
Published as a conference paper at ICLR 2019

REPRESENTATION DEGENERATION PROBLEM IN
TRAINING NATURAL LANGUAGE GENERATION MOD-
ELS

Jun Gao1,2∗, Di He3, Xu Tan4, Tao Qin4, Liwei Wang3,5 & Tie-Yan Liu4

1Department of Computer Science, University of Toronto
jungao@cs.toronto.edu
2Vector Institute, Canada
3Key Laboratory of Machine Perception, MOE, School of EECS, Peking University
di he@pku.edu.cn, wanglw@cis.pku.edu.cn
4Microsoft Research
{xuta,taoqin,tyliu}@microsoft.com
5Center for Data Science, Peking University, Beijing Institute of Big Data Research

ABSTRACT

We study an interesting problem in training neural network-based models for nat-
ural language generation tasks, which we call the representation degeneration
problem. We observe that when training a model for natural language genera-
tion tasks through likelihood maximization with the weight tying trick, especially
with big training datasets, most of the learnt word embeddings tend to degener-
ate and be distributed into a narrow cone, which largely limits the representation
power of word embeddings. We analyze the conditions and causes of this problem
and propose a novel regularization method to address it. Experiments on language
modeling and machine translation show that our method can largely mitigate the
representation degeneration problem and achieve better performance than baseline
algorithms.

1 INTRODUCTION

Neural Network (NN)-based algorithms have made significant progresses in natural language gen-
eration tasks, including language modeling (Kim et al., 2016; Jozefowicz et al., 2016), machine
translation (Wu et al., 2016; Britz et al., 2017; Vaswani et al., 2017; Gehring et al., 2017) and dialog
systems (Shang et al., 2015). Despite the huge variety of applications and model architectures, natu-
ral language generation mostly relies on predicting the next word given previous contexts and other
conditional information. A standard approach is to use a deep neural network to encode the inputs
into a fixed-size vector referred as hidden state1, which is then multiplied by the word embedding
matrix (Vaswani et al., 2017; Merity et al., 2018; Yang et al., 2018; Press & Wolf, 2017). The output
logits are further consumed by the softmax function to give a categorical distribution of the next
word. Then the model is trained through likelihood maximization.

While studying the learnt models for language generation tasks, we observe some interesting and
surprising phenomena. As the word embedding matrix is tied with the softmax parameters (Vaswani
et al., 2017; Merity et al., 2018; Inan et al., 2017; Press & Wolf, 2017), it has a dual role in the
model, serving as the input in the first layer and the weights in the last layer. Given its first role as
input word embedding, it should contain rich semantic information that captures the given context
which will be further used for different tasks. Given its role as output softmax matrix, it should
have enough capacity to classify different hidden states into correct labels. We compare it with

∗This work was done when Jun Gao was an intern at Microsoft Research Asia.
1The concept of hidden states has multiple meanings in the literature of neural networks. In this paper, we

use hidden state as the input to the last softmax layer.

1

Published as a conference paper at ICLR 2019

(a) Vanilla Transformer (b) Word2Vec (c) Classification

Figure 1: 2D visualization. (a). Visualization of word embeddings trained from vanilla Trans-
former (Vaswani et al., 2017) in English→German translation task. (b). Visualization of word
embeddings trained from Word2Vec (Mikolov et al., 2013). (c). Visualization of hidden states and
category embedding of a classification task, where different colors stand for different categories and
the blue triangles denote for category embeddings.

word embeddings trained from Word2Vec (Mikolov et al., 2013) and the parameters in the softmax
layer of a classical classification task (we refer it as categorical embedding). As shown in Figure
1, the word embeddings learnt from Word2Vec (Figure 1(b)) and the softmax parameters learnt
from the classification task (Figure 1(c)) are diversely distributed around the origin using SVD
projection; in contrast, the word embeddings in our studied model (Figure 1(a)) degenerated into
a narrow cone. Furthermore, we find the embeddings of any two words in our studied models are
positively correlated. Such phenomena are very different from those in other tasks and deteriorate
model’s capacity. As the role of the softmax layer, those parameters cannot lead to a large margin
prediction for good generalization. As the role of word embeddings, the parameters do not have
enough capacity to model the diverse semantics in natural languages (Yang et al., 2018; McCann
et al., 2017).

We call the problem described above the representation degeneration problem. In this paper, we try
to understand why the problem happens and propose a practical solution to address it.

We provide some intuitive explanation and theoretical justification for the problem. Intuitively
speaking, during the training process of a model with likelihood loss, for any given hidden state,
the embedding of the corresponding ground-truth word will be pushed towards the direction of the
hidden state in order to get a larger likelihood, while the embeddings of all other words will be
pushed towards the negative direction of the hidden state to get a smaller likelihood. As in natural
language, word frequency is usually very low comparing to the size of a large corpus, the embedding
of the word will be pushed towards the negative directions of most hidden states which drastically
vary. As a result, the embeddings of most words in the vocabulary will be pushed towards similar
directions negatively correlated with most hidden states and thus are clustered together in a local
region of the embedding space.

From the theoretical perspective, we first analyze the extreme case of non-appeared words. We
prove that the representation degeneration problem is related to the structure of hidden states: the
degeneration appears when the convex hull of the hidden states does not contain the origin and such
condition is likely to happen when training with layer normalization (Ba et al., 2016; Vaswani et al.,
2017; Merity et al., 2018). We further extend our study to the optimization of low-frequency words
in a more realistic setting. We show that, under mild conditions, the low-frequency words are likely
to be trained to be close to each other during optimization, and thus lie in a local region.

Inspired by the empirical analysis and theoretical insights, we design a novel way to mitigate the
degeneration problem by regularizing the word embedding matrix. As we observe that the word em-
beddings are restricted into a narrow cone, we try to directly increase the size of the aperture of the
cone, which can be simply achieved by decreasing the similarity between individual word embed-
dings. We test our method on two tasks, language modeling and machine translation. Experimental
results show that the representation degeneration problem is mitigated, and our algorithm achieves
superior performance over the baseline algorithms, e.g., with 2.0 point perplexity improvement on

2

Published as a conference paper at ICLR 2019

the WikiText-2 dataset for language modeling and 1.08/0.93 point BLEU improvement on WMT
2014 English-German/German-English tasks for machine translation.

2 RELATED WORK

Language modeling and machine translation are important language generation tasks. Language
modeling aims at predicting the next token given an (incomplete) sequence of words as context. A
popular approach based on neural networks is to map the given context to a real-valued vector as a
hidden state, and then pass the hidden state through a softmax layer to generate a distribution over
all the candidate words. There are different choices of neural networks used in language modeling.
Recurrent neural network-based model and convolutional neural network-based model are widely
used (Mikolov et al., 2010; Dauphin et al., 2017).

Neural Machine Translation (NMT) is a challenging task that has attracted lots of attention in recent
years. Based on the encoder-decoder framework, NMT starts to show promising results in many
language pairs. The evolving structures of NMT models in recent years have pushed the accuracy
of NMT into a new level. The attention mechanism (Bahdanau et al., 2015) added on top of the
encoder-decoder framework is shown to be useful to automatically find alignment structure, and
single-layer RNN-based structure has evolved towards deep models (Wu et al., 2016), more efficient
CNN models (Gehring et al., 2017), and well-designed self-attention models (Vaswani et al., 2017).

In this paper, we mainly study the expressiveness of word embeddings in language generation tasks.
A trend for language generation in recent years is to share the parameters between word embeddings
and the softmax layer, which is named as the weight tying trick. Many state-of-the-art results in
language modeling and machine translation are achieved with this trick (Vaswani et al., 2017; Merity
et al., 2018; Yang et al., 2018; Press & Wolf, 2017). Inan et al. (2017) shows that weight tying not
only reduces the number of parameters but also has theoretical benefits.

3 REPRESENTATION DEGENERATION PROBLEM

In this section, we empirically study the word embeddings learnt from sequence generation tasks,
i.e., machine translation, and introduce the representation degeneration problem in neural sequence
generation.

3.1 EXPERIMENTAL DESIGN

Our analysis reported in this section is mainly based on the state-of-the-art machine translation
model Transformer (Vaswani et al., 2017). We use the official code (Vaswani et al., 2018) and set all
the hyperparameters (the configurations of the base Transformer) as default. We train the model
on the WMT 2014 English-German Dataset and achieve 27.3 in terms of BLEU score. Additionally,
we also analyze the LSTM-based model (Wu et al., 2016) and find the observations are similar.

In neural sequence generation tasks, the weights in word embeddings and softmax layer are tied.
Those parameters can be recognized not only as the inputs in the first layer but also as the weights
in the last layer. Thus we compare this weight matrix with a word embedding matrix trained from
conventional word representation learning task, and also compare it with the parameters in softmax
layer of a conventional classification task. For simplicity and representative, we choose to use
Word2Vec (Mikolov et al., 2013) to obtain word embeddings and use MNIST as the classification
task trained with a two-layer convolutional neural network (Yue et al., 2018; Liu et al., 2016). For
the classification task, We simply treat the row of the parameter matrix in the last softmax layer as
the embedding for the category, like how the word embedding is used in the softmax layer for neural
language generation model with weight tying trick.

To get a comprehensive understanding, we use low-rank approximation (rank = 2) for the learned
matrices by SVD and plot them in a 2D plane, as shown in Figure 1. We also check the singular
values distribution and find that our low-rank approximation is reasonable: other singular values are
much smaller than the chosen ones.

3

Published as a conference paper at ICLR 2019

3.2 DISCUSSION

In the classification task, the category embeddings (blue triangles in Figure 1(c)) in the softmax layer
are diversely distributed around the origin. This shows the directions of category embeddings are
different from each other and well separated, which consequently leads to large margin classification
results with good generalization. For the word embeddings learnt from Word2Vec (Figure 1(b)),
the phenomena are similar, the embeddings are also widely distributed around the origin in the
projection space, which shows different words have different semantic meanings. Observations on
GLOVE (Pennington et al., 2014) reported in Mu et al. (2018) are also consistent with ours.

We observe very different phenomena for machine translation. We can see from Figure 1(a) that the
word embeddings are clustered together and only lying in a narrow cone. Furthermore, we find the
cosine similarities between word embeddings are positive for almost all cases. That is, the words
huddle together and are not well separated in the embedding space.

Clearly, as the role of word embeddings, which are the inputs to the neural networks, the word
representations should be widely distributed to represent different semantic meanings. As the role
of softmax in the output layer, to achieve good prediction of next word in a target sentence, a more
diverse distribution of word embeddings in the space is expected to obtain a large margin result.
However, such representations of words limit the expressiveness of the learnt model. We call such a
problem the representation degeneration problem.

4 UNDERSTANDING THE PROBLEM

We show in the previous section that in training natural language generation models, the learnt
word embeddings are clustered into a narrow cone and the model faces the challenge of limited
expressiveness. In this section, we try to understand the reason of the problem and show that it is
related to the optimization of low-frequency words with diverse contexts.

In natural language generation tasks, the vocabulary is usually of large size and the words are of low
frequencies according to Zipf’s law. For example, more than 90% of words’ frequencies are lower
than 10e-4 in WMT 2014 English-German dataset. Note that even for a popular word, its frequency
is also relatively low. For a concrete example, the frequency of the word “is” is only about 1% in the
dataset, since “is” occurs at most once in most simple sentences. Our analysis is mainly based on the
optimization pattern of the low-frequency words which occupy the major proportion of vocabulary.

The generation of a sequence of words (or word indexes) y = (y1, · · · , yM) is equivalent to generate
the words one by one from left to right. The probability of generating y can be factorized as P (Y =
y) = ΠtP (Yt = yt|Y<t = y<t), where y<t denotes for the first t − 1 words in y. Sometimes,
the generative model also depends on other context, e.g., the context from the source sentence for
machine translation. To study the optimization of the word embeddings, we simply consider the
generation of a word as a multi-class classification problem and formally describe the optimization
as follows.

Consider a multi-class classification problem withM samples. Let hi denote the hidden state before
the softmax layer which can be also considered as the input features, i = 1, · · · ,M . Without any
loss of generality, we assume hi is not a zero vector for all i. Let N denote the vocabulary size. The
conditional probability of yi ∈ {1, · · · , N} is calculated by the softmax function: P (Yi = yi|hi) =

exp(〈hi,wyi
〉)∑N

l=1 exp(〈hi,wl〉)
, where wl is the embedding for word/category l, l = 1, 2, · · · , N .

4.1 EXTREME CASE: NON-APPEARED WORD TOKENS

Note that in most NLP tasks, the frequencies of rare words are rather low, while the number of them
is relatively large. With stochastic training paradigm, the probabilities to sample a certain infrequent
word in a mini-batch are very low, and thus during optimization, the rare words behave similarly to
a non-appeared word. We first consider the extreme case of non-appeared word in this section and
extend to a more general and realistic scenario in the next section.

We assume yi 6= N for all i. That is, the N -th word with embedding wN does not appear in the
corpus, which is the extreme case of a low-frequency rare word. We focus on the optimization

4

Published as a conference paper at ICLR 2019

process of wN and assume all other parameters are fixed and well-optimized. By log-likelihood
maximization, we have

max
wN

1

M

M∑
i=1

log
exp(〈hi, wyi〉)∑N
l=1 exp(〈hi, wl〉)

. (1)

As all other parameters are fixed, this is equivalent to

min
wN

1

M

M∑
i=1

log(exp(〈hi, wN 〉) + Ci), (2)

where Ci =
∑N−1
l=1 exp(〈hi, wl〉) and can be considered as some constants.

Definition 1. We say that vector v is a uniformly negative direction of hi, i = 1, · · · ,M , if 〈v, hi〉 <
0 for all i.

The following theorem provides a sufficient condition for the embedding wN approaching un-
bounded during optimization. We leave the proof of all the theorems in the appendix.
Theorem 1. A. If the set of uniformly negative direction is not empty, it is convex. B. If there exists
a v that is a uniformly negative direction of hi, i = 1, · · · ,M , then the optimal solution of Eqn. 2
satisfies ‖ w∗N ‖=∞ and can be achieved by setting w∗N = limk→+∞ k · v.

From the above theorem, we can see that if there exists a set of uniformly negative direction, the
embedding wN can be optimized along any uniformly negative direction to infinity. As the set of
uniformly negative direction is convex, wN is likely to lie in a convex cone and move to infinity
during optimization. Next, we provide a sufficient and necessary condition for the existence of the
uniformly negative direction.
Theorem 2. There exists a v that is a uniformly negative direction of a set of hidden states, if and
only if the convex hull of the hidden states does not contain the origin.

Discussion on whether the condition happens in real practice From the theorem, we can see that
the existence of the uniformly negative direction is highly related to the structure of the hidden states,
and then affects the optimization of word embeddings. Note that a common trick used in sequence
generation tasks is layer normalization (Ba et al., 2016; Vaswani et al., 2017; Merity et al., 2018),
which first normalizes each hidden state vector into standard vector2, and then rescales/translates the
standard vector with scaling/bias term. In the appendix, we show that under very mild conditions,
the space of hidden states doesn’t contain the origin almost for sure in practice.

4.2 EXTENSION TO RARELY APPEARED WORD TOKENS

In the previous section, we show that under reasonable assumptions, the embeddings of all non-
appeared word tokens will move together along the uniformly negative directions to infinity. How-
ever, it is not realistic that there exist non-appeared word tokens and the weights of embedding can
be trained to be unbounded with L2 regularization term. In this section, we extend our analysis
to a more realistic setting. The key we want to show is that the optimization of a rarely appeared
word token is similar to that of non-appeared word tokens. Following the notations in the previous
section, we denote the embedding of a rare word as wN and fix all other parameters. We study the
optimization for this particular token with the negative log-likelihood loss function.

To clearly characterize the influence of wN to the loss function, we divide the loss function into
two pieces. Piece AwN

contains the sentences that do not contain wN , i.e., all hidden states in such
sentences are independently of wN and the ground truth label of each hidden state (denoted as w∗h)
is not wN . Then wN can be considered as a “non-appeared token” in this set. Denote the space
of the hidden state in piece AwN

as HAwN
with probability distribution PAwN

, where HAwN
and

PAwN
can be continuous. The loss function on piece AwN

can be defined as

LAwN
(wN) = −

∫
HAwN

log
exp(〈h,w∗h〉)∑N
l=1 exp(〈h,wl〉)

dPAwN
(h), (3)

2the mean and variance of the values of the vector are normalized to be 0 and 1 respectively

5

Published as a conference paper at ICLR 2019

which is a generalized version of Eqn. 1. Piece BwN
contains the sentences which contain wN , i.e.,

wN appears in every sentence in piece BwN
. Then in piece BwN

, in some cases the hidden states
are computed based on wN , e.g., when the hidden state is used to predict the next token after wN .
In some other cases, the hidden states are used to predict wN . Denote the space of the hidden state
in piece BwN

asHBwN
with probability distribution PBwN

. The loss function on piece BwN
can be

defined as

LBwN
(wN) = −

∫
HBwN

log
exp(〈h,w∗h〉)∑N
l=1 exp(〈h,wl〉)

dPBwN
(h), (4)

Based on these notations. the overall loss function is defined as

L(wN) = P (sentence s in AwN
)LAwN

(wN) + P (sentence s in BwN
)LBwN

(wN). (5)

The loss on piece AwN
is convex while the loss on piece BwN

is complicated and usually non-
convex with respect to wN . The general idea is that given the fact that LAwN

(wN) is a convex
function with nice theoretical properties, if P (sentence s in AwN

) is large enough, e.g., larger than
1− ε, and LBwN

(wN) is a bounded-smooth function. The optimal solution of L(wN) is close to the
optimal solution of LAwN

(wN) which can be unique if LAwN
(wN) is strongly-convex. A formal

description is as below.
Theorem 3. Given an α-strongly convex function f(x) and a function g(x) that satisfies its Hessian
matrix H(g(x)) � −βI , where I is the identity matrix, and |g(x)| < B. For a given ε > 0,
let x∗ and x∗ε be the optimum of f(x) and (1 − ε)f(x) + εg(x), respectively. If ε < α

α+β , then
‖ x∗ − x∗ε ‖22≤ 4εB

α−ε(α+β) .

We make some further discussions regarding the theoretical results. In natural language generation,
for two low-frequency wordsw andw′, pieceAw andAw′ has large overlaps. Then the loss LAw(w)
and LAw′ (w

′) are similar with close optimum. According to the discussion above, the learnt word
embedding of w and w′ is likely to be close to each other, which is also observed from the empirical
studies.

5 ADDRESSING THE PROBLEM

In this section, we propose an algorithm to address the representation degeneration problem. As
shown in the previous study, the learnt word embeddings are distributed in a narrow cone in the Eu-
clid space which restricts the expressiveness of the representation. Then a straightforward approach
is to improve the aperture of the cone which is defined as the maximum angle between any two
boundaries of the cone. For the ease of optimization, we minimize the cosine similarities between
any two word embeddings to increase the expressiveness.

For simplicity, we denote the normalized direction ofw as ŵ, ŵ = w
‖w‖ . Then our goal is to minimize∑

i

∑
j 6=i ŵi

T ŵj as well as the original log-likelihood loss function. By introducing hyperparameter
γ to trade off the log-likelihood loss and regularization term, the overall objective is,

L = LMLE + γ
1

N2

N∑
i

N∑
j 6=i

ŵi
T ŵj . (6)

We call this new loss as MLE with Cosine Regularization (MLE-CosReg). In the following, we
make some analysis about the regularization term.

Denote R =
∑N
i

∑N
j 6=i ŵi

T ŵj , and denote the normalized word embedding matrix as Ŵ =

[ŵ1, ŵ2, ..., ŵN]T . It is readily to check the regularizer has the matrix form as R =∑N
i

∑N
j 6=i ŵi

T ŵj =
∑N
i

∑N
j ŵi

T ŵj −
∑N
i ‖ ŵ ‖2= Sum(ŴŴT) − N , where the Sum(·)

operator calculates the sum of all elements in the matrix. Since N is a constant, it suffices to con-
sider the first term Sum(ŴŴT) only.

Since ŴŴT is a positive semi-definite matrix, all its eigenvalues are nonnegative. Since ŵi is a
normalized vector, every diagonal element of ŴŴT is 1. Then the trace of ŴŴT , which is also
the sum of the eigenvalues, equals to N .

6

Published as a conference paper at ICLR 2019

Table 1: Experimental result on language modeling (perplexity). Bold numbers denote for the best
result.

Model Parameters Validation Test

2-layer skip connection LSTM (Mandt et al., 2017) (tied) 24M 69.1 65.9

AWD-LSTM (Merity et al., 2018) (w.o. finetune) 24M 69.1 66.0
AWD-LSTM (Merity et al., 2018) (w.t. finetune) 24M 68.6 65.8
AWD-LSTM (Merity et al., 2018) + continuous cache pointer 24M 53.8 52.0

MLE-CosReg (w.o. finetune) 24M 68.2 65.2
MLE-CosReg (w.t. finetune) 24M 67.1 64.1
MLE-CosReg + continuous cache pointer 24M 51.7 50.0

Table 2: Experimental results on WMT English → German and German → English translation.
Bold numbers denote for our results and ‡ denotes for our implementation.

English→German German→English
Model BLEU Model BLEU
ConvS2S (Gehring et al., 2017) 25.16 DSL (Xia et al., 2017b) 20.81
Base Transformer (Vaswani et al., 2017) 27.30 Dual-NMT (Xia et al., 2017a) 22.14
Base Transformer + MLE-CosReg 28.38 ConvS2S‡ (Gehring et al., 2017) 29.61
Big Transformer (Vaswani et al., 2017) 28.40 Base Transformer‡ (Vaswani et al., 2017) 31.00
Big Transformer + MLE-CosReg 28.94 Base Transformer + MLE-CosReg 31.93

As the cosine similarities between the word embeddings are all positive. According to Theorem 4,
when ŴŴT is a positive matrix, we have the largest absolute eigenvalue of ŴŴT is upper bounded
by Sum(ŴŴT). Then minimizingR is equivalent to minimize the upper bound of the largest eigen-
value. As the sum of all eigenvalues is a constant, the side effect is to increase other eigenvalues,
consequently improving the expressiveness of the embedding matrix.

Theorem 4. (Merikoski, 1984) For any matrix A, which is a real and nonnegative n × n matrix.
The spectral radius, which is the largest absolute value of A’s eigenvalues, is less than or equals to
Sum(A).

6 EXPERIMENTS

We conduct experiments on two basic natural language generation tasks: language modeling and
machine translation, and report the results in this section.

6.1 EXPERIMENTAL SETTINGS

6.1.1 LANGUAGE MODELING

Language modeling is one of the fundamental tasks in natural language processing. The goal is to
predict the probability of the next word conditioned on previous words. The evaluation metric is per-
plexity. Smaller the perplexity, better the performance. We used WikiText-2 (WT2) corpus, which
is popularly used in many previous works (Merity et al., 2017; Inan et al., 2017; Grave et al., 2017).
WikiText-2 is sourced from curated Wikipedia articles and contains approximately a vocabulary of
over 30,000 words. All the text has been tokenized and processed with the Moses tokenizer (Koehn
et al., 2006). Capitalization, punctuation and numbers are retained in this dataset.

AWD-LSTM (Merity et al., 2018) is the state-of-the-art model for language modeling. We directly
followed the experimental settings as in Merity et al. (2018) to set up the model architecture and

7

Published as a conference paper at ICLR 2019

(a) MLE-CosReg (b) Singular Values

Figure 2: (a): Word embeddings trained from MLE-CosReg. (b): Singular values of embedding
matrix. We normalize the singular values of each matrix so that the largest one is 1.

hyperparameter configurations. We used a three-layer LSTM with 1150 units in the hidden layer
and set the size of embedding to be 400. The ratio for dropout connection on recurrent weight is
kept the same as Merity et al. (2018). We trained the model with Averaged Stochastic Gradient
Descent. Our implementation was based on open-sourced code3 by Merity et al. (2018). For our
proposed MLE-CosReg loss, we found the hyperparameter γ is not very sensitive and we set it to 1
in the experiments. We added neural cache model (Grave et al., 2017) to further reduce perplexity.

6.1.2 MACHINE TRANSLATION

Machine Translation aims at mapping sentences from a source domain to a target domain. We
focus on English→ German and German→ English in our experiments. We used the dataset from
standard WMT 2014, which consists of 4.5 million English-German sentence pairs and has been
widely used as the benchmark for neural machine translation (Vaswani et al., 2017; Gehring et al.,
2017). Sentences were encoded using byte-pair encoding (Sennrich et al., 2016), after which we got
a shared source-target vocabulary with about 37000 subword units. We measured the performance
with tokenized case-sensitive BLEU (Papineni et al., 2002).

We used state-of-the-art machine translation model Transformer (Vaswani et al., 2017), which uti-
lizes self-attention mechanism for machine translation. We followed the setting in Vaswani et al.
(2017) and used the official code (Vaswani et al., 2018) from Transformer. For both English →
German and German → English tasks, we used the base version of Transformer (Vaswani et al.,
2017), which has a 6-layer encoder and 6-layer decoder, the size of hidden nodes and embedding
are set to 512. For English→ German task, we additionally run an experiment on the big version
of Transformer, which has 3x parameters compared with the base variant. All the models were
trained with Adam optimizer, and all the hyperparameters were set as default as in Vaswani et al.
(2017). γ is set to 1 as in the experiments of language modeling.

6.2 EXPERIMENTAL RESULTS

We present experimental results for language modeling in Table 1 and machine translation in Table 2.

For language modeling, we compare our method with vanilla AWD-LSTM (Merity et al., 2018) in
three different settings, without finetune, with finetune and with further continuous cache pointer.
Our method outperforms it with 0.8/1.7/2.0 improvements in terms of test perplexity. For machine
translation, comparing with original base Transformer (Vaswani et al., 2017), our method improves
performance with 1.08/0.93 for the English→ German and German→ English tasks, respectively,
and achieves 0.54 improvement on the big Transformer.

Note that for all tasks, we only add one regularization term to the loss function, while no additional
parameters or architecture/hyperparameters modifications are applied. Therefore, the accuracy im-
provements purely come from our proposed method. This demonstrates that by regularizing the
similarity between word embeddings, our proposed MLE-CosReg loss leads to better performance.

3https://github.com/salesforce/awd-lstm-lm

8

Published as a conference paper at ICLR 2019

6.3 DISCUSSION

The study above demonstrates the effectiveness of our proposed method in terms of final accuracy.
However, it is still unclear whether our method has improved the representation power of learnt
word embeddings. In this subsection, we provide a comprehensive study on the expressiveness of
the model learnt by our algorithm.

For a fair comparison with the empirical study in Section 3, we analyze the word embeddings of our
model on English→ German translation task. We project the word embeddings into 2-dimensional
space using SVD for visualization. Figure 2(a) shows that the learnt word embeddings are somewhat
uniformly distributed around the origin and not strictly in a narrow cone like in Figure 1(a). This
shows that our proposed regularization term effectively expands word embedding space. We also
compare the singular values for word embedding matrix of our learnt model and the baseline model,
as shown in the Figure 2(b). According to the figure, trained with vanilla Transformer, only a
few singular values dominate among all singular values, while trained with our proposed method,
the singular values distribute more uniformly. Again, this demonstrates the diversity of the word
embeddings learnt by our method.

7 CONCLUSION AND FUTURE WORK

In this work, we described and analyzed the representation degeneration problem in training neu-
ral network models for natural language generation tasks both empirically and theoretically. We
proposed a novel regularization method to increase the representation power of word embeddings
explicitly. Experiments on language modeling and machine translation demonstrated the effective-
ness of our method.

In the future, we will apply our method to more language generation tasks. Our proposed reg-
ularization term is based on cosine similarity. There may exist some better regularization terms.
Furthermore, it is interesting to combine with other approaches, e.g. (Gong et al., 2018), to enrich
the representation of word embeddings.

8 ACKNOWLEDGEMENTS

This work was partially supported by National Basic Research Program of China (973 Program)
(grant no. 2015CB352502), NSFC (61573026) and BJNSF (L172037). We would like to thank
Zhuohan Li and Chengyue Gong for helpful discussions, and the anonymous reviewers for their
valuable comments on our paper.

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In Proceedings of the International Conference on Learning Rep-
resentations, 2015.

Denny Britz, Anna Goldie, Minh-Thang Luong, and Quoc Le. Massive exploration of neural ma-
chine translation architectures. In Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing, pp. 1442–1451. Association for Computational Linguistics, 2017.
doi: 10.18653/v1/D17-1151.

Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional networks. In International Conference on Machine Learning, pp. 933–941, 2017.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convolutional
sequence to sequence learning. In International Conference on Machine Learning, pp. 1243–
1252, 2017.

9

Published as a conference paper at ICLR 2019

Chengyue Gong, Di He, Xu Tan, Tao Qin, Liwei Wang, and Tie-Yan Liu. Frage: frequency-agnostic
word representation. In Advances in Neural Information Processing Systems, pp. 1341–1352,
2018.

Edouard Grave, Armand Joulin, and Nicolas Usunier. Improving neural language models with a
continuous cache. In Proceedings of the International Conference on Learning Representations,
2017.

Hakan Inan, Khashayar Khosravi, and Richard Socher. Tying word vectors and word classifiers:
A loss framework for language modeling. In Proceedings of the International Conference on
Learning Representations, 2017.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu. Exploring the
limits of language modeling. arXiv preprint arXiv:1602.02410, 2016.

Yoon Kim, Yacine Jernite, David Sontag, and Alexander M Rush. Character-aware neural language
models. In Thirtieth AAAI Conference on Artificial Intelligence, pp. 2741–2749, 2016.

Philipp Koehn, Marcello Federico, Wade Shen, Nicola Bertoldi, Ondrej Bojar, Chris Callison-Burch,
Brooke Cowan, Chris Dyer, Hieu Hoang, Richard Zens, et al. Open source toolkit for statistical
machine translation: Factored translation models and confusion network decoding. In Final Re-
port of the 2006 JHU Summer Workshop, 2006.

Weiyang Liu, Yandong Wen, Zhiding Yu, and Meng Yang. Large-margin softmax loss for convolu-
tional neural networks. In International Conference on Machine Learning, pp. 507–516, 2016.

Stephan Mandt, Matthew D Hoffman, and David M Blei. Stochastic gradient descent as approximate
bayesian inference. The Journal of Machine Learning Research, 18(1):4873–4907, 2017.

Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. Learned in translation:
Contextualized word vectors. In Advances in Neural Information Processing Systems, pp. 6297–
6308, 2017.

Jorma Kaarlo Merikoski. On the trace and the sum of elements of a matrix. Linear algebra and its
applications, 60:177–185, 1984.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In Proceedings of the International Conference on Learning Representations, 2017.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing lstm lan-
guage models. In Proceedings of the International Conference on Learning Representations,
2018.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khudanpur. Recurrent
neural network based language model. In Eleventh Annual Conference of the International Speech
Communication Association, 2010.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed represen-
tations of words and phrases and their compositionality. In Advances in Neural Information
Processing Systems, pp. 3111–3119, 2013.

Jiaqi Mu, Suma Bhat, and Pramod Viswanath. All-but-the-top: simple and effective postprocessing
for word representations. In Proceedings of the International Conference on Learning Represen-
tations, 2018.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting on association for
computational linguistics, pp. 311–318. Association for Computational Linguistics, 2002.

Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 1532–1543, 2014.

10

Published as a conference paper at ICLR 2019

Ofir Press and Lior Wolf. Using the output embedding to improve language models. In Proceedings
of the 15th Conference of the European Chapter of the Association for Computational Linguistics:
Volume 2, Short Papers, pp. 157–163. Association for Computational Linguistics, 2017. URL
http://aclweb.org/anthology/E17-2025.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1715–1725. Association for Computational Linguistics,
2016.

Lifeng Shang, Zhengdong Lu, and Hang Li. Neural responding machine for short-text conversation.
In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
volume 1, pp. 1577–1586, 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, pp. 6000–6010, 2017.

Ashish Vaswani, Samy Bengio, Eugene Brevdo, Francois Chollet, Aidan N. Gomez, Stephan
Gouws, Llion Jones, Łukasz Kaiser, Nal Kalchbrenner, Niki Parmar, Ryan Sepassi, Noam
Shazeer, and Jakob Uszkoreit. Tensor2tensor for neural machine translation. CoRR,
abs/1803.07416, 2018. URL http://arxiv.org/abs/1803.07416.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine trans-
lation system: Bridging the gap between human and machine translation. arXiv preprint
arXiv:1609.08144, 2016.

Yingce Xia, Jiang Bian, Tao Qin, Nenghai Yu, and Tie-Yan Liu. Dual inference for machine learning.
In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, pp.
3112–3118, 2017a.

Yingce Xia, Tao Qin, Wei Chen, Jiang Bian, Nenghai Yu, and Tie-Yan Liu. Dual supervised learning.
In International Conference on Machine Learning, pp. 3789–3798, 2017b.

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and William W Cohen. Breaking the softmax
bottleneck: a high-rank rnn language model. In Proceedings of the International Conference on
Learning Representations, 2018.

Zhao Yue, Zhao Deli, Wan Shaohua, and Zhang Bo. Softmax supervision with isotropic normaliza-
tion, 2018. URL https://openreview.net/forum?id=SyXNErg0W.

11

http://aclweb.org/anthology/E17-2025
http://arxiv.org/abs/1803.07416
https://openreview.net/forum?id=SyXNErg0W

Published as a conference paper at ICLR 2019

APPENDICES

A PROOFS

In this section, we add proofs of all the theorems in the main sections.

Theorem 1. A. If the set of uniformly negative direction is not empty, it is convex. B. If there exists
a v that is a uniformly negative direction of hi, i = 1, · · · ,M , then the optimal solution of Eqn. 2
satisfies ‖ w∗N ‖=∞ and can be achieved by setting w∗N = limk→+∞ k · v.

Proof. The first part is straight forward and we just prove the second part. De-
note v as any uniformly negative direction, and k as any positive value. We have
limk→+∞

∑M
i=1 log(exp(〈hi, k · v〉) + Ci) =

∑M
i=1 log(Ci). As

∑M
i=1 log(Ci) is the lower bound

of the objective function in Eqn. 2 and the objective function is convex, we have w∗ = limk→∞ k ·v
is local optimum and also the global optimum. Note that the lower bound can be achieved only if
〈hi, wN 〉 approaches negative infinity for all i. Then it is easy to check for any optimal solution
‖ w∗N ‖=∞.

Theorem 2. There exists a v that is a uniformly negative direction of a set of hidden states, if and
only if the convex hull of the hidden states does not contain the origin.

Proof. We first prove the necessary condition by contradiction. Suppose there areM hidden states in
the set. If the convex hull of hi, i = 1, · · · ,M , contains the origin and there exists a uniformly neg-
ative direction (e.g. v). Then from the definition of convex hull, there exists αi, i = 1, · · · ,M , such
that

∑M
i αihi = 0, αi ≥ 0 and

∑
i αi = 1. Multiplying v on both sides, we have

∑
i αi〈hi, v〉 = 0,

which contradicts with 〈hi, v〉 < 0 for all i.

For the sufficient part, if the convex hull of hi, i = 1, · · · ,M , does not contain the origin, there
exists at least one hyperplane H that passes through the origin and does not cross the convex hull.
Then it is easy to check that a normal direction of the half space derived by the H is a uniformly
negative direction. The theorem follows.

Theorem 3. Given an α-strongly convex function f(x) and a function g(x) that satisfies its Hessian
matrix H(g(x)) � −βI , where I is the identity matrix, and |g(x)| < B. For a given ε > 0,
let x∗ and x∗ε be the optimum of f(x) and (1 − ε)f(x) + εg(x), respectively. If ε < α

α+β , then
‖ x∗ − x∗ε ‖22≤ 4εB

α−ε(α+β) .

Proof. We first prove the function (1− ε)f(x) + εg(x) is α− ε(α+ β)-strongly convex.

Let’s consider the Hessian matrix of it. As f(x) is α-strongly convex and H(g(x)) � −βI , using
the definition of positive-definite matrix, the following inequality holds:

∀v, vT (H(g) + βI)v > 0; (7)

vT (H(f)− αI)v > 0. (8)

To make it clear, we omit x here. Then for the Hessian matrix of (1− ε)f(x) + εg(x), we have:

∀v, vT (H((1− ε)f + εg)− (α− ε(α+ β))I)v (9)

= vT (H((1− ε)f) + H(εg)− (1− ε)αI + εβI)v (10)

= vT ((1− ε)H(f) + εH(g)− (1− ε)αI + εβI)v (11)

= vT ((1− ε)(H(f)− αI) + ε(H(g) + εβI))v (12)

= vT ((1− ε)(H(f)− αI))v + vT (ε(H(g) + βI))v (13)

= (1− ε)vT (H(f)− αI)v + εvT (H(g) + βI)v (14)
> (1− ε)0 + ε0 (15)
= 0. (16)

12

Published as a conference paper at ICLR 2019

Thus, H((1−ε)f(x)+εg(x))−(α−ε(α+β))I is positive-definite, which means (1−ε)f(x)+εg(x)
is α− ε(α+ β)-strongly convex. Then, with the properties in strong convexity, we have:

‖ x∗ − x∗ε ‖22 ≤ 2

α− ε(α+ β)
(f(x∗) + εg(x∗)− f(x∗ε)− εg(x∗ε)) (17)

≤ 2

α− ε(α+ β)
(εg(x∗)− εg(x∗ε)) (18)

≤ 4εB

α− ε(α+ β)
. (19)

B COMPUTATION OF THE COSINE REGULARIZATION

In this section, we provide analysis of the computational cost of the proposed regularization term.

Proposition 1. The cosine regularization in Eqn. 6 can be computed in Θ(N) time where N is the
size of vocabulary.

Proof. The regularization term can be simplified as below:

N∑
i

N∑
j 6=i

ŵTi ŵj = (

N∑
i

ŵi)
T (

N∑
j

ŵj)−
N∑
i

ŵTi ŵi (20)

= (

N∑
i

ŵi)
T (

N∑
i

ŵi)−N (21)

= ||
N∑
i

ŵi||22 −N. (22)

From the above equations, we can see that we only need to compute the sum of all the normalized
word embedding vectors, and thus the computational time is linear with respect to the vocabulary
size N .

C DISCUSSION ON LAYER NORMALIZATION

In this section, we show the condition on the existence of the uniformly negative direction holds
almost for sure in practice with models where layer normalization is applied before last layer.

Let h1, h2, · · · , hn be n vectors in Rd Euclidean space. Let
−→
1 /
−→
0 be the d-dimensional vector filled

with ones/zeros respectively. By applying layer normalization we have:

µi =
1

d

−→
1 Thi, (23)

σ2
i =

1

d
‖ hi −

−→
1 µi ‖22, (24)

h′i = g� hi −
−→
1 µi

σi
+ b, (25)

where µi and σ2
i are the mean and variance of entries in vector hi, g and b are learnt scale/bias

vectors and � denotes the element-wise multiplication. Here we simply assume that σ2
i and each

entry in g and b are not zero (since the exact zero value can be hardly observed using gradient
optimization in real vector space). If the convex hull of h′1, h

′
2, · · · , h′n contains the origin, then

there exist λ1, λ2, · · · , λn, such that:
n∑
i=1

λih
′
i =
−→
0 ;

n∑
i=1

λi = 1;λi ≥ 0,∀i = 1, 2, · · · , n. (26)

13

Published as a conference paper at ICLR 2019

By combining 25 and 26 we have:
n∑
i=1

λih
′
i =

n∑
i=1

λi(g� hi −
−→
1 µi

σi
+ b) (27)

= b +

n∑
i=1

λi(g� hi −
−→
1 µi

σi
) (28)

= b + g�
n∑
i=1

λi
hi −

−→
1 µi

σi
=
−→
0 . (29)

Denote b
g = (b1g1 ,

b2
g2
, · · · , bdgd), thus we have

∑n
i=1 λi

hi−
−→
1 µi

σi
= − b

g . Since
−→
1 T hi−

−→
1 µi

σi
= 0 for

all i, there exist λ1, λ2, · · · , λn that satisfy Eqn. 26 only if
−→
1 T b

g = −
−→
1 T

∑n
i=1 λi

hi−
−→
1 µi

σi
=

−
∑n
i=1 λi

−→
1 T hi−

−→
1 µi

σi
= 0, which can hardly be guaranteed using current unconstrained optimiza-

tion. We also empirically verify this.

D (SUB)WORD FREQUENCY DISTRIBUTION ON WMT2014
ENGLISH-GERMAN AND WIKITEXT 2 DATASETS

In this section, we show the (sub)word frequency distribution on the datasets we use in experiments
in the Figure 3.

0 5000 10000 15000 20000 25000
Word Index

7.0

6.5

6.0

5.5

5.0

4.5

4.0

3.5

3.0

Lo
g1

0
W

or
d

Fr
eq

ue
nc

y

(a) BPE in WMT 2014 En-De

0 5000 10000 15000 20000 25000
Word Index

7.0

6.5

6.0

5.5

5.0

4.5

4.0

3.5

3.0

Lo
g1

0
W

or
d

Fr
eq

ue
nc

y

(b) WikiText-2

Figure 3: (a): WMT 2014 English-German Dataset preprocessed with BPE. (b): word-level
WikiText-2. In the two figures, the x-axis is the token ranked with respect to its frequency in de-
scending order. The y-axis is the logarithmic value of the token frequency.

14

	Introduction
	Related Work
	Representation Degeneration Problem
	Experimental Design
	Discussion

	Understanding the Problem
	Extreme Case: Non-appeared word tokens
	Extension to rarely appeared word tokens

	Addressing the Problem
	Experiments
	Experimental Settings
	Language Modeling
	Machine Translation

	Experimental Results
	Discussion

	Conclusion and Future Work
	Acknowledgements
	Proofs
	Computation of the Cosine Regularization
	Discussion on Layer Normalization
	(Sub)Word Frequency distribution on WMT2014 English-German and WikiText 2 Datasets

