Supplementary Experiments

We conducted supplementary experiments on real-world
datasets to validate our results. We performed similar exper-
iments as in the main text using entirely different datasets,
namely NCI1 and DD (Morris et al., 2020). The NCI1
dataset has 37-dimensional node features, 4,110 subgraphs,
an average of 29.87 nodes per subgraph, and an average
of 64.60 edges per subgraph. The DD dataset has 89-
dimensional node features, 1,178 subgraphs, an average
of 284.32 nodes per subgraph, and an average of 1,431.32
edges per subgraph. Our results are shown in the following
figures.

| ————
;B ““““\?-YE?%;

Empirical Min Error
Empirical Min Error

5 1000 2 s : 100 2 5o
Epochs Epochs

(a) NCI1 (b) DD

Figure 6. Convergence analysis.

100 2

Exp1l we examined the loss curves during training for GPF
and All-in-one prompting methods with full-rank matrices.
Similar to observations from synthetic datasets, the prompt
method shows a period of steady decline followed by a rapid
decrease to a small magnitude, then slowly converging to
zero. This aligns with our theoretical results.

Empirical Max Error
Empirical Max Error

© 1 2 3 4 5 6 7 8 9 1

Rank Lost Rank Lost

(a) NCI1 (b) DD
Figure 7. Empirical Max Error v.s. Rank Lost.

0o 1 2 3 4 5 6 7 8 9 10

Exp 2 we investigated the relationship between empirical
maximum error and rank loss for non-full-rank matrices.
The results here are similar to those in the main text, with
loss (empirical maximum error) increasing as rank loss in-
creases. Where rank loss is » means the rank of weight
matrix W in GNNis n — 7.

st
£ f"k
5 i
3 (3

p
o

bes

Graph Number Graph Nu

(a) NCI1 (b) DD
Figure 8. Empirical Min Error v.s. Graph Number.

Exp 3 We examined how the RMSE of GPF or single-node
All-in-one Prompt methods change as the number of graphs
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increases in multiple graph mapping scenarios. We observed
that in real-world datasets, RMSE also increases rapidly
as the number of graphs increases, which aligns with our
observation in the main experiment.

Mean Value

Figure 9. Additional multiple graph analysis with All-in-one-plus

Exp 4 we implemented Experiment B in Section 5.4 to
supplement the analysis of All-in-one-plus in multi-graph
prompts. All-in-one-plus also achieved a reduction in over-
all error due to the expanded search space, and the resulting
surface exhibits a shape similar to that of the other two
experiments in Section 5.4(b).

C EXPERIMENT DETAILS

Data Preparation: We first confirm our theoretical findings
on synthetic datasets because these datasets offer controlled
environments, allowing us to isolate specific variables and
study their impacts. We generate these datasets by defin-
ing the dimension of graph feature vector(F’), average of
graph node numbers (N, 4), average of graph edge numbers
(Eqvg), and number of graphs in the dataset (/). These pa-
rameters characterize both individual graphs and the entire
dataset, facilitating our study of the relationship between
these features and e. In detail, the distribution of graph node
feature vectors is set to a normal distribution A/ (0, 1); the
graph edge density p is set to 0.15, where p represents the
probability of an edge existing between any two nodes.

Model Settings: To evaluate our approach, we conduct
experiments using two representative Graph Neural Net-
work (GNN) architectures: Graph Convolutional Networks
(GCN) as linear propagation models and Graph Attention
Networks (GAT) as non-linear propagation models. We
focus on these two architectures because other models tend
to exhibit similar behavior patterns. Unless stated otherwise,
our default configuration employs a three-layer GNN with a
feature dimension of F' = 25 and utilizes the Leaky-ReLU
activation function. For experiments involving full-rank
matrices, we ensure that each layer’s weight matrix is full
rank, selected after an initial pre-training phase. Conversely,
for studies with non-full-rank matrices, we set the rank loss
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parameter to a default value of 5. We adopt mean pooling
as the default readout method throughout our experiments.

Task Settings: Our loss function is defined as
|1 Fo« (Gp) — C(G)|| for single-graph tasks, and

V6 |1 Fo(Gy) = OO /M
tasks. Here G, is the combined graph with G and graph
prompt. Kindly note that C'(G) means an optimal function
to the downstream task, which is not accessible without a
specific task. Since the ultimate purpose of graph prompting
is to approximate graph operation, we here treat C'(-) as
various graph data operations such as adding/deleting nodes,
adding/deleting/changing edges, and transforming features
of a given graph G. The intensity of these graph operations
is controlled by a parameter 5 € [0, 1], where 0 indicates
no change and 1 indicates generating a completely random
new graph. In our experiments, we fix $ at 0.7, which
means we have a (.7 probability of removing a node/edge
or masking some features.

for  multi-graph

Definition of C(G). In our experiments, C'(G) represents
the optimal graph-level embedding of a modified graph
G’ derived from the original graph G. Specifically, G’ is
obtained by performing a graph data manipulation opera-
tion on G, such as removing a certain percentage €% of
edges or nodes. The function C(G) is defined as:C(G) =
Pooling(GNN(G")) where GNN is a graph neural network,
and Pooling is a graph-level pooling operation that aggre-
gates node embeddings into a single vector representing the
entire graph G’. This embedding C'(G) serves as the ground
truth in our experiments.

Experimental Procedure. We focus on a graph-level task
that inherently requires graph data manipulation. The exper-
imental procedure is as follows:

1. Graph Manipulation: Starting with an original graph
G, we generate a modified graph G’ by randomly ap-
plying graph manipulations, including all the afore-
mentioned actions (specifically, adding/deleting nodes,
adding/deleting/changing edges, and transforming fea-
tures of GG, each with chosen hyperparameter ratios).
This process simulates a data operation that alters the
graph structure.

Computing Ground Truth Embedding C(G): We
pass G’ through a pre-trained and fixed GNN model
followed by a pooling operation to obtain the graph-
level embedding C(G): G’ — GNN — Pooling —
C(G) This embedding represents the desired outcome
of the data operation.

Graph Prompting on G: Instead of directly manipu-
lating GG, we apply a graph prompt P, to the original
graph G to approximate the effect of the manipulation:
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G — P,(G) Here, P,(GQ) is the prompted graph,
where P, is a learnable function parameterized by w.

Computing Prompted Graph Embedding: We
pass the prompted graph P, (G) through the same
GNN and pooling operations to obtain the embed-
ding Fy(P,(G)): P,(G) — GNN — Pooling —
Fp (P w (G))

Error Computation: We compute the error between
the embeddings of the prompted graph and the ground
truth embedding: Error = ||Fy(Py,(G)) — C(G)]]
This error quantifies how well the graph prompt ap-
proximates the desired graph data manipulation.

Empirical Maximum Error in Figure 1. Figure 1 in our pa-
per illustrates the empirical maximum error observed in our
experiments, corresponding to the theoretical upper bound
discussed in Theorem 5. To approximate this upper bound:
We perform multiple trials by repeating the experiment with
different random removals of edges or nodes (i.e., generat-
ing different G') and different initializations of the graph
prompt P,,. For each trial, we compute the error as de-
scribed above. We record the maximum error observed
across all trials, which serves as an empirical approximation
of the theoretical upper bound.

Training: In the graph prompting training process, we per-
form gradient descent on the parameters w of the graph
prompt P, using the Adam optimizer. We use a learning
rate of 1 x 10~* and weight decay of 5 x 107°. We im-
plement an early stopping mechanism with a maximum of
2000 epochs by default. When analyzing the upper bound
of the error of the prompt method, it is crucial to ensure that
the convergence value of P is indeed the global minimum.
To prevent the training of prompt parameters from falling
into local minima, we approximate the global minimum by
independently training & times with random initialization
for each prompt, and selecting the minimum loss. Typically,
k is set to 3.

Testing: Note that the error bound in Theorem 5 is the
product of two terms: sin(®/2) and ||C(G)||. For a fixed
pre-trained model, sin(®/2) is consistent, but C'(G) varies
with different generated datasets. In our experiments, the 30
graphs used to find the empirical maximum value are from
the same dataset, while the different empirical maximum
values are obtained from different datasets. Considering
the average value better represents the change in the Er-
ror Bound relative to the independent variables like “Rank
Lost”.

Codes:
dgpw

https://github.com/qunzhongwang/
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