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Abstract

Prompting and in-context learning (ICL) have become efficient learning paradigms
for large language models (LLMs). However, LLMs suffer from prompt brittleness
and various bias factors in the prompt, including but not limited to the formatting,
the choice verbalizers, and the ICL examples. To address this problem that results
in unexpected performance degradation, calibration methods have been developed
to mitigate the effects of these biases while recovering LLM performance. In this
work, we first conduct a systematic analysis of the existing calibration methods,
where we both provide a unified view and reveal the failure cases. Inspired by
these analyses, we propose Batch Calibration (BC), a simple yet intuitive method
that controls the contextual bias from the batched input, unifies various prior
approaches, and effectively addresses the aforementioned issues. BC is zero-shot,
inference-only, and incurs negligible additional costs. We validate the effectiveness
of BC with PaLM 2-(S, M, L) and CLIP models and demonstrate state-of-the-
art performance over previous calibration baselines across more than 10 natural
language understanding tasks.

1 Introduction
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Figure 1: Batch Calibration (BC) achieves the
best performance on 1-shot ICL over calibration
baselines on an average of 13 classification tasks
on PaLM 2-S and PaLM 2-L [2].

Prompting large language models (LLMs) [4, 2]
has become an efficient learning paradigm for
adapting LLMs to a new task by conditioning on
human-designed instructions. The remarkable in-
context learning (ICL) ability of LLMs also leads
to efficient few-shot learners that can generalize
from few-shot input-label pairs [3, 27]. However,
the predictions of LLMs are highly sensitive and
even biased to the choice of templates [32], ver-
balizers [17], and demonstrations [26], resulting
in barriers for pursuing efficiently adaptable and
robust LLM applications. Extensive research has
been devoted to mitigating these biases, which we
explicitly refer to the a-priori propensity of LLMs
to predict certain classes over others unfairly. Lu
et al. [29] provide an analysis of the impacts of
the order of ICL examples to LLMs and have ex-
plored the order selection mechanisms for ICL. On the other hand, Zhao et al. [69] reveal the bias of
language models toward certain answers and propose to calibrate the LLM given content-free tokens.
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More recently, Fei et al. [12] detect the domain-label bias, and Han et al. [14] treat the calibration
of LLMs as learning a robust decision boundary. Though multiple calibration solutions have been
provided, the field currently lacks a unified analysis that systematically distinguishes and explains the
unique characteristics and downsides of each approach.

In this work, we first conduct a comprehensive analysis across existing calibration methods for LLMs.
We approach the calibration problem from a distinctive point of view by interpreting the decision
boundaries for each calibration method together with the ICL decision boundary. We start observing
fatal failure cases for each method by extending them to more challenging and under-explored
evaluation tasks. We then conclude the current limitation for each method with a novel interpretation
from the decision boundary perspective, pointing to the need for a unified and widely applicable
solution for conquering diverse bias sources in the field of LLM efficient learning.

Inspired by these findings, we propose Batch Calibration (BC), a zero-shot and inference-only
calibration method for prompting and ICL. The central objective of BC is to accurately model the
bias from the prompt context (referred to as contextual bias in this paper) by marginalizing the LLM
scores in the batched input. The simplicity of the design of BC only brings negligible computation
overhead at the output of the LLM. We conducted extensive experiments on more than 10 natural
language understanding tasks. BC stands as the most widely applicable calibration method while
achieving state-of-the-art results. We provide further analysis with BC on robustness with templates,
ICL choices and orders, and verbalizers, validating that BC can effectively alleviate prompt brittleness
and make prompt engineering easier. To summarize, we provide the following contributions:

• We provide a unified and systematic analysis of existing calibration methods through their decision
boundaries, investigate the common use of content-free tokens as an estimator of contextual bias,
and identify their deficiency with individual case studies.

• We propose Batch Calibration (BC), a zero-shot and inference-only calibration method for ICL,
that mitigates the bias from the batch.

• We show that while conceptually simple, BC attains state-of-the-art performance in both zero-shot
and few-shot learning setups over widely selected tasks with PaLM-2 and CLIP models.

2 A Systematic Analysis of Calibration

Bias in Prompting and In-Context Learning (ICL) Prompting is an efficient learning paradigm
that allows LLMs to perform zero-shot inference by conditioning on a human-designed instruction.
Formally, denoting a test query-target pair {xi, yi} and instruction as the context C for a classifi-
cation task, LLMs make prediction by computing: argmaxy∈Y p(y|xi, C), where p ∈ RJ are the
logits, and Y denotes the verbalizers that define the label set for J classes. ICL further enables
LLM to learn from k input-label pairs (i.e., few-shot setup), s(i) = Template(x(i), y(i))∀i ∈
{1, ..., k}, by concatenating few-shot demonstrations in a pre-defined template as the context,
C = Concat(s(i), ..., s(k)). Though ICL has demonstrated strong performance with easy imple-
mentations, the prediction of LLMs is shown to be biased towards certain answers due to different
elements of p(y|xi, C) [29]. In the ICL context C, majority label bias and recency label bias [69]
can bias the prediction of LLMs toward the most frequent label and the label towards the end of
the demonstration, respectively. Among verbalizer tokens yj ∈ Y , LLMs are shown to be inher-
ently biased towards predicting the label-tokens that appear more frequently from pretraining term
statistics [48, 44]. These bias factors significantly degrade the performance of LLMs for robust ICL
applications.

Overview of ICL Calibration Methods. Contextual Calibration [69] (CC): Motivated by a
common calibration technique that applies affine transformation on the model outputs [41, 13], Zhao
et al. [69] propose to calibrate the LLM prediction by first measuring the entire test-time distribution
p̂ by a content-free input. Using “N/A” as a content-free example, the model score distribution is
generated by p̂cf := p(y|[N/A], C). CC then generates the calibrated output by transforming the
uncalibrated scores p(y|x,C) with W ∈ RJ×J via Wp(y|x,C), where W = diag(p̂cf)

−1 offsets
the uncalibrated scores with the model score (a contextual prior) triggered by the content-free sample.

Domain-Context Calibration [12] (DC): Instead of using a single content-free token, Fei et al.
[12] propose DC that estimates a contextual prior p̂(y|C) by using a random in-domain sequence.

2



Table 1: Calibration methods with their mathematical formulation and their equivalent decision
boundary derivations in a two-dimensional problem. The cost for the number of API calls is denoted
as #Forward, where 1 counts for the ICL forward cost. The potential failure case for each calibration
method in practical scenarios is marked as ✗.

Method Token #Forward
Comp.
Cost

Cali.
Form

Learning
Term

Decision
Boundary h(p)

Multi-
Sentence

Multi-
Class

CC N/A 1 + 1 Inverse Wp+ b W = diag(p̂)−1, b = 0 p0 = αp1 ✗ ✓✓✓

DC Random 20 + 1 Add Wp+ b W = I, b = − 1
T

∑
t p(y|textj , C) p0 = p1 + α ✗ ✓✓✓

PC - 1 EM-GMM -
∑

j αjPG(p|µj,Σj) PG(p|µ0,Σ0) = PG(p|µ1,Σ1) ✓✓✓ ✗

BC (Ours) - 1 Add Wp+ b W = I, b = −Ex

[
p(y|x,C)

]
p0 = p1 + α ✓✓✓ ✓✓✓

It randomly sampled L tokens at an average sentence length from an unlabeled text set. Then,
it estimates the content-free prediction prior by averaging the model score T times, such that:
p̂random = 1

T

∑T
t=1 p(y|[RANDOM TEXT]t, C). The final test-time prediction is then calibrated by

dividing the estimated prior prediction, or equivalently in logits space, p(y|xi, C)− p̂random.

Prototypical Calibration [14] (PC): PC learns a decision boundary with Gaussian mixture models
(GMMs). It estimates J prototypical clusters for the model output p for J classes: PGMM(p) =∑J−1

j=0 αjPG(p|µj,Σj), where PG denotes a multi-variate Gaussian distribution, and the parame-
ters: mixing coefficient α, mean vector µ, covariance matrix Σ are estimated by the Expectation-
Maximization [34]. Followed by an automatic label assignment strategy, the predicted label is then
computed by argmaxj PG(pj |µ∗,Σ∗) in the inference time. This EM-GMM process can require up
to T repetitions to stabilize its estimation of clusters where T is a hyperparameter of the algorithm.

Summarizing the calibration methods with distinctive design principles discussed so far, in Table 1,
we present a unified view of the characteristics of each method. Though each approach demonstrates
a clear motivation for calibrating ICL, it is still unclear which method surpasses others in what
scenarios. We proceed with an in-depth analysis of existing methods in representative tasks. In
pursuit of practical guidelines for ICL calibration, we set out two important research questions
behind their design principles: 1) What constitutes a better decision boundary for calibrations? 2) Is
content-free prior a good estimator of contextual bias?

What Constitutes a Better Decision Boundary for Calibrations? To address this research
question, we first derive the decision boundary for each category of calibration methods. We recall
that the classification by a LLM is based on argmaxj∈{0,...,J−1} pj where pj denotes the j-th element
of output vector p. Consider binary classification problem for simplicity: the decision boundary
h(p) for ICL is given by the line p0 − p1 = 0: the model predicts class 0, y0, if p0 − p1 ≥ 0, and
class 1 otherwise. Consequently, CC and DC that apply an affine transformation at p is equivalent
to a linear transformation to the decision boundary. In CC with W = diag(p̂)−1, b = 0, the
decision boundary can then be derived as: p0 × 1

p̂0
= p1 × 1

p̂1
→ p0 − p1 × p̂0

p̂1
= 0, which is

a rotation of the ICL’s linear decision boundary around the origin. Similarly, DC with W = I,
b = − 1

T

∑
t p(y|[RANDOM TEXT]t, C) = −p̂ is equivalent to a shift of ICL’s linear decision

boundary away from the origin, such that p0−p1 = (p̂0− p̂1). It is worth noting that both calibration
choices lead to a linear decision boundary, indicating that the calibration problem can be framed
as an unsupervised decision boundary learning problem. Based on this intuition, we further derive
the decision boundary for PC as PG(p|µ0,Σ0) − PG(p|µ1,Σ1) = 0, which delivers a non-linear
boundary between the estimated Gaussian mixtures. We conduct a preliminary experiment to visualize
the derived decision bounds from existing calibration methods alongside the ICL baseline. In Fig. 2,
we observe that uncalibrated ICL is biased towards predicting negative in the SST-2 task. This
biased prediction is then mitigated by each calibration method, where we observe a rotated decision
boundary from CC, a shifted boundary from DC, and a non-linear boundary between the GMMs by
PC. However, in the QNLI task (bottom row of Fig. 2), we observe failure cases in the calibration
baselines, in particular, PC (third figure from the left), where it fails to capture the correct distribution
for each class. From Fig. 2 and the additional results in Fig. 9 in Appendix §E, we find that while
theoretically more flexible, the non-linear decision boundaries learned by PC tend to be susceptible
to overfitting and may suffer from instability in EM-GMM. We hypothesize that the PC boundary
is even more vulnerable to instability for more challenging multi-class tasks due to the increased
difficulties of learning clusters and assigning classes correctly. Conversely, we find that linear decision
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Figure 2: Visualization of the decision boundaries of uncalibrated ICL, and after applying existing
calibration methods and the proposed BC (to be introduced in Sec 3) in representative binary
classification tasks of SST-2 (top row) [51] and QNLI (bottom row) [56] on 1-shot PaLM 2-S.
We show success and failure cases for each baseline method (CC, DC, and PC), whereas BC is
consistently effective. Refer to Appendix §E for more examples.

boundaries, as evidenced by CC and DC, can be more robust and generalizable across tasks. We
validate this hypothesis by proposing BC with extensive experiments in Sec. 4.

Is Content-free Input a Good Estimator of the Contextual Prior? CC and DC both use a linear
decision boundary but differ from each other by leveraging different formats of a content-free input
to estimate the contextual prior. However, as we observed in Fig. 2, they both exhibit failure cases
in QNLI, a question-answering NLI task. We hypothesize that contrary to the proposals made by
CC and DC, relying on content-free tokens for calibration is not always optimal and may even
introduce additional bias, depending on the task type. For example, in a textual entailment task
involving question-sentence pairs, we empirically observe that an ICL template employed with a
content-free token ‘N/A’ such as ‘Question: N/A, Sentence: N/A, Answer:’ will result in
a biased prediction towards ‘entailment’, because although ‘N/A’ is intended to be content-free,
the LLM may nevertheless construe ‘N/A’ in the sentence to be substantively entailed to the ‘N/A’
in the question due to surface text equivalency. This phenomenon holds true for other multi-text
classification tasks, such as paraphrasing tasks. Consequently, the prior estimated via a single
content-free token can lead to further bias. DC introduces multiple randomly sampled tokens to
form a content-free input, e.g. ‘Question: that What old rubisco’s the did Which?’.
We suspect a possible reason is that random sequences, when used in conjunction with in-context
demonstrations, can be susceptible to spurious relations among them that often lead to unfair priors
further skewing the predictions, which is also reflected in Fig. 2, where CC and DC fail to mitigate
the contextual bias in the QNLI task. In sum, the empirical observation shows that content-free inputs
can be inappropriate prior estimators, especially for multi-sentence classification tasks.

3 Batch Calibration

Batch Calibration (BC). Following the discussion in Sec. 2, we argue that the most critical
component for calibration is to accurately estimate the contextual bias term p(y|C). Both CC and
DC, which use content-free and in-domain random tokens as trigger signals, respectively, have failure
cases in multi-sentence classification when the estimation of the contextual bias is inaccurate. On
the other hand, PC is vulnerable to overfitting and may incorrectly model the mixtures, especially
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LLM

  Review: Cold Movie.
  Sentiment: Negative
  Review: The greatest musicians.
  Sentiment: Positive
  Review: {test sample}
  Sentiment: {label}

Demonstration  Biased Prediction Calibrated Prediction

a photo of a {label}

BC

VLM BC

Figure 3: Illustration of Batch Calibration (BC). Batches of demonstrations with in-context examples
and test samples are passed into the LLM. Due to implicit bias sources in the context, the score
distribution from the LLM becomes highly biased. BC is a modular and adaptable layer option
appended to the output of the LLM/VLM. BC generates calibrated scores according to Eq. 1 & 2.
Highlighted symbols indicate the distribution means (visualized for illustration only).

in high-dimensional space. We, therefore, opt for a linear decision boundary for its robustness,
and instead of relying on content-free tokens, we propose to estimate the contextual bias for each
class p(y = yj |C) from a batch with M samples, {x1, ..., xM}, in a content-based manner by
marginalizing the output score over all samples x ∼ P (x) within the batch:

p(y = yj |C) = E
x∼P (x)

[
p(y = yj |x,C)

]
≈ 1

M

M∑
i=1

p(y = yj |x(i), C)∀ yj ∈ Y. (1)

We then obtain the calibrated probability by dividing the output probability over the contextual prior,
which is equivalently by shifting the log-probability by the estimated mean of each class:

ŷi = argmax
y∈Y

pBC(y|xi, C) = argmax
y∈Y

[
p(y|xi, C)− p̂(y|C)

]
. (2)

It is noteworthy that this BC procedure is zero-shot and only involves unlabeled test samples. BC
incurs negligible computation costs. We may either compute the correction term p̂(y|C) once all test
samples are seen or, alternatively, in an on-the-fly manner that dynamically processes the outputs. To
do so, we may use a running estimate of the contextual bias for BC. At the n+ 1 mini-batch, the bias
term is given by: pn+1

r (y|C) = n
n+1p

n
r (y|C) + 1

n+1 p̂
n+1(y|C), thereby allowing BC’s calibration

term to be estimated from a small number of mini-batches that is subsequently stabilized when more
mini-batches arrive.

4 Experiments

Experiments on Natural Language Tasks. We present the results across a diverse set of NLP tasks
in Table 2. Notably, BC consistently outperforms ICL, yielding significant performance enhancement
of 8% and 6% on PaLM 2-S and PaLM 2-L, respectively. This shows that the BC implementation
successfully mitigates the contextual bias from the in-context examples and unleashes the full potential
of LLM in efficient learning and quick adaptation to new tasks. In addition, BC improves over the
state-of-the-art PC baseline by 6% on PaLM 2-S, and surpasses the competitive CC baseline by
another 3% on average on PaLM 2-L. Specifically, BC is a generalizable and cheaper technique across
all evaluated tasks, delivering stable performance improvement, whereas previous baselines exhibit
varying degrees of instability across tasks: DC baseline is the least competitive; CC displays more
failure cases in multi-sentence classification tasks, particularly for paraphrasing and NLI tasks, as we
hypothesized in Sec 2; PC, while occasionally competitive, exhibits large performance fluctuations,
as evidenced by its large standard deviation, resulting in frequent substantial performance degradation.
We attach vision-language model results in Appendix §E.
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Table 2: Accuracy (%) on natural language classification tasks with 1-shot PaLM 2-S and PaLM
2-L Models [2]. We report the mean and standard deviation for all results for 5 different in-context
examples. We reproduce all baselines, and the implementation details are described in Appendix §D.
The best and second-best results are marked in bold fonts and ranked by color.

Model PaLM 2-S PaLM 2-L
Method ICL CC DC PC BC ICL CC DC PC BC
SST-2 93.620.62 95.500.25 94.290.32 95.710.10 95.440.15 93.165.18 95.820.62 94.912.01 95.640.47 95.780.55

MNLI 68.527.98 60.0711.26 63.451.99 59.2913.79 75.122.76 72.773.65 79.453.46 71.534.86 78.687.10 81.342.29

QNLI 81.201.90 56.863.29 65.623.53 69.8217.73 82.451.82 64.683.53 69.714.89 68.973.27 61.0115.26 87.901.24

MRPC 66.4210.15 70.440.94 68.580.21 71.861.29 70.052.40 73.191.21 72.403.53 68.680.40 75.392.60 70.392.56

QQP 63.910.66 65.555.34 53.929.35 65.283.42 71.481.46 82.570.75 81.172.03 78.321.82 81.420.24 79.561.40

BoolQ 83.993.90 87.141.60 87.641.10 88.700.15 87.830.10 90.020.60 90.150.54 87.771.17 64.4022.37 90.100.22

CB 45.7110.61 29.647.85 65.713.20 81.079.42 78.213.19 92.862.19 85.727.78 92.862.82 89.297.25 93.211.49

COPA 96.402.30 95.802.05 96.402.88 96.202.05 96.402.07 98.601.14 97.201.10 97.400.89 99.000.71 97.001.00

RTE 80.941.29 79.780.92 76.821.72 80.431.07 83.471.10 75.092.11 80.002.48 79.211.95 86.642.62 85.422.48

WiC 50.690.59 50.560.50 49.970.13 51.383.56 61.102.07 51.351.90 55.586.38 54.676.02 57.8711.08 64.838.59

ANLI-R1 46.244.21 42.543.20 40.263.66 40.286.46 59.820.51 63.062.63 71.923.71 73.563.88 72.308.05 75.003.03

ANLI-R2 40.440.90 38.360.82 38.443.46 41.884.50 50.160.82 58.401.19 65.363.75 65.481.91 64.982.94 67.302.34

ANLI-R3 42.530.99 38.781.04 43.675.25 37.500.81 55.751.66 61.353.14 67.320.98 66.230.72 63.036.03 66.380.74

Avg. 66.20 62.39 64.98 67.65 74.41 75.16 77.83 76.89 76.13 81.09
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Figure 4: BC makes prompt engineering easier:
Performance of BC with respect to ICL choices,
ICL orders, prompt templates, and verbalizers.
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Figure 5: BC is data-efficient and insensitive to
the batch size: Performance of BC across differ-
ent sizes of an initial unlabeled set without using
a running estimate of the contextual bias. We
compare BC with the state-of-the-art PC baseline
that also leverages unlabeled estimate set, and
experiments are conducted on PaLM 2-S.

Robustness and Ablation Studies. We analyze the robustness of BC with respect to common
prompt engineering design choices that were previously shown to significantly affect LLM perfor-
mance [29, 26]: choices and orders of in-context examples, the prompt template for ICL, and the
verbalizers, as shown in Fig. 4 evaluated on RTE. Setup details are listed in Appendix §F. First,
we find that BC is more robust to ICL choices and can mostly achieve the same performance with
different ICL examples. Additionally, given a single set of ICL shots, altering the order between
each ICL example has minimal impact on the BC performance. However, it is worth noting that an
optimal order selection can still lead to promising ICL performance. Furthermore, we analyze the
robustness of BC under 10 designs of prompt templates, where BC shows consistent improvement
over the ICL baseline. Therefore, though BC makes further improvements, a well-designed template
can further enhance the performance of BC. Lastly, we examine the robustness of BC to variations in
verbalizer designs. Remarkably, even when employing unconventional choices such as emoji pairs as
the verbalizers leading to dramatic oscillations of ICL performance, BC largely recovers performance.
This observation shows BC robustifies LLM predictions under common prompt design choices.

Batch Size. We study the impact of batch size on the performance of BC as shown in Fig. 5.
In contrast to PC, which also leverages an unlabeled estimate set, BC is remarkably more sample

6



efficient, achieving a strong performance with only around 10 unlabeled samples, whereas PC requires
more than 500 unlabeled samples before its performance stabilizes.

5 Related Work

Understanding and Improving ICL. Lu et al. [29] show the sensitivity of LLMs to ICL examples.
This phenomenon is further explained through the effect from pretraining term frequencies [44] and
corpora [48]. Meanwhile, Xie et al. [62] explains the ICL process through implicit Bayesian inference,
and Wei et al. [60] show the emergent ability of LLMs by learning new input-label mappings. Various
methods have been proposed to optimally select better in-context templates [53, 38, 65] and examples
[46, 26, 55]. Specifically, Wan et al. [54] introduce a selection criteria based on the consistency,
diversity, and repetition of in-context examples. Recently, noisy channel prompting [31] and flipped
learning [64] have been proposed for robust ICL. Learning to assign labels by k-nearest neighbors
[63] and training decoder networks [7] are also effective alternatives for few-shot ICL.

Bias in ICL and Calibrating LLMs. Zhao et al. [69] reveal the instability of LLMs in few-shot
learning and demonstrate three bias sources: majority label bias, recency bias, and common token
bias, as the bias factors behind the instability. They propose contextual calibration (CC) to mitigate
these biases by grounding the prediction based on a content-free token as sample inputs. Si et al. [50]
characterize the feature bias of LLMs, and Wang et al. [59] introduce the positional bias in candidate
choices. Fei et al. [12] further observe the existence of domain-label bias and propose domain-context
calibration (DC) that uses random in-domain tokens for estimating the bias. Meanwhile, Han et al.
[14] analyze the impact of decision boundary for text classification tasks and propose to estimate
prototypical clusters by Gaussian mixture models, thereby learning a robust decision boundary.
Concurrently with our work, Pezeshkpour & Hruschka [39] spot the positional bias in multiple-
choice questions, and Zheng et al. [70] propose to debias the positional bias in multiple choices with
permutation-based prior estimation. BC differentiates from these methods as a generalizable solution
across challenging classification tasks and modalities.

6 Conclusion

We first revisit previous calibration methods while addressing two critical research questions from an
interpretation of decision boundaries, revealing their failure cases and deficiencies. We then propose
Batch Calibration, a zero-shot and inference-only calibration technique. While methodologically
simple and easy to implement with negligible computation cost, we show that BC scales from a
language-only setup to the vision-language context, achieving state-of-the-art performance in both
modalities. BC significantly improves the robustness of LLMs with respect to prompt designs, and
we expect easy prompt engineering with BC while exploring the potential of BC to generative tasks
in the future.
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A Additional Related Work

Prompt Learning. Prompt learning is an efficient learning pipeline for LLM as an alternative
to traditional full-model fine-tuning [27]. Soft prompting [24, 23, 28] enables fast adaptation of
LLM by appending learnable continuous prompts in the embedding space while freezing the rest
of weights. The recent development of parameter-efficient fine-tuning methods [18, 19, 71], which
learn additional modules, may also be interpreted as a form of soft prompting [15]. However, these
soft prompt learning methods inevitably require gradients and internal model access. On the other
hand, hard prompting [49] is an appealing learning category for learning discrete prompts. Recent
efforts have been devoted to black-box prompt search without accessing model gradients, and more
interpretable prompts can be found by reinforcement learning [9, 68], gradient estimation [10], and
other derivative-free search algorithms [42, 72].

Test-Time Adaptation. Test-time adaptation aims to mitigate the domain covariate shift using
the test-time statistics. Wang et al. [58] propose TENT that minimizes the entropy by updating
the affine parameters in the BN layer. Nado et al. [35] and Schneider et al. [47] introduce using
test-time batch statistics for the standardization in BN and mixing it with source statistics to conquer
covariate shift, respectively. Similarly, mixing the statistics with predefined hyperparameters [66, 22],
interpolating source and target-domain statistics [25], or using a running average estimate [33, 20]
have also been proposed to adapt the BN layer. Zou et al. [73] introduce strength parameters in
adapting the standardization statistics in semantic segmentation tasks. We differentiate from test-time
BN approaches by mitigating the bias in the novel context of LLM, and there is no source statistic
similar to a BN layer in computer vision backbones.

B Experimental Setup

Evaluation Data. For natural language tasks, in contrast to previous works that only report on
relatively simple single-sentence classification tasks [69, 12, 14], we conduct experiments on 13
more diverse and challenging classification tasks, including the standard GLUE [56] and SuperGLUE
[57] datasets. Specifically, we consider commonsense reasoning: BoolQ [6], COPA [45]; word
disambiguation: WiC [40]; sentiment classification: SST-2 [51]; paraphrasing: QQP, MRPC [11];
natural language inference and entailment: ANLI-R{1,2,3} [36], CB [8], RTE, QNLI (QA/NLI),
MNLI [61]. For image classification tasks, we include SVHN [67], EuroSAT [16], and CLEVR [21].

Models. We conduct experiments mainly on the state-of-the-art PaLM 2 [2] for its variants with
different sizes, PaLM 2-S, PaLM 2-M, and PaLM 2-L. PaLM 2 is trained using a mixture of objectives,
and readers are referred to [2] for more details. For VLMs, we report the results on CLIP ViT-B/16
[43].
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C Dataset Statistics

Table 3: Details of the dataset used for evaluation in the Table 2. |Test| denotes the number of test
samples, where we consistently use the validation split as the test split because labels are not publicly
available for some datasets.

Dataset Objective #sentences #classes |Test|
SST-2 Sentence Classification 1 2 872
MNLI NLI 2 3 9815
QNLI Question-Answering NLI 2 2 5463
MRPC Paraphrasing 2 2 408
QQP Paraphrasing 2 2 40430
BoolQ Commonsense Reasoning 2 2 3270
CB NLI 2 3 56
COPA Commonsense Reasoning 3 2 100
RTE NLI 2 2 277
WiC Context Comprehension 3 2 638
ANLI-R1 NLI 2 3 1000
ANLI-R2 NLI 2 3 1000
ANLI-R3 NLI 2 3 1200

D Implementation Details

Contextual Calibration [69] (CC). We follow the original implementation of CC and take the
mean of the log-probability over three content-free tokens as the test sample in the predefined
template: ‘N/A’, ‘’, ‘[MASK]’. It incurs 3 additional API costs from LLMs.

Domain-Context Calibration [12] (DC). We reproduce the DC baseline by using the same test
set as the unlabeled text set to construct its bag-of-words. We then randomly sample tokens for an
average length to form the content-free and in-domain input from the bag-of-words. This process
is then repeated randomly for 20 times, and we take the mean of the log-probability following the
original implementation. It incurs 20 additional API costs from LLMs.

Prototypical Calibration [14] (PC). For a fair comparison, we use the same test set as the
unlabeled estimate set for PC. We follow the same hyper-parameters reported by PC with 100
maximum iterations for EM and 100 times random initialization for the whole learning process to
stabilize its estimation. It is noteworthy that this number of repetition is costly and relatively slow,
especially when the |Test| is large.

Batch Calibration (BC). In all reported experiments, we compute the correction log-probability
term p̂(y|C) once after all test samples are seen. In the n-shot ICL experiments reported in Table
2 and Fig. 8, the k-shot ICL is concatenating k random training sample per class. In the BCL
experiment that uses labeled samples, we use J × 128 randomly selected training samples as the
labeled data. In the robustness study, we use 1 randomly sampled example as the context to study the
performance of BC with respect to the ICL choices. We then conduct the ICL order experiment by
re-ordering 4 randomly sampled ICL examples. The rest experiments are conducted on the standard
1-shot ICL setup.

14



E Additional Experiments
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Figure 6: BC benefits from labeled data: The
performance of an adaptable batch calibration
layer (BCL) compared to the zero-shot BC with
a changing strength. The strength γ at 0 and 1
represent the uncalibrated ICL and BC, respec-
tively. We highlight the optimal strength learned
from a labeled set by a red vertical line and the
best test strength by a green line.

Adjustable Batch Calibration Layer (BCL).
While BC is designed to be zero-shot and
inference-only, it is also common that some la-
beled data are available. In this section, we de-
scribe a simple, adapted variant of BC that may
further refine the calibration and mitigate any es-
timation errors from the unlabeled data, which we
term BCL. Specifically, instead of deducting the
bias term p̂ from the test data only, we introduce a
single additional hyperparameter strength γ ∈ R:

pBCL(y|xi, C) = p(y|xi, C)− γp̂(y|C), (3)

where γ controls the strength of BC. To select the
appropriate γ, we simply perform a grid search by
uniformly sampling T different γ values in [a, b]
(we set [a, b] := [−5, 5], but any reasonable range
may be used). The strength γ is then learned by
γ∗ = argmaxγ∈[a,b] R(pBC, γ), where R(·, ·) is
the evaluation function (e.g., accuracy) on the set
of labeled data, allowing the amount of calibration
to be adjusted from evaluation metrics directly.

We give concrete examples in Fig. 6, which illus-
trates the effect of BCL where we plot the accuracy
in QQP and CB tasks over a range of γ. We observe that γ = 1, which corresponds to BC without
adjustment (purple line), leads to a strong but not optimal performance. By using the γ learned from
the labeled data (a 128-shot randomly sampled set in this case), BCL estimates the contextual bias
more precisely by leveraging the labeled data and achieves a performance that is very close to the
optimal. We refer readers to Table 5 for more results.
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Figure 7: BC improves zero-shot (ZS) image clas-
sification: Accuracy (%) on image classification
tasks with the zero-shot CLIP ViT-16/B. The BC
implementation is zero-shot, and we apply BC
together with the CLIP to demonstrate the effec-
tiveness of BC in vision-language models. Refer
to additional tasks in Appendix §E.

Calibrating Vision-Language Models. Re-
cently, vision-language models (VLM) [43],
which simultaneously encode visual and textual
information, have demonstrated strong zero-shot
generalization capability by rewriting class labels.
However, the sources of bias as LLMs have also
been observed in prompting VLMs [1] but have
not been adequately addressed. In this work, we
propose to apply BC to Zero-Shot (ZS) CLIP [43]
and mitigate the biases in its zero-shot classifica-
tions. We follow the same notation from Sec. 2,
where the test image is now x, and the prompt
template becomes the context, C. Similarly, we
append the BC layer at the output of the ZS CLIP
and calibrate for each class following Eq. 1 & 2.

To handle the bias inherent in the prompt template
designs in CLIP, we select three tasks in which the
previous visual-prompting method shows significant improvement [37]. As shown in Fig. 7, BC
significantly improves the zero-shot baseline by 12% on average. This observation further highlights
the presence of contextual bias even within vision-language models, and BC can successfully restore
the performance of VLM in image classification tasks, suggesting that BC may serve as a versatile
and common technique for mitigating contextual biases across multiple modalities.
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Figure 8: The ICL performance on various calibration techniques over the number of ICL shots on
PaLM 2-S. Each shot indicates 1 example per class in the demonstration. Lines and shades denote
the mean and standard deviation over 5 random seeds, respectively.

Table 4: Accuracy (%) on natural language classification tasks with 0-shot PaLM 2-S and 1-shot
PaLM 2-M models in a single seed.

Model PaLM 2-S
0-shot

PaLM 2-M
1-shot

Method ICL CC DC PC BC ICL CC DC PC BC
SST-2 94.61 94.50 94.61 87.84 95.18 94.95 95.87 94.95 96.22 96.10
MNLI 45.87 52.54 42.50 38.04 53.67 45.50 54.43 56.26 43.81 60.02
QNLI 49.28 48.97 49.44 50.28 49.55 78.88 75.56 62.95 77.39 78.91
MRPC 69.12 61.76 69.85 69.85 64.95 57.11 73.53 68.87 69.85 65.93
QQP 60.23 51.16 49.12 48.98 56.20 66.18 79.67 74.32 70.27 75.13
BoolQ 86.51 86.97 76.88 55.41 84.04 87.37 88.53 87.28 88.78 87.31
CB 85.71 58.93 55.36 46.43 67.86 71.43 69.64 67.86 50.00 80.36
COPA 88.00 66.00 90.00 52.00 88.00 97.00 96.00 96.00 97.00 96.00
RTE 62.45 67.15 58.12 68.23 71.84 77.62 79.06 68.23 77.98 80.51
WiC 58.31 51.88 52.82 49.22 58.30 61.13 64.11 52.04 65.52 68.03
ANLI-R1 39.80 44.70 43.00 37.00 50.00 52.40 52.40 52.70 35.70 54.00
ANLI-R2 36.80 41.50 40.70 40.20 45.10 46.00 50.70 47.80 35.80 50.00
ANLI-R3 42.67 46.42 43.08 35.50 48.50 43.50 45.67 49.33 32.42 50.50
Avg. 63.03 59.42 58.88 52.23 64.09 67.62 71.17 67.58 64.67 72.52

Table 5: Accuracy (%) on natural language classification tasks with the zero-shot BC and the BCL.
The experiments are evaluated with the same in-context example on 1-shot PaLM 2-S.

Method SST-2 MNLI QNLI MRPC QQP BoolQ CB COPA RTE WiC ANLIR1 ANLIR2 ANLIR3 Avg.
BC 95.4 75.0 83.5 68.6 70.3 87.9 75.0 98.0 84.1 63.3 59.8 51.1 53.3 74.3
BCL 96.3 75.0 83.5 74.3 72.3 88.8 83.9 99.0 82.7 63.2 58.0 49.7 52.2 75.3

Table 6: Accuracy (%) on image classification tasks with the zero-shot CLIP ViT-16/B. We addition-
ally report on UCF101 [52], FGVC Aircraft [30], and DTD [5].

Method SVHN EuroSAT UCF CLEVR Aircraft DTD Avg.
ZS 18.0 47.8 66.7 14.7 24.8 44.4 36.7
ZS+BC 35.0 54.7 66.0 29.2 22.3 41.7 41.5
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Figure 9: Visualization of the decision boundaries of uncalibrated ICL, and after applying existing
calibration methods and the proposed BC. We list all binary classification tasks from the evaluation
set.
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F Prompt Templates

Table 7: Prompt templates for all k-shot ICL experiments. We follow the template styles from Han
et al. [14] and Brown et al. [3].

Dataset Template Label Set

SST-2 Review: {sentence}
Sentiment: {label}

negative /
positive

MNLI
CB
ANLI

Premise: {premise}
Hypothesis: {hypothesis}
Answer: {label}

yes / maybe / no

QNLI Question: {question}
Sentence: {sentence}
Label: {label}

yes / no

MRPC Sentence 1: {sentence1}
Sentence 2: {sentence2}
Equivalence: {label}

no / yes

QQP Question 1: {question1}
Question 2: {question2}
Duplicate: {label}

no / yes

BoolQ {passage}
Question: {question}
Answer: {label}

no / yes

COPA Premise: {premise}
Choice1: {choice1}
Choice2: {choice2}
Answer: {label}

1 / 2

RTE Premise: {sentence1}
Hypothesis: {sentence2}
Answer: {label}

yes / no

WiC Sentence1: {sentence1}
Sentence2: {sentence2}
Word: {word}
Answer: {label}

false / true
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Table 8: Prompt templates for the robustness experiment conducted on RTE in Fig. 4.
ID Template Label Set
1 Premise: {sentence1}

Hypothesis: {sentence2}
Answer: {label}

yes / no

2 {sentence1}
Hypothesis: {sentence2}
Answer: {label}

3 {sentence1}
Question: {sentence2}
Answer: {label}

4 {sentence1}
Question: {sentence2}
{label}

5 {sentence1}
Question: {sentence2}
yes or no? Answer: {label}

6 Sentence 1: {sentence1}
Sentence 2: {sentence2}
Answer: {label}

7 Premise: {sentence1}
Hypothesis: {sentence2}
Label: {label}

8 Sentence 1: {sentence1}
Sentence 2: {sentence2}
Label: {label}

9 Determine if the sentence 2 is true based on the Sentence 1 below
Sentence 1: {sentence1}
Sentence 2: {sentence2}
Answer: {label}

10 Determine if the sentence 2 is true or false based on the Sentence 1 below
Sentence 1: {sentence1}
Sentence 2: {sentence2}
Answer: {label}

Table 9: Verbalizer choices for the robustness experiment conducted on RTE in Fig. 4, where we
include emoji pairs for ID 8, 9, 10.

ID Label Set Template
1 yes / no

Premise: {sentence1}
Hypothesis: {sentence2}
Answer: {label}

2 true / false
3 correct / incorrect
4 positive / negative
5 good / bad
6 great / terrible
7 it was true / it was false
8 :thumbs_up / :thumbs_down
9 :man_gesturing_ok / :man_gesturing_no
10 :check_mark / :cross_mark
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Table 10: Prompt templates for the 0-shot experiments.
Dataset Template Label Set

SST-2 Review: {sentence}
Sentiment: {label}

negative /
positive

MNLI
CB
ANLI

{premise}
Question: {hypothesis} yes, no, or maybe?
Answer: {label}

yes / maybe / no

QNLI {question}
Question: {sentence} yes or no?
Answer: {label}

yes / no

MRPC Sentence 1: {sentence1}
Sentence 2: {sentence2}
Equivalence: {label}

no / yes

QQP Question 1: {question1}
Question 2: {question2}
Duplicate: {label}

no / yes

BoolQ {passage}
Question: {question}
Answer: {label}

no / yes

COPA Premise: {premise}
Choice1: {choice1}
Choice2: {choice2}
Answer: {label}

1 / 2

RTE {sentence1}
Question: {sentence2} yes or no?
Answer: {label}

yes / no

WiC {sentence1}
{sentence2}
Question: Is the word ’{word}’ used in the same way in the two
sentences above?
Answer: {label}

no / yes
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