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ABSTRACT

Learning a better representation with neural networks is a challenging problem,
which was tackled extensively from different prospectives in the past few years. In
this work, we focus on learning a representation that could be used for clustering
and introduce a novel loss component that substantially improves the quality of
produced clusters, is simple to apply to an arbitrary cost function, and does not
require a complicated training procedure.

1 INTRODUCTION

In the past few years, a substantial amount of work has been dedicated to learning a better repre-
sentation of the input data that can be either used in downstream tasks, such as KMeans clustering,
or to improve generalizability or perfromance of the model. In general, these works can be divided
into two categories: (1) approaches that require a complicated training procedure; (2) approaches
that introduce a new loss component that can be easily applied to an arbitrary cost function; For
example, approaches by Liao et al. (2016) and Xie et al. (2016) can be assigned to the first cate-
gory, as they propose to iteratively refine the clusters during the training. In contrast, approaches
by Cogswell et al. (2015) and Cheung et al. (2014) introduce new loss components that can be added
to a cost function while training the model with a gradient descent algorithm. Our work belongs to
the second category and focuses on the challenging problem of learning disentangled representations
while having access to labels that do not fully reflect the underlying partitioning of the data, but still
separate it into distinguishable groups.

For example, consider a case of predicting in-hospital mortality using multivariate physiological
time series. This is a binary classification task which can be solved using a Recurrent Neural Net-
work model, depicted on the Figure 1. During the regular training procedure with a sigmoid cross-
entropy loss, the model tends to learn weights that lead to a strong activation of one of the neurons
in the penultimate layer (FC1) for the instances that belong to the positive class and a strong activa-
tion of another neuron for the instances that belong to the negative class, whereas all other neurons
tend to be not active for both classes (see the Figure 2a and Figure 2c). However, we would like
to separate patients into more groups than just binary outcomes by applying a clustering algorithm
to the learned representations of the patients. Thus, we would need the model to learn disentan-
gled representations that can not only differentiate between the patients with different outcomes, but
also between the patients with the same outcome using latent characteristics of the time series and
properties for which we do not have labels.

In order to force the network to learn such disentangled representations, we propose a novel loss
component that can be applied to an arbitrary cost function. Although it can be used in any type of
model, including autoencoders, this paper focuses on a task of multivariate time series classification.

2 THE PROPOSED METHOD

Inspired by the work of Cheung et al. (2014) and Cogswell et al. (2015), we propose a loss compo-
nent that, despite its simplicity, significantly increases the quality of the clustering over the produced
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Figure 1: An RNN model for time series classification

(a) Baseline (b) Baseline + DeCov (c) Baseline + proposed loss

Figure 2: Number of samples for which the neurons on the y axis were active the most in the binary
classification task. The classes 0-4 have the label 0, and the classes 5-9 have the label 1. See
the section 3 for details.

by the model representation. Consider the model on the Figure 1. The layer FC2 has size 1 and pro-
duces a binary classification decision, and the output of layer FC1 is used to perform a KMeans
clustering. Recall from the example in the introduction that we want to force the model to produce
different representations for the samples that belong to the same class, but are different from each
other. One way to do it would be to force the rows of the weight matrix WFC1 of the FC1 layer be
different from each other, leading to different patterns of activations in the output of the FC1 layer.

Formally, it can be expressed as follows:

LW =

k∑
i=0

k∑
j=i+1

max(0,m−DKL(di||dj)) + max(0,m−DKL(dj ‖ di)), (1)

where k is the number of neurons in the target layer, m is the a hyperparameter that defines the de-
sired margin, and DKL(di||dj)) is the Kullback-Leibler divergence between probability distributions
di and dj . dl is obtained by converting the row l of the weight matrix W of the given layer into a
probability distribution with the softmax function: dl = softmax(Wl).

3 EXPERIMENTS

We performed initial experiments on the MNIST strokes sequences dataset de Jong (2016)1 to val-
idate our hypothesis. We performed our experiments with two different tasks: supervised binary
classification task and unsupervised autoencoder model.

For the binary classification task, we split the examples into two groups: classes from 0 to 4 were
assigned to the first group, and classes from 5 to 9 were assigned to the second group. During the
training, the model should correctly predict the group of the given sample without having the access
to the underlying classes. This experiment is a simplified version of the example we discussed in

1https://github.com/edwin-de-jong/mnist-digits-stroke-sequence-data

2

https://github.com/edwin-de-jong/mnist-digits-stroke-sequence-data


Workshop track - ICLR 2017

the introduction where we wanted to cluster the patients into meaningful groups, while having only
the binary mortality outcomes, rather than the more fine-grained labels. The goal of the autoencoder
model is to just reconstruct the input sequence. In both cases, we developed a GRU-based model
using TensorFlow (Abadi et al., 2016) and used the output of the penultimate or intermediate layer
to perform the KMeans clustering using the Scikit-learn package (Pedregosa et al., 2011). We report
the average Adjusted Mutual Information score (Vinh et al., 2010) across three runs in the Table 1.
We compare our loss component with DeCov (Cogswell et al., 2015) and XCov (Cheung et al.,
2014) as these losses use similar ideas, even though they do not directly target improving the quality
of clustering.

Table 1: Adjusted Mutual Information score for the MNIST strokes sequences experiments

Model Binary classification Autoencoder
9 clusters 10 clusters 11 clusters 9 clusters 10 clusters 11 clusters

Baseline 0.446 0.467 0.464 0.443 0.454 0.468
Baseline + DeCov (Cogswell et al., 2015) 0.285 0.287 0.288 0.427 0.443 0.465
Baseline + XCov (Cheung et al., 2014) 0.507 0.525 0.529 0.396 0.414 0.428
Baseline + proposed loss 0.512 0.544 0.555 0.439 0.457 0.460

4 DISCUSSION

Our initial experiments showed that the proposed loss component substantially increases the quality
of KMeans clustering in terms of Adjusted Mutual Information Score. As we can see from the Ta-
ble 1, our approach outperforms previously proposed loss components that use similar ideas and
performs the best in the binary classification settings.
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