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ABSTRACT

We introduce similarity encoders (SimEc), which learn similarity preserving repre-
sentations by using a feed-forward neural network to map data into an embedding
space where the original similarities can be approximated linearly. The model can
easily compute representations for novel (out-of-sample) data points, even if the
original pairwise similarities of the training set were generated by an unknown
process such as human ratings. This is demonstrated by creating embeddings
of both image and text data. Furthermore, the idea behind similarity encoders
gives an intuitive explanation of the optimization strategy used by the continuous
bag-of-words (CBOW) word2vec model trained with negative sampling. Based
on this insight, we define context encoders (ConEc), which can improve the word
embeddings created with word2vec by using the local context of words to create
out-of-vocabulary embeddings and representations for words with multiple mean-
ings. The benefit of this is illustrated by using these word embeddings as features
in the CoNLL 2003 named entity recognition task.

1 INTRODUCTION

Many dimensionality reduction or manifold learning algorithms optimize for retaining the pairwise
similarities, distances, or local neighborhoods of data points. Classical scaling (Cox & Cox, 2000),
kernel PCA (Schölkopf et al., 1998), isomap (Tenenbaum et al., 2000), and LLE (Roweis & Saul,
2000) achieve this by performing an eigendecomposition of some similarity matrix to obtain a low
dimensional representation of the original data. However, this is computationally expensive if a lot
of training examples are available. Additionally, out-of-sample representations can only be created
when the similarities to the original training examples can be computed (Bengio et al., 2004).

For some methods such as t-SNE (van der Maaten & Hinton, 2008), great effort was put into extending
the algorithm to work with large datasets (van der Maaten, 2013) or to provide an explicit mapping
function which can be applied to new data points (van der Maaten, 2009). Current attempts at finding
a more general solution to these issues are complex and require the development of specific cost
functions and constraints when used in place of existing algorithms (Bunte et al., 2012), which limits
their applicability to new objectives.

In this paper we introduce a new neural network architecture, that we will denote as similarity
encoder (SimEc), which is able to learn representations that can retain arbitrary pairwise relations
present in the input space, even those obtained from unknown similarity functions such as human
ratings. A SimEc can learn a linear or non-linear mapping function to project new data points into a
lower dimensional embedding space. Furthermore, it can take advantage of large datasets since the
objective function is optimized iteratively using stochastic mini-batch gradient descent. We show on
both image and text datasets that SimEcs can, on the one hand, recreate solutions found by traditional
methods such as kPCA or isomap, and, on the other hand, obtain meaningful embeddings from
similarities based on human labels.
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Additionally, we propose the new context encoder (ConEc) model, a variation of similarity encoders
for learning word embeddings, which extends word2vec (Mikolov et al., 2013b) by using the local
context of words as input to the neural network to create representations for out-of-vocabulary
words and to distinguish between multiple meanings of words. This is shown to be advantageous,
for example, if the word embeddings are used as features in a named entity recognition task as
demonstrated on the CoNLL 2003 challenge.

2 SIMILARITY ENCODERS

We propose a novel dimensionality reduction framework termed similarity encoder (SimEc), which
can be used to learn a linear or non-linear mapping function for computing low dimensional represen-
tations of data points such that the original pairwise similarities between the data points in the input
space are preserved in the embedding space. For this, we borrow the “bottleneck” neural network
(NN) architecture idea from autoencoders (Tishby et al., 2000; Hinton & Salakhutdinov, 2006). Au-
toencoders aim to transform the high dimensional data points into low dimensional embeddings such
that most of the data’s variance is retained. Their network architecture has two parts: The first part of
the network maps the data points from the original feature space to the low dimensional embedding
(at the bottleneck). The second part of the NN mirrors the first part and projects the embedding
back to a high dimensional output. This output is then compared to the original input to compute
the reconstruction error of the training samples, which is used in the backpropagation procedure to
tune the network’s parameters. After the training is complete, i.e. the low dimensional embeddings
encode enough information about the original input samples to allow for their reconstruction, the
second part of the network is discarded and only the first part is used to project data points into the
low dimensional embedding space. Similarity encoders have a similar two fold architecture, where
in the first part of the network, the data is mapped to a low dimensional embedding, and then in
the second part (which is again only used during training), the embedding is transformed such that
the error of the representation can be computed. However, since here the objective is to retain the
(non-linear) pairwise similarities instead of the data’s variance, the second part of the NN does not
mirror the first like it does in the autoencoder architecture.

Input Embedding
(bottleneck)

Output Target

Feed Forward
NN

xi 2 RD

yi 2 Rd

si 2 RNs0 2 RN

W�1 2 Rd⇥N

,

Figure 1: Similarity encoder (SimEc) architecture.

The similarity encoder architecture (Figure 1) uses as the first part of the network a flexible non-linear
feed-forward neural network to map the high dimensional input data points xi ∈ RD to a low
dimensional embedding yi ∈ Rd (at the bottleneck). As we make no assumptions on the range of
values the embedding can take, the last layer of the first part of the NN (i.e. the one resulting in
the embedding) is always linear. For example, with two additional non-linear hidden layers, the
embedding would be computed as

yi = σ1(σ0(xiW0)W1)W2,

where σ0 and σ1 denote your choice of non-linear activation functions (e.g. tanh, sigmoid, or relu),
but there is no non-linearity applied after multiplying with W2. The second part of the network then
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consists of a single additional layer with the weight matrix W−1 ∈ Rd×N to project the embedding
to the output, the approximated similarities s′ ∈ RN :

s′ = σ−1(yiW−1).

These approximated similarities are then compared to the target similarities (for one data point this is
the corresponding row si ∈ RN of the similarity matrix S ∈ RN×N of the N training samples) and
the computed error is used to tune the network’s parameters with backpropagation.

For the model to learn most efficiently, the exact form of the cost function to optimize as well as
the type of non-linearity σ−1 applied when computing the network’s output should be chosen with
respect to the type of target similarities that the model is supposed to preserve. In the experimental
section of the paper we are considering two application scenarios of SimEcs: a) to obtain the same
low dimensional embedding as found by spectral methods such as kPCA, and b) to embed data points
such that binary similarity relations obtained from human labels are preserved.
In the first case (further discussed in the next section), we omit the non-linearity when computing
the output of the network, i.e. s′ = yiW−1, since the target similarities, computed by some kernel
function, are not necessarily constrained to lie in a specific interval. As the cost function to minimize
we choose the mean squared error between the output (approximated similarities) and the original
(target) similarities. A regularization term is added to encourage the weights of the last layer (W−1)
to be orthogonal.1 The model’s objective function optimized during training is therefore:

min
1

N

N∑
i=1

‖si − s′‖22 + λ
1

d2 − d
∥∥W−1W>−1 − diag(W−1W>−1)

∥∥
1

where ‖ · ‖p denotes the respective p-norms for vectors and matrices and λ is a hyperparameter to
control the strength of the regularization.
In the second case, the target similarities are binary and it therefore makes sense to use a non-
linear activation function in the final layer when computing the output of the network to ensure the
approximated similarities are between 0 and 1 as well:2

s′ = σ−1(yiW−1) with σ−1(z) =
1

1 + e−10(z−0.5)
.

While the mean squared error between the target and approximated similarities would still be a natural
choice of cost function to optimize, with the additional non-linearity in the output layer, learning
might be slow due to small gradients and we therefore instead optimize the cross-entropy:

min − 1

N

∑
[si ln(s

′) + (1− si) ln(1− s′)] .

For a different application scenario, yet another setup might lead to the best results. When using
SimEcs in practice, we recommend to first try the first setup, i.e. keeping the output layer linear and
minimizing the mean squared error, as this often already gives quite good results.

After the training is completed, only the first part of the neural network, which maps the input to the
embedding, is used to create the representations of new data points. Depending on the complexity of
the feed-forward NN, the mapping function learned by similarity encoders can be linear or non-linear,
and because of the iterative optimization using stochastic mini-batch gradient descent, large amounts
of data can be utilized to learn optimal representations.3

2.1 RELATION TO KERNEL PCA

Kernel PCA (kPCA) is a popular non-linear dimensionality reduction algorithm, which performs the
eigendecomposition of a kernel matrix to obtain low dimensional representations of the data points

1To get embeddings similar to those obtained by kPCA, orthogonal weights in the last layer of the NN help
as they correspond to the orthogonal eigenvectors of the kernel matrix found by kPCA.

2This scaled and shifted sigmoid function maps values between 0 and 1 almost linearly while thresholding
values outside this interval.

3To speed up the training procedure and limit memory requirements for large datasets, the columns of the
similarity matrix can also be subsampled (yielding S ∈ RN×n), i.e. the number of target similarities (and the
dimensionality of the output layer) is n < N , however all N training examples can still be used as input to train
the network.
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(Schölkopf et al., 1998). However, if the kernel matrix is very large this becomes computationally
very expensive. Additionally, there are constraints on possible kernel functions (should be positive
semi-definite) and new data points can only be embedded in the lower dimensional space if their
kernel map (i.e. the similarities to the original training points) can be computed. As we show below,
SimEc can optimize the same objective as kPCA but addresses these shortcomings.

The general idea is that both kPCA and SimEc embed the N data points in a feature space where the
given target similarities can be approximated linearly (i.e. with the scalar product of the embedding
vectors). When the error between the approximated (S′) and the target similarities (S) is computed as
the mean squared error, kPCA finds the optimal approximation by performing the eigendecomposition
of the (centered) target similarity matrix, i.e.

S′ = Y Y >,

where Y ∈ RN×d is the low dimensional embedding of the data based on the eigenvectors belonging
to the d largest eigenvalues of S.

In addition to the embedding itself, it is often desired to have a parametrized mapping function,
which can be used to project new (out-of-sample) data points into the embedding space. If the target
similarity matrix is the linear kernel, i.e. S = XX> where X ∈ RN×D is the given input data,
this can easily be accomplished with traditional PCA. Here, the covariance matrix of the centered
input data, i.e. C = X>X is decomposed to obtain a matrix with parameters, W̃ ∈ RD×d, based on
the eigenvectors belonging to the d largest eigenvalues of the covariance matrix. Then the optimal
embedding (i.e. the same solution obtained by linear kPCA) can be computed as

Y = XW̃.

This serves as a mapping function, with which new data points can be easily projected into the lower
dimensional embedding space.

When using a similarity encoder to embed data in a low dimensional space where the linear similarities
are preserved, the SimEc’s architecture would consist of a neural network with a single linear layer,
i.e. the parameter matrix W0, to project the input data X to the embedding Y = XW0, and another
matrix W−1 ∈ Rd×N used to approximate the similarities as

S′ = YW−1.
From these formulas one can immediately see the link between linear similarity encoders and PCA /
linear kPCA: once the parameters of the neural network are tuned correctly, W0 would correspond
to the mapping matrix W̃ found by PCA and W−1 could be interpreted as Y >, i.e. Y would be the
same eigenvector based embedding as found with linear kPCA.

Finding the corresponding function to map new data points into the embedding space is trivial for
linear kPCA, but this is not the case for other kernel functions. While it is still possible to find
the optimal embedding with kPCA for non-linear kernel functions, the mapping function remains
unknown and new data points can only be projected into the embedding space if we can compute
their kernel map, i.e. the similarities to the original training examples (Bengio et al., 2004). Some
attempts were made to manually define an explicit mapping function to represent data points in
the kernel feature space, however this only works for specific kernels and there exists no general
solution (Rahimi & Recht, 2007). As neural networks are universal function approximators, with the
right architecture similarity encoders could instead learn arbitrary mapping functions for unknown
similarities to arrive at data driven kernel learning solutions.

2.2 MODEL OVERVIEW

The properties of similarity encoders are summarized in the following. The objective of this dimen-
sionality reduction approach is to retain pairwise similarities between data points in the embedding
space. This is achieved by tuning the parameters of a neural network to obtain a linear or non-linear
mapping (depending on the network’s architecture) from the high dimensional input to the low
dimensional embedding. Since the cost function is optimized using stochastic mini-batch gradient
descent, we can take advantage of large datasets for training. The embedding for new test points can
be easily computed with the explicit mapping function in the form of the tuned neural network. And
since there is no need to compute the similarity of new test examples to the original training data for
out-of-sample solutions (like with kPCA), the target similarities can be generated by an unknown
process such as human similarity judgments.
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2.3 EXPERIMENTS

In the following experiments we demonstrate that similarity encoders can, on the one hand, reach the
same solution as kPCA, and, on the other hand, generate meaningful embeddings from human labels.
To illustrate that this is independent of the type of data, we present results obtained both on the well
known MNIST handwritten digits dataset as well as the 20 newsgroups text corpus. Further details as
well as the code to replicate these experiments and more is available online.4

We compare the embedding found with linear kPCA to that created with a linear similarity encoder
(consisting of one linear layer mapping the input to the embedding and a second linear layer to project
the embedding to the output, i.e. computing the approximated similarities). Additionally, we show
that a non-linear SimEc can approximate the solution found with isomap (i.e. the eigendecomposition
of the geodesic distance matrix). We found that for optimal results the kernel matrix used as the target
similarity matrix for the SimEc should first be centered (as it is being done for kPCA as well (Müller
et al., 2001)).

In a second step, we show that SimEcs can learn the mapping to a low dimensional embedding for
arbitrary similarity functions and reliably create representations for new test samples without the need
to compute their similarities to the original training examples, thereby going beyond the capabilities
of kPCA. For both datasets we illustrate this by using the class labels assigned to the samples by
human annotators to create the target similarity matrix for the training fold of the data, i.e. S is 1 for
data points belonging to the same class and 0 everywhere else. We compare the solutions found by
SimEc architectures with a varying number of additional non-linear hidden layers in the first part
of the network (while keeping the embedding layer linear as before) to show how a more complex
network improves the ability to map the data into an embedding space in which the class-based
similarities are retained.

MNIST The MNIST dataset contains 28× 28 pixel images depicting handwritten digits. For our
experiments we randomly subsampled 10k images from all classes, of which 80% are assigned to the
training fold and the remaining 20% to the test fold (in the following plots, data points belonging to
the training set are displayed transparently while the test points are opaque). As shown in Figure 2,
the embeddings of the MNIST dataset created with linear kPCA and a linear similarity encoder,
which uses as target similarities the linear kernel matrix, are almost identical (up to a rotation). The
same holds true for the isomap embedding, which is well approximated by a non-linear SimEc with
two hidden layers using the geodesic distances between the data points as targets (Figure 8 in the
Appendix). When optimizing SimEcs to retain the class-based similarities (Figure 3), additional

Figure 2: MNIST digits visualized in two dimensions by linear kPCA and a linear SimEc.

non-linear hidden layers in the feed-forward NN can improve the embedding by further separating
data points belonging to different classes in tight clusters. As it can be seen, the test points (opaque)
are nicely mapped into the same locations as the corresponding training points (transparent), i.e.
the model learns to associate the input pixels with the class clusters only based on the imposed
similarities between the training data points.

4https://github.com/cod3licious/simec/examples_simec.ipynb
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Figure 3: MNIST digits visualized in two dimensions by SimEcs with an increasing number of
non-linear hidden layers and the objective to retain similarities based on class membership.

20 newsgroups The 20 newsgroups dataset consists of around 18k newsgroup posts assigned to
20 different topics. We take a subset of seven categories and use the original train/test split (∼4.1k
and ∼2.7k samples respectively) and remove metadata such as headers to avoid overfitting.5 All text
documents are transformed into 46k dimensional tf-idf feature vectors, which are used as input to
the SimEc and to compute the linear kernel matrix of the training fold. The embedding created with
linear kPCA is again well approximated by the solution found with a corresponding linear SimEc
(Figure 9 in the Appendix). Additionally, this serves as an example where traditional PCA is not an
option to obtain the corresponding mapping matrix for the linear kPCA solution, as due to the high
dimensionality of the input data and comparatively low number of samples, the empirical covariance
matrix would be poorly estimated and too large to decompose into eigenvalues and -vectors. With
the objective to retain the class-based similarities, a SimEc with a non-linear hidden layer clusters
documents by their topics (Figure 4).

3 CONTEXT ENCODERS

Representation learning is very prominent in the field of natural language processing (NLP). For
example, word embeddings learned by neural network language models were shown to improve the
performance when used as features for supervised learning tasks such as named entity recognition
(NER) (Collobert et al., 2011; Turian et al., 2010). The popular word2vec model (Figure 5) learns
meaningful word embeddings by considering only the words’ local contexts and thanks to its shallow
architecture it can be trained very efficiently on large corpora. However, an important limiting factor
of current word embedding models is that they only learn the representations for words from a fixed
vocabulary. This means, if in a task we encounter a new word which was not present in the texts used
for training, we can not create an embedding for this word without repeating the time consuming

5http://scikit-learn.org/stable/datasets/twenty_newsgroups.html
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Figure 4: 20 newsgroups texts visualized in two dimensions by a non-linear SimEc with one hidden
layer and the objective to preserve the similarities based on class membership in the embedding.

training procedure of the model.6 Additionally, word2vec, like many other approaches, only learns
a single representation for every word. However, it is often the case that a single word can have
multiple meanings, e.g. “Washington” is both the name of a US state as well as a former president. It
is only the local context in which these words appear that lets humans resolve this ambiguity and
identify the proper sense of the word in question. While attempts were made to improve this, they
lack flexibility as they require a clustering of word contexts beforehand (Huang et al., 2012), which
still does not guarantee that all possible meanings of a word have been identified prior in the training
documents. Other approaches require additional labels such part-of-speech tags (Trask et al., 2015)
or other lexical resources like WordNet (Rothe & Schütze, 2015) to create word embeddings which
distinguish between the different senses of a word.

As a further contribution of this paper we provide a link between the successful word2vec natural
language model and similarity encoders and thereby propose a new model we call context encoder
(ConEc), which can efficiently learn word embeddings from huge amounts of training data and
additionally make use of local contexts to create representations for out-of-vocabulary words and
help distinguish between multiple meanings of words.

target word

The black  cat  slept on  the bed. 

context words

After training

target embedding
2 R1⇥d

Training phase

W1 W0W0

N ⇥ d N ⇥ d

l0 2 R1⇥d

1) take sum of context 
    embeddings

2) select target and
  k noise weights

        (negative sampling)

N ⇥ d

l1 2 R(k+1)⇥d

3) compute error &
  backpropagate

err = t � �(l0 · lT1 )

�(z) =
1

1 + e�z

with:

t: binary label vector

Figure 5: Continuous BOW word2vec model trained using negative sampling (Mikolov et al., 2013a;b;
Goldberg & Levy, 2014).

6In practice these models are trained on such a large vocabulary that it is rare to encounter a word which
does not have an embedding. However, there are still scenarios where this is the case, for example, it is unlikely
that the term “W10281545” is encountered in a regular training corpus, but we might still want its embedding to
represent a search query like “whirlpool W10281545 ice maker part”.
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Formally, word embeddings are d -dimensional vector representations learned for all N words in
the vocabulary. Word2vec is a shallow model with parameter matrices W0,W1 ∈ RN×d, which are
tuned iteratively by scanning huge amounts of texts sentence by sentence (see Figure 5). Based on
some context words the algorithm tries to predict the target word between them. Mathematically
this is realized by first computing the sum of the embeddings of the context words by selecting the
appropriate rows from W0. This vector is then multiplied by several rows selected from W1: one of
these rows corresponds to the target word, while the others correspond to k ‘noise’ words, selected at
random (negative sampling). After applying a non-linear activation function, the backpropagation
error is computed by comparing this output to a label vector t ∈ Rk+1, which is 1 at the position of
the target word and 0 for all k noise words. After the training of the model is complete, the word
embedding for a target word is the corresponding row of W0.

The main principle utilized when learning word embeddings is that similar words appear in similar
contexts (Harris, 1954; Melamud et al., 2015). Therefore, in theory one could compute the similarities
between all words by checking how many context words any two words generally have in common
(possibly weighted somehow to reduce the influence of frequent words such as ‘the’ and ‘and’).
However, such a word similarity matrix would be very large, as typically the vocabulary for which
word embeddings are learned comprises several 10, 000 words, making it computationally too
expensive to be used with similarity encoders. But this matrix would also be quite sparse, because
many words in fact do not occur in similar contexts and most words only have a handful of synonyms
which could be used in their place. Therefore, we can view the negative sampling approach used
for word2vec (Mikolov et al., 2013b) as an approximation of the words’ context based similarities:
while the similarity of a word to itself is 1, if for one word we select k random words out of the huge
vocabulary, it is very unlikely that they are similar to the target word, i.e. we can approximate their
similarities with 0. This is the main insight necessary for adapting similarity encoders to be used for
learning (context sensitive) word embeddings.

Input Embedding Output Target

xi 2 RN yi 2 Rd si 2 Rk+1s0 2 Rk+1

the

black

slept

on

cat

Figure 6: Context encoder (ConEc) architecture. The input consists of a context vector, but instead of
comparing the output to a full similarity vector, only the target word and k noise words are considered.

Figure 6 shows the architecture of the context encoder. For the training procedure we stick very
closely to the optimization strategy used by word2vec: while parsing a document, we again select
a target word and its context words. As input to the context encoder network, we use a vector
xi of length N (i.e. the size of the vocabulary), which indicates the context words by non-zero
values (either binary or e.g. giving lower weight to context words further away from the target word).
This vector is then multiplied by a first matrix of weights W0 ∈ RN×d yielding a low dimensional
embedding yi, comparable to the summed context embedding created as a first step when training
the word2vec model. This embedding is then multiplied by a second matrix W1 ∈ Rd×N to yield
the output. Instead of comparing this output vector to a whole row from a word similarity matrix
(as we would with similarity encoders), only k + 1 entries are selected, namely those belonging to
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the target word as well as k random and unrelated noise words. After applying a non-linearity we
compare these entries s′ ∈ Rk+1 to the binary target vector exactly as in the word2vec model and
use error backpropagation to tune the parameters.

Up to now, there are no real differences between the word2vec model and our context encoders, we
have merely provided an intuitive interpretation of the training procedure and objective. The main
deviation from the word2vec model lies in the computation of the word embedding for a target word
after the training is complete. In the case of word2vec, the word embedding is simply the row of
the tuned W0 matrix. However, when considering the idea behind the optimization procedure, we
instead propose to compute a target word’s representation by multiplying W0 with the word’s average
context vector. This is closer to what is being done in the training procedure and additionally it
enables us to compute the embeddings for out-of-vocabulary words (assuming at least most of such
a new word’s context words are in the vocabulary) as well as to place more emphasis on a word’s
local context (which helps to identify the proper meaning of the word (Melamud et al., 2015)) by
creating a weighted sum between the word’s average global and local context vectors used as input to
the ConEc.

With this new perspective on the model and optimization procedure, another advancement is feasible.
Since the context words are merely a sparse feature vector used as input to a neural network, there
is no reason why this input vector should not contain other features about the target word as well.
For example, the feature vector could be extended to contain information about the word’s case,
part-of-speech (POS) tag, or other relevant details. While this would increase the dimensionality
of the first weight matrix W0 to include the additional features when mapping the input to the
word’s embedding, the training objective and therefore also W1 would remain unchanged. These
additional features could be especially helpful if details about the words would otherwise get lost in
preprocessing (e.g. by lowercasing) or to retain information about a word’s position in the sentence,
which is ignored in a BOW approach. These extended ConEcs are expected to create embeddings
which distinguish even better between the words’ different senses by taking into account, for example,
if the word is used as a noun or verb in the current context, similar to the sense2vec algorithm (Trask
et al., 2015). However, unlike sense2vec, not multiple embeddings per term are learned, instead the
dimensionality of the input vector is increased to include the POS tag of the current word as a feature.

3.1 EXPERIMENTS

The word embeddings learned with word2vec and context encoders are evaluated on a word analogy
task (Mikolov et al., 2013a) as well as the CoNLL 2003 NER benchmark task (Tjong et al., 2003).
The word2vec model used is a continuous BOW model trained with negative sampling as described
above where k = 13, the embedding dimensionality d is 200 and we use a context window of 5. The
word embeddings created by the context encoders are build directly on top of the word2vec model by
multiplying the original embeddings (W0) with the respective context vectors. Code to replicate the
experiments can be found online.7 The results of the analogy task can be found in the Appendix.8

Named Entity Recognition The main advantage of context encoders is that they can use local
context to create out-of-vocabulary (OOV) embeddings and distinguish between the different senses
of words. The effects of this are most prominent in a task such as named entity recognition (NER)
where the local context of a word can make all the difference, e.g. to distinguish between the
“Chicago Bears” (an organization) and the city of Chicago (a location). To test this, we used the
word embeddings as features in the CoNLL 2003 NER benchmark task (Tjong et al., 2003). The
word2vec embeddings were trained on the documents used in the training part of the task.9 For the
context encoders we experimented with different combinations of local and global context vectors.
The global context vectors were computed on only the training documents as well, i.e. just as with

7https://github.com/cod3licious/conec
8As it was recently demonstrated that a good performance on intrinsic evaluation tasks such as word similarity

or analogy tasks does not necessarily transfer to extrinsic evaluation measures when using the word embeddings
as features (Chiu et al., 2016; Linzen, 2016), we consider the performance on the NER challenge as more
relevant.

9Since this is a very small corpus, we trained word2vec for 25 iterations on these documents (afterwards the
performance on the development split stopped improving significantly) while usually the model is trained in a
single pass through a much larger corpus.
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the word2vec model, when applied to the test documents there are some words which don’t have a
word embedding available as they did not occur in the training texts. The local context vectors on the
other hand can be computed for all words occurring in the current document for which the model
should identify the named entities. When combining these local context vectors with the global ones
we always use the local context vector as is in case there is no global vector available and otherwise
compute a weighted average between the two context vectors as wl · CVlocal + (1− wl) · CVglobal.10

The different word embeddings were used as features with a logistic regression classifier trained on
the labels obtained from the training part of the task and the reported F1-scores were computed using
the official evaluation script. Please note that we are using this task to show the potential of ConEc
word embeddings as features in a real world task and to illustrate their advantages over the regular
word2vec embeddings and did not optimize for competitive performance on this NER challenge.

global wl=0. wl=0.1 wl=0.2 wl=0.3 wl=0.4 wl=0.5 wl=0.6 wl=0.7 wl=0.8 wl=0.9 wl=1.
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NER performance with different word embedding features
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C

Figure 7: Results of the CoNLL 2003 NER task based on three random initializations of the word2vec
model. The overall results are shown on the left, where the mean performance using word2vec
embeddings is considered as our baseline indicated by the dashed lines, all other embeddings are
computed with context encoders using various combinations of the words’ global and local context
vectors. On the right, the increased performance (mean and std) on the test fold achieved by using
ConEc is highlighted: Enhancing the word2vec embeddings with global context information yields a
performance gain of 2.5 percentage points (A). By additionally using local context vectors to create
OOV word embeddings (wl = 0) we gain another 1.7 points (B). When using a combination of
global and local context vectors (wl = 0.4) to distinguish between the different meanings of words,
the F1-score increases by another 5.1 points (C), yielding a F1-score of 39.92%, which marks a
significant improvement compared to the 30.59% reached with word2vec features.

Figure 7 shows the results achieved with various word embeddings on the training, development
and test part of the CoNLL task. As it can be seen there, taking into account the local context can
yield large improvements, especially on the dev and test data. Context encoders using only the global
context vectors already perform better than word2vec. When using the local context vectors only
where the global ones are not available (wl = 0) we can see a jump in the development and test
performance, while of course the training performance stays the same as here we have global context
vectors for all words. The best performances on all folds are achieved when averaging the global and
local context vectors with around wl = 0.4 before multiplying them with the word2vec embeddings.
This clearly shows that using ConEcs with local context vectors can be very beneficial as they let us
compute word embeddings for out-of-vocabulary words as well as help distinguish between multiple
meanings of words.

10The global context matrix is computed without taking the word itself into account (i.e. zero on the diagonal)
to make the context vectors comparable to the local context vectors of OOV words where we can’t count the
target word either. Both global and local context vectors are normalized by their respective maximum values,
then multiplied with the length normalized word2vec embeddings and again renormalized to have unit length.
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4 CONCLUSION

Representing intrinsically complex data is an ubiquitous challenge in data analysis. While kernel
methods and manifold learning have made very successful contributions, their ability to scale is
somewhat limited. Neural autoencoders offer scalable nonlinear embeddings, but their objective is to
minimize the reconstruction error of the input data which does not necessarily preserve important
pairwise relations between data points. In this paper we have proposed SimEcs as a neural network
framework which bridges this gap by optimizing the same objective as spectral methods, such as
kPCA, for creating similarity preserving embeddings while retaining the favorable properties of
autoencoders.

Similarity encoders are a novel method to learn similarity preserving embeddings and can be especially
useful when it is computationally infeasible to perform the eigendecomposition of a kernel matrix,
when the target similarities are obtained through an unknown process such as human similarity
judgments, or when an explicit mapping function is required. To accomplish this, a feed-forward
neural network is constructed to map the data into an embedding space where the original similarities
can be approximated linearly.

As a second contribution we have defined context encoders, a practical extension of SimEcs, that can
be readily used to enhance the word2vec model with further local context information and global word
statistics. Most importantly, ConEcs allow to easily create word embeddings for out-of-vocabulary
words on the spot and distinguish between different meanings of a word based its local context.

Finally, we have demonstrated the usefulness of SimEcs and ConEcs for practical tasks such as the
visualization of data from different domains and to create meaningful word embedding features for a
NER task, going beyond the capabilities of traditional methods.

Future work will aim to further the theoretical understanding of SimEcs and ConEcs and explore
other application scenarios where using this novel neural network architecture can be beneficial. As
it is often the case with neural network models, determining the optimal architecture as well as other
hyperparameter choices best suited for the task at hand can be difficult. While so far we mainly
studied SimEcs based on fairly simple feed-forward networks, it appears promising to consider
also deeper neural networks and possibly even more elaborate architectures, such as convolutional
networks, for the initial mapping step to the embedding space, as in this manner hierarchical structures
in complex data could be reflected. Note furthermore that prior knowledge as well as more general
error functions could be employed to tailor the embedding to the desired application target(s).
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APPENDIX

Figure 8: MNIST digits visualized in two dimensions by isomap and a non-linear SimEc.

Figure 9: 20 newsgroups dataset embedded with linear kernel PCA and a corresponding linear SimEc.

Analogy task To show that the word embeddings created with context encoders capture meaningful
semantic and syntactic relationships between words, we evaluated them on the original analogy task
published together with the word2vec model (Mikolov et al., 2013a).11 This task consists of many
questions in the form of “man is to king as woman is to XXX” where the model is supposed to find
the correct answer queen. This is accomplished by taking the word embedding for king, subtracting
from it the embedding for man and then adding the embedding for woman. This new word vector
should then be most similar (with respect to the cosine similarity) to the embedding for queen.12

The word2vec and corresponding context encoder model are trained for ten iterations on the text8
corpus,13 which contains around 17 million words and a vocabulary of about 70k unique words, and
the training part of the 1-billion benchmark dataset,14 which contains over 768 million words
with a vocabulary of 486k unique words.15

The results of the analogy task are shown in Table 1. To capture some of the semantic relations
between words (e.g. the first four task categories) it can be advantageous to use context encoders, i.e.
to weight the word2vec embeddings with the words’ average context vectors - however to achieve the
best results we also had to include the target word itself in these context vectors. One reason for the
ConEcs’ superior performance on some of the task categories but not others might be that the city
and country names compared in the first four task categories only have a single sense (referring to the

11See also https://code.google.com/archive/p/word2vec/.
12Readers familiar with Levy et al. (2015) will recognize this as the 3CosAdd method. We have tried 3CosMul

as well, but found that the results did not improve significantly and therefore omitted them here.
13http://mattmahoney.net/dc/text8.zip
14http://code.google.com/p/1-billion-word-language-modeling-benchmark/
15In this experiment we ignore all words which occur less than 5 times in the training corpus.
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Table 1: Accuracy on the analogy task with mean and standard deviation computed using three
random seeds when initializing the word2vec model. The best results for each category and corpus
are in bold.

text8 (10 iter) 1-billion

word2vec Context Encoder word2vec ConEc

capital-common-countries 63.8±4.7 78.7±0.2 79.3±2.2 83.1±1.2
capital-world 34.0±2.1 54.7±1.3 63.8±1.4 75.9±0.4
currency 15.4±0.9 19.3±0.6 13.3±3.6 14.8±0.8
city-in-state 28.6±1.0 43.6±0.9 19.6±1.7 29.6±1.0
family 79.6±1.5 77.2±0.4 78.7±2.2 79.0±1.4
gram1-adjective-to-adverb 11.0±0.9 16.6±0.7 12.3±0.5 13.3±1.1
gram2-opposite 24.3±3.0 24.3±2.0 27.6±0.1 21.3±1.1
gram3-comparative 64.3±0.5 63.0±1.1 83.7±0.9 76.2±1.1
gram4-superlative 40.3±2.1 37.6±1.5 69.4±0.5 56.2±1.2
gram5-present-participle 30.5±1.0 31.7±0.4 78.4±1.0 68.0±0.7
gram6-nationality-adjective 70.6±1.5 67.2±1.4 83.8±0.6 83.8±0.5
gram7-past-tense 30.5±1.8 33.0±0.6 53.9±0.9 49.2±0.7
gram8-plural 49.8±0.3 49.2±1.2 62.7±1.9 56.7±1.0
gram9-plural-verbs 41.0±2.5 30.1±1.9 68.7±0.2 45.0±0.4

total 42.1±0.6 46.5±0.1 57.2±0.3 55.8±0.3

respective location), while the words asked for in other task categories can have multiple meanings,
for example “run” is used as both a verb and a noun and in some contexts refers to the sport activity
while other times it is used in a more abstract sense, e.g. in the context of someone running for
president. Therefore, the results in the other task categories might improve if the words’ context
vectors are first clustered and then the ConEc embedding is generated by multiplying with the average
of only those context vectors corresponding to the word sense most appropriate for the task category.
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