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Abstract

The ability to accurately recognize, localize and
separate sound sources is fundamental to any
audio-visual perception task. Historically, these
abilities were tackled separately, with several
methods developed independently for each task.
However, given the interconnected nature of
source localization, separation, and recognition,
independent models are likely to yield suboptimal
performance as they fail to capture the interde-
pendence between these tasks. To address this
problem, we propose a unified audio-visual learn-
ing framework (dubbed OneAVM ) that integrates
audio and visual cues for joint localization, separa-
tion, and recognition. OneAVM comprises a shared
audio-visual encoder and task-specific decoders
trained with three objectives. The first objective
aligns audio and visual representations through a
localized audio-visual correspondence loss. The
second tackles visual source separation using a tra-
ditional mix-and-separate framework. Finally, the
third objective reinforces visual feature separation
and localization by mixing images in pixel space
and aligning their representations with those of
all corresponding sound sources. Extensive ex-
periments on MUSIC, VGG-Instruments, VGG-
Music, and VGGSound datasets demonstrate the
effectiveness of OneAVM for all three tasks, audio-
visual source localization, separation, and near-
est neighbor recognition, and empirically demon-
strate a strong positive transfer between them.
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Figure 1: Sound source localization, separation, recognition
(CR-ACC), and instance retrieval (IR-ACC) performance
of a variety of models. The proposed framework, not only
surpasses prior state-of-the-art, but it does so using a single
model without requiring task-specific finetuning.

1. Introduction
Identifying, localizing, and recognizing objects or move-
ments are critical cognitive functions, often requiring joint
visual and auditory processing. In fact, a variety of neuro-
physiological studies have demonstrated how audio-visual
interactions play a critical role in human perception. For
example, humans can localize events more accurately and
precisely in the presence of audio-visual sensory data com-
pared to unisensory conditions (Odegaard et al., 2015).
Cross-modal integration effects have also been identified
as the cause of enhanced visual processing if reliably pre-
ceded by a sudden sound (Frassinetti et al., 2002), as well
as enhanced audio-visual speech perception in noisy envi-
ronments (Schwartz et al., 2004). These studies provide
substantial evidence in support of the benefits of joint audio-
visual processing for a wide range of tasks, from recognition
to localization and source separation.
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In the field of machine perception, researchers have also ex-
plored the potential of audio-visual interactions for each of
these tasks separately. For instance, late multi-modal fusion
was shown to greatly enhance object and action recogni-
tion (Kazakos et al., 2019; Xiao et al., 2020), particularly
when the imbalance between dominant and non-dominant
modalities is appropriately addressed. In a different line
of work, two-stream neural networks, trained to match
audio-visual representations, were shown capable of local-
izing sound sources in video data (Senocak et al., 2018;
Hu et al., 2022; Mo & Morgado, 2022a;b), in a weakly
supervised manner. Similarly, various multi-modal archi-
tectures have also been proposed to tackle the problem of
sound source separation (Hershey & Casey, 2001; Zhao
et al., 2018; Ephrat et al., 2018; Gao et al., 2018; Xu et al.,
2019; Gan et al., 2020b; Tian et al., 2021).

Although promising, the aforementioned methods were de-
veloped independently for each audio-visual task and often
rely on task-specific architectures and learning objectives.
This not only limits the applicability of each model but
also precludes positive transfer across tasks. In order to
overcome these limitations and explore potential cross-task
transfer, we propose a unified audio-visual learning frame-
work capable of addressing several tasks simultaneously,
including audio-visual source recognition, localization, and
separation, without any task-specific fine-tuning. We dub
our framework OneAVM where ”One” stands for the single
unified model and AVM for audio-visual modeling. We
utilize a two-stream encoder shared across tasks with task-
specific decoders. The model is trained to learn matched
audio-visual representations, which enables it to identify
cross-modal associations necessary for localization. Addi-
tionally, the model is required to produce representations
conducive to effective source separation through a mix-and-
separate objective. We also introduce a novel mixed visual
alignment objective that aligns multiple audio representa-
tions to a corresponding mixture of images. Through these
learning objectives, our framework provides a more com-
prehensive approach to audio-visual learning, enabling ef-
fective cross-task transfer and improving the applicability
of audio-visual models.

Through extensive experiments on MUSIC, VGG-
Instruments, VGG-Music, and VGGSound datasets, we
show the cross-task transfer benefits obtained through our
unified audio-visual framework, OneAVM , as well as its state-
of-the-art performance on visual sound localization, sound
separation, and nearest neighbor recognition (see Figure 1).
We highlight that, unlike the task-specific models of prior
work, such capabilities are attained using a single model
for all tasks. We further provide an extensive ablation study
to validate the importance of simultaneous correspondence,
localization, mixed audio separation, and mixed visual align-
ment in learning joint representations for the three down-

stream tasks.

In summary, this work provides three main contributions.
(1) We present a novel unified audio-visual framework
(OneAVM ) capable of performing sound source localization,
separation, and recognition from a single model. (2) We
propose a novel mixed visual alignment objective that as-
sociates individual sound sources with mixed images. (3)
Extensive experiments comprehensively demonstrate the
superiority of OneAVM over previous baselines on various
audio-visual downstream tasks.

2. Related Work
Learning Representations from Audio-Visual Correspon-
dences. Audio-visual representation learning aims to learn
joint audio-visual models that can be tuned for various down-
stream tasks. One extensive line of prior work (Aytar et al.,
2016; Owens et al., 2016; Arandjelovic & Zisserman, 2017;
Korbar et al., 2018; Senocak et al., 2018; Zhao et al., 2018;
2019; Gan et al., 2020b; Morgado et al., 2020; 2021a;b;
Hershey & Casey, 2001; Ephrat et al., 2018; Hu et al., 2019;
Mo et al., 2023) have addressed audio-visual representation
learning by establishing the correspondence between audio
and visual modalities from videos. This cross-modal align-
ment has proved to be beneficial for several audio-visual
tasks, including audio-visual spatialization (Morgado et al.,
2018; Gao & Grauman, 2019; Chen et al., 2020a; Morgado
et al., 2020), event localization (Tian et al., 2018; Lin et al.,
2019; Wu et al., 2019; Lin & Wang, 2020), audio-visual nav-
igation (Chen et al., 2020a; 2021a; 2022), and parsing (Tian
et al., 2020; Wu & Yang, 2021; Lin et al., 2021; Mo & Tian,
2022). In this work, we also learn from audio-visual cor-
respondences as one of our objectives. However, we focus
on integrating multiple tasks like sound source localization,
separation, and recognition in a unified framework.

Visual Sound Source Localization. Visual sound source
localization is a challenging task that seeks to identify ob-
jects or regions of a video corresponding to active sound
sources. Early works (Hershey & Movellan, 1999; Fisher III
et al., 2000; Kidron et al., 2005) used conventional ma-
chine learning techniques, e.g., statistical models (Fisher III
et al., 2000) and canonical correlation analysis (Kidron et al.,
2005), to learn low-level alignment between audio and vi-
sual features. With the advance of deep neural nets, recent
approaches (Senocak et al., 2018; Hu et al., 2019; Afouras
et al., 2020; Qian et al., 2020; Chen et al., 2021b; Seno-
cak et al., 2022; Mo & Morgado, 2022a;b; Mo & Tian,
2023a;b) apply diverse neural-net based architectures to
learn from audio-visual correspondences. For example,
Attention10k (Senocak et al., 2018) predicted regions of
sounding objects in the image using a two-stream architec-
ture with an attention mechanism. To improve the localiza-
tion performance, LVS (Chen et al., 2021b) introduced hard
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Figure 2: Illustration of the proposed audio-visual learning framework for sound source localization, separation, and
recognition. First, image and audio encoders are applied to extract audio and visual features, which are trained for three
separate objectives. 1) An audio-visual correspondence and localization objective is utilized to align corresponding audio
and visual features. 2) An audio decoder is added for sound source separation using a mix-and-separate strategy (mixed
audio separation). 3) A novel mixed visual alignment objective is proposed to align representations from a mixed image
with the corresponding individual sound sources.

sample mining to optimize a differentiable threshold-based
contrastive objective for generating discriminative audio-
visual correspondence maps. Meanwhile, EZ-VSL (Mo &
Morgado, 2022a) designed a multiple-instance contrastive
learning loss to align regions with the most corresponding
audio without negative regions involved. More recently, a
contrastive random walk framework was introduced in Mix-
and-Localize (Hu et al., 2022) to link each audio node with
an image node using a transition probability of audio-visual
similarity, which localizes individual sound sources from
the mixture. However, they do not involve reconstructing
separated audio and audio-visual recognition during train-
ing. Different from them, we aim to combine the sound
localization objective with other audio-visual objectives,
e.g., separation and recognition, in a unified framework to
achieve general learning for the audio-visual community.

Audio-Visual Source Separation. Audio-visual source sep-
aration aims at separating and recovering individual sound
sources from an audio mixture given the image or an im-
age region containing the sound source to be separated. In
recent years, several architectures and training frameworks
have been proposed to enhance audio-visual source sepa-
ration. (Hershey & Casey, 2001; Zhao et al., 2018; Ephrat
et al., 2018; Gao et al., 2018; Xu et al., 2019; Tian et al.,
2021; Tzinis et al., 2020). For instance, Zhao et al. (Zhao
et al., 2018) utilized the correspondence between sound
sources and image regions for visually grounded separa-
tion. Other approaches, such as MP-Net (Xu et al., 2019)
and CCoL (Tian et al., 2021), kept the mix-and-separate
learning strategy of (Zhao et al., 2018) while improving the
separation network architecture. MP-Net (Xu et al., 2019)
applied a recursive MinusPlus Net to separate salient sounds

from the mixture, and CCoL (Tian et al., 2021) leveraged
a cyclic co-learning framework which can benefit from the
visual grounding of sound sources. Similarly to CCoL, our
approach also jointly optimizes for separation and localiza-
tion. We show, however, superior empirical performance
compared to CCoL while utilizing a much simpler archi-
tecture (without complex detection heads). Beyond visual
appearance, other visual modalities have been recently ex-
plored to capture complicated visual representations, such
as motion in SoM (Zhao et al., 2019), gestures through pose
and keypoint detection in MG (Gan et al., 2020a), and the
spatiotemporal visual scene graphs in AVSGS (Chatterjee
et al., 2021). While promising, this work focuses on rep-
resentations obtained from visual appearance alone (i.e.,
RGB frames). This choice enabled us to simplify the source
separation architecture and focus on developing a unified
framework for audio-visual learning. A promising avenue
for future research is to explore how best to incorporate such
visual modalities into a unified audio-visual model.

Mixup Regularization Techniques. Mixup regulariza-
tion techniques seek to create novel samples by combin-
ing existing training samples. In computer vision, popular
techniques include Mix-Up (Zhang et al., 2018) and Cut-
Mix (Yun et al., 2019), which randomly combine two or
more samples or image patches to create new training ex-
amples, or Cutout regularization (DeVries & Taylor, 2017)
which involves randomly removing pixels or patches from
the input data to force the model to learn more robust fea-
tures. These regularization techniques have proven effective
in improving the robustness and generalization performance
of deep learning models. We found them particularly use-
ful in our unified audio-visual learning framework. Thus,
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inspired by this line of work, we proposed a multi-modal
variation of mix-up, where the representations of a mixed
visual frame are trained to be aligned with the audio repre-
sentations of all of the corresponding sound sources.

3. Method
The motivating hypothesis of this work is that audio-visual
tasks like visual source localization, separation, and recog-
nition can benefit from positive transfer across tasks. To
achieve this goal, we created a unified learning framework
and an audio-visual architecture to tackle these three tasks si-
multaneously. Our framework consists of three main compo-
nents, namely correspondence & localization, as explained
in section 3.2, mixed audio separation in section 3.3, and
mixed visual alignment in section 3.4.

3.1. Problem Setup

Our goal is to develop a unified model for audio-
visual source localization, separation, and recognition,
by training on an unlabeled audio-visual dataset D =
(vi, ai) : i = 1, . . . , N leveraging the natural associations
between audio and visual signals found in video data. The
first task, audio-visual source localization, seeks to local-
ize sound sources present in the audio ai within the visual
frame vi. The second task, audio-visual source separation,
is tackled through a mix-and-separate strategy (Zhao et al.,
2018). The final task is recognition and instance retrieval,
which aims to develop semantic representations of the data,
where cross-modal association within a sample and object-
level clusters across samples are readily available. To evalu-
ate recognition and cross-modal instance retrieval, we use
cosine similarity between high-level features for either re-
trieval or nearest neighbor classification.

Despite the disparity between the three tasks, audio-visual
interactions that are useful (and easily learned) from one task
might benefit the others. Therefore, to enable positive trans-
fer across tasks, we process all audio-visual pairs through
a shared encoder, regardless of the target task. Specifically,
we utilize a two-stream neural network, where audio rep-
resentations ai are generated by an audio encoder fa, and
localized visual representations vxy

i are computed through a
visual encoder fv. Convolutional neural networks are used
for both encoders, with ResNet-18 being the chosen archi-
tecture. The audio encoder input is a log-mel spectrogram.
For the visual encoder, we obtain the localized representa-
tions vxy

i from the last feature map before global pooling.
These latent representations are then fed to task-specific
prediction heads, described in the following subsections.

3.2. Correspondence & Localization

Global audio-visual correspondence has been shown to
lead to semantic aware representations useful for recog-
nition tasks (Arandjelovic & Zisserman, 2017; Morgado
et al., 2021b). On the other hand, localization requires an
objective that promotes spatially localized audio-visual cor-
respondence (Senocak et al., 2018; Mo & Morgado, 2022a).
To accomplish both tasks, we seek both locally and globally
aligned representations. Specifically, we apply two projec-
tion heads aglb

i = gglb
a (ai) and aloc

i = gloc
a (ai) to obtain two

representations of audio ai. Similarly, we project a glob-
ally pooled visual representation vglb

i = gglb
v (maxxy v

xy
i ),

as well as a set of local visual representations V loc
i =

{gloc
v (vxy

i ) : ∀x, y} of the base visual frame vi. To align
representations at both the local and global level, we define
the audio-visual correspondence score between an audio ai
and video vj as

sij = sim(aglb
i ,vglb

j ) + max
vloc
j ∈V loc

j

sim(aloc
i ,vloc

j ), (1)

where sim(·, ·) represents a cosine similarity between the
audio and visual features. The model is then trained to
optimize the average cross-modal instance discrimination
loss defined as

LCL
i =− log

exp (sii/τ)∑B
j=1 exp (sij/τ)

− log
exp (sii/τ)∑B

k=1 exp (ski/τ)
,

(2)
where τ is a temperature hyper-parameter, and the B − 1
negatives are other samples in the current batch. It is worth
noting that this formulation would be equivalent to the
audio-visual correspondence objective of (Morgado et al.,
2021a) if the similarity was computed only on global rep-
resentations sij = sim(aglb

i ,vglb
j ), and would be equiva-

lent to the multiple instance contrastive learning frame-
work of (Mo & Morgado, 2022a), if the audio-visual
similarity was obtained from local representations alone,
i.e. sij = maxvloc

j ∈V loc
j

sim(aloc
i ,vloc

j ).

3.3. Mixed Audio Separation

In addition to correspondence and localization, our uni-
fied framework also tackles the cocktail party source sep-
aration problem using a mix-and-separate learning frame-
work (Zhao et al., 2018). This involves randomly selecting
two samples, (ai, vi) and (aj , vj), from the training set to
create a mixed audio waveform am = ai + aj . An audio U-
Net decoder gsep is then trained to recover the waveform ai
from the audio mixture am, given the corresponding visual
frame vi. Specifically, the decoder receives the representa-
tions of the audio mixture am and the visual embeddings
of the base sample vi, and applies a series of transposed
convolutions and an output head to predict a time-frequency
separation mask M̂i = gsep(am,vi) ∈ RT×F . This separa-
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tion mask is then used to modulate the input mixture STFT
to separate the base audio.

âi = iSTFT
(

STFT(am) · M̂i

)
(3)

Similarly to (Zhao et al., 2018), the target masks Mi

indicate the time-frequency bins in which the source is
the most dominant component in the mixture, Mi =
1|STFT(ai)|>|STFT(am)| ∈ {0, 1}T×F where 1 is the indica-
tor function applied to each STFT bin separately. Source
separation is achieved by optimizing a binary cross-entropy
loss over these binary targets Mi

LMAS
i =

1

TF

T∑
t=1

F∑
f=1

BCE
(
M̂i(t, f),Mi(t, f)

)
. (4)

3.4. Mixed Visual Alignment

Inspired by mixup (Zhang et al., 2018), we introduce a reg-
ularization technique called mixed visual alignment (MVA).
Specifically, we mix visual frames from two samples, vi
and vj , with a mix-up coefficient α to produce a mixed
frame vm = α · vi + (1 − α) · vj . Then, we align the
visual representation of the mixed frame vm with the rep-
resentations of both audios ai and aj . Let amva

i = gmva
a (ai)

and amva
j = gmva

a (aj) be the two audio representations, and
V mva
m = {gmva

v (vxy
m ) : ∀x, y} the set of local visual features

for mixed frame vm, obtained through audio and visual
projection heads, gmva

a (·) and gmva
v (·), respectively. Mixed

visual alignment is obtained by minimizing

LMVA
i =αLCL(V MVA

m ,aMVA
i ) + (1− α)LCL(V MVA

m ,aMVA
j )

(5)
where α is the mix-up coefficient. The overall objective of
our model is optimized in an end-to-end manner as:

L =
1

N

N∑
i=1

(LCL
i + LMAS

i + LMVA
i ) (6)

We did not find it necessary to add weighing constants to
the loss terms for improving downstream performance.

4. Experiments
4.1. Experimental setup

Datasets. We conducted experiments on the following
audio-visual datasets. 1) MUSIC (Zhao et al., 2018) consists
of 448 untrimmed YouTube music videos of solos and duets
from 11 instrument categories. We use 358 solo videos
for training and 90 solo videos for evaluation. Since some
videos are no longer publicly available, the used dataset is
slightly smaller than the original MUSIC dataset. For a fair
comparison, we trained all models (including prior work) on

the same training data. 2) VGGSound-Instruments (Hu et al.,
2022) is a subset of VGG-Sound (Chen et al., 2020b) which
includes 32k video clips of 10s lengths from 37 musical in-
struments categories for training and 446 videos for testing.
Each video only has a single instrument category label. 3)
We composed another more challenging musical subset from
VGG-Sound (Chen et al., 2020b) containing 40,908 video
clips from 49 music categories for training and 1201 clips
for testing. We refer to this subset VGGSound-Music. 4)
Beyond the musical datasets, we used 150k video clips from
221 categories in VGG-Sound (Chen et al., 2020b), denoted
as VGGSound-All, where 221 classes are available in VGG-
Sound Sources with source localization annotations. For
testing, we used the full VGG-Sound Source (Chen et al.,
2021b) test set, which contains 5158 videos with source
localization annotations. 5) We also used the Kinetics-400
dataset (Carreira & Zisserman, 2017) to demonstrate the
benefits of pre-training. Kinetics contains 187k video clips
of human actions across 400 categories.

Evaluation Metrics. Following the prior work (Hu et al.,
2022; Mo & Morgado, 2022a;b), we use the pixel-wise av-
erage precision (PIAP) from (Hu et al., 2022), as well as
the Precision and F1 scores defined in (Mo & Morgado,
2022b) for visual source localization. For source separation,
following (Zhao et al., 2018), we use Signal-to-Distortion
Ratio (SDR) and Signal-to-Artifact Ratio (SAR). Recogni-
tion and retrieval evaluations are based on nearest-neighbors
retrievals, using cosine similarity between the representa-
tions obtained from the shared encoders. We assess the
accuracy of a cross-modal instance retrieval task, denoted
IR-Acc, which determines how often the audio of a sample
can be accurately retrieved from its visual component and
vice-versa. We also assess the accuracy of both within and
cross-modal nearest neighbor classifier, denoted wNN-Acc
and xNN-Acc, which measures the class consistency across
neighboring samples.

Implementation. The input images are resized into a
224 × 224 resolution. The audio is represented by log
spectrograms extracted from 3s of audio at a sample rate
of 8000Hz. We follow the prior work (Mo & Morgado,
2022a) and apply STFT to generate an input tensor of size
128× 128 (128 frequency bands over 128 timesteps) using
50ms windows with a hop size of 25ms. For the audio and
visual encoder, we use the ResNet18 (He et al., 2016) to
extract unimodal features and initialize the visual model
using weights pre-trained on ImageNet (Deng et al., 2009).
Unless other specified, the decoder depth for mixed audio
separation was set to 8, and the mixing coefficient for mixed
visual alignment was set to α = 0.5. For projection heads,
we use one linear layer for each modality and each separate
objective. The models were trained for 20 epochs using the
Adam optimizer (Kingma & Ba, 2014) with a learning rate
of 1e− 4 and a batch size of 128.
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Table 1: Sound source localization. Quantitative results on VGGSound-Instruments, VGGSound-Music, VGGSound-All.

Method
VGGSound-Instruments VGGSound-Music VGGSound-All

PIAP(%) Precision(%) F1(%) PIAP(%) Precision(%) F1(%) PIAP(%) Precision(%) F1(%)

Attention10k 41.25 28.32 33.67 18.65 23.97 16.75 15.32 19.21 13.12
OTS 47.51 25.71 29.85 25.52 27.52 26.16 29.82 32.82 25.87
DMC 45.32 26.52 30.37 24.37 25.73 18.06 20.16 23.90 16.37
CoarsetoFine 40.22 27.23 32.09 26.19 28.73 27.58 28.21 29.13 21.53
DSOL 47.85 50.22 52.15 37.26 42.51 43.08 30.56 35.72 29.01
LVS 42.33 32.61 45.72 32.05 33.67 32.53 29.62 34.43 27.53
EZ-VSL 43.80 38.53 52.36 34.72 36.15 36.07 31.33 37.79 31.32
Mix-and-Localize 47.32 49.73 58.75 37.15 42.07 42.62 32.31 36.35 32.15
OneAVM (ours) 50.67 55.21 67.26 39.16 45.63 50.37 34.52 39.68 38.75

Table 2: Sound source separation. Quantitative results on
MUSIC and VGGSound-Music datasets.

Method
MUSIC VGGSound-Music

SDR SAR SDR SAR

NMF -0.62 2.41 -7.12 -9.01
RPCA 0.86 3.81 -5.53 -7.82
Sound-of-Pixels 4.55 10.24 0.95 1.03
MP-Net 4.82 10.56 1.37 1.39
CCoL 6.35 9.75 2.07 2.18
OneAVM (ours) 7.38 7.48 2.51 2.61

4.2. Comparison to prior work

We begin by comparing our unified model OneAVM to prior
work on audio-visual sound source localization, separation,
and recognition.

Sound source localization. To validate the effectiveness
of the proposed OneAVM on sound source localization,
we compare to the following prior work: 1) Attention
10k (Senocak et al., 2018) (CVPR’2018): the first base-
line on sound source localization using a two-stream and
attention-based neural net; 2) OTS (Arandjelovic & Zisser-
man, 2018) (ECCV’2018): a correspondence-based baseline
for localization; 3) DMC (Hu et al., 2019) (CVPR’2019):
a deep multi-modal clustering approach based on audio-
visual co-occurrences; 4) CoarsetoFine (Qian et al., 2020)
(ECCV’2020): a two-stage approach using coarse-to-
fine embeddings alignment; 5) DSOL (Hu et al., 2020)
(NeurIPS’2020): a class-based method with two-stage train-
ing; 6) LVS (Chen et al., 2021b) (CVPR’2021): a con-
trastive learning framework with hard negative mining to
learn audio-visual correspondence maps; 7) EZ-VSL (Mo
& Morgado, 2022a) (ECCV’2022): a recent weakly super-
vised localization framework based on multiple-instance
contrastive learning; 8) Mix-and-Localize (Hu et al., 2022)
(CVPR’2022): a recent method based on a contrastive ran-
dom walk on a graph of images and separated sound sources.

Table 1 presents the source localization performance
on VGGSound-Instruments, VGGSound-Music, and

Table 3: Nearest-neighbor recognition. Quantitative re-
sults on VGGSound-Music dataset.

Method IR-Acc xNN-Acc wNN-Acc

Sound-of-Pixels 26.92 59.09 43.64
MP-Net 30.71 64.21 49.64
CCoL 35.00 68.92 54.20
EZ-VSL 36.69 71.56 56.10
Mix-and-Localize 38.54 75.42 60.18
OneAVM (ours) 51.17 81.10 60.91

VGGSound-All datasets. The proposed OneAVM outper-
formed prior work on all metrics across all three datasets.
We achieve significant improvements over DSOL (Hu et al.,
2020), a class-supervised approach, as well as EZ-VSL (Mo
& Morgado, 2022a) and Mix-and-Localize (Hu et al., 2022),
two state-of-the-art weakly-supervised source localization
methods. For example, on VGGSound-Instruments, we out-
perform the second-best method (DSOL) by 2.82 PIAP, 4.99
Precision, and 15.11 F1 score. On VGGSound-Music, the
second-best method (also DSOL) was outperformed by 3.96
PIAP, 3.96 Precision, and 9.74 F1 score. Finally, the second-
best method on VGGSound-All (Mix-and-Localize) was
also outperformed by significant margins, 2.21 PIAP, 3.33
Precision, and 6.6 F1 score. These improvements demon-
strate the effectiveness of unifying multiple tasks to learn
better representations for visual sound source localization.

Sound source separation. For source separation, we com-
pare against the following methods: 1) NMF (Virtanen,
2007): a traditional signal processing approach based on
non-negative matrix factorization to generate the spectro-
gram of each sound source; 2) RPCA (Huang et al., 2012):
a parameter-free baseline based on robust principal com-
ponent analysis; 3) Sound-of-Pixels (Zhao et al., 2018): a
deep learning approach that recovers separated audio condi-
tioned on pixel-level visual features; 4) MP-Net (Xu et al.,
2019): an improved audio-visual method based on recursive
separation from the mixture; 5) CCoL (Tian et al., 2021):
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EZ-VSLAttention10kGround-Truth Mix-and-LocalizeDSOLLVS ONEAVM

Figure 3: Example sound source localization maps. OneAVM produces higher-quality localization maps for each source.

Table 4: General video pre-training on Kinetics. Source localization, separation, and nearest neighbor recognition
performance on VGGSound-Music with and without Kinetics-400 pre-training.

Train DB Test DB Localization Separation Recognition
PIAP Precision F1 SDR SAR IR-Acc xNN-Acc wNN-Acc

VGGSound-Music VGGSound-Music 39.16 45.63 50.37 2.51 2.61 51.17 81.10 60.91
Kinetics VGGSound-Music 22.89 26.91 38.78 0.65 0.71 8.82 9.61 22.81
Kinetics → VGGSound-Music VGGSound-Music 41.56 47.82 58.96 2.91 2.96 56.65 85.83 69.06

a cyclic co-learning framework based on sounding object
visual grounding to separate individual sound sources.

The comparison is shown in Table 2 on two datasets, MU-
SIC and VGGSound-Music. On the small MUSIC bench-
mark, we observe mixed results, with OneAVM outperform-
ing all prior work by more than 1.33 SDR, while achieving
a SAR score lower than other source separation methods
like Sound-of-Pixels, MP-Net, and CCoL. However, on
the more challenging VGGSound-Music dataset, the pro-
posed approach outperformed all prior work both in terms of
SDR and SAR. In particular, OneAVM outperforms methods
that do not perform localization by significant margins (e.g.
outperforming MP-Net by 1.14 SDR and 1.22 SAR) and
improves over CCoL, the only other method that benefits
from joint localization and source separation.

Nearest-neighbor recognition. We also compared OneAVM
with prior work on nearest-neighbor recognition and
retrieval tasks, including Sound-of-Pixels (Zhao et al.,
2018), MP-Net (Xu et al., 2019), CCoL (Tian et al.,
2021), EZ-VSL (Mo & Morgado, 2022a), and Mix-and-
Localize (Hu et al., 2022). Table 3 shows the comparison
on the VGGSound-Music dataset. The proposed approach,
OneAVM , achieved the best performance across all metrics,
outperforming the state-of-the-art localization methods like

EZ-VSL and Mix-and-Localize by more than 12.6 points
on cross-modal instance retrieval accuracy (IR-Acc), 5.7
points on cross-modal nearest neighbor accuracy (xNN-Acc)
and 0.7 points on within-modal nearest neighbor accuracy
(wNN-Acc). On the other hand, prior separation methods
like CCoL, MP-Net, and Sound-of-Pixels tend to underper-
form in recognition tasks compared to localization methods.
This outcome is not unexpected as class information is not
always learnable when training exclusively for source sepa-
ration. Despite its occasional usefulness, class information
is not a top priority for source separation. OneAVM can,
however, achieve superior performance on all three tasks
(separation, localization, and recognition) using a single
model. In fact, all results on the VGGSound-Music dataset
in Tables 1, 2 and 3 were produced from the same model.

General video pre-training. All datasets considered above,
either based on VGGSound or MUSIC, are composed of
video samples with relatively clean audio-visual associa-
tions. However, uncurated videos tend to display weaker
associations. To study the effect of uncurated videos on
OneAVM , we utilized Kinetics-400 (which was not composed
to study audio events) for pre-training and transferred the
learned model to VGGSound-Music by finetuning. Source
localization, separation, and recognition performance were
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Figure 4: Qualitative visualization of sound source separation. (a) Ground-Truth; (b) Sound-of-Pixels; (c) MP-Net; (d)
OneAVM . The proposed OneAVM separates each source more accurately.

Table 5: Ablation studies. Impact of Correspondence & Localization (CL), Mixed Audio Separation (MAS), and Mixed
Visual Alignment (MVA) for visual sound localization, sound source separation, and nearest-neighbor recognition.

CL MAS MVA PIAP Precision F1

✓ 34.82 36.27 36.85
✓ ✓ 36.51 39.03 40.72
✓ ✓ 37.05 40.38 42.86
✓ ✓ ✓ 39.16 45.63 50.37

(a) Visual sound localization.

CL MAS MVA SDR SAR

✓ 0.98 1.05
✓ ✓ 1.57 1.63

✓ ✓ 1.98 2.08
✓ ✓ ✓ 2.51 2.61

(b) Sound source separation.

CL MAS MVA xIR-Acc xNN-Acc wNN-Acc

✓ 38.68 75.14 59.49
✓ ✓ 38.8 76.60 60.75
✓ ✓ 44.47 77.43 60.54
✓ ✓ ✓ 51.16 81.10 60.91

(c) Nearest-neighbor recognition.

measured on VGGSound-Music. We set the pre-training
schedule to 20 epochs, and the fine-tuning schedule to 10
epochs, both with a batch size of 128.

Table 4 shows a comparison between 3 models: 1) trained on
VGGSound-Music and evaluated on VGGSound-Music; 2)
pre-trained on Kinetics and evaluated on VGGSound-Music;
3) pre-trained on Kinetics, finetuned on VGGSound-Music
and then evaluated on VGGSound-Music. Unsurprisingly,
the model trained on Kinetics alone performs worse on every
task. This can be due to the domain gap between Kinetics
and VGG-Sound or the weaker audio-visual associations in
Kinetics videos. Nevertheless, despite the noisier samples,
pre-training on Kinetics still provides a strong initialization
for transfer learning. This shows that general video data,
which can be more easily collected at scale, still play an
important role in pre-training unified audio-visual models.

Qualitative comparisons. To further assess our unified
framework, we show the localization maps and separated
spectrograms generated by a single OneAVM model in Fig-
ures 3 and 4, respectively, and compare them with the
predictions produced by specialized methods, such Atten-
tion10k (Senocak et al., 2018), LVS (Chen et al., 2021b),
DSOL (Hu et al., 2020), EZ-VSL (Mo & Morgado, 2022a)
for localization, and Sound-of-Pixels (Zhao et al., 2018)
and MP-Net (Xu et al., 2019) for source separation. These
comparisons again demonstrate the added functionality and
improved performance of a unified framework like OneAVM .

4.3. Experimental analysis

In this section, we present the results of our ablation studies
aimed at assessing the effectiveness of the various compo-
nents of OneAVM on audio-visual source separation, localiza-
tion, and recognition. Specifically, we investigate the impact
of Correspondence & Localization (CL), Mixed Audio Sep-
aration (MAS), and Mixed Visual Alignment (MVA) on the
performance of our approach. We also analyze the impact of
the decoder depth for MAS, and the mixture ratio α in MVA,
to provide insights into the optimal OneAVM configuration.
All experiments were conducted on the VGGSound-MUSIC
dataset.

CL, MAS, and MVA objectives. We assessed the effec-
tiveness of each objective on the method’s performance.
Table 5 presents the model’s performance on the source lo-
calization, separation, and recognition tasks. As can be seen,
both source localization and recognition tasks can be signifi-
cantly enhanced by adding the Mixed Audio Separation and
Mixed Visual Alignment objectives. Specifically, the full
OneAVM outperforms a model trained with Correspondence
& Localization (CL) alone by 4.3 PIAP, 9.4 Precision, and
13.5 F1 score on the localization task (Table 5a), and by
12.5 IR-Acc, 6.0 xNN-Acc and 1.4 wNN-Acc on nearest
neighbor recognition/retrieval (Table 5c). Sound source sep-
aration can also be enhanced significantly by adding the
Correspondence & Localization, and Mixed Visual Align-
ment objectives, yielding a gain of 1.53 SDR and 1.6 SAR
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Figure 5: Impact of decoder depth in MAS on source sepa-
ration and mixture ratio in MVA on source localization.

Table 6: Localization with multiple sound sources. Quan-
titative results of Precision on VGGSound-All dataset.

Method 1 2 3+

CCoL 35.31 32.25 30.51
EZ-VSL 37.79 31.67 29.32
OneAVM (ours) 39.68 35.59 33.76

over a method trained for separation alone (Table 5b).

These results show that localization helps separation and
vice-versa, highlighting the strong interdependence of the
two tasks and underscoring the importance of jointly opti-
mizing them in our proposed audio-visual learning frame-
work. It also shows that the proposed MVA regularization
can help all tasks significantly and thus is a valuable addition
to the proposed unified framework.

Decoder depth in MAS. The depth of the decoder used
for source separation can affect separation performance. To
assess the impact of the decoder depth, we varied it from
{4, 8, 12, 16}. As shown in Figure 5, the optimal decoder
depth is 8, achieving the best separation both in terms of
SDR and SAR. Increasing the decoder depth beyond eight
hurt performance due to overfitting.

Mixture ratio in MVA. Mixed visual alignment (MVA) can
help with learning separable visual features that are aligned
with multiple sound sources. The mixture ratio α is a crit-
ical hyper-parameter of MVA and can after performance
significantly. To better understand the effect of the mixture
ratio, we show the localization performance for varying ra-
tios in Figure 5. OneAVM obtained optimal performance at a
mixture ratio of 0.5, according to all metrics.

Localization with multiple sound sources. Lastly, we
analyzed the source localization performance on samples
containing multiple sound sources. Table 6 compares three
methods, CCoL, EZ-VSL, and our OneAVM , for localization
on the VGGSound-All dataset. EZ-VSL focuses on localiza-
tion (without separation), CCoL performs joint localization

and separation, and our method further trains for mixed
visual alignment and global audiovisual correspondence (in
addition to localization and separation). As can be seen,
EZ-VSL is better than CCoL with a single object (i.e. when
no separation is needed), but its performance drops faster
as the number of objects increases. This result indicates
that adding a separation objective helps localization, espe-
cially for samples with a larger number of objects. The
proposed approach, OneAVM , not only outperforms EZ-VSL
for videos with a single sound source, but also shows a
slower (although still noticeable) decay of performance as
the number of active sound sources increases.

4.4. Limitations

Although OneAVM achieves superior results on all three
audio-visual downstream tasks (i.e. source localization, sep-
aration, and recognition), the performance gains over prior
work on source separation are less consistent than those
on localization. For example, our method achieves lower
SAR on the MUSIC dataset than other recent methods like
MP-Net. We highlight, however, both the added functional-
ity of the model (i.e., its ability to simultaneously address
three tasks, as opposed to a single task) and performance
improvements on other tasks when separation is used as a
learning objective.

5. Conclusion
In this work, we present OneAVM , a simple yet effective ap-
proach that unifies audio-visual learning for different tasks,
including localization, separation, and recognition. Specifi-
cally, we leverage correspondence and localization to align
the representations of corresponding audio and video frames.
We also use a mixed audio separation objective to capture
discriminative audio representations from mixed audio, and
introduce a mixed visual alignment objective to learn sepa-
rable visual features from mixed images that can be aligned
with individual sound sources. Through extensive exper-
iments on MUSIC, VGG-Instruments, VGG-Music, and
VGGSound-All datasets, we demonstrate the effectiveness
of all components of our OneAVM framework and achieve
favorable results in comparison to prior work on the tasks
of visual sound source localization, separation, and nearest
neighbor recognition.

Broader Impact. The proposed method unifies sound
source localization, sound separation, and recognition from
user-uploaded web videos, which might cause the model to
learn internal biases in the data. For example, the model
could fail to localize, separate, and recognize certain rare
but crucial sound sources. These issues should be care-
fully addressed when it comes to the deployment of real
scenarios.
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