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Abstract
The detection of implicit hate speech is one001
of the critical challenges faced by the Natural002
Language Processing community as it requires003
the use of indirect and vague language-a step004
that traditional approaches find impossible. An005
exhaustive study of implicit hate detection has006
been carried out in this paper, concentrating on007
a subclass of tasks known as Implicit Target008
Span Identification, aimed at identifying spans009
of text that perform less explicit targeting of010
protected groups.011

We systematically evaluate three Masked Lan-012
guage Models—BERT, RoBERTa, and Hate-013
BERT—alongside two Small Language Mod-014
els ModernBERT and SmolLM2 and, as well015
as Large Language Models with LLama 3.2B016
and GPT-3.5. Our approach considers both017
zero-shot and fine-tuning methodologies while018
examining the effects of instruction tuning and019
Low-Rank Adaptation (LoRA) to assess their020
impact on detection tasks.021

The results indicate that ModernBERT with022
only 149M parameters outperforms instruction-023
tuned larger models such as LLaM 3.2B, Mod-024
ernBERT achieved F1 scores of 72.2 and 75.1025
on IHC and SBIC datasets, respectively, while026
LLaM 3.2B attained 70.8 and 74.2 F1 scores027
for IHC and SBIC, respectively. RoBERTa-028
Large remains the best overall, scoring 72.5029
F1 on the IHC dataset and 75.8 on the SBIC030
dataset. Compared to it, SmolLM2-135M at-031
tained an F1 score of 69.0 on IHC and 71.5 on032
SBIC, still showing competitive performance033
notwithstanding its smaller size.034

1 Introduction035

Warning: This paper contains offensive content and may be036

distressing.037

Implicit hate speech represents a sophisticated038

manifestation of prejudice, characterized by the039

avoidance of overtly offensive language, while still040

conveying harmful intentions. In contrast to ex-041

plicit hate speech, which can be recognized through042

Content:

“Immigrants are taking all the jobs, and
soon there won’t be any left for us.”

Implicit Target Span Identifier Output:

Target Spans: Immigrants , jobs

Figure 1: Implicit Target Span Identification Example

evident lexical indicators, the identification of im- 043

plicit hate speech necessitates a nuanced compre- 044

hension of contextual nuances, cultural references, 045

and concealed meanings. There are several subtler 046

forms of discriminatory language that can arise, in- 047

cluding sarcasm, stereotypes, coded language, and 048

doublespeak. For example, the expression "they 049

don’t belong here" conveys a sense of exclusion or 050

hostility without explicitly naming a specific group. 051

Likewise, the remark "We should not lower our 052

standards in order to hire more women" can subtly 053

perpetuate gender stereotypes while maintaining 054

an appearance of plausible deniability. 055

The inherent vagueness of implicit hate speech 056

presents a serious challenge to systems of content 057

moderation. As there has been improvement in 058

detection of explicit hate speech, existing models 059

often fail to detect more sophisticated and more 060

covert modes of speech that elude regular detection 061

methods.This limitation highlights the necessity 062

for continued research and the formulation of more 063

sophisticated approaches to effectively address the 064

challenges presented by implicit hate speech. 065

The detection of implicit hate speech is compli- 066

cated by its context-dependent nature and dynamic 067

expressions. The primary challenges can be cate- 068

gorized as follows: 069

Implicit hate speech relies, in many cases, on 070

certain cultural-historical-social context underpin- 071
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nings. Because of this, it becomes especially dif-072

ficult to detect it. A single statement may be in-073

nocuous in one place and yet invective in another074

place. This requires models to go beyond mere tex-075

tual analysis into general context-based knowledge076

(Gao et al.; Jafari et al.). Such models are impor-077

tant since they must pick up on subtle references078

and implicit biases contained within everyday lan-079

guage.080

Constructing annotated datasets to detect im-081

plicit hate speech is a time-consuming and resource-082

intensive endeavor. It calls for annotators with ex-083

tensive cultural knowledge, making it challenging084

and time-consuming (Almohaimeed et al.). Guar-085

anteeing agreement among annotators, especially086

when working with subjective content, presents an087

additional layer of challenge. Maintaining the pri-088

vacy and confidentiality of participants when gath-089

ering data from a variety of platforms is another090

challenge of constructing datasets, albeit critical091

in training accurate and fair models (Ahn et al.;092

Ocampo et al., 2023).093

Hate speech is an ever-evolving form of expres-094

sion that, with the use of coded language or dog095

whistles, is designed as to evade detection systems.096

Such insidious forms of expression require ongoing097

development of detection systems, including adver-098

sarial learning methods to stay abreast of chang-099

ing trends of hate speech patterns (Ocampo et al.;100

Hindy et al., 2022). Models need to be fluid and101

responsive so that even the most insidious forms of102

hate speech can be quickly and effectively detected103

and dealt with.104

In order to effectively confront these multi-105

faceted challenges, there exists an imperative for106

the implementation of innovative strategies in107

dataset development, an enhanced comprehension108

of contextual variables, and the formulation of109

adaptable model architectures. These elements are110

essential for addressing the complexities inherent111

in implicit hate speech.112

A key element of enhancing detection is the113

investigation of both Masked Language Models114

(MLMs) and Large Language Models (LLMs)115

since they provide synergistic advantages in natu-116

ral language comprehension (Subramanian et al.,117

2023). Specifically, MLMs like BERT and Hate-118

BERT excel at capturing local linguistic structures119

and implicit signal pickup at the token level be-120

cause of their masked token prediction training121

method. But they find it challenging to concen-122

trate on long-range dependencies and dense con- 123

text, which are required for detecting implicit hate 124

speech. By comparison, LLMs such as LLaMA 125

3.2 and GPT-3.5 employ large-scale pretraining on 126

big corpora to better grasp global context and more 127

subtle shades of meaning. Their advanced contex- 128

tual representations enable them to better identify 129

implicit hostility, especially where hate speech is 130

coded by masked language or cultural references. 131

By bridging MLMs and LLMs, this work aims 132

to enhance the robustness and interpretability of im- 133

plicit hate speech detection. MLMs provide a solid 134

foundation for detecting token-level spans, while 135

LLMs introduce knowledge about contextual and 136

dynamic hate speech patterns. LoRA fine-tuning 137

and data augmentation through GPT-based span 138

annotation make the models more adaptable. This 139

joint methodology is significant in meeting the dif- 140

ficulties of identifying implicit hate speech, just 141

as facilitating more precise and equitable content 142

moderation. 143

This study seeks to fill critical research gaps by 144

posing the following research questions (RQs): 145

• RQ1: Does increasing LLM parameter size 146

improve performance on implicit content 147

detection tasks? 148

Larger language models generally perform 149

well for NLP tasks, yet is scale the sole consid- 150

eration for implicit hate speech detection? Our 151

study examines if larger numbers of parame- 152

ters lead to meaningful improvements, com- 153

paring performance of smaller models (e.g., 154

ModernBERT, SmolLM2) and larger models 155

(e.g., LLaMA 3.2 1B). 156

• RQ2: How do instructed LLMs compare 157

to non-instructed LLMs in implicit hate 158

speech detection? 159

Instruction-based fine-tuning has been recog- 160

nized as an effective method for both model 161

interpretability and task flexibility. 162

We look into whether instructed models such 163

as LLama 3.2 1B Instruct outperform their 164

non-instructed versions in implicit hate speech 165

detection. 166

• RQ3: What is the comparative effec- 167

tiveness of few-shot fine-tuning versus 168

full-dataset fine-tuning in the domain of 169

hate speech detection? Full fine-tuning is 170

computationally costly, requiring substantial 171
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amounts of labeled data and computing re-172

sources.173

Few-shot learning offers a promising alterna-174

tive, employing a few examples to push the175

model to make accurate predictions.176

Our study examines if few-shot fine-tuning177

can be as effective as full fine-tuning, par-178

ticularly in hate speech detection where data179

accessibility is a main bottleneck.180

• RQ4: Can error analysis of incorrect pre-181

dictions enhance both explainability as well182

as model performance? The implicit hate183

speech detection continues to be a difficult184

task due to the shared vocabulary between185

neutral and hateful speech.186

Through systematic analysis of these errors,187

we reveal model prediction biases and suggest188

focused improvements for future fine-tuning189

approaches.190

To address the research questions above, our work191

makes the following significant contributions:192

• Model Scaling Study in Implicit Hate193

Speech Detection: We investigate the effects194

of scaling up model sizes, showing that larger195

size does not necessarily equate to better per-196

formance—architectural enhancements and197

domain-specific pretraining are essential.198

• Exploring the Potential of Instruction-199

Tuned LLMs: This work conducts a com-200

prehensive comparison of instructed and non-201

instructed LLMs for implicit hate speech de-202

tection, demonstrating the benefits of explicit203

task conditioning.204

• Few-Shot vs. Full Fine-Tuning: We examine205

the effectiveness of few-shot fine-tuning and206

demonstrate that it is competitive with full207

fine-tuning, presenting a suitable option when208

resources are limited.209

• Systematic Error Analysis Using LDA: We210

use topic modeling techniques on misclassi-211

fied predictions, revealing common linguistic212

patterns that result in false positives and false213

negatives, and suggesting areas of improve-214

ment for future model training.215

• Model Benchmarking on Varied Datasets:216

We benchmark a number of models on a com-217

bination of the SBIC, IHC, and OffensiveLang218

datasets, tackling issues of cross-domain gen- 219

eralization and dataset annotation discrepan- 220

cies. 221

Our results emphasize the trade-offs between 222

model size, fine-tuning approaches, and instruc- 223

tion tuning, thereby offering novel insights in the 224

new area of implicit hate speech detection. By con- 225

necting token-level span annotation and sentence- 226

level classification, we seek to enhance both the 227

interpretability and efficiency of detecting harmful 228

online discourse. 229

2 Related Work 230

The field of hate speech detection has undergone re- 231

markable progress, transitioning from conventional 232

machine learning approaches to more sophisticated 233

deep learning models. Initial approaches mainly 234

employed algorithms such as Support Vector Ma- 235

chines (SVMs) and Logistic Regression that lever- 236

aged manually crafted linguistic features such as 237

n-grams and sentiment features (Raza et al.; Rawat 238

et al.). Nevertheless, these approaches tended to 239

struggle with detecting implicit hate speech be- 240

cause of their inferior capacity for understanding 241

contextual nuances, leading to high false-negative 242

rates (Reghunathan et al.). 243

The introduction of deep learning witnessed sig- 244

nificant advances with Recurrent Neural Networks 245

(RNNs) and Bi-GRUs, which dealt with sequen- 246

tial dependencies more effectively (Kibriya et al.). 247

The breakthrough, however, came with transformer- 248

based models like BERT, RoBERTA, and Hate- 249

BERT, which employed contextual embeddings to 250

deal with subtle language more effectively (Aminu 251

et al.). Despite these advances, models trained on 252

explicit content for the most part struggled to detect 253

implicit hate speech, and more specialized methods 254

like Implicit Target Span Detection (ITSD) had to 255

be invented (Jafari et al.). 256

The implementation of Large Language Models 257

(LLMs) such as GPT-3 and LLaMA introduced 258

novel functionality in capturing hate speech’s 259

implicit nature. Instruction-tuned models per- 260

formed better with the utilization of domain- 261

specific prompts (Kim et al.). Experiments such as 262

(Garg et al.) demonstrated that LLMs, when fine- 263

tuned using adversarial training, were able to pick 264

up on implicit hints that other models overlook. 265

Besides, the application of Low-Rank Adaptation 266

(LoRA) in efficient fine-tuning has been found to 267

be advantageous in achieving a balance between 268
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model size and performance, especially in tasks269

demanding precise token-level span identification.270

Data augmentation techniques have been an-271

other crucial area of study. For instance, (Ocampo272

et al., 2023) proposed hard negative sampling to273

make models more robust by exposing them to di-274

verse linguistic patterns. These techniques help275

address the menace of coded language, where276

seemingly harmless-sounding phrases have mali-277

cious meanings rooted in shared cultural knowl-278

edge. GPT models have also been leveraged to an-279

notate datasets like OffensiveLang, making training280

data more informative for better detection accuracy.281

In spite of such advances, implicit hate speech282

detection is still a persistent challenge because of283

the evolving nature of coded terms and the contex-284

tual sensitivity of offensive content. More specif-285

ically, cross-lingual detection is hard because of286

cultural and linguistic disparities (Zhang et al.).287

This research extends the existing work by in-288

vestigating the combined application of MLMs and289

LLMs to advance the detection accuracy as well290

as interpretability. Our work adds to the literature291

base by suggesting new target span identification292

approaches, utilizing contextual embeddings along-293

side token-level annotations in a bid to overcome294

the age-old difficulties confronting this field.295

3 Implicit Target Span Identification296

Implicit Target Span Identification (iTSI) plays a297

critical role in detecting hate speech, particularly298

where targeted messages are subtle and contingent299

on contextual information. Compared to explicit300

hate speech, implicit forms often rely on cultural301

or social nuances that standard models fail to ap-302

preciate.303

Let us consider a text sequence as C =304

[t1, t2, ., tn], where each element ti constitutes305

a token and n is the overall length of the se-306

quence. The objective of iTSI is to predict spans307

of tokens that implicitly or explicitly mention pro-308

tected groups. The task is to predict a set S =309

(ss1, se1), ., (ssk, sek), where the tuple (ssi, sei) in-310

dicates the start and end indices of the i-th tar-311

get span. The prediction above is done through312

token-level annotation with the BIO (Begin-Inside-313

Outside) method so that spans can be identified314

properly.315

The problem is defined formally by the function316

f : C → S, where f aligns the input text with a317

set of spans referring to implicit or explicit hate318

speech targets. 319

To identify implicit targets, we employ both 320

MLMs like BERT, Hate-BERT, and , which excel at 321

capturing local language patterns, whereas LLMs 322

like GPT-3.5 and LLaMA provide a more general 323

contextual understanding needed to identify sub- 324

tle implicit content. Additionally, SmolLM2 and 325

ModernBERT, a two smaller-scale language mod- 326

els, are evaluated for its efficiency in implicit hate 327

speech detection. The models are fine-tuned using 328

Low-Rank Adaptation (LoRA), which enhances 329

computational efficiency without a loss in perfor- 330

mance. 331

4 Experimental Setup 332

4.1 Datasets 333

To ensure a robust evaluation of our task, we con- 334

struct a diverse dataset by integrating samples from 335

three prominent sources: 336

• SBIC (Social Bias Inference Corpus) (Sap 337

et al., 2020): This dataset consists of 150,000 338

structured annotations pertaining to social me- 339

dia posts, encompassing over 34,000 impli- 340

cations across approximately 1,000 distinct 341

demographic groups. 342

• IHC (Implicit Hate Corpus) (ElSherief et al., 343

2021): A corpus for hate speech detection that 344

consists of a total of 22,056 tweets gathered 345

from eminent extremist groups in the United 346

States that consist of 6,346 tweets that exhibit 347

implicit hate speech. 348

• OffensiveLang dataset(Das et al., 2024) con- 349

tains 8270 texts generated by ChatGPT. 6616 350

are labeled "offensive" and 1654 "not offen- 351

sive." Critically, the dataset was annotated by 352

both humans and ChatGPT. 353

4.2 Models 354

To benchmark ITSI’s performance, we evaluate 355

multiple architectures under both zero-shot and 356

fine-tuned settings: 357

• Masked Language Models (MLMs): BERT- 358

Base, Hate-BERT, RoBERTa-Large. 359

• Large Language Models (LLMs): LLama 360

3.2B, GPT 3.5 361

• Small Language Model: SmolLM2-135M 362

and ModernBERT 363
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This setup allows for a comparative analysis of364

traditional transformer-based architectures versus365

instruction-tuned LLMs, assessing their effective-366

ness in detecting implicit hate speech.367

4.3 Evaluation Metrics368

We employ the following evaluation metrics: preci-369

sion, recall, accuracy, and F1-score, which measure370

a model’s performance in detecting implicit hate371

speech at the token level. Analyzing content at372

the token level rather than at the sentence level en-373

sures granular analysis, allowing offensive spans374

to be accurately identified and providing an overall375

evaluation of model performance.376

5 Results377

5.1 Model Comparison378

To benchmark the effectiveness of different archi-379

tectures in a zero-shot setting, we compare their F1380

scores on both IHC and SBIC datasets in Table 1.

Model # F1 Score
(IHC)

F1 Score
(SBIC)

BERT-Base 110M 67.0 63.4
Hate-BERT 110M 68.5 69.2
RoBERTa-Large 355M 72.5 75.8
ModernBERT 110M 72.2 75.1
LLama 3.2 1B 1B 70.8 74.2
SmolLM2-135M 135M 69.0 71.5

Table 1: Zero-shot performance of different models with
their number of parameters.

381

From the results, RoBERTa-Large emerges as382

the best-performing model, surpassing other archi-383

tectures in both datasets. ModernBERT follows384

closely, while models like Hate-BERT and LLama385

3.2 1B demonstrate competitive performance, par-386

ticularly in SBIC. These results emphasize the ad-387

vantage of larger pre-trained transformers in zero-388

shot settings, highlighting their ability to generalize389

across different tasks.390

5.2 Few-Shot vs Full Dataset Fine-Tuning391

Fine-tuning with limited data (few-shot learning)392

presents an appealing trade-off between perfor-393

mance and resource efficiency. Table 2 illustrates394

the comparison between few-shot (FS) and full395

dataset (FD) fine-tuning for the SmolLM2-135M-396

Instruct model.397

Fine-
Tuning
Type

IHC SBIC

F1 P R Acc F1 P R Acc
FD 66.0 68.0 64.2 92.7 69.8 69.0 70.5 94.0
FS 64.0 66.0 62.0 92.2 68.2 67.0 69.0 93.8

Table 2: FS:Few-Shot Fine-Tuning vs FD:Full Dataset
Fine-Tuning

5.3 Zero-Shot Generalization Across Datasets 398

We assessed models in a zero-shot setting on a 399

combination of SBIC, IHC, and OffensiveLang. 400

Model Params
(M)

IHC+SBIC+OffensiveLang
(F1)

BERT-Base 110 63.8
Hate-BERT 110 66.1
RoBERTa-Large 355 72.4
ModernBERT 125 68.9
LLama 3.2 1B 1000 71.5
SmolLM2-135M 135 70.1

Table 3: Zero-shot performance of various models on
the combined dataset.

Model IHC (F1) SBIC (F1)

Mistral-1B-GPTQ 67.5 71.0
LLama 3.2 1B Instruct 68.5 72.5
SmolLM2-135M-Instruct 66.0 69.8
SmolLM2-360M 65.0 68.5

Table 4: F1 Score Comparison for Instructed LLMs Vs
Non-Instructed LLMs

6 Error Analysis 401

Evaluation of model performance is an eye-opener 402

with different challenges hindering the precise iden- 403

tification of implicit hate speech. A main problem 404

is that multiple models were observed to be mak- 405

ing quite a confident incorrect prediction that label 406

a high number of false positives and quite a few 407

true positives. A number of neutral phrases were 408

flagged as hate speech simply because the model 409

was too sensitive towards specific keywords-the 410

very worries about aggressive terms not to men- 411

tion that of hatred that does not follow a seem- 412

ingly direct slur sometimes got forced from the 413

classification. The sentences like "Non-binary is a 414
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concept for progressive people" were flagged as of-415

fensive, while politically charged hate speech such416

as "F—ing liberals and their policies" received a417

non-offensive label. This goes on to indicate the418

difficulty of the model in understanding the ideo-419

logical dimension and contextual subtleties.420

Detection of implicit offense in the text remained421

another critique that might take the form of ren-422

dered commentary. In other words, statements like423

"Their traditions are outdated" were labeled neutral424

even while threaded with stereotyping and dismis-425

sive tone. Similarly, when it comes to gender bi-426

ases, "Women are too emotional for politics" rarely427

ever slipped through the radar as hate speech. This428

points out that perhaps greater contextual aware-429

ness is required so as to help the model detect subtle430

offenses.431

In the model errors that were found using La-432

tent Dirichlet Allocation (LDA), three major clus-433

ters of misclassifying were revealed which include434

political hate speech, gender stereotypes, and im-435

plicit sexism. Clustering analysis suggests that436

models fail to consistently recognize political lan-437

guage from explicit hate speech, making modera-438

tion and detection extremely difficult. Particularly,439

gender-related biases represented a difficult chal-440

lenge, because much of the hate speech produced441

came without the use of extremely aggressive lan-442

guage, while doing a damaging job of reinforcing443

stereotypes.444

A deeper investigation on dataset complexity445

and inter-annotator agreement constructs focus on446

the subjective task of detecting implicit hate speech.447

Results demonstrate more complex datasets leading448

to higher model error, whilst lower inter-annotator449

agreement scores build a case regarding flimsy la-450

beling of implicit hate speech. An extended text451

containing the dataset complexity scores and anno-452

tation agreement scores is available in the A.11.453

The complexity of annotation calls for improve-454

ments in dataset labeling schemes and an enhance-455

ment in training of the annotator. Divergences456

in inter-annotator agreement underline the imper-457

ative of utilizing external knowledge bases and458

context-aware embeddings to minimize inconsis-459

tencies. Future works need to probe hybrid annota-460

tion schemes that bring together human expertise461

and AI-assisted labeling for enhanced consistency462

and reliability in implicit hate speech detection.463

7 Discussion 464

RQ1: Does An Increase in LLM Parameter 465

Improve Performance in Implicit Content 466

Detection Tasks? 467

The results tell us that larger models typically 468

demonstrate better performance, as in RoBERTa- 469

Large and LLama 3.2 1B Instruct outperforming 470

their smaller counterparts. However, despite hav- 471

ing many fewer parameters (355M compared to 472

1B), RoBERTa-Large attains the maximum level of 473

performance. This is to be explained by a number 474

of different reasons. 475

The importance of task-specific pretraining is 476

of key importance, in that RoBERTa-Large has 477

been heavily pretrained over a range of different 478

textual corpora using advanced masking strategies 479

that support contextual prediction of words. 480

Moreover, domain adaptation is also a key point 481

of importance. RoBERTa-Large benefits from ear- 482

lier work that has been adapted to downstream 483

applications such as implicit content detection, 484

whereas LLama 3.2 is more generally oriented. 485

Parameter efficiency also plays a key role here. 486

RoBERTa-Large, tuned to linguistic structure, ef- 487

fectively maximizes its parameters in undertaking 488

tasks that require a sophisticated understanding of 489

text. 490

These results remind us that it is not model size 491

that guarantees better performance. Architectural 492

design, pretraining strategies, and task-specific fine- 493

tuning are all key to determining overall efficacy. 494

RQ 2: How Do Instructed LLMs Compare to 495

Non-Instructed LLMs in Detecting Implicit 496

Targets? 497

The instructed LLMs always outperform their 498

uninstructed counterparts, presumably owing to 499

a better comprehension of tasks developed during 500

instruction-based learning. This result supports our 501

hypothesis that models given explicit task-oriented 502

instruction would be more effective in identify- 503

ing implicit hate speech. An in-depth analysis of 504

results in Table 4 reveals that instructed models 505

achieve higher F1 scores in both datasets, with 506

LLama 3.2 1B Instruct having a one or more point 507

lead over Mistral-1B-GPTQ in the F1 score, while 508

the full table with additional metrics is provided in 509

the Appendix. This result highlights the crucial 510

role that explicit task-oriented instruction plays 511

in improving model performance. The improve- 512

ments observed can be attributed to the explicit 513
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task-oriented instruction given throughout learn-514

ing, enabling models to better recognize the con-515

textual aspects of implicit hate speech. In addi-516

tion, instructed LLMs gain from demonstrations517

that not just focus on a particular task but also518

contextual, hence improving their generalizability519

across diverse linguistic frameworks. Such models520

use their learned knowledge to navigate contextual521

transitions in cases of culturally sensitive or coded522

speech more proficiently. The combined impact of523

organized task guidance combined with contextual524

flexibility makes instructed LLMs more resilient525

and reliable in implicit hate speech detection, a no-526

tion that is backed up by their higher recall rates527

and better accuracy.528

RQ3: How Effective is Few-Shot Fine-Tuning529

Compared to Full Dataset Fine-Tuning in Hate530

Speech Detection?531

The findings mostly confirm our hypothesis. Al-532

though full-dataset fine-tuning consistently outper-533

forms few-shot fine-tuning, the F1-score difference534

is comparatively low (≤ 2 points), indicating that535

few-shot learning is an acceptable substitute when536

annotation resources are scarce.537

The high precision scores (over 92% on both538

datasets) also demonstrate that few-shot models539

still generalize well even with limited training sets.540

Interestingly, precision and recall scores on both541

environments are still close to one another, which542

suggests that few-shot fine-tuning does not intro-543

duce extreme biases towards false positives or false544

negatives.545

These results highlight the relevance of few-shot546

learning to the real-world detection of hate speech,547

where labeled data is generally scarce. Few-shot548

learning can be combined with data augmentation549

and self-training techniques in the future to fur-550

ther bridge the performance gap while saving on551

annotation costs.552

The findings mostly confirm our hypothesis. Al-553

though full-dataset fine-tuning consistently outper-554

forms few-shot fine-tuning, the F1-score difference555

is comparatively low (≤ 2 points), indicating that556

few-shot learning is an acceptable substitute when557

annotation resources are scarce.558

The high precision scores (over 92% on both559

datasets) also demonstrate that few-shot models560

still generalize well even with limited training sets.561

Interestingly, precision and recall scores on both562

environments are still close to one another, which563

suggests that few-shot fine-tuning does not intro- 564

duce extreme biases towards false positives or false 565

negatives. 566

These results highlight the relevance of few-shot 567

learning to the real-world detection of hate speech, 568

where labeled data is generally scarce. Few-shot 569

learning can be combined with data augmentation 570

and self-training techniques in the future to fur- 571

ther bridge the performance gap while saving on 572

annotation costs. 573

RQ 4: Can Error Analysis of Mismatched 574

Predictions Enhance Explainability? 575

We analyzed misclassified phrases using Latent 576

Dirichlet Allocation (LDA). Table 5 presents ex- 577

amples of phrases that were incorrectly classified, 578

revealing key thematic clusters where models strug- 579

gle. Our findings confirm that misclassifications are

LDA Topic Cluster Example of Misclassified
Phrase

Racial Tension “white southern christian”
Political Bias “jewish privilege”
Immigration Debate “immigration laws”
Conspiracy Theories “white genocide”
Social Justice “angry white bigots”
War and Nationalism “another war for Israel”

Table 5: Examples of Misclassified Topics from LDA
Analysis

580
due to ambiguity, implicit bias, and model-specific 581

limitations. Quite possibly the most intractable 582

obstacle to hate speech detection is semantic over- 583

lap between hateful and neutral speech. Phrases 584

such as "white southern Christian" or "immigra- 585

tion laws" are often context-dependent—appearing 586

sometimes in innocuous conversation, other times 587

encoded with hate. Such ambiguity leads to false 588

positives, particularly when the model lacks suffi- 589

cient discourse-level context. 590

Inaccurately classified hate speech tends to cen- 591

ter around sociopolitical discussion, particularly 592

regarding race, religion, and nationalism. This find- 593

ing suggests that current models struggle to differ- 594

entiate between subjectivity and explicit hate, com- 595

monly misinterpreting critical discourse or com- 596

mentary as hostility. These biases are potentially 597

due to imbalances in the training data, where mod- 598

els are exposed to specific linguistic patterns repet- 599

itively but fail to adequately differentiate between 600

tone and intent. 601

7



Despite significant advancements in implicit hate602

speech detection, our analysis identifies several603

persistent failure patterns that hinder model per-604

formance. These challenges highlight areas where605

further refinement is necessary to enhance both606

accuracy and robustness.607

One of the most critical issues is label confusion,608

particularly in distinguishing between the begin-609

ning of a targeted span (B-SPAN) and the continu-610

ation of the span (I-SPAN). This misclassification611

leads to fragmented span detection, diminishing612

the coherence and reliability of model annotations.613

Addressing this challenge requires improved se-614

quence modeling techniques that can better capture615

contextual dependencies between tokens.616

Another persistent challenge is ambiguity in con-617

text. Implicit hate speech often relies on cultural,618

historical, or situational knowledge for accurate619

interpretation. Developing models that incorporate620

external knowledge graphs or domain-specific em-621

beddings could significantly improve contextual622

understanding.623

A further limitation observed is overgeneraliza-624

tion. Overfitting to specific linguistic patterns leads625

to poor adaptability, underscoring the need for626

more robust training strategies that emphasize gen-627

eralization rather than memorization.628

8 Future Directions629

Our Future studies will be geared toward sev-630

eral promising directions in detecting implicit hate631

speech.632

One important way should be through improv-633

ing contextual understanding through Retrieval-634

Augmented Generation (RAG), where models635

would retrieve relevant contextual information636

from external knowledge bases, thus enabling them637

to detect certain latent forms of implicit hate speech.638

Furthermore, utilization of larger LLMs with more639

parameters than those used in our study—like can640

significantly enhance contextual comprehension641

and subtlety detection.642

Explainability can be enhanced using atten-643

tion visualization techniques, such as attention644

heatmaps and transformer attention flow, to allow645

researchers and moderators to interpret and trust646

model predictions better.647

Data augmentation remains important. Tech-648

niques such as paraphrasing with LLMs, back-649

translation, and adversarial data generation could650

expand training datasets, rendering models more651

robust. Interactive visualisation tools combined 652

with explainable AI methods like SHAP values 653

could help demonstrate further insights into model 654

decisions, whereas cross-lingual training and the 655

development of ethically oriented datasets will se- 656

cure wider applicability and fairness. 657

9 Conclusion 658

Our analysis finds salient emphases in the implicit 659

hate speech identification process and discerns that 660

model size in itself cannot solely account for its 661

performance. Although larger models tend to per- 662

form well, other factors like parameter efficiency, 663

domain adaptation, and task-specific pre-training 664

are equally important. Apart from being smaller 665

in size, ModernBert and SmolLM2 perform better 666

than the larger ones because of its targeted opti- 667

mization. 668

Instruction-based learning has considerably im- 669

proved the model performance due to its better 670

understanding of context, thus a promising area we 671

see for future research. Also, Few-shot fine-tuning 672

provides a solid alternative to using full-data train- 673

ing with considerable generalizability coupled with 674

simple loss of performance. 675

Error analysis shows that the perennial difficulty 676

lies in distinguishing between hateful and neutral 677

statements in sociopolitical contexts. To conquer 678

these challenges will need much better domain 679

adaptation approaches and discourse-aware mod- 680

els. Moving ahead, bringing in external knowledge 681

bases and making sure the annotation schema is 682

more robust will indeed be a huge step toward build- 683

ing fair, robust, and scalable hate speech detection 684

systems. 685

10 Limitations 686

One key limitation in our study is the model size, 687

our exploration was limited to models up to 3B 688

parameters. Due to this reason, this work wouldn’t 689

fully investigate to what extent the increase in pa- 690

rameter sizes could impact detection performance. 691

Another limitation is around datasets. Our work, 692

restricted by the use of monolingual and non-cross- 693

cultural datasets, could benefit from a deeper explo- 694

ration of historical trends across diverse sociopo- 695

litical contexts and non-English languages. Our 696

study, constrained by monolingual and culturally 697

homogenous datasets, lacks the breadth to fully 698

capture historical trends and evolving sociopoliti- 699

cal contexts across diverse linguistic landscapes. 700
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A Appendix812

A.1 Comparing LoRA, VERA, and DORA813

To further evaluate the effectiveness of LoRA,814

we compare its performance against VERA and815

DORA, two alternative fine-tuning techniques.816

Model F1 Score (IHC) F1 Score (SBIC)

VERA 68.8 71.2
DORA 69.2 71.5
LoRA 69.5 73.0

Table 6: Performance comparison of VERA, DORA,
and LoRA with LLama 3.2 (r=16).

A.2 Comparing LoRA Ranks817

Figure 2: Impact of LoRA rank on F1 scores for IHC
and SBIC datasets.

To better visualize the trade-off between com-818

putational efficiency and accuracy, Figure 1 below819

provides a bar chart comparing F1 scores across820

LoRA ranks for both the IHC and SBIC datasets.

Rank (r) F1 Score (IHC) F1 Score (SBIC)

8 69.0 72.8
16 69.5 73.0
32 68.5 71.5
64 67.8 70.9
128 66.7 69.8
256 65.8 68.9

Table 7: Performance of LoRA configurations across
datasets.

821

Table 7 mention that Lower-rank configurations822

(r = 8 and r = 16) perform best, balancing com-823

putational efficiency and accuracy (Ocampo et al.).824

Lower-rank configurations (r = 8 and r = 16)825

perform best, balancing computational efficiency 826

and accuracy (Ocampo et al.). 827

The results highlight a key observation: lower- 828

rank configurations (r = 8 and r = 16) deliver the 829

highest F1 scores while minimizing computational 830

overhead. This suggests that higher-rank values 831

(r ≥ 32) do not necessarily translate into better 832

performance, potentially introducing unnecessary 833

complexity and resource consumption. These find- 834

ings align with prior research (Ocampo et al.), rein- 835

forcing the idea that smaller, well-optimized LoRA 836

ranks can achieve competitive results without the 837

burden of excessive parameters. 838

A.3 Comparing LoRA and full-finetuning 839
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Table 8: Performance and training time comparison
between full fine-tuning and LoRA.

A.4 LoRA vs. Full Fine-Tuning 840

The detailed performance and training time com- 841

parison is provided in A.8. 842
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Although full fine-tuning results in slightly843

higher F1 scores—namely, LLama 3.2 1B from844

73.0 to 74.5 on the SBIC benchmark—this minimal845

gain is at an enormous computational expense. The846

computational time for full fine-tuning quadruples,847

from 3 hours using LoRA to 12 hours. This compu-848

tational cost is even worse for smaller models like849

SmolLM2-135M, where LoRA is as performant850

while significantly cutting training time from 10851

hours to a mere 2 hours.852

A.5 Comparing Instructed LLMs to853

Non-Instructed854
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Table 9: Performance Comparison Instructed LLMs Vs
Non-Instructed

A.6 ModernBERT Performance on855

OffensiveLang Dataset856

ModernBERT demonstrates a significant leap in857

performance over traditional models on the Offen-858

siveLang dataset, achieving an impressive F1-score859

of 0.89. This result highlights its superior capabil-860

ity in identifying implicit hate speech, particularly 861

in challenging contexts where other models strug- 862

gle. 863

Model Precision Recall F1-score

TF-IDF + SVM 0.65 0.47 0.55
BERT 0.68 0.54 0.53
DistilBERT 0.71 0.46 0.52
ModernBERT 0.78 1.00 0.89
SmolLM2-
135M-Instruct

0.58 0.38 0.46

Table 10: Model performance on the OffensiveLang
dataset.

ModernBERT’s superior recall rate of 1.00 sug- 864

gests that it captures a vast majority of offensive 865

content, making it particularly effective in scenar- 866

ios requiring high sensitivity. In contrast, other 867

models, including DistilBERT and BERT, strug- 868

gle with recall, indicating difficulty in recognizing 869

nuanced hate speech. The results reinforce the im- 870

portance of leveraging contextualized embeddings 871

and robust fine-tuning techniques to improve detec- 872

tion accuracy. 873

Furthermore, an in-depth analysis of annota- 874

tion agreement across datasets reveals substantial 875

inconsistencies. The complexity of posts in the 876

SBIC, IHC, and OffensiveLang datasets suggests 877

that more contextually rich content poses greater 878

challenges for models, necessitating adaptive train- 879

ing strategies. 880

A.7 Annotation Agreement 881

Dataset Average Complexity Score

SBIC 4.3
IHC 3.9
OffensiveLang 3.6

Table 11: Average complexity of posts across datasets.

Dataset Agreement Metric IAA Range

SBIC Cohen’s Kappa 0.65-0.72
IHC Fleiss’ Kappa 0.55-0.60
OffensiveLang Cohen’s Kappa 0.60-0.75

Table 12: Annotation agreement levels across datasets.
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