
Under review as a conference paper at ICLR 2018

FAST AND ACCURATE INFERENCE WITH ADAPTIVE
ENSEMBLE PREDICTION FOR DEEP NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Ensembling multiple predictions is a widely-used technique to improve the accu-
racy of various machine learning tasks. In image classification tasks, for example,
averaging the predictions for multiple patches extracted from the input image sig-
nificantly improves accuracy. Using multiple networks trained independently to
make predictions improves accuracy further. One obvious drawback of the en-
sembling technique is its higher execution cost during inference.This higher cost
limits the real-world use of ensembling. In this paper, we first describe our in-
sights on relationship between the probability of the prediction and the effect of
ensembling with current deep neural networks; ensembling does not help mis-
predictions for inputs predicted with a high probability, i.e. the output from the
softmax. This finding motivates us to develop a new technique called adaptive en-
semble prediction, which achieves the benefits of ensembling with much smaller
additional execution costs. Hence, we calculate the confidence level of the pre-
diction for each input from the probabilities of the local predictions during the
ensembling computation. If the prediction for an input reaches a high enough
probability on the basis of the confidence level, we stop ensembling for this input
to avoid wasting computation power. We evaluated the adaptive ensembling by us-
ing various datasets and showed that it reduces the computation cost significantly
while achieving similar accuracy to the naive ensembling. We also showed that
our statistically rigorous confidence-level-based termination condition reduces the
burden of the task-dependent parameter tuning compared to the naive termination
based on the pre-defined threshold in addition to yielding a better accuracy with
the same cost.

1 INTRODUCTION

The huge computation power of today’s computing systems, equipped with GPUs, special ASICs,
FPGAs, or multi-core CPUs, makes it possible to train deep networks using tremendous datasets.
Although such high-performance systems can be used for training, actual inference in the real world
may be executed on small devices such as a handheld device or an embedded controller, which have
much smaller computation power and energy supply than the large systems used for training the net-
work. Hence, a method to achieve high prediction accuracy without increasing computation time is
needed to enable more applications to be deployed in the real world. To reduce the computation costs
in the inference phase, Hinton et al. (2015) created a smaller network for deployment by distilling
the knowledge from an ensemble of multiple models. Han et al. (2016) also targeted deployment
for small (mobile) devices and showed that large networks can be significantly compressed after
training by pruning unimportant connections and by quantizing each connection.

Ensembling multiple predictions is a widely-used technique to improve the accuracy of various ma-
chine learning tasks (e.g. Hansen & Salamon (1990), Zhou et al. (2002)) at the cost of more com-
putation power. In the image classification tasks, for example, accuracy is significantly improved
by ensembling the local predictions for multiple patches extracted from the input image to make the
final prediction. Moreover, accuracy is further improved by using multiple networks trained inde-
pendently to make local predictions. Krizhevsky et al. (2012) averaged 10 local predictions using
10 patches extracted from the center and the 4 corners with and without horizontal flipping in their
Alexnet paper. They also used up to 7 networks and averaged the prediction to get higher accuracy.
GoogLeNet by Szegedy et al. (2015) averaged up to 1,008 local predictions by using 144 patches

1

Under review as a conference paper at ICLR 2018

and 7 networks.In some ensemble methods, meta-learning during the training to learn how to best
mix the multiple local predictions from the networks is used (e.g. Tekin et al. (2015)). In the Alexnet
or GoogLeNet papers, however, the significant improvements were obtained by just averaging the
local predictions without the meta-learning. In this paper, we do not use meta-learning either.

Although the benefits of ensemble prediction are quite significant, one obvious drawback is its higher
execution cost during inference. If we make the final prediction by ensembling 100 predictions, we
need to make 100 local predictions, and hence the execution cost will be 100 times as high as that
without ensembling. This higher execution cost limits the real-world use of ensembling especially
on small devices.

In this paper, we first describe our insights on relationship between the probability of the prediction
and the effect of ensembling with current deep neural networks; ensembling does not help mispre-
dictions for inputs predicted with a high probability, i.e. the output from the softmax. This finding
motivates us to develop an adaptive ensemble prediction, which achieves the benefits of ensembling
with much smaller additional costs. During the ensembling process, we calculate the confidence
level of the probability obtained from local predictions for each input. If an input reaches a high
enough confidence level, we stop ensembling and making more local predictions for this input to
avoid wasting computation power. We evaluated the adaptive ensembling by using four image clas-
sification datasets: ILSVRC 2012, CIFAR-10, CIFAR-100, and SVHN. Our results showed that the
adaptive ensemble prediction reduces the computation cost significantly while achieving similar ac-
curacy to the static ensemble prediction with the fixed number of local predictions. We also showed
that our statistically rigorous confidence-level-based termination condition reduces the burden of
the task-dependent parameter tuning compared to the naive termination condition based on the pre-
defined threshold in the probability in addition to yielding a better accuracy with the same cost (or
lower cost for the same accuracy).

2 ENSEMBLING AND PROBABILITY OF PREDICTION

This section describes the observations that have motivated us to develop our proposed technique:
how the ensemble prediction improves the accuracy of predictions with different probabilities.

To show the relationship between the probability of the prediction and the effect of ensembling,
we evaluate the prediction accuracy for the ILSVRC 2012 dataset with and without ensembling of
two predictions made by two independently trained networks. Figure 1(a) shows the results of this
experiment with GoogLeNet; the two networks follow the design of GoogLeNet and use exactly the
same configurations (hence the differences come only from the random number generator). In the
experiment, we 1) evaluated the 50,000 images from the validation set of the ILSVRC 2012 dataset
using the first network without ensembling, 2) sorted the images by the probability of the prediction,
and 3) evaluated the images with the second network and assessed the accuracy after ensembling
two local predictions using the arithmetic mean. The x-axis of Figure 1(a) shows the percentile of
the probability from high to low, i.e. going left (right), the first local predictions become more (less)
probable. The gray dashed line shows the average probability for each percentile class. Overall,
the ensemble improves accuracy well, although we only averaged two predictions. Interestingly,
we can observe that the improvements only come in the right of the figure. There are almost no
improvements by ensembling two predictions on the left side, i.e. input images with highly probable
local predictions, even when there is a non-negligible number of mispredicted inputs. For example,
in the 50- to 60-percentile range with GoogLeNet, the top-1 error rate is 29.6% and is not improved
by averaging two predictions from different networks.

For more insight into the reason of this characteristics, Figure 2(a) shows the breakdown of 5000
samples in each 10-percentile range into four categolies based on 1) whether the first prediction is
correct or not and 2) whether the two network makes the same prediction or different predictions.
When a prediction with a high probability is made first, we can observe that another local prediction
tends to make the same prediction regardless of its correctness. In the highest 10-percentile range,
for instance, two independently trained networks make the same misprediction for all the 43 mispre-
dicted samples. The two networks make different predictions only in two out of 5,000 samples even
when we include the correct predictions. In the 10- to 20-percentile range, two networks generate
different predictions only in three out of 139 mispredicted samples. Ensembling does not work well
when local predictions tend to make the same mispredictions. The insufficient expressiveness in the

2

Under review as a conference paper at ICLR 2018

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

5 15 25 35 45 55 65 75 85 95

er
ro

r r
at

e
(s

ol
id

),
 p

ro
ba

bi
lit

y
(d

ot
te

d)

Percentile of probability of predicted label

top-1 error rate without ensemble top-1 error rate with ensemble
probability of prediction

accuracy improved
by ensembling

images predicted with
higher probability

images predicted with
lower probability

accuracy not improved
by ensembling

(a) GoogLeNet

0 10 20 30 40 50 60 70 80 90 100
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

5 15 25 35 45 55 65 75 85 95

er
ro

r r
at

e
(s

ol
id

),
 p

ro
ba

bi
lit

y
(d

ot
te

d)

Percentile of probability of predicted label

top-1 error rate without ensemble top-1 error rate with ensemble
probability of prediction

images predicted with
higher probability

images predicted with
lower probability

accuracy improved
by ensembling

accuracy not
improved by
ensembling

(b) Alexnet

0 10 20 30 40 50 60 70 80 90 100

Figure 1: Improvements by ensemble and probabilities of predictions in ILSVRC 2012 validation
set. X-axis shows percentile of probability of first local predictions from high (left) to low (right).
Ensemble reduces error rates for inputs with low probabilities but does not affect inputs with high
probabilities.

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

5 15 25 35 45 55 65 75 85 95

nu
m

be
r

of
 s

am
pl

es

Percentile of probability of predicted label
incorrect & same incorrect & different correct & different correct & same

first local prediction
is correct

first local prediction is incorrect

first and
second

predictions
are

different

† first local prediction is correct or incorrect – first and second local predictions are same or different

†

(a) GoogLeNet

0 10 20 30 40 50 60 70 80 90 100
0

500
1000
1500
2000
2500
3000
3500
4000
4500
5000

5 15 25 35 45 55 65 75 85 95

nu
m

be
r

of
 s

am
pl

es

Percentile of probability of predicted label
incorrect & same incorrect & different correct & different correct & same

first local prediction
is correct

first local prediction is incorrect

first and
second

predictions
are

different

†

(b) Alexnet

0 10 20 30 40 50 60 70 80 90 100

Figure 2: Breakdown of samples into four categories based on 1) whether first local prediction is
correct or incorrect and 2) whether first and second predictions are same or different. X-axis shows
percentile of probability of first local predictions from high (left) to low (right). Two networks tend
to make same (mis)predictions for samples predicted with a high probability (left).

used model or the lack of the appropriate training data may lead to such common mispredictions
among local predictions. For many of the mispredictions with low probabilities, the two networks
make different predictions and hence the ensemble works for them.

To determine whether or not this characteristic of ensembling is unique to GoogLeNet architecture,
we conducted the same experiment using Alexnet as another network architecture and show the
results in Figure 1(b) and 2(b). Although the prediction error rate is higher for Alexnet than for
GoogLeNet, we observe similar characteristics of improvements by ensembling.These characteris-
tics of the improvements by the ensemble are not unique to an ILSVRC dataset; we have observed
similar trends in other datasets.

These results motivate us to make our adaptive ensemble prediction for reducing the additional
cost of ensembling while keeping the benefit of improved accuracy. Once we obtain high enough
prediction probability for an input image, doing further local predictions and ensembling will waste
computation power without improving accuracy. The challenge is how to identify the condition in
which to terminate ensembling. As described later, we identify the termination condition based on
the confidence level of the probability works well for all the tested datasets.

3 RELATED WORK

Various prediction methods that ensemble the outputs from many classifiers (e.g. neural networks)
have been widely studied to achieve higher accuracy in machine learning tasks. Boosting (Fre-
und and Schapire 1996) and Bagging (Breiman (1996)) are famous examples of ensemble methods.
Boosting and Bagging produce enough variances in classifiers included in an ensemble by chang-

3

Under review as a conference paper at ICLR 2018

ing the training set for each classifier. In recent studies on image classifications with deep neural
networks, however, random numbers (e.g. for initialization or for ordering input images) used in
the training phase can give sufficient variances in networks even using the same training set for
all classifiers (networks). Hence, we use networks trained using the same training set and network
architecture in this study.

The higher execution cost of the ensembling is a known problem, so we are not the first to attack
it. For example, Hinton et al. (2015) also tackled the high execution cost of the ensembling. Unlike
us, they trained a new smaller network by distilling the knowledge from an ensemble of networks
by following Buciluǎ et al. (2006). To accelerate binary classification tasks, such as face detection,
soft-cascade (e.g. Bourdev & Brandt (2005), Zhang & Viola (2008)) is a famous technique. In soft-
cascade, multiple weak sub-classifiers are trained to reject a part of the negative inputs. Hence, as
the entire strong classifier, many easy-to-reject inputs are rejected in early stages without consum-
ing huge computation time. Unlike soft-cascade, our technique addresses multi-class classification
tasks. Also ours is an inference-time technique and does not affect the training phase. Ours can
be used even with only one network to make efficient ensemble. However, our basic insight may
potentially useful for extending soft-cascade to use in multi-class classification tasks. Another series
of studies to accelerate classification tasks with two or few classes is based on dynamic pruning of
majority voting (e.g. Hernández-Lobato et al. (2009), Soto et al. (2016)). Like our technique, the
dynamic pruning uses a certain confidence level to prune the ensembling with the sequential voting
process to avoid wasting the computation time. We show that the confidence-level-based approach
is quite effective to accelerate the ensembling by averaging local predictions in many-class classi-
fications tasks with deep neural networks when we use the output of the softmax as the probability
of the local predictions. Some existing classifiers with a deep neural network (e.g. Bolukbasi et al.
(2017)) take an early exit approach similar to ours. In our study, we study how the exit condition
for the termination affects the execution time and the accuracy in detail and showed our confidence-
level-based condition works better than the naive threshold-based conditions.

In our technique, we use the probability of the predictions to control the ensembling during the infer-
ence. Typically, the probability of the prediction generated by the softmax is used during the training
of the network; the cross entropy of the probabilities is often used as the objective function of the
optimization. However, using the probability for purposes other than the target of the optimization
is not unique to us. For example, Hinton et al. (2015) used the probabilities from the softmax while
distilling the knowledge from the ensemble. As far as we know, ours is the first study focusing on
the relationship between the probability of the prediction and the effect of ensembling with current
deep neural networks.

Opitz & Maclin (1999) showed an important observation related to ours. They showed that the
large part of the gain of ensembling came from the ensembling of the first few local predictions.
Our observation discussed in the previous section enhances Opitz’s observation from a different
perspective: most gain of the ensembling comes from inputs with low probabilities in the prediction.

4 ADAPTIVE ENSEMBLE PREDICTION

4.1 BASIC IDEA

This section details our proposed adaptive ensemble prediction method. As shown in Figure 1,
the ensemble typically does not improve the accuracy of predictions if a local prediction is highly
probable. Hence, we terminate ensembling without processing all N local predictions on the basis
of the probabilities of the predictions. We execute the following steps:

1. start from i = 1
2. obtain i-th local prediction, i.e. the probability for each class label. We denote the proba-

bility for label L of i-th local prediction pL,i

3. calculate the average probabilities for each class label

〈pL〉i =
∑i

j=1 pL,j

i
(1)

4. if i < N and the termination condition is not satisfied, increment i and repeat from step 2

4

Under review as a conference paper at ICLR 2018

5. output the class label that has the highest average probability arg max
L

(〈pL〉i) as the final

prediction.

4.2 CONFIDENCE-LEVEL-BASED TERMINATION CONDITION

For the termination condition in Step 4, we propose a condition based on a confidence level.

We can use a naive condition on the basis of a pre-determined threshold T to terminate the ensem-
bling, i.e. we just compare the highest average probability maxL (〈pL〉i) against the threshold T .
If the average probability exceeds the threshold, we do not execute further local predictions for en-
sembling. As we empirically show later, the best threshold T heavily depends on task. To avoid this
difficult tuning of the threshold T , we propose more statistically rigorous condition in this paper.

Instead of the pre-defined threshold, we can use the confidence intervals (CIs) as a termination
condition. We first find the label that has the highest average probability (predicted label). Then, we
calculate the CI of the probabilities using i local predictions. If the calculated CI of the predicted
label does not overlap with the CIs for other labels, i.e. the predicated label is the best prediction
with a certain confidence level, we terminate the ensembling and output the predicted label as the
final prediction.

We calculate the confidence interval for the probability of label L using i local predictions by

〈pL〉i ± z
1√
i

√∑i
j=1 (pL,j − 〈pL〉i)

2

i− 1
(2)

Here, z is defined such that a random variable Z that follows the Student’s-t distribution with i −
1 degrees of freedom satisfies the following condition: Pr [Z ≤ z] = 1 − α/2. (1 − α) is the
confidence level and α is called the significance level. We can read the value z from a precomputated
table at runtime. To compute the confidence interval with small number of samples (i.e. local
predictions), it is known that the Student’s-t distribution is more suitable than the normal distribution.
When the number of local predictions increases, the Student’s-t distribution approximates the normal
distribution.

Preferably, we want to do pair-wise comparisons between the predicted label and all other labels.
However, computing CIs for all labels is costly, especially when there are many labels. To avoid
excess costs of computing CIs, we compare the probability of the predicted label against the total
of the probabilities of other labels. Since the total of the probabilities of all labels (including the
predicted label) is 1.0 by definition, the total of the probabilities for the labels other than the predicted
label are 1−〈pL〉i and the CI is the same size as that of the probability of the predicted label. Hence,
our termination condition is

〈pL〉i − (1− 〈pL〉i) > 2z
1√
i

√∑i
j=1 (pL,j − 〈pL〉i)

2

i− 1
(3)

We avoid computing CI if 〈pL〉i < 0.5 to avoid wasteful computation because the termination condi-
tion of equation 2 cannot be met in such cases. Since the CI cannot be calculated with only one local
prediction as is obvious from equation (3) to avoid zero divisions, we can use a hybrid of the two
termination conditions. We use the static-threshold-based condition only for the first local prediction
with a quite conservative threshold (99.99% in the current implementation) to terminate ensembling
only for trivial inputs as early as possible, and after the second local prediction is calculated, the
confidence-level-based condition of equation (3) is used.

5 EXPERIMENTS

5.1 IMPLEMENTATION

In this section, we investigate the effects of adaptive ensemble prediction on the prediction accuracy
and the execution cost using various image classification tasks: ILSVRC 2012, Street View House
Numbers (SVHN), CIFAR-10, and CIFAR-100 (with fine and course labels) datasets.

5

Under review as a conference paper at ICLR 2018

For the ILSVRC 2012 dataset, we use GoogLeNet as the network architecture and train the net-
work using the stochastic gradient descent with momentum as the optimization method. For other
datasets, we use a network that has six convolutional layers with batch normalization (Ioffe &
Szegedy (2015)) followed by two fully connected layers. We used the same network architecture
except for the number of neurons in the output layer. We train the network using Adam (Kingma
& Ba (2014)) as the optimizer. For each task, we trained two networks independently. During the
training, we used data augmentations by extracting a patch from a random position of the input im-
age and using random horizontal flipping. Since adaptive ensemble prediction is an inference-time
technique, it does not affect the network training. We executed the training and the inference on a
Tesla K40 GPU for the ILSVRC 2012 dataset and a Tesla K20 GPU for other datasets.

We averaged up to 20 local predictions using ensembling. We created 10 patches from each input
image by extracting from the center and the four corners with and without horizontal flipping by fol-
lowing Alexnet. For each patch, we made two local predictions using two networks. The patch size
is 224x224 for the ILSVRC 2012 dataset and 28x28 for the other datasets. We made local predic-
tions in the following order: (center, no flip, network1), (center, no flip, network2), (center, flipped,
network1), (center, flipped, network2), (top-left, no flip, network1), ..., (bottom-right, flipped, net-
work2). Since averaging local predictions from different networks typically yield better accuracy
and hence we use this order for both our adaptive ensembling and fixed-number static ensembling.
For the inference, we use a batch of 200 inputs. As we repeated local predictions, the batch became
smaller as computation for parts of inputs terminated.

5.2 RESULTS

To study the effects of our adaptive ensemble on the computation cost and accuracy, we show the
relationship between them for ILSVRC 2012 and CIFAR-10 datasets in Figure 3. In the figure, the x-
axis is the number of ensembled predictions, so smaller means faster. The y-axis is the improvements
in classification error rate over the baseline (no ensemble), so higher means better. We evaluated the
static ensemble (averaging the fixed number of predictions) by changing the number of predictions
to average and our adaptive ensemble. For the adaptive ensemble, we also evaluated with two
termination conditions: with naive static threshold and with confidence interval. We tested the
static-threshold-based conditions by changing the threshold T and drew lines in the figure. Similarly,
we evaluated the confidence-level-based condition with three confidence levels frequently used in
statistical testing: 90%, 95% and 99%.

From the figure, there is an obvious tradeoff between the accuracy and the computation cost. The
static ensemble with 20 predictions is at one end of the tradeoff because it never terminates early.
The baseline, which does not execute ensemble, is at the other end, which always terminates at the
first prediction regardless of the probability. Our adaptive ensemble with the confidence-level-based
condition achieved better accuracy with the same computation cost (or smaller computation cost for
the same accuracy) compared to the static ensemble or the naive adaptive ensemble with a static
threshold. The gain with the confidence-level-based condition over the static-threshold-based was
significant for CIFAR-10 whereas it was marginal for ILSVRC 2012. These two datasets show the
largest and smallest gain with the confidence-level-based condition over the static-threshold-based
condition; other datasets showed improvements between those of the two datasets shown in Figure
2.

When comparing two termination conditions in the adaptive ensemble, the confidence-level-based
condition eliminates the burden of the parameter tuning compared to the naive threshold-based con-
dition in addition to the benefit of the reduced computation cost. Obviously, how to decide the best
threshold T is the most important problem for the static-threshold-based condition. The threshold
T can be used as a knob to control the tradeoff between the accuracy and the computation cost, but
the static threshold tuning is highly dependent on the dataset and task. From figure 3, for example,
T = 80% seems to be a reasonable choice for ILSVRC 2012, but it is a problematic choice for
CIFAR-10. For the confidence-level-based condition, the confidence level also controls the trade-
off. However, the differences in the computation cost and the improvements in accuracy due to the
choice of the confidence level were much less significant and less sensitive to the current task than
the differences due to the static threshold. Hence task-dependent fine tuning of the confidence level
is not as important as the tuning of the static threshold. The easier (or no) tuning of the parameter is
an important advantage of the confidence-level-based condition.

6

Under review as a conference paper at ICLR 2018

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

0 5 10 15 20

im
pr

ov
em

en
ts

 in
 e

rro
r r

at
e

average number of local predictions ensembled

Static ensemble (with pre-defined number
of local predictions)
Adaptive ensemble with naive static-
threshold-based condition
Our adaptive ensemble with confidence-
level-based condition

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

0 5 10 15 20

im
pr

ov
em

en
ts

 in
 e

rro
r r

at
e

average number of local predictions ensembled

Static ensemble (with pre-defined number of
local predictions)
Adaptive ensemble with naive static-
threshold-based condition
Our adaptive ensemble with confidence-
level-based condition

ILSVRC 2012 dataset

CIFAR-10 dataset

m
or

e
ac

cu
ra

te

faster

faster

m
or

e
ac

cu
ra

te

T=99%T=90%T=80%

T=70%
T=60%

T=99.999%
T=99.99%

T=99.9%
T=99%

T=95%
T=90%

C.L.=99%C.L.=95%

C.L.=90%

T=50%

C.L.=99%
C.L.=95%

C.L.=90%

T=80%

T: static threshold, C.L.: confidence level

average 20
predictions

average 20
predictions

T: static threshold, C.L.: confidence level

baseline
(no ensemble)

baseline
(no ensemble)

Figure 3: Prediction accuracy and computation cost with static ensemble and our adaptive ensemble
using different termination conditions.Confidence-level-based condition achieved better accuracy
than static-threshold-based conditions with same computation cost especially for CIFAR-10. Tuning
of confidence level (CL) is less sensitive than that of static threshold.

Tables 1, 2, and 3 show how adaptive ensemble prediction affected the accuracy of predictions and
the execution costs in more detail for five datasets. Here, for our adaptive ensemble, we use the
confidence-level-based termination condition with a 95% confidence level based on the results of
Figure 3. We test two different configurations: with one network (i.e. up to 10 local predictions)
and two networks (up to 20 local predictions). In all datasets, the ensemble improves the accuracy
in a tradeoff for the increased execution costs as expected. Using two networks doubles the number
of local predictions on average (from 10 to 20) and increased both the benefit and drawback. If we
use further local predictions (e.g. original GoogLeNet averaged up to 1,008 predictions), the benefit
and the cost will become much more significant. Comparing our adaptive ensemble with the static
ensemble, our adaptive ensemble similarly improves accuracy (from 92% to 99% when we use two
networks and from 83% to 99% when we use one network) while reducing the number of local
predictions used in the ensembles; the reductions are up to 6.9x and 12.7x for the one-network and
two-network configurations. The reduced numbers of local predictions result in shorter execution
time; the speedup was by 2.1x to 2.8x and by 2.3x to 3.5x for the one-network and two-network con-
figurations, respectively. The reductions in the execution time over the static ensemble are smaller
than the reduction in the number of averaged predictions because of the additional overhead due to
the confidence interval calculation, which is written in Python in the current implementation. Also,
mini batches gradually become small as ensembling for parts of inputs terminated. The smaller
batch sizes reduce the efficiency of execution on current GPUs. Since the speedup by our adaptive
technique over the static ensemble becomes larger as the number of max predictions to ensemble in-
creases, the benefit of our adaptive technique will become more impressive if we use larger ensemble
configurations.

7

Under review as a conference paper at ICLR 2018

Table 1: Prediction accuracy with and without adaptive ensemble

dataset # class
labels

classification error rate (lower is better)
with one network

classification error rate
with two networks

no
ensemble

naive
ensemble

our adaptive
ensemble

naive
ensemble

our
adaptive
ensemble

CIFAR-10 10 8.39% 6.97%
(-1.41%)

7.00%
(-1.39%)

6.23%
(-2.16%)

6.34%
(-2.04%)

SVHN 10 4.40% 3.44%
(-0.96%)

3.50%
(-0.90%)

3.19%
(-1.21%)

3.29%
(-1.11%)

CIFAR-100
(course label)

20 20.63% 17.84%
(-2.79%)

18.04%
(-2.59%)

16.56%
(-4.07%)

16.78%
(-4.06%)

CIFAR-100
(fine label) 100 30.28% 27.04%

(-3.24%)
27.34%

(-2.94%)
25.04%

(-5.24%)
25.15%

(-5.13%)

ILSVRC
2012

top-1
error

1000

32.36% 30.21%
(-2.15%)

30.26%
(-2.10%)

28.11%
(-4.25%)

28.12%
(-4.24%)

top-5
error

12.67% 11.11%
(-1.37%)

11.35%
(-1.14%)

9.99%
(-2.50%)

10.21%
(-2.28%)

Ratios in parenthesis show improvements in error rate over baseline (no ensemble).

Table 2: Number of local predictions ensembled with and without adaptive ensemble

dataset

local predictions ensembled (lower is better)
with one network

local predictions ensembled
with two networks

no
ensemble

naive
ensemble

our adaptive
ensemble

naive
ensemble

our adaptive
ensemble

CIFAR-10

1 10

1.66

20

1.92
SVHN 1.44 1.57

CIFAR-100 c 2.74 4.09
CIFAR-100 f 3.59 5.93
ILSVRC 2012 3.94 7.40

Table 3: Execution time with and without adaptive ensemble

dataset

execution time per sample (lower is better)
with one network

execution time per sample
with two networks

no
ensemble

naive
ensemble

our adaptive
ensemble

naive
ensemble

our adaptive
ensemble

CIFAR-10
0.30 msec

(1.0x)
2.55 msec

(8.37x)
0.98 msec

(3.20x)
4.98 msec

(16.34x)
1.61 msec

(5.28x)

SVHN 0.28 msec
(1.0x)

2.52 msec
(9.09x)

0.89 msec
(3.20x)

4.96 msec
(17.83x)

1.43 msec
(5.13x)

CIFAR-100
(course label)

0.31 msec
(1.0x)

2.55 msec
(8.28x)

1.04 msec
(3.58x)

4.99 msec
(16.16x)

1.87 msec
(6.01x)

CIFAR-100
(fine label)

0.31 msec
(1.0x)

2.56 msec
(8.36x)

1.25 msec
(4.07x)

4.99 msec
(16.28x)

2.15 msec
(7.03x)

ILSVRC 2012
3.75 msec

(1.0x)
35.84 msec

(9.56x)
16.67 msec

(4.45x)
70.74 msec

(18.86x)
30.10 msec

(8.03x)
Ratios in parenthesis show relative slowdown over baseline (no ensemble).

6 CONCLUSION

In this paper, we described our adaptive ensemble prediction to reduce the computation cost of
ensembling many predictions. We were motivated to develop this technique by our observation
that ensembling does not improve the prediction accuracy if predictions are highly probable. Our
experiments using various image classification tasks showed that our adaptive ensemble makes it
possible to avoid wasting computing power without significantly sacrificing the prediction accuracy
by terminating ensembles based of the probabilities of the local predictions. The benefit of our
technique will become larger if we use more predictions in an ensemble. Hence, we expect our
technique to make the ensemble techniques more valuable for real-world systems by reducing the
total computation power required while maintaining good accuracies and throughputs.

8

Under review as a conference paper at ICLR 2018

REFERENCES

Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh Saligrama. Adaptive neural networks
for efficient inference. arXiv:1702.07811, 2017.

Lubomir Bourdev and Jonathan Brandt. Robust object detection via soft cascade. In Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 236–243, 2005.

Leo Breiman. Bagging predictors. In Machine Learning, pp. 123–140, 1996.

Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In KDD, pp.
535–541, 2006.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. In International Conference on Learning
Representation (, 2016.

Lars Kai Hansen and Peter Salamon. Neural network ensembles. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 12(10):993–1001, 1990.

Daniel Hernández-Lobato, Gonzalo Martı́nez-Muñoz, and Alberto Suárez. Statistical instance-based
pruning in ensembles of independent classifiers. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 31(2):364–369, 2009.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv:1503.02531, 2015.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv:1502.03167, 2015.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv:1412.6980,
2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. Imagenet classification with deep convolu-
tional neural networks. In Annual Conference on Neural Information Processing Systems (NIPS),
pp. 1106–1114, 2012.

David Opitz and Richard Maclin. Popular ensemble methods: An empirical study. Journal of
Artificial Intelligence Research, 11:169–198, 1999.

Victor Soto, Alberto Suárez, and Gonzalo Martı́nez-Muñoz. An urn model for majority voting
in classification ensembles. In Annual Conference on Neural Information Processing Systems
(NIPS), pp. 4430–4438, 2016.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

Cem Tekin, Jinsung Yoon, and Mihaela van der Schaar. Adaptive ensemble learning with confidence
bounds. arXiv:1512.07446, 2015.

Cha Zhang and Paul Viola. Multiple-instance pruning for learning efficient cascade detectors. In
Annual Conference on Neural Information Processing Systems (NIPS), pp. 1681–1688, 2008.

Zhi-Hua Zhou, Jianxin Wu, and Wei Tang. Ensembling neural networks: Many could be better than
all. Artificial Intelligence, 137(1-2):239–263, 2002.

9

	Introduction
	Ensembling and Probability of Prediction
	Related Work
	Adaptive Ensemble Prediction
	Basic Idea
	Confidence-Level-Based Termination Condition

	Experiments
	Implementation
	Results

	Conclusion

