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ABSTRACT

Variational Autoencoder plays an important role in disentangled representation
learning. However, it is found facing posterior collapse problem and learning
multiple variants in one factor. What would be learned by variational autoen-
coder(VAE) and what influence the disentanglement of VAE? This paper tries to
preliminarily address VAE’s intrinsic dimension, real factor, disentanglement and
indicator issues theoretically in the idealistic situation and implementation issue
practically through noise modeling perspective in the realistic case. On intrinsic
dimension issue, due to information conservation, the idealistic VAE learns and
only learns intrinsic factor dimension. Besides, suggested by mutual information
separation property, the constraint induced by Gaussian prior to the VAE objec-
tive encourages the information sparsity in dimension. On disentanglement issue,
subsequently, inspired by information conservation theorem the clarification on
disentanglement in this paper is made. On real factor issue, due to factor equiva-
lence, the idealistic VAE possibly learns any factor set in the equivalence class. On
indicator issue, the behavior of current disentanglement metric is discussed, and
several performance indicators regarding the disentanglement and generating in-
fluence are subsequently raised to evaluate the performance of VAE model and to
supervise the used factors. On implementation issue, the experiments under noise
modeling and constraints empirically testify the theoretical analysis and also show
their own characteristic in pursuing disentanglement.

1 INTRODUCTION

Variational AutoEncoder(VAE)s (Kingma & Welling (2013), Rezende et al. (2014)) have shown
their powerful human-like abilities: modelling causal relationship, unsupervisedly extracting disen-
tangled factors/representation (Bengio et al. (2013)) and generating signals with abundant diversities
in a “latent-factor-controllable” way. Those capabilities enable the knowledge transferring through
shared causes/factors among different tasks/experiences, emphasized as the important human advan-
tages against the current machine by Lake et al. (2016) and compling with the ideal mental imagery
mechanism in memory and thinking. Benefitted from those capabilities, VAEs have been widely
applied to various applications, including disentangled representations learning of images and time
series (Higgins et al. (2016), Kulkarni et al. (2015), Mathieu et al. (2016), (Fabius & van Amersfoort
(2014)), few-shot and transfer learning (Rezende et al. (2016), Higgins et al. (2017b), Higgins et al.
(2017a)), causal relationships modeling (Louizos et al. (2017)), pixel trajectory predicting (Walker
et al. (2016)), joint multi-modal inference learning (Suzuki et al. (2016)), increasing diversity in
imitation learning (Wang et al. (2017)), generation with memory (Li et al. (2016)) and etc.

However, the lack of public theoretical study regarding the generating and inference procedure in-
duced by VAEs is tripping the research process:

• Intrinsic Dimension Issue: Could the VAE learn the intrinsic number of factors underlying
the data?

• Real Factor Issue: Could the VAE learn the real generating factors underlying the data or
just some fantasies?

• Disentanglement Issue: What are the need and range induced by the word “disentangle-
ment”?
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• Indicator Issue: Could the effectiveness of current disentanglement metric be guaranteed?

All those lacks distillation would make researchers hard to effectively compute through their knowl-
edge from the experiments and incline to make some avoidable arguments and considerations.

This paper will first discuss the properties of the idealistic VAE 1 to target the aforemention issues
and then moving to

• Implementation Issue: Could the aforemention analysis be instructive in real implemen-
tation?

For Intrinsic Dimension Issue, the information conservation theorem shows that idealistic VAE
learns and only learns the intrinsic factor dimension illustrated in Fig.(1). To Disentanglement Is-
sue, the clarification on disentanglement is subsequently made. For Real Factor Issue, the factor
equivalence properties shows that idealistic VAE possibly learns all factors in equivalent class rather
than exactly pre-specified real factors. For Indicator Issue, limitations of the current disentangle-
ment metric are analyzed and several new indicators are introduced.

After that, for Implementation Issue, we relax the discussion to the case that decoding procedure
are not deterministic through noise modeling perspective. The experiments empirically testify that
the knowledge derived form the idealistic case could be applied to the realistic sampling case and
demonstrate the behaviors of different noise assumptions as well as our indictors.
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Figure 1: Idealistic VAE learns and only learns the intrinsic factor dimension. The illustration of
the information conservation theorem 1. Suppose that the oracle data, denoted by random variable
x, is generated by y (with P independent unit Gaussian random variables) with a homeomorphism
mapping x = φ(y). Idealistic VAE will be forced to learn the factor z (with H independent unit
Gaussian random variables) that generates the x with a homeomorphism mapping x = ψ(z). It
yields z = ψ−1 ◦ φ(y) and y = φ−1 ◦ ψ(z). Then according to the information conservation
theorem, it must hold that H = P .

2 GAUSSIAN-VAE MODEL

Gaussian-VAE (Kingma & Welling (2013), Rezende et al. (2014)) is an scalable unsupervised repre-
sentation learning model (Higgins et al. (2016)), and since Gaussian distribution can be continuously
and reversibly mapping to many other distributions, the theoretical analysis on it is also instructive
for other continuous latent factors VAE.

Gaussian-VAE assume that input x is generated by several independent Gaussian factors z, that
is pθ(z) = N (z|0, IH). The generating/decoding process is modeled as pθ(x|z) and the infer-
ence/encoding process qφ(z|x) is treated as the approximate posterior distribution. Both of them are
parameterized by the neural network with parameter θ and φ.

1That is, roughly, the VAE whose decoding procedure and encoding procedure are both deterministic.
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In VAE setting, the approximate inference method is applied to maximizing the variational lower
bound of pθ(x) =

∫
pθ(x|z)pθ(z)dz,

L(q) = E
z∼qφ(z|x)

log pθ(x|z)−DKL(qφ(z|x)||pθ(z)) ≤ log pθ(x). (1)

2.1 IDEALISTIC VAE

In order to get assess to aforemention issues, we will start the analysis from the idealistic situation:
An idealistic VAE model means that it can perfectly encode the signal into “used” factors and per-
fectly decode the “used” factors to original input signal and the factors follows i.i.d unit Gaussian
distribution.

The idealistic VAE discussed in this literature should also under the following the Deterministic
Assumption on qφ(x|z) and pθ(z|x). If the factors of x are well understood, the generation process
should be deterministic, that is pθ(x|z) = δ(x = ψ(z)). We limit the consideration that qφ(z|x) =
δ(z = ψ−1(x)) is also deterministic as well for simplicity of analysis in this paper. For more
complex situation, this consideration could be also basic and instructive.

We try to address aforemention issues by disregarding the training procedure and direct considering
the idealistic VAE’s behavior.

3 ON INTRINSIC DIMENSION ISSUE

In order to get asses to the intrinsic dimension issue, we will present the information conservation
theorem. It states some basic truths, e.g. two independent Gaussian and three independent Gaussian
cannot be the generating factor of each other under continuous mapping. The theorem thus further
illustrates that idealistic VAE learns and only learns the intrinsic factor dimension.

From the perspective of VAE objective, we will also show that the constraint induced by Gaussian
prior, plays the lasso on the mutual information which encourage to clip down the small informa-
tion dimension and promotes information sparsity in factors. In order to derive this perspective,
the mutual information separation theorem and objective decomposition theorem are subsequently
raised.

3.1 INFORMATION CONSERVATION

Theorem 1 (Information Conservation). Suppose that z = (z1, · · · , zH) and y = (y1, · · · , yP )
are sets of H and P (H 6= P ) independent unit Gaussian random variables, respectively, then these
two sets of random variables can not be the generating factor of each other. That is, there are no
continuous functions f : RH → RP and g : RP → RH such that

z = g(y) and y = f(z).

Proof in Appendix B. The principle of the theorem is visually illustrated in Fig. 1.

3.2 SEPARATION OF THE MUTUAL INFORMATION

The mutual information regarding the factors learned by the inference/encoder network and the
signal x can be a good quantity for evaluating the generating influence. That is,

Iencoder(x; z) = E
x∼pdata(x)

DKL(qφ(z|x)||qφ(z)). (2)

In order to understand and estimate which factor of the VAE was learnt and influenced the generating
process, Iencoder(x; zh) can be taken as a rational indicator2. If we assume that z1, z2, · · · , zH is
conditional independent given x3, it can yield a useful result as the following.

2If Iencoder(x; zh) = 0, it yields x and zh are independent with each other. The bigger Iencoder(x; zh),
the more information zh conveys regarding x.

3It follows the real implementation assumption that Σz|x(x) = diag(σz1(x), · · · , σzH(x)).
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Theorem 2 (Mutual Information Separation). Let z1, · · · , zH be independent unit Gaussian distri-
bution, and z1, z2, · · · , zH be conditional independent given x. Then

I(z1, · · · , zH ;x) =

H∑
h=1

I(zh;x). (3)

Proof in Appendix B. This theorem suggests that if the learnt qφ(z) can factorize and the qφ(z|x)
can factorize, then the consideration of each Iencoder(zh;x) won’t be excess or lose information.
Besides, when those term comes in the optimization objective, then it can start the negotiation be-
tween the information preservation and dimension reduction and play the role of lasso that clip down
the factor in dimension with small mutual information.
Theorem 3 (Objective Decomposition). The terminology follows the aforemention definitions and

if the involved KL-divergence and mutual information is well defined, then

E
x∼pdata(x)

DKL(qφ(z|x)||pθ(z)) = Iencoder(x; z) +DKL(qφ(z)||pθ(z)). (4)

Proof in Appendix B. The theorem demonstrates that the second term in variation lower bound in
Eq. (11) is capable of controlling both the mutual information of x and z induced by the encoder
network as well as the similarity of the learnt qφ(z) and the prior pθ(z). Further, the theorem
suggests that it possesses the lasso capacity of clipping down the non-intrinsic factor dimension to
some extent, visually demonstrated in Fig.(2).
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Figure 2: The sparsity of mutual information occurs; Ĩencoder(x; zh) determines the “used”
factors; disentangled VAE pursues the intrinsic factors dimensions; generating factor exists e-
quivalence class. Noise learning β-VAE (β = 10, equivalent σ2 = 0.112):Ĩencoder(x; zh), σ2

zh
and

qualitatively influential factor traversals. The top pulse subgraph: Ĩencoder(x; zh) of each factor. The
bottom reverse pulse subgraph: the estimated variance σ2

zh
of each factor. The montages: influential

factor traversals. We select those factor traversals with visually most interpretable/comprehensive
effects to present and the whole influential factor traversals are listed in appendix 13. The phe-
nomenon of the multiple semantic change induced by the same learnt factor and the encoding of
same semantic among different learnt factor tallies with factor equivalence class theorem 4. The
similar plot of its counterpart with specified normalized noise can be found in Fig.(16) in Appendix.

4 ON DISENTANGLEMENT ISSUE

Inspiration on Disentanglement: According to the information conservation theorem 1, the in-
dependent unit Gaussian factor assumption forms a strong inductive bias and facilitates the model
incline to achieve most efficient coding. Under this assumption, the number of the learnt “used” fac-
tors of idealistic VAE should be the same as the true factors number under some assumptions such
as the learnt qφ(z) should equal pθ(z) and decode/encode process is continuous and reversible. Em-
pirically, sometimes, though the number latent of factors sometimes is pre-specified larger, only a
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small amount of unit Gaussian variables regarding the factors of VAE have been used while qφ(z|x)
is close to deterministic. The theorem helps provide an interpretation to explain this phenomenon.

Here, in order to avoid the ambiguity of the terminology of disentanglement in this paper, we make
the following clarification.4

• The disentanglement of the learnt representation/factors in this literature refers to two parts
depicted in Theorem 1:

– the factors are closer to be independent with each other,
– the factors incline to be able to generate the oracle signal and to be inferred

perfectly from the oracle signal through a continuous procedure/mapping.
• The “disentanglement” refers to the closeness of the learnt factors to the pre-specified inde-

pendent factors/concpets that can generate the oracle signal and be perfect inferred through
a continuous procedure/mapping such as the independent semantic/visual factors.

Therefore, the estimation forDKL(qφ(z)||pθ(z)) that reflects the divergence of the learnt factor dis-
tribution and the i.i.d. unit Gaussian prior can be good a indicator to supervise the independence of
the factors and served to quantitatively assess the disentanglement of each extracted factor, while the
similarity regarding the original signal and reconstruction place another part of the disentanglement.

The “disentanglement” will be shown hard to be obtained in an unsupervised manner. Concretely,
even in the idealistic cases, the extracted factors tend to possess the intrinsic number of latent factors
of the model, while there are still possibly large variations of these factors due to it can be obtained
only in the equivalent class induced by the pre-specified factors as proved in the next section.

5 ON REAL FACTOR ISSUE

As for real factor issue, Gaussian Factor Equivalence theorem, (i.e. linear orthogonal transformation
of Gaussian factor set are still gaussian factor set.), and Linear Factor Equivalence Class will be pre-
sented. They states that idealistic VAE are possibly learns any factors set in the factors equivalence
class, and we should not expect “one-to-one” correspondence by disentanglement.

5.1 FACTORS EQUIVALENCE

Theorem 4 (Gaussian Factor Equivalence). Suppose that z = (z1, · · · , zH) is a set of H indepen-
dent unit Gaussian random variables. Let Q ∈ RH×H be an orthogonal matrix and then y = Qz is
also a set of H independent unit Gaussian random variables. Besides, z and y can generate each
other through a linear homeomorphism mapping.

Proof in Appendix B. This theorem implies that there are a class of unit Gaussian random variables
which can generate each other and have equivalent conservation information, as indicated by the
following theorem.
Theorem 5 (Linear Gaussian Factor Equivalence Class).

[z] = {y|y = Qz, Q ∈ RH×Hbe the orthogonal mapping.}
Then ∀y ∈ [z], y is a set of H independent unit Gaussian random variables and can generate z
through an linear homeomorphism mapping.

The theorem clarifies that if Gaussian-VAEs have an linear matrix multiplication freedom degree of
learning the factors, then the factors in the equivalence class can all be possibly learnt.

The empirically results tally with the above analysis(see Fig. 3). Suppose the visu-
al semantic concepts can be viewed as a set of independent Gaussian variables (z =

4Notice this clarification is based on the assumption that qφ(z|x) is deterministic. If not, then continuous
and reversible mapping of encoder constrain should be loosen and also the reversibility of the decoder should be
loosen. If we further demand the enhancement of the pattern separation and completion ability, that is, to make
the hyperspheres induced by the observation points in the factor domain fully fill up the whole compact factor
ball, then some auxiliary constrains including the restriction on mutual information Iencoder(x; z) (defined in
Section 3.2) induced by the encoder network need to be introduced.
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(a) (b) (c) (d)

Figure 3: We should not expect “one-to-one” correspondence by disentanglement. One-shot
traversal & generating factor equivalence class demonstration. The images are generated by MoG-
2 β(=40) VAE trained on CelebA. The seed image is obtained out from the datasets. Each block
represents the traversal of the generating factor from [−3 + zseedh,+3 + zseedh]. (a) corresponds
to face color white-yellow & female-male change. (b) corresponds to face color white to yellow
change. (c) corresponds to background yellow to blue change. (d) corresponds to hair color white to
black & face width change. It can be seen that changing one factor results in multiple semantic factor
changes in a comprehensible manner rather than the “one-to-one” correspondence which reflexed
analysis regarding generating factor equivalence.

(zrotation, zgender, zwith−glass, · · · )T ) which are desired to be captured and learnt by VAEs, while
the model is also possible to learn the independent factor set y = (y1, · · · )T = Qz in the equiv-
alence class [z]. This explains why changing one factor like y1 sometimes empirically results in
change in multiple visual concepts.

This perspective suggests that it’s actually hard to obtain the “disentangled representation” that
exactly “one-to-one” corresponds to the “independent semantic representation” even though they are
in the same equivalence class. As a result, the idealistic VAE model just tend to learn the “entangle
representation” if we do preset “oracle generating factors” belonging to the equivalent class.

However, though those conclusions might be upsetting, it seems not be biology impossible. A
neuron in hippocampus of animals was suggested to combinatorially possess several representation
capabilities. E.g., Aronov et al. (2017) found that some neurons in rat’s hippocampus involved in
spatial representation also were involved in representing sound frequencies after training rats by a
tasks that required them to use a joystick to manipulate sound in frequency continuously.

6 ON INDICATOR ISSUE

6.1 LIMITATION OF THE EXISTING DISENTANGLEMENT METIC

Higgins et al. (2016) proposed a “simulated factor” based “disentanglement” metric on the simu-
lation datasets. However, according to Gaussian factor equivalence theorem 4 that even idealistic
VAE will still learn the factors in the equivalence class, their metric could be effective sometimes
for disentanglement but might suffer instability when evaluating the VAE in different trials (detailed
in Appendix C).

Further, this metric could be hardly calculated in the real datasets to provide direct feedback of the
“disentanglement”. The reason is that it must pre-know the generating factors expected to be learnt.

6.2 PROPOSED INDICATORS

In order to quantify the disentanglement performance5 as well as the Iencoder(x; z), we assume that
q∗(z) is a factorized zero mean Gaussian estimation for qφ(z).

5Visual recognition could also provide a way to get assess to the factors equivalent class and supervise the
disentanglement. If we assume that the most of the visual concept/factors follow the assumption regarding
the “disentanglement”, it is rational to qualitatively measure the interpretability of extracted latent factors by
human perception to infer the disentanglement. Besides, previous empirical evidences of VAE applications
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We can then list the indicators for assessing latent factor disentanglement:
Definition 1 (Estimation for Ex∼pdata(x)DKL(qφ(z|x)||pθ(z))).

D̃KL(qφ(z|x)||pθ(z)) =
1

M

M∑
m=1

DKL(qφ(z|xm)||pθ(z)). (5)

Definition 2 (Estimation for Iencoder(x; z)).

Ĩencoder(x; z) =
1

M

M∑
m=1

DKL(qφ(z|xm)||q∗(z)). (6)

Definition 3 (Estimation for Iencoder(x; zh) which quantifies the influence of each factor).

Ĩencoder(x; zh) =
1

M

M∑
m=1

DKL(qφ(zh|xm)||q∗(zh)). (7)

Definition 4 (Estimation for DKL(qφ(z)||pθ(z))).

D̃KL(qφ(z)||pθ(z)) = D̃KL(qφ(z|x)||pθ(z))− Ĩencoder(x; z). (8)

Note that the above indicators 2-4 need the value of q∗(z), we now introduce how to calculate this
term based on Theorem 3. Through the minimization equivalence, we know that

min
Q

E
x∼pdata(x)

DKL(qφ(z|x)||Q(z))⇔ min
Q

DKL(qφ(z)||Q(z))dz, (9)

the q∗(z) can then be obtained by gradient method from solving the following optimization problem.

q∗(z) = arg min
Q

1

M

M∑
m=1

DKL(qφ(z|xm)||Q(z)). (10)

7 IMPLEMENTATION ISSUE

7.1 VAE WITH NOISE MODELING

In order to testify the idealistic consideration in real situation, we are not going to learn all the factors
or equivalently we assume that datasets have noise6(this situation correspond to that pθ(x|z) is not
deterministic since the major factors z only forms a subset of the whole factors.7), we integrate the
noise modeling into our model:

pθ(x|z) = N (x|G(z), σ2Id),

where σ2 is either manually enumerated or adaptive learned. Noise modeling can be found crucial
in influencing disentanglement in experiment since it would actually define the factors aimed to be
learnt and subsequently influence the learnt intrinsic dimension suggested by information conserva-
tion property of VAE.

7.2 NOISE MODELLING WITH AUXILIARY CONSTRAINT

The entangled representation can be caused by the over-large of searching space of qφ(z|x).
If the learned qφ(z) =

∫
qφ(z|x)pdata(x)dx has a big divergence to pθ(z), then the VAE model

tends to learn the entangle representation as it violates the one part of the disentanglement (clar-
ified in section 4). Actually, in the VAE model, what we want is to search in the space that

(Higgins et al. (2016), Higgins et al. (2017b), Larsen et al. (2015), Mathieu et al. (2016)) suggest it an effective
way.

6Noise can be viewed as the generating factor that we are not interested in.
7Notice the indeterministic pθ(x|z) could lead to the indeterministic pθ(z|x), but since the minor factors

are supposed to have less influence on x, it could not bother the deduction using the knowledge we derived too
much.
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qφ(z) is possibly similar to pθ(z) 8. By implementing this ideal, we add auxiliary upper bound
Ex∼pdata(x)DKL(qφ(z|x)||pθ(z)) (detailed in Theorem 3) of DKL(qφ(z)||pθ(z)) to the original
objective. This equivalently leads to the approach of β-VAE raised by Higgins et al. (2016).

sup
φ,θ

E
x∼pdata(x)

L(qφ(z|x))− (β − 1)DKL(qφ(z|x)||pθ(z))

= E
x∼pdata(x)

E
z∼qφ(z|x)

log pθ(x|z)− βDKL(qφ(z|x)||pθ(z)) (11)

where β > 1.

7.2.1 RELATION OF VAE AND β-VAE UNDER GAUSSIAN NOISE ASSUMPTION WHEN σ2 IS
PRE-SPECIFIED

Equivalent objective of σ2 pre-specified Gaussian noise VAE:

E
z∼qφ(z|x)

‖x−G(z)‖22 − 2σ2DKL(qφ(z|x)||pθ(z)).

Equivalent objective of σ2 pre-specified as σ2
pre Gaussian noise β-VAE:

E
z∼qφ(z|x)

‖x−G(z)‖22 − 2βσ2
preDKL(qφ(z|x)||pθ(z)),

where we call βσ2
pre the normalized variance.

It’s shown that when the σ2 is pre-specified, manually tuning it is the same as manually tuning β
with a fixed σ2

pre (for example σ2
pre = 1) under Gaussian noise assumption. This equivalence saves

our time for extra experiment studying the behaviors of this two cases and we call those two case
noise specified β-VAE.

8 EXPERIMENT

8.1 DATASET

MNIST is a database of handwritten digits (Lcun et al. (1998)). CelebA (Liu et al. (2015)) is a large-
scale celebfaces attributes datasets and only its images are used in our experiments. More details
are in Appendix D. The extensive comparison of Gaussian-noise modeling β-VAE and Gaussian-
noise with specified variance (β)-VAE is made on MNIST based on our indicators to exploring the
disentanglement as well as to testify the theorem and analysis from the idealistic case to the realistic
sampling case. The experiments on CelebA will be auxiliary to further support the generating factor
equivalence class theorem9.

By setting β as different values, we compare the performance of β-VAE with and without pre-
specified noise on MNIST. We specifically listed the result of β(=1)-VAE in all cases. More details
can be found in Appendix D.2.

8.1.1 ON IMPLEMENTATION ISSUE

• Noise modeling/specification influence the disentanglement.

The noise specifications and modeling significantly influence the model evidence quantitatively and
reconstruction qualitatively, as clearly shown in Fig. (4).

The noise specifications significantly influence the divergence regarding qφ(z) and pθ(z) and noise
specified and noise learning β-VAE achieve similar disentanglement quantitatively based on the
similar indicator behaviours of D̃KL(qφ(z)||pθ(z)) in Fig. (5a) and the number of normal variance
factors Fig. (5b) in regard to the normalized variance.

8 Jensen Shannon Divergence and other integral probability metric which can be good choice and directly
be optimized through a adversarial format (Makhzani et al. (2015)) as well. However, in practice, we were
defeated by the unstability of training GAN-like model.

9The noise assumption is slightly changed into mixture of gaussian in Appendix A.2 for CelebA.
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EVLB of noise learning β-VAE with different specified β [normalized to σ2 = βσ2
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venient comparing] . Green Pentagram: the EVLB of Gaussian noise learning VAE. Other Figures:
their reconstructions on the testing set. The bigger EVLB, the better hypothesis that model learnt.
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Figure 5: Noise specification/modeling influence disentanglement.(a) D̃KL(qφ(z)||pθ(z)) of d-
ifferent VAE models & (b) Number of normal-variance factors of different VAE models (with 128
factors.)

• Auxiliary constraints can influence the disentanglement in a different way.

The prominent difference induced by auxiliary constraints would be its stronger suppression on
Ĩencoder(x; z) and the number of influential factors although changing the noise level also possess
this capability indirectly. It’s somewhat obvious to see and compare value of different indictors under
the different β setting by sliding on the green/blue line. The bigger β, the lower D̃KL(qφ(z)||pθ(z))
and roughly the better reconstruction and hypothesis learnt. However, it’s more interesting that in re-
gard to the normalized variance, noise learning β-VAE enhances the suppression on Ĩencoder(x; z),
as depicted in Fig. (6a) and that is comprehensible since β-VAE is minimizing the auxiliary con-
straints both Iencoder(x; z) +DKL(q(z)||p(z)) based on Theorem 3.

8.1.2 ON INTRINSIC DIMENSION ISSUE

• Ĩencoder(x; zh) effectively determines the “used” factors and VAEs incline to learn
the intrinsic factor dimension in realistic sampling case when the disentanglement
achieves in some extent.
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Figure 6: β-VAE is more suppressive on the mutual information. (a) Ĩencoder(x; z) of different
VAE models & (b) Number of influential generators of different VAE models

As shown in Fig. (2) and (16), the indicator Ĩencoder(x; zh) determines the “used” factors. Accord-
ing to those figures, under the suitable noise assumption, VAEs automatically suppress the auxiliary
factors and learn the intrinsic factor dimension as it still capable to have good reconstruct abilities
and its DKL(qφ(z)||pθ(z)) closer to zero. This phenomenon has already suggested by the informa-
tion conservation theorem 1.

8.1.3 ON REAL FACTOR ISSUE

• Factor equivalence is generally hold and VAEs possibly learn any factor set in the
equivalence class.

The reflections of the generating equivalence properties 5.1, that is, single factor could result in
multiple semantic concepts change and same semantic concept could be encoded in different factors,
are again well demonstrated by Fig. (7), Fig. (2), Fig. (16) and Table 1.

Table 1: Variants and factors correspondence on CelebA ( MoG-2 β(=40)-VAE)

Variant glass height blue to yellow* black to white* half bright half gloomy*
Factor 73 37,45 13, 96,40,45,118 7 110

Variant face(big to small) lighting face lighting skin color(white to yellow)
Factor 63,77,82 73,90 120,110 102,96,28,63,82

Variant head direction neck length hair color gender mouth open to close
Factor 26,31 102 120 28 8

* represents background change.

9 FUTURE WORK

From the perspective of representation learning:

• It is interesting that the topology properties of oracle signal are used to obtain the proof for
the information conservation theorem. Other situations including that data owns several
connected components can be further considered and would uncover the efficient coding
properties of discrete factors.

• When qφ(z|x) is far from deterministic, the discussion would be crucial for many other
general purposes induced by word disentanglement. Those study may further extend to
the case that data containing different dimension manifolds and to the core VAEs’ pattern
separation/completion/generalization capabilities.
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A APPENDIX: NOISE MODELING DEDUCTION

A.1 GAUSSIAN NOISE DEDUCTION

The VAE objective (i.e., the variational lower bound) can be treated as function of the θ and φ where
noise variance parameters σ2 are contained in θ,

L(θ, φ, xm) = E
z∼qφ(z|xm)

log pθ(x
m|z)−DKL(qφ(z|xm)||pθ(z)). (12)

Here the SGVB estimator in (Kingma & Welling (2013)), L̃B(θ, φ, xm) =

[ 1L
∑L
l=1 log pθ(x

m|zl)] − DKL(qφ(z|xm)||pθ(z)) is used. Note that the noise variance σ2

is also taken as an optimization variable in the model, making the model capable of better adapting
noise variation of data in practical cases in a totally automatic way, instead of a manually set
manner.
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Given multiple data points from a dataset X, we can construct an estimator of the mean marginal
likelihood lower bound of the full dataset, based on minibatches

L̃M (θ, φ,XM ) =
1

M

M∑
m=1

L̃B(θ, φ, xm), (13)

where the minibatch XM = {xm}Mm=1 is a randomly drawn sample set of M datapoints from the
full dataset X. Such a lower bound also constitutes an important indicator for model evidence in
latter experiment. We call it the empirical variational lower bound (EVLB) in the following.

Note that L̃B(θ, φ, xm) ' L(θ, φ, xm) and we can deduce that

L̃M (θ, φ,XM ) ' E
x∼pdata(x)

L(θ, φ, x)

≤ E
x∼pdata(x)

log pθ(x) ≤ E
x∼pdata(x)

log pdata(x). (14)

The last inequality holds due to DKL(pdata(x)||pθ(x)) ≥ 0.

The alternative optimization strategy can be readily utilized to design the algorithm for solving the
model by iteratively updating the noise parameter and the network ones. During the optimization
process, the objective can be monotonically increasing, and thus the algorithm can be guaranteed to
be convergent.

The algorithm is summarized as follows:

Optimization for parameters except σ2:

Optimization for σ2: σ2 =
∑L
l=1

∑M
m=1 ‖x

m−G(zm,l)‖22
dML . (Close form solution in regard to

L̃M (θ, φ,XM ).)

Direct gradient method to the transformed variable log simga = log σ ∈ R can be implemented to
lift the lower bound L̃M as a result to increase the likelihood as well.

A.2 MOG NOISE DEDUCTION

The noise ε in real situation might be more complex than a simple Gaussian, like that existed in real
photographs (Plotz & Roth (2017)). We thus try to further ameliorate the noise setting as a mixture
of Gaussian(MoG) noise. Such noise modeling strategy has been widely verified to be effective
in applications, like matrix factorization (Meng & Torre (2014)) and robust principal component
analysis (Zhao et al. (2014)). That is, we assume that

ε ∼
K∑
k=1

πkN (0, σ2
k). (15)

Let cd ∈ {0, 1}K be the latent indicator random one-hot variable,
∑K
k=1 cdk = 1, for the MoG-

noise component of pixel indexed by d. Let Π = [π1, · · · , πK ] and Σ = [σ2
1 , · · · , σ2

K ] be the ratio
and variance of each component, respectively. Let Π,Σ be contained in θ. The conditional joint
distribution turns to be

pθ(cd, xd|z) =

K∏
k=1

πcdkk N (xd|G(z)d, σk)cdk . (16)

The posterior distribution qφ(z, c|x) can be factorized as qφ(z|x)q(c|x, z), where qφ(z|x) will be
direct learnt and the alternative of q(c|x, z), q(c|x, e) will be set to the last step pθ(c|x, e) in regard
to EM procedure. The lower bound of log pθ(x) is then reformulated as follows:

L(qφ(z, c|x)) = E
z∼qφ(z̃|x)

E
c∼q(c̃|x,z̃=z)

log pθ(x, c|z)+H(q(c|x, z))−DKL(qφ(z|x)||pθ(z)). (17)
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Similar to the Gaussian case, the reparamerization trick is implemented,

L(q(c|x, e), φ, θ, xm)

= E
e∼N (0,1)

E
c∼q(c̃|x,e)

log pθ(x, c|z̃) +H(q(c|x, z̃))−DKL(qφ(z|x)||pθ(z)), (18)

where z̃ = En(x) + Σz|x
1/2(x)e.

By utilizing the SGVB estimator, we get,

L̃B(q(c|x, e), φ, θ, xm) = [
1

L

L∑
l=1

E
c∼q(c̃|xm,e(l))

log pθ(x
m, c|zm,l)

+H(q(c|xm, e(l)))]−DKL(qφ(z|xm)||pθ(z)). (19)

Given an input dataset X, we can then construct an estimator to the mean marginal likelihood lower
bound of the full dataset, based on minibatches, as follows:

L̃M (q(c|x, e), θ, φ,XM ) =
1

M

M∑
i=1

L̃B(q(c|x, e), θ, φ, xm), (20)

where zm,l = En(xm) + Σz|x
1/2(xm)e(l) and the minibatch XM = {xm}Mi=1is a randomly drawn

sample of M datapoints from the full dataset X.

Then let

poldθold(cd, xd|zold) =

K∏
k=1

πoldk
cdkN (xd|Gold(zold)d, σoldk )cdk , (21)

where zold = Enold(x) + Σoldz|x
1/2

(x)e, and we can get

poldθold(cd|x, zold) =
poldθold(cd, xd|zold)∑
cd

poldθold(cd, xd|zold)
. (22)

The EM algorithm can be naturally employed to solve the model. The implementation steps are
listed as follows:

Step 1. Expectation Step.

Set q(c|xm, e(l)) = poldθold(c|xm, Enold(xm) + Σoldz|x(xm)e(l)) i = 1, · · · ,m, l = 1, · · · , L.

Calculate the expectation of the latent variable c:

E(cdmlk) = γdmlk =
πkN (xmd |G(zm,l)d, σ

2
k)∑L

l=1

∑M
m=1 πkN (xmd |G(zm,l)d, σ2

k)
, (23)

where zm,l : zm,lold = Enold(xm) + Σoldz|x(xm)e(l).

The Objective in Maximization Step is obtained as the following,

L̃M (q(c|x, e), θ, φ, xm) =
1

M

M∑
i=1

−DKL(qφ(z|xm)||pθ(z))

+
1

L

L∑
l=1

H(qold(c|xm, e(l))) +

K∑
k=1

D∑
d=1

γdmlk[
(xmd −G(zm,l)d)

2

2σ2
k

+
1

2
log(2π)σ2

k + lnπk]. (24)

Step 2. Maximization Step:

14
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Fix: q(c|x, e) determined in the Expectation Step.

1

M

M∑
i=1

−DKL(qφ(z|xm)||pθ(z))+
1

L

L∑
l=1

K∑
k=1

D∑
d=1

γdmlk[
(xmd −G(zm,l)d)

2

2σ2
k

+
1

2
log(2π)σ2

k+lnπk].

(25)

Update [Π,Σ] and {θ, φ}/[Π,Σ] by alternative optimization strategy.

Update Π,Σ: note here zm,l : zm,lold = Enold(xm) + Σoldz|x(xm)e(l), and we can easily get the
closed-form updating formula for these parameters:

Nk =
∑
d,m,l

γdmlk πk =
Nk∑K
k=1Nk

σ2
k =

1

Nk

∑
d,m,l

γdmlk(xmd −G(zm,lold )d)
2. (26)

Update {θ, φ}/[Π,Σ]: gradient methods with respect to {θ, φ}/[Π,Σ]. Note here zm,l = En(xm)+
Σz|x(xm)e(l).

The algorithm can then be summarized as follows:

1. Initialize the coefficient of {θ, φ}/[Π,Σ] and the coefficient of noise ε: Π,Σ.

2. Sample e from N (0, IH) to obtain e1, · · · , eM [One for each element sample in the mini
batch in the next step (L here is set to 1)].

3. Sample a mini batch XM from pdata(x).

4. Implement EM algorithms as aforementioned (approximate inference for q(c, z|x)):
Expectation: calculate γdmk.
Maximization: update [Π,Σ], Update {θ, φ}/[Π,Σ] with gradient methods.

5. Goto 3: Until Trigger End-Criterion.

B APPENDIX: PROOF

Proof. For theorem 1. Proof by Contradiction. Suppose those two function exist, and we will show
that they will be inverse mapping of each other and the homeomorphism mapping of RH and RP .
Since RH and RP have different topology structures (P 6= H), the homeomorphism mapping will
not exist.

z = g(y) = g(f(z)) ∀z ∈ RH ⇒ g ◦ f = IH

y = f(z) = f(g(x)) ∀y ∈ RP ⇒ f ◦ g = IP

Since both f and g are continuous, there is a homeomorphism mapping between RH and RP and it
leads to the contradiction.

Proof. For theorem 4. We only need to test the mean and variance of y.

E(y) = E(Qz) = QE(z) = 0

Cov(y, y) = QCov(z, z)QT = QIQT = I

Therefore, y is another set of H independent unit Gaussian random variables. Since x = QT y, z
and y can generate each other with an linear homeomorphism mapping.

Proof. For theorem 2,

I(z1, · · · , zH ;x) =

∫
p(z1, · · · , zH , x) log

p(z1, · · · , zH , x)

p(z1, · · · , zH)p(x)
dz1 · · · dzHdx
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=

∫
p(z1, · · · , zH , x) log

∏H
h=1 p(zh|x)∏H
h=1 p(zh)

dz1 · · · dzHdx =

H∑
h=1

∫
p(zh, x) log

p(zh|x)

p(zh)
dzhdx

=

H∑
h=1

I(zh;x).

Proof. For theorem 3.

E
x∼pdata(x)

DKL(qφ(z|x)||pθ(z)) =

∫
qφ(z|x)pdata(x)

qφ(z|x)pdata(x)

pθ(z)pdata(x)
dx

=

∫
qφ(z|x)pdata(x)

qφ(z|x)pdata(x)

qφ(z)pdata(x)

qφ(z)

pθ(z)
dx = Iencoder(x; z) +DKL(qφ(z)||pθ(z)). (27)

B.1 AUXILIARY EXPLANATIONS FOR INDICATORS

Corollary 1. The terminology follows the aforemention definitions and if the involved KL-
divergence and mutual information be well defined then

E
x∼pdata(x)

DKL(qφ(z|x)||q∗(z)) = Iencoder(x; z) +DKL(qφ(z)||q∗(z)). (28)

The proof of corollary 1 is the same as that of theorem 3. This corollary suggests that the estimation
in definition 2 provides another upper bound for the capacity of the encoder network. Empirically,
this estimation is a much tighter estimation than using the estimation in definition 1.

Corollary 2. The terminology follows the aforemention definitions and if the involved KL-
divergence and mutual information be well defined then

E
x∼pdata(x)

DKL(qφ(z|x)||pθ(z))− E
x∼pdata(x)

DKL(qφ(z|x)||q∗(z))

= DKL(qφ(z)||pθ(z))−DKL(qφ(z)||q∗(z)) ≤ DKL(qφ(z)||pθ(z)). (29)

The corollary is an direct result of theorem 3 and corollary 1. It suggests that the estimation in
definition 4 is a lower bound for DKL(qφ(z)||pθ(z)).

Definition 5 (Another Estimation for DKL(qφ(z)||pθ(z))).

D̄KL(qφ(z)||pθ(z)) = DKL(q∗(z)||pθ(z)). (30)

Empirically, D̄KL(qφ(z)||pθ(z)) and D̃KL(qφ(z)||pθ(z)) shown the same estimation results on M-
NIST.

Definition 6 (Another estimation for Iencoder(x; z)).

Īencoder(x; z) = −DKL(q∗(z)||pθ(z)) +
1

M

M∑
m=1

DKL(qφ(z|xm)||pθ(z)). (31)

Definition 7 (Another estimation for Iencoder(x; zh) which quantifies the influence of each factor).

Īencoder(x; zh) = −DKL(q∗(zh)||pθ(zh)) +
1

M

M∑
m=1

DKL(qφ(zh|xm)||pθ(zh)). (32)
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C APPENDIX: ANALYSIS ON THE “DISENTANGLEMENT” METRIC RAISED IN
β-VAE (HIGGINS ET AL. (2016))

The terminology inherits those in the β-VAE paper. The main idea of that “disentanglement” metric
is to create a statistic point zdiff relevant to the model for each simulated factor respectively and
then to use a linear classifier to project the statistic point to the corresponding index of the simulated
factor. If the statistic points induced by the model are easy to be separated then the model is thought
to learn “disentangled” representation.

Here, we will argue that even for the idealistic VAE model that follows the disentanglement condi-
tons 4 could still receive bad score under that performance metric in some situations.

Suppose that the true simulated factors v follows N (0, IH). Then the learnt “used”10 factor z can
be in the equivalence class [v] according to theorem 4. Concretely, there exists an orthogonal trans-
formation Q such that z = Qv.

Suppose that the simulated factors with index y of v is fixed. Suppose v1y−fixed and v2y−fixed are
two random variable representing the samples from the y-fixed v. Then the factors inferred by the
idealistic VAE turns to be z1 = Qv1y−fixed and z2 = Qv2y−fixed.

In order to calculate the statistic point zdiff (y) = E |z1 − z2|, we first calculate the mean and
variance of (z1 − z2).

E(z1 − z2) = QE(v1y−fixed − v2y−fixed) = 0 (33)

V ar(z1−z2) = V ar(Q(v1y−fixed−v2y−fixed)) = QCov(v1y−fixed−v2y−fixed, v1y−fixed−v2y−fixed)QT

= Qdiag(2, · · · , 2, 0y, 2, · · · , 2)QT = 2I −Qdiag(0, · · · , 0, 2y, 0, · · · , 0)QT = 2I − 2qyq
T
y .
(34)

Therefore, zdiff (y) can be obtained through the diagonal value of 2I − 2qyq
T
y . That is,

zdiff (y) = E(|z1 − z2|) = 2

√
2

π
(
√

(1− q2y1), · · · ,
√

(1− q2yH))T . (35)

From the above equation, the location of statistic point is unique determined by (q2y1, · · · , q2yH).
When (q2y1, · · · , q2yH) is close to the vertex of the unit cubic for each y then all the statistic points
turn to be easily separated.

However, from the perspective of the objective, all the orthogonal Qs are with the same potential
to be learnt. It seems not to be with a small probability that statistic points of different indexes

take similar location. For instance, if H = 2 and Q =

(
1√
2

1√
2

− 1√
2

1√
2

)
then zdiff (1) = zdiff (2)

cannot be separated while the representation still follows the disentanglement conditions.

Among different trials, the Q might contribute to that “disentanglement” metric but also might not.
That explains why that metric is unstable.

D APPENDIX: EXPERIMENT DETAILS

We set L to 1, and minibatch size M to be 100 in all practices. All the pixels value have been linear
normalized in to [0,1].

D.1 CLARIFICATION ON THE CORRECTION ON RESULTS

We find in the last version that the code on calculating q∗(z) is wrong. Concretely, the objective
of the KL-divergence of two Gaussian is incorrect calculated. That influences the estimation of

10 The auxiliary unused factor is innocuous for the subsequent analysis.
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Ĩencoder(x; z), Ĩencoder(x; zh), D̃KL(qφ(z)||pθ(z)) and σ2
zH but has little influence on the deter-

mination of the “used” factors. So we redo all the experiments on MNIST and delete the relevant
results regarding those wrong-calculated indictors on CelebA and Extended Yale Face B.

The new experiment results solve many our past confusions due to the wrong experiment. They are

• Why σ2
zh

is strongly correlated with Ĩ(x; zh)?

• Why σ2
zh

of the used factor is always relative small?

• Why can VAE still learn the “disentangled” representation when the learn-
t D̃KL(qφ(z)||pθ(z)) is such big?

Now we know that they are actually not the cases. Something better is that we find our experiment
results are more close to our theoretical analysis: when guaranteeing the reconstruction quality in
a tolerance range, the smaller D̃KL(qφ(z)||pθ(z)) the less “used” factors are learnt. That coincides
with information conservation theorem: the independent unit Gaussian of the factors assumption
facilitates the most efficient coding.

D.2 MNIST

We split randomly 7000 datapoints according to ratio [0.6 : 0.2 : 0.2] into training set, validation
set (no use), testing set. All the indicators and q∗(z) are evaluated/calculated on 10000 datapoints
belonging to the testing set. All the seed images used to infer latent code and to draw the traversal
come from the testing set.

In all figures of latent code traversal each block corresponds to the traversal of a single latent variable
while keeping others fixed to either their inferred ( β-VAE, VAE). Each row represents a different
seed image used to infer the latent values in the VAE-based models. β-VAE and VAE traversal is
over the [−3, 3] range.

The assumed variance σ2 of noise specified Gaussian of VAE models is enumerated from
[0.0005, 0.001 : 0.001 : 0.012, 0.02 : 0.01 : 0.11]. The β setting for the noise learning β-VAE
is enumerated from [0.1, 0.5, 1, 2 : 2 : 18].

D.3 EXTENDED YALE FACE B (GEORGHIADES ET AL. (2001), LEE ET AL. (2005))

We split randomly 2424 datapoints according to ratio [0.8 : 0.1 : 0.1] into training set, validation
set (no use), testing set. The model is training on the training set. All the seed images used to infer
latent code and to draw the traversal come from the 100 datapoints from the testing set.

In all figures of latent code traversal each block corresponds to the traversal of a single latent variable
while keeping others fixed to either their inferred ( β-VAE, VAE). Each row represents a different
seed image used to infer the latent values in the VAE-based models.

β-VAE and VAE traversal is over the [−3, 3] range.

The β setting for the noise learning β-VAE is enumerated from [1, 40, 80, 120, 160].

D.4 CELEBA

We split randomly roughly 200000 datapoints according to ratio [0.8 : 0.1 : 0.1] into training set,
validation set (no use), testing set. The model is training on the training set. All the indicators and
q∗(z) are evaluated/calculated on 10000 datapoints selected from testing set. All the seed images
used to infer latent code and to draw the traversal come from the 100 datapoints from the testing set.

In all figures of latent code traversal each block corresponds to the traversal of a single latent variable
while keeping others fixed to either their inferred ( β-VAE, VAE). Each row represents a different
seed image used to infer the latent values in the VAE-based models.

β-VAE and VAE traversal is over the [−3, 3] range.

The β setting for the noise learning β-VAE is enumerated from [1, 30, 40].
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D.5 NETWORK STRUCTURE

Dataset Optimiser Architecture

Mnist

Adam Input 28x28x1
1e− 3 Encoder Conv 32x4x4,32x4x4 (stride 2).

FC 256. ReLU activation.
Epoch 200 Latents 128

Decoder FC 256. Linear. Deconv reverse of encoder.
ReLU activation.

CelebA

Adam Input 64x64x3
1e− 4 Encoder Conv 32x4x4,32x4x4,64x4x4,64x4x4 (stride 2).

FC 256. ReLU activation.
Epoch 20 Latents 128/32

Decoder FC 256. Linear. Deconv reverse of encoder.
ReLU activation.

Extended Yale Face B

Adam Input 192x168x1
1e− 4 Encoder Conv 32x4x4,32x4x4,64x4x4,64x4x4 (stride 2).

Epoch 2002 FC 256. ReLU activation.
Latents 128
Decoder FC 256. Linear. Deconv reverse of encoder.

ReLU activation.

Extended Yale Face B

Adam Input 192x168x1
1e− 4 Encoder Conv 32x4x4,32x4x4,64x4x4,64x4x4 (stride 2).

Epoch 1460 FC 256. ReLU activation.
Latents 128
Decoder FC 256. Linear. Deconv reverse of encoder.

(Network Parameterized Noise) ReLU activation.

E APPENDIX: AUXILIARY GENERATING PICTURE

Note that only the factors with Ĩencoder(x; zh) > 0.5 are shown.

F APPENDIX: RELATED WORK ON DISENTANGLEMENT

VAE was proposed by Kingma & Welling (2013) and Rezende et al. (2014) to implement the effi-
cient learning and inference in directed probabilistic models regarding continuous latent variables
with intractable posterior distributions and in scalable datasets. They introduced a network infer-
ence/recoginition model to represent the approximate posterior distribution and utilized reparameter-
ization trick for stochastic joint optimization of a variational lower bound containing the parameters
of both the generative/decoder and inference/recoginition/encoder models.

After being raised, many VAE variations have been proposed to boost VAE’s capabilities in genera-
tion quality and/or disentanglement of the learned representation. In these methods, multiple efforts
were made by improving the generative and inference network structures. Typical works along this
line include the convolution/de-convolution structure raised by Kulkarni et al. (2015) and ladder
structure raised by Zhao et al. (2017)). Some other works advanced the mechanism under the VAE
generation/inference processes. Typical works include the iterative attention generation/inference
mechanism raised by Gregor et al. (2015), normalizing flow proposed by Rezende & Mohamed
(2015) that enhanced the expressive ability of the approximate posterior and its variants (Kingma
et al. (2016)).

Despite the improvement to the VAE itself, some other efforts were made by the ensemble between
GAN with VAE. E.g., Larsen et al. (2015) unified GAN and VAE to obtain a better reconstruction
and a high-level abstracts visual features embedding. Mathieu et al. (2016) also unified GAN and
VAE but put emphasis on disentangling factors of variation. GANs without auxiliary design would
learn the data distribution disregarding its noise level though suffer from unstable training and mode
collapsing (Salimans et al. (2016)) while VAEs would assume a decomposition of the noise and
oracle clean datapoint regarding the noise data with an auxiliary prior on the distribution regarding
the factors.
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Besides, many efforts were made by regularization on the factor distribution or factor generating
effect. E.g., Makhzani et al. (2015) introduced an adversarial loss into the latent space of the au-
toencoder which in idealistic case could learn any kind factor/lantent distribution including those
contributing to the disentangled factors/representation. InfoGAN, raised by Chen et al. (2016), in-
troduced the infomax principle to GAN by adding an auxiliary mutual information regularization
which enabled the inference of GANs and led to a better disentangled representation as well.

Recently, there is a new VAE variation is proposed by Higgins et al. (2016) who introduced the
β-VAE framework which enhanced the constraints regarding the KL-divergence of the posterior and
prior distribution of VAE and showd a novel disentanglement performance. This method has ob-
tained a better performance as compared with conventional VAE methods, especially on its flexible
tuning a compromising a parameter beta between the KL-divergence term and the likelihood term
(the variational lower bound).
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factor 7 factor 8 factor 12

factor 13 factor 19 factor 26
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factor 48 factor 56 factor 63
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factor 90 factor 96 factor 102

factor 110 factor 118 factor 120

Figure 7: CelebA: Generating Factors Traversal of MoG-2 β(=40)-VAE.
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Figure 8: Learned σ2 of different β setting
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Figure 9: βσ2 of different β setting
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Figure 10: Noise learning β-VAE (β = 1, equivalent σ2 = 0.00248): estimation of Iencoder(x; zh),
σ2
h.
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Figure 11: Noise learning β-VAE (β = 0.5, equivalent σ2 = 0.00086): estimation of
Iencoder(x; zh), σ2

h.
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factor 2 factor 3 factor 11 factor 12

factor 16 factor 21 factor 33 factor 46

factor 57 factor 58 factor 59 factor 62

factor 72 factor 84 factor 98 factor 108

factor 123 factor 127

Figure 12: MNIST: Generating Factor Traversal of σ2 = 0.11 Pre-specified VAE
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factor 16 factor 23 factor 24 factor 39
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Figure 13: MNIST: Generating Factor Traversal of Noise Learning β(=10)-VAE
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factor 105 factor 123

Figure 14: Extended Yale Face B: Generating Factor Traversal of Noise Learning β(= 120)-VAE .
Factor equivalence class properties are still hold.
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Figure 15: MoG-2 β(=40)-VAE reconstruction and residual Gaussian components membership
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Figure 16: Noise specified (β-)VAE with equivalent σ2 = 0.11: Ĩencoder(x; zh), σ2
zh

and qualita-
tively influential factor traversals. The mutual information of “used” factor learnt by noise specified
β-VAE can be found more diverse than that in figure 2.
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