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Abstract

The detection of implicit hate speech is one
of the critical challenges faced by the Natural
Language Processing community as it requires
the use of indirect and vague language-a step
that traditional approaches find impossible. An
exhaustive study of implicit hate detection has
been carried out in this paper, concentrating on
a subclass of tasks known as Implicit Target
Span Identification, aimed at identifying spans
of text that perform less explicit targeting of
protected groups.

We systematically evaluate three Masked Lan-
guage Models—BERT, RoBERTa, and Hate-
BERT—alongside two Small Language Mod-
els ModernBERT and SmolLLM?2 and, as well
as Large Language Models with LLama 3.2B
and GPT-3.5. Our approach considers both
zero-shot and fine-tuning methodologies while
examining the effects of instruction tuning and
Low-Rank Adaptation (LoRA) to assess their
impact on detection tasks.

The results indicate that ModernBERT with
only 149M parameters outperforms instruction-
tuned larger models such as LLaM 3.2B, Mod-
ernBERT achieved F1 scores of 72.2 and 75.1
on IHC and SBIC datasets, respectively, while
LLaM 3.2B attained 70.8 and 74.2 F1 scores
for THC and SBIC, respectively. RoBERTa-
Large remains the best overall, scoring 72.5
F1 on the IHC dataset and 75.8 on the SBIC
dataset. Compared to it, SmolLM2-135M at-
tained an F1 score of 69.0 on IHC and 71.5 on
SBIC, still showing competitive performance
notwithstanding its smaller size.

1 Introduction

Warning: This paper contains offensive content and may be

distressing.

Implicit hate speech represents a sophisticated
manifestation of prejudice, characterized by the
avoidance of overtly offensive language, while still
conveying harmful intentions. In contrast to ex-
plicit hate speech, which can be recognized through

Content:

“Immigrants are taking all the jobs, and
soon there won’t be any left for us.”

Implicit Target Span Identifier Output:

Figure 1: Implicit Target Span Identification Example

evident lexical indicators, the identification of im-
plicit hate speech necessitates a nuanced compre-
hension of contextual nuances, cultural references,
and concealed meanings. There are several subtler
forms of discriminatory language that can arise, in-
cluding sarcasm, stereotypes, coded language, and
doublespeak. For example, the expression "they
don’t belong here" conveys a sense of exclusion or
hostility without explicitly naming a specific group.
Likewise, the remark "We should not lower our
standards in order to hire more women" can subtly
perpetuate gender stereotypes while maintaining
an appearance of plausible deniability.

The inherent vagueness of implicit hate speech
presents a serious challenge to systems of content
moderation. As there has been improvement in
detection of explicit hate speech, existing models
often fail to detect more sophisticated and more
covert modes of speech that elude regular detection
methods.This limitation highlights the necessity
for continued research and the formulation of more
sophisticated approaches to effectively address the
challenges presented by implicit hate speech.

The detection of implicit hate speech is compli-
cated by its context-dependent nature and dynamic
expressions. The primary challenges can be cate-
gorized as follows:

Implicit hate speech relies, in many cases, on
certain cultural-historical-social context underpin-



nings. Because of this, it becomes especially dif-
ficult to detect it. A single statement may be in-
nocuous in one place and yet invective in another
place. This requires models to go beyond mere tex-
tual analysis into general context-based knowledge
(Gao et al.; Jafari et al.). Such models are impor-
tant since they must pick up on subtle references
and implicit biases contained within everyday lan-
guage.

Constructing annotated datasets to detect im-
plicit hate speech is a time-consuming and resource-
intensive endeavor. It calls for annotators with ex-
tensive cultural knowledge, making it challenging
and time-consuming (Almohaimeed et al.). Guar-
anteeing agreement among annotators, especially
when working with subjective content, presents an
additional layer of challenge. Maintaining the pri-
vacy and confidentiality of participants when gath-
ering data from a variety of platforms is another
challenge of constructing datasets, albeit critical
in training accurate and fair models (Ahn et al.;
Ocampo et al., 2023).

Hate speech is an ever-evolving form of expres-
sion that, with the use of coded language or dog
whistles, is designed as to evade detection systems.
Such insidious forms of expression require ongoing
development of detection systems, including adver-
sarial learning methods to stay abreast of chang-
ing trends of hate speech patterns (Ocampo et al.;
Hindy et al., 2022). Models need to be fluid and
responsive so that even the most insidious forms of
hate speech can be quickly and effectively detected
and dealt with.

In order to effectively confront these multi-
faceted challenges, there exists an imperative for
the implementation of innovative strategies in
dataset development, an enhanced comprehension
of contextual variables, and the formulation of
adaptable model architectures. These elements are
essential for addressing the complexities inherent
in implicit hate speech.

A key element of enhancing detection is the
investigation of both Masked Language Models
(MLMs) and Large Language Models (LLMs)
since they provide synergistic advantages in natu-
ral language comprehension (Subramanian et al.,
2023). Specifically, MLMs like BERT and Hate-
BERT excel at capturing local linguistic structures
and implicit signal pickup at the token level be-
cause of their masked token prediction training
method. But they find it challenging to concen-

trate on long-range dependencies and dense con-
text, which are required for detecting implicit hate
speech. By comparison, LLMs such as LLaMA
3.2 and GPT-3.5 employ large-scale pretraining on
big corpora to better grasp global context and more
subtle shades of meaning. Their advanced contex-
tual representations enable them to better identify
implicit hostility, especially where hate speech is
coded by masked language or cultural references.

By bridging MLMs and LLMs, this work aims
to enhance the robustness and interpretability of im-
plicit hate speech detection. MLMs provide a solid
foundation for detecting token-level spans, while
LLMs introduce knowledge about contextual and
dynamic hate speech patterns. LoRA fine-tuning
and data augmentation through GPT-based span
annotation make the models more adaptable. This
joint methodology is significant in meeting the dif-
ficulties of identifying implicit hate speech, just
as facilitating more precise and equitable content
moderation.

This study seeks to fill critical research gaps by
posing the following research questions (RQs):

* RQ1: Does increasing LLM parameter size
improve performance on implicit content
detection tasks?

Larger language models generally perform
well for NLP tasks, yet is scale the sole consid-
eration for implicit hate speech detection? Our
study examines if larger numbers of parame-
ters lead to meaningful improvements, com-
paring performance of smaller models (e.g.,
ModernBERT, SmollLM?2) and larger models
(e.g., LLaMA 3.2 1B).

* RQ2: How do instructed LLMs compare
to non-instructed LLMs in implicit hate
speech detection?

Instruction-based fine-tuning has been recog-
nized as an effective method for both model
interpretability and task flexibility.

We look into whether instructed models such
as LLama 3.2 1B Instruct outperform their
non-instructed versions in implicit hate speech
detection.

* RQ3: What is the comparative effec-
tiveness of few-shot fine-tuning versus
full-dataset fine-tuning in the domain of
hate speech detection? Full fine-tuning is
computationally costly, requiring substantial



amounts of labeled data and computing re-
sources.

Few-shot learning offers a promising alterna-
tive, employing a few examples to push the
model to make accurate predictions.

Our study examines if few-shot fine-tuning
can be as effective as full fine-tuning, par-
ticularly in hate speech detection where data
accessibility is a main bottleneck.

* RQ4: Can error analysis of incorrect pre-
dictions enhance both explainability as well
as model performance? The implicit hate
speech detection continues to be a difficult
task due to the shared vocabulary between
neutral and hateful speech.

Through systematic analysis of these errors,
we reveal model prediction biases and suggest
focused improvements for future fine-tuning
approaches.

To address the research questions above, our work
makes the following significant contributions:

* Model Scaling Study in Implicit Hate
Speech Detection: We investigate the effects
of scaling up model sizes, showing that larger
size does not necessarily equate to better per-
formance—architectural enhancements and
domain-specific pretraining are essential.

¢ Exploring the Potential of Instruction-
Tuned LLMs: This work conducts a com-
prehensive comparison of instructed and non-
instructed LLMs for implicit hate speech de-
tection, demonstrating the benefits of explicit
task conditioning.

* Few-Shot vs. Full Fine-Tuning: We examine
the effectiveness of few-shot fine-tuning and
demonstrate that it is competitive with full
fine-tuning, presenting a suitable option when
resources are limited.

Systematic Error Analysis Using LDA: We
use topic modeling techniques on misclassi-
fied predictions, revealing common linguistic
patterns that result in false positives and false
negatives, and suggesting areas of improve-
ment for future model training.

¢ Model Benchmarking on Varied Datasets:
‘We benchmark a number of models on a com-
bination of the SBIC, IHC, and OffensiveLang

datasets, tackling issues of cross-domain gen-
eralization and dataset annotation discrepan-
cies.

Our results emphasize the trade-offs between
model size, fine-tuning approaches, and instruc-
tion tuning, thereby offering novel insights in the
new area of implicit hate speech detection. By con-
necting token-level span annotation and sentence-
level classification, we seek to enhance both the
interpretability and efficiency of detecting harmful
online discourse.

2 Related Work

The field of hate speech detection has undergone re-
markable progress, transitioning from conventional
machine learning approaches to more sophisticated
deep learning models. Initial approaches mainly
employed algorithms such as Support Vector Ma-
chines (SVMs) and Logistic Regression that lever-
aged manually crafted linguistic features such as
n-grams and sentiment features (Raza et al.; Rawat
et al.). Nevertheless, these approaches tended to
struggle with detecting implicit hate speech be-
cause of their inferior capacity for understanding
contextual nuances, leading to high false-negative
rates (Reghunathan et al.).

The introduction of deep learning witnessed sig-
nificant advances with Recurrent Neural Networks
(RNNs) and Bi-GRUs, which dealt with sequen-
tial dependencies more effectively (Kibriya et al.).
The breakthrough, however, came with transformer-
based models like BERT, RoBERTA, and Hate-
BERT, which employed contextual embeddings to
deal with subtle language more effectively (Aminu
et al.). Despite these advances, models trained on
explicit content for the most part struggled to detect
implicit hate speech, and more specialized methods
like Implicit Target Span Detection (ITSD) had to
be invented (Jafari et al.).

The implementation of Large Language Models
(LLMs) such as GPT-3 and LLaMA introduced
novel functionality in capturing hate speech’s
implicit nature. Instruction-tuned models per-
formed better with the utilization of domain-
specific prompts (Kim et al.). Experiments such as
(Garg et al.) demonstrated that LLMs, when fine-
tuned using adversarial training, were able to pick
up on implicit hints that other models overlook.
Besides, the application of Low-Rank Adaptation
(LoRA) in efficient fine-tuning has been found to
be advantageous in achieving a balance between



model size and performance, especially in tasks
demanding precise token-level span identification.

Data augmentation techniques have been an-
other crucial area of study. For instance, (Ocampo
et al., 2023) proposed hard negative sampling to
make models more robust by exposing them to di-
verse linguistic patterns. These techniques help
address the menace of coded language, where
seemingly harmless-sounding phrases have mali-
cious meanings rooted in shared cultural knowl-
edge. GPT models have also been leveraged to an-
notate datasets like OffensiveLang, making training
data more informative for better detection accuracy.

In spite of such advances, implicit hate speech
detection is still a persistent challenge because of
the evolving nature of coded terms and the contex-
tual sensitivity of offensive content. More specif-
ically, cross-lingual detection is hard because of
cultural and linguistic disparities (Zhang et al.).

This research extends the existing work by in-
vestigating the combined application of MLMs and
LLMs to advance the detection accuracy as well
as interpretability. Our work adds to the literature
base by suggesting new target span identification
approaches, utilizing contextual embeddings along-
side token-level annotations in a bid to overcome
the age-old difficulties confronting this field.

3 Implicit Target Span Identification

Implicit Target Span Identification (iTSI) plays a
critical role in detecting hate speech, particularly
where targeted messages are subtle and contingent
on contextual information. Compared to explicit
hate speech, implicit forms often rely on cultural
or social nuances that standard models fail to ap-
preciate.

Let us consider a text sequence as C =
[t1,t2,.,ty], Where each element ¢; constitutes
a token and n is the overall length of the se-
quence. The objective of iTSI is to predict spans
of tokens that implicitly or explicitly mention pro-
tected groups. The task is to predict a set S =
(Ss158e1), -5 (Ssks Sek ), where the tuple (sg;, Se;) in-
dicates the start and end indices of the i-th tar-
get span. The prediction above is done through
token-level annotation with the BIO (Begin-Inside-
Outside) method so that spans can be identified
properly.

The problem is defined formally by the function
f:C — S, where f aligns the input text with a
set of spans referring to implicit or explicit hate

speech targets.

To identify implicit targets, we employ both
MLMs like BERT, Hate-BERT, and , which excel at
capturing local language patterns, whereas LLMs
like GPT-3.5 and LLaMA provide a more general
contextual understanding needed to identify sub-
tle implicit content. Additionally, SmolLM?2 and
ModernBERT, a two smaller-scale language mod-
els, are evaluated for its efficiency in implicit hate
speech detection. The models are fine-tuned using
Low-Rank Adaptation (LoRA), which enhances
computational efficiency without a loss in perfor-
mance.

4 Experimental Setup

4.1 Datasets

To ensure a robust evaluation of our task, we con-
struct a diverse dataset by integrating samples from
three prominent sources:

* SBIC (Social Bias Inference Corpus) (Sap
et al., 2020): This dataset consists of 150,000
structured annotations pertaining to social me-
dia posts, encompassing over 34,000 impli-
cations across approximately 1,000 distinct
demographic groups.

e THC (Implicit Hate Corpus) (ElSherief et al.,
2021): A corpus for hate speech detection that
consists of a total of 22,056 tweets gathered
from eminent extremist groups in the United
States that consist of 6,346 tweets that exhibit
implicit hate speech.

* OffensiveLang dataset(Das et al., 2024) con-
tains 8270 texts generated by ChatGPT. 6616
are labeled "offensive" and 1654 "not offen-
sive." Critically, the dataset was annotated by
both humans and ChatGPT.

4.2 Models

To benchmark ITSI’s performance, we evaluate
multiple architectures under both zero-shot and
fine-tuned settings:

* Masked Language Models (MLMs): BERT-
Base, Hate-BERT, RoBERTa-Large.

* Large Language Models (LLMs): LLama
3.2B, GPT 3.5

* Small Language Model: SmollL.M2-135M
and ModernBERT



This setup allows for a comparative analysis of
traditional transformer-based architectures versus
instruction-tuned LLMs, assessing their effective-
ness in detecting implicit hate speech.

4.3 Evaluation Metrics

We employ the following evaluation metrics: preci-
sion, recall, accuracy, and F1-score, which measure
a model’s performance in detecting implicit hate
speech at the token level. Analyzing content at
the token level rather than at the sentence level en-
sures granular analysis, allowing offensive spans
to be accurately identified and providing an overall
evaluation of model performance.

5 Results

5.1 Model Comparison

To benchmark the effectiveness of different archi-
tectures in a zero-shot setting, we compare their F1
scores on both IHC and SBIC datasets in Table 1.

Model # F1 Score F1 Score
(IHC) (SBIC)
BERT-Base 110M  67.0 63.4
Hate-BERT 110M  68.5 69.2
RoBERTa-Large 355M  72.5 75.8
ModernBERT 110M 722 75.1
LLama 3.2 1B 1B 70.8 74.2
SmolLM2-135M 135M  69.0 71.5

Table 1: Zero-shot performance of different models with
their number of parameters.

From the results, ROBERTa-Large emerges as
the best-performing model, surpassing other archi-
tectures in both datasets. ModernBERT follows
closely, while models like Hate-BERT and LLama
3.2 1B demonstrate competitive performance, par-
ticularly in SBIC. These results emphasize the ad-
vantage of larger pre-trained transformers in zero-
shot settings, highlighting their ability to generalize
across different tasks.

5.2 Few-Shot vs Full Dataset Fine-Tuning

Fine-tuning with limited data (few-shot learning)
presents an appealing trade-off between perfor-
mance and resource efficiency. Table 2 illustrates
the comparison between few-shot (FS) and full
dataset (FD) fine-tuning for the SmolLM2-135M-
Instruct model.

Fine- IHC SBIC
Tuning
Type

F1 P R Acc F1 P R Acc
FD 66.0 68.0 64.2 927 69.8 69.0 70.5 94.0
FS 64.0 66.0 62.0 92.2 68.2 67.0 69.0 93.8

Table 2: FS:Few-Shot Fine-Tuning vs FD:Full Dataset
Fine-Tuning

5.3 Zero-Shot Generalization Across Datasets

We assessed models in a zero-shot setting on a
combination of SBIC, IHC, and OffensiveLang.

Model Params THC+SBIC+OffensiveLang
™) (FD

BERT-Base 110 63.8

Hate-BERT 110 66.1

RoBERTa-Large 355 72.4

ModernBERT 125 68.9

LLama 3.2 1B 1000 71.5

SmolLM2-135M 135 70.1

Table 3: Zero-shot performance of various models on
the combined dataset.

Model IHC (F1) SBIC (F1)
Mistral-1B-GPTQ 67.5 71.0
LLama 3.2 1B Instruct 68.5 72.5
SmollLM2-135M-Instruct 66.0 69.8
SmollLM2-360M 65.0 68.5

Table 4: F1 Score Comparison for Instructed LLMs Vs
Non-Instructed LLMs

6 Error Analysis

Evaluation of model performance is an eye-opener
with different challenges hindering the precise iden-
tification of implicit hate speech. A main problem
is that multiple models were observed to be mak-
ing quite a confident incorrect prediction that label
a high number of false positives and quite a few
true positives. A number of neutral phrases were
flagged as hate speech simply because the model
was too sensitive towards specific keywords-the
very worries about aggressive terms not to men-
tion that of hatred that does not follow a seem-
ingly direct slur sometimes got forced from the
classification. The sentences like "Non-binary is a



concept for progressive people" were flagged as of-
fensive, while politically charged hate speech such
as "F—ing liberals and their policies" received a
non-offensive label. This goes on to indicate the
difficulty of the model in understanding the ideo-
logical dimension and contextual subtleties.

Detection of implicit offense in the text remained
another critique that might take the form of ren-
dered commentary. In other words, statements like
"Their traditions are outdated" were labeled neutral
even while threaded with stereotyping and dismis-
sive tone. Similarly, when it comes to gender bi-
ases, "Women are too emotional for politics" rarely
ever slipped through the radar as hate speech. This
points out that perhaps greater contextual aware-
ness is required so as to help the model detect subtle
offenses.

In the model errors that were found using La-
tent Dirichlet Allocation (LDA), three major clus-
ters of misclassifying were revealed which include
political hate speech, gender stereotypes, and im-
plicit sexism. Clustering analysis suggests that
models fail to consistently recognize political lan-
guage from explicit hate speech, making modera-
tion and detection extremely difficult. Particularly,
gender-related biases represented a difficult chal-
lenge, because much of the hate speech produced
came without the use of extremely aggressive lan-
guage, while doing a damaging job of reinforcing
stereotypes.

A deeper investigation on dataset complexity
and inter-annotator agreement constructs focus on
the subjective task of detecting implicit hate speech.
Results demonstrate more complex datasets leading
to higher model error, whilst lower inter-annotator
agreement scores build a case regarding flimsy la-
beling of implicit hate speech. An extended text
containing the dataset complexity scores and anno-
tation agreement scores is available in the A.11.

The complexity of annotation calls for improve-
ments in dataset labeling schemes and an enhance-
ment in training of the annotator. Divergences
in inter-annotator agreement underline the imper-
ative of utilizing external knowledge bases and
context-aware embeddings to minimize inconsis-
tencies. Future works need to probe hybrid annota-
tion schemes that bring together human expertise
and Al-assisted labeling for enhanced consistency
and reliability in implicit hate speech detection.

7 Discussion

RQ1: Does An Increase in LLM Parameter
Improve Performance in Implicit Content
Detection Tasks?

The results tell us that larger models typically
demonstrate better performance, as in RoOBERTa-
Large and LLama 3.2 1B Instruct outperforming
their smaller counterparts. However, despite hav-
ing many fewer parameters (355M compared to
1B), RoBERTa-Large attains the maximum level of
performance. This is to be explained by a number
of different reasons.

The importance of task-specific pretraining is
of key importance, in that RoBERTa-Large has
been heavily pretrained over a range of different
textual corpora using advanced masking strategies
that support contextual prediction of words.

Moreover, domain adaptation is also a key point
of importance. ROBERTa-Large benefits from ear-
lier work that has been adapted to downstream
applications such as implicit content detection,
whereas LLama 3.2 is more generally oriented.

Parameter efficiency also plays a key role here.
RoBERTa-Large, tuned to linguistic structure, ef-
fectively maximizes its parameters in undertaking
tasks that require a sophisticated understanding of
text.

These results remind us that it is not model size
that guarantees better performance. Architectural
design, pretraining strategies, and task-specific fine-
tuning are all key to determining overall efficacy.

RQ 2: How Do Instructed LLMs Compare to
Non-Instructed LLMs in Detecting Implicit
Targets?

The instructed LLMs always outperform their
uninstructed counterparts, presumably owing to
a better comprehension of tasks developed during
instruction-based learning. This result supports our
hypothesis that models given explicit task-oriented
instruction would be more effective in identify-
ing implicit hate speech. An in-depth analysis of
results in Table 4 reveals that instructed models
achieve higher F1 scores in both datasets, with
LLama 3.2 1B Instruct having a one or more point
lead over Mistral-1B-GPTQ in the F1 score, while
the full table with additional metrics is provided in
the Appendix. This result highlights the crucial
role that explicit task-oriented instruction plays
in improving model performance. The improve-
ments observed can be attributed to the explicit



task-oriented instruction given throughout learn-
ing, enabling models to better recognize the con-
textual aspects of implicit hate speech. In addi-
tion, instructed LLMs gain from demonstrations
that not just focus on a particular task but also
contextual, hence improving their generalizability
across diverse linguistic frameworks. Such models
use their learned knowledge to navigate contextual
transitions in cases of culturally sensitive or coded
speech more proficiently. The combined impact of
organized task guidance combined with contextual
flexibility makes instructed LL.Ms more resilient
and reliable in implicit hate speech detection, a no-
tion that is backed up by their higher recall rates
and better accuracy.

RQ3: How Effective is Few-Shot Fine-Tuning
Compared to Full Dataset Fine-Tuning in Hate
Speech Detection?

The findings mostly confirm our hypothesis. Al-
though full-dataset fine-tuning consistently outper-
forms few-shot fine-tuning, the F1-score difference
is comparatively low (< 2 points), indicating that
few-shot learning is an acceptable substitute when
annotation resources are scarce.

The high precision scores (over 92% on both
datasets) also demonstrate that few-shot models
still generalize well even with limited training sets.
Interestingly, precision and recall scores on both
environments are still close to one another, which
suggests that few-shot fine-tuning does not intro-
duce extreme biases towards false positives or false
negatives.

These results highlight the relevance of few-shot
learning to the real-world detection of hate speech,
where labeled data is generally scarce. Few-shot
learning can be combined with data augmentation
and self-training techniques in the future to fur-
ther bridge the performance gap while saving on
annotation costs.

The findings mostly confirm our hypothesis. Al-
though full-dataset fine-tuning consistently outper-
forms few-shot fine-tuning, the F1-score difference
is comparatively low (< 2 points), indicating that
few-shot learning is an acceptable substitute when
annotation resources are scarce.

The high precision scores (over 92% on both
datasets) also demonstrate that few-shot models
still generalize well even with limited training sets.
Interestingly, precision and recall scores on both
environments are still close to one another, which

suggests that few-shot fine-tuning does not intro-
duce extreme biases towards false positives or false
negatives.

These results highlight the relevance of few-shot
learning to the real-world detection of hate speech,
where labeled data is generally scarce. Few-shot
learning can be combined with data augmentation
and self-training techniques in the future to fur-
ther bridge the performance gap while saving on
annotation costs.

RQ 4: Can Error Analysis of Mismatched
Predictions Enhance Explainability?

We analyzed misclassified phrases using Latent
Dirichlet Allocation (LDA). Table 5 presents ex-
amples of phrases that were incorrectly classified,
revealing key thematic clusters where models strug-
gle. Our findings confirm that misclassifications are

LDA Topic Cluster | Example of Misclassified

Phrase

“white southern christian”
“jewish privilege”
“immigration laws”
“white genocide”

“angry white bigots”
“another war for Israel”

Racial Tension
Political Bias
Immigration Debate
Conspiracy Theories
Social Justice

War and Nationalism

Table 5: Examples of Misclassified Topics from LDA
Analysis

due to ambiguity, implicit bias, and model-specific
limitations. Quite possibly the most intractable
obstacle to hate speech detection is semantic over-
lap between hateful and neutral speech. Phrases
such as "white southern Christian" or "immigra-
tion laws" are often context-dependent—appearing
sometimes in innocuous conversation, other times
encoded with hate. Such ambiguity leads to false
positives, particularly when the model lacks suffi-
cient discourse-level context.

Inaccurately classified hate speech tends to cen-
ter around sociopolitical discussion, particularly
regarding race, religion, and nationalism. This find-
ing suggests that current models struggle to differ-
entiate between subjectivity and explicit hate, com-
monly misinterpreting critical discourse or com-
mentary as hostility. These biases are potentially
due to imbalances in the training data, where mod-
els are exposed to specific linguistic patterns repet-
itively but fail to adequately differentiate between
tone and intent.



Despite significant advancements in implicit hate
speech detection, our analysis identifies several
persistent failure patterns that hinder model per-
formance. These challenges highlight areas where
further refinement is necessary to enhance both
accuracy and robustness.

One of the most critical issues is label confusion,
particularly in distinguishing between the begin-
ning of a targeted span (B-SPAN) and the continu-
ation of the span (I-SPAN). This misclassification
leads to fragmented span detection, diminishing
the coherence and reliability of model annotations.
Addressing this challenge requires improved se-
quence modeling techniques that can better capture
contextual dependencies between tokens.

Another persistent challenge is ambiguity in con-
text. Implicit hate speech often relies on cultural,
historical, or situational knowledge for accurate
interpretation. Developing models that incorporate
external knowledge graphs or domain-specific em-
beddings could significantly improve contextual
understanding.

A further limitation observed is overgeneraliza-
tion. Overfitting to specific linguistic patterns leads
to poor adaptability, underscoring the need for
more robust training strategies that emphasize gen-
eralization rather than memorization.

8 Future Directions

Our Future studies will be geared toward sev-
eral promising directions in detecting implicit hate
speech.

One important way should be through improv-
ing contextual understanding through Retrieval-
Augmented Generation (RAG), where models
would retrieve relevant contextual information
from external knowledge bases, thus enabling them
to detect certain latent forms of implicit hate speech.
Furthermore, utilization of larger LLMs with more
parameters than those used in our study—Ilike can
significantly enhance contextual comprehension
and subtlety detection.

Explainability can be enhanced using atten-
tion visualization techniques, such as attention
heatmaps and transformer attention flow, to allow
researchers and moderators to interpret and trust
model predictions better.

Data augmentation remains important. Tech-
niques such as paraphrasing with LLMs, back-
translation, and adversarial data generation could
expand training datasets, rendering models more

robust. Interactive visualisation tools combined
with explainable Al methods like SHAP values
could help demonstrate further insights into model
decisions, whereas cross-lingual training and the
development of ethically oriented datasets will se-
cure wider applicability and fairness.

9 Conclusion

Our analysis finds salient emphases in the implicit
hate speech identification process and discerns that
model size in itself cannot solely account for its
performance. Although larger models tend to per-
form well, other factors like parameter efficiency,
domain adaptation, and task-specific pre-training
are equally important. Apart from being smaller
in size, ModernBert and SmolLM?2 perform better
than the larger ones because of its targeted opti-
mization.

Instruction-based learning has considerably im-
proved the model performance due to its better
understanding of context, thus a promising area we
see for future research. Also, Few-shot fine-tuning
provides a solid alternative to using full-data train-
ing with considerable generalizability coupled with
simple loss of performance.

Error analysis shows that the perennial difficulty
lies in distinguishing between hateful and neutral
statements in sociopolitical contexts. To conquer
these challenges will need much better domain
adaptation approaches and discourse-aware mod-
els. Moving ahead, bringing in external knowledge
bases and making sure the annotation schema is
more robust will indeed be a huge step toward build-
ing fair, robust, and scalable hate speech detection
systems.

10 Limitations

One key limitation in our study is the model size,
our exploration was limited to models up to 3B
parameters. Due to this reason, this work wouldn’t
fully investigate to what extent the increase in pa-
rameter sizes could impact detection performance.
Another limitation is around datasets. Our work,
restricted by the use of monolingual and non-cross-
cultural datasets, could benefit from a deeper explo-
ration of historical trends across diverse sociopo-
litical contexts and non-English languages. Our
study, constrained by monolingual and culturally
homogenous datasets, lacks the breadth to fully
capture historical trends and evolving sociopoliti-
cal contexts across diverse linguistic landscapes.
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A Appendix
A.1 Comparing LoRA, VERA, and DORA

To further evaluate the effectiveness of LoRA,
we compare its performance against VERA and
DORA, two alternative fine-tuning techniques.

Model F1 Score (IHC) F1 Score (SBIC)
VERA 68.8 71.2
DORA 69.2 71.5
LoRA 69.5 73.0

Table 6: Performance comparison of VERA, DORA,
and LoRA with LLama 3.2 (r=16).

A.2 Comparing LoRA Ranks

LoRA Rank vs. F1 Score for IHC and SBIC Datasets

IHC Dataset
70 SBIC Dataset

F1 Score

8 16 2 64 128 256
LoRA Rank (r)

Figure 2: Impact of LoRA rank on F1 scores for IHC
and SBIC datasets.

To better visualize the trade-off between com-
putational efficiency and accuracy, Figure 1 below
provides a bar chart comparing F1 scores across
LoRA ranks for both the IHC and SBIC datasets.

Rank (r) F1 Score IHC) F1 Score (SBIC)
8 69.0 72.8
16 69.5 73.0
32 68.5 71.5
64 67.8 70.9
128 66.7 69.8
256 65.8 68.9

Table 7: Performance of LoRA configurations across
datasets.

Table 7 mention that Lower-rank configurations
(r = 8 and r = 16) perform best, balancing com-
putational efficiency and accuracy (Ocampo et al.).
Lower-rank configurations (r = 8 and r = 16)

perform best, balancing computational efficiency
and accuracy (Ocampo et al.).

The results highlight a key observation: lower-
rank configurations ( = 8 and r = 16) deliver the
highest F1 scores while minimizing computational
overhead. This suggests that higher-rank values
(r > 32) do not necessarily translate into better
performance, potentially introducing unnecessary
complexity and resource consumption. These find-
ings align with prior research (Ocampo et al.), rein-
forcing the idea that smaller, well-optimized LoRA
ranks can achieve competitive results without the
burden of excessive parameters.

A.3 Comparing LoRA and full-finetuning

Training Time (hrs)
12
3
10
2

74.5
73.0
71.0
70.2

70.2
69.5
68.3
67.5

Full
LoRA (r=16)
Full

Fine-Tuning Type F1 (IHC) F1 (SBIC)
LoRA (r=16)

LLama 3.2 1B

LLama 3.2 1B
molLM2-135M

SmolLM2-135M

Model
S

Table 8: Performance and training time comparison
between full fine-tuning and LoRA.

A.4 LoRA vs. Full Fine-Tuning

The detailed performance and training time com-
parison is provided in A.8.



Although full fine-tuning results in slightly
higher F1 scores—namely, LLama 3.2 1B from
73.0 to 74.5 on the SBIC benchmark—this minimal
gain is at an enormous computational expense. The
computational time for full fine-tuning quadruples,
from 3 hours using LoRA to 12 hours. This compu-
tational cost is even worse for smaller models like
SmolLM2-135M, where LoRA is as performant
while significantly cutting training time from 10
hours to a mere 2 hours.

A.S5 Comparing Instructed LLMs to
Non-Instructed
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Table 9: Performance Comparison Instructed LLMs Vs
Non-Instructed

A.6 ModernBERT Performance on
OffensiveLang Dataset

ModernBERT demonstrates a significant leap in
performance over traditional models on the Offen-
siveLang dataset, achieving an impressive F1-score
of 0.89. This result highlights its superior capabil-
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ity in identifying implicit hate speech, particularly
in challenging contexts where other models strug-
gle.

Model Precision Recall F1-score
TF-IDF + SVM  0.65 0.47 0.55
BERT 0.68 0.54 0.53
DistilBERT 0.71 0.46 0.52
ModernBERT 0.78 1.00 0.89
SmollLM2- 0.58 0.38 0.46

135M-Instruct

Table 10: Model performance on the OffensiveLang
dataset.

ModernBERT’s superior recall rate of 1.00 sug-
gests that it captures a vast majority of offensive
content, making it particularly effective in scenar-
ios requiring high sensitivity. In contrast, other
models, including DistilBERT and BERT, strug-
gle with recall, indicating difficulty in recognizing
nuanced hate speech. The results reinforce the im-
portance of leveraging contextualized embeddings
and robust fine-tuning techniques to improve detec-
tion accuracy.

Furthermore, an in-depth analysis of annota-
tion agreement across datasets reveals substantial
inconsistencies. The complexity of posts in the
SBIC, IHC, and OffensiveLang datasets suggests
that more contextually rich content poses greater
challenges for models, necessitating adaptive train-
ing strategies.

A.7 Annotation Agreement

Dataset Average Complexity Score
SBIC 4.3
HC 39
OffensiveLang 3.6

Table 11: Average complexity of posts across datasets.

Dataset Agreement Metric IAA Range
SBIC Cohen’s Kappa 0.65-0.72
IHC Fleiss’ Kappa 0.55-0.60
OffensivelLang Cohen’s Kappa 0.60-0.75

Table 12: Annotation agreement levels across datasets.



