
Published as a conference paper at ICLR 2018

MEMORY ARCHITECTURES IN RECURRENT NEURAL
NETWORK LANGUAGE MODELS

Dani Yogatama♣, Yishu Miao♠, Gabor Melis♣, Wang Ling♣, Adhiguna Kuncoro♣♠
Chris Dyer♣, Phil Blunsom♣♠
♣DeepMind and ♠University of Oxford
dyogatama@google.com, yishu.miao@cs.ox.ac.uk
{melisgl,lingwang,akuncoro,cdyer,pblunsom}@google.com

ABSTRACT

We compare and analyze sequential, random access, and stack memory architec-
tures for recurrent neural network language models. Our experiments on the Penn
Treebank and Wikitext-2 datasets show that stack-based memory architectures
consistently achieve the best performance in terms of held out perplexity. We also
propose a generalization to existing continuous stack models (Joulin & Mikolov,
2015; Grefenstette et al., 2015) to allow a variable number of pop operations more
naturally that further improves performance. We further evaluate these language
models in terms of their ability to capture non-local syntactic dependencies on a
subject-verb agreement dataset (Linzen et al., 2016) and establish new state of the
art results using memory augmented language models. Our results demonstrate
the value of stack-structured memory for explaining the distribution of words in
natural language, in line with linguistic theories claiming a context-free backbone
for natural language.

1 INTRODUCTION

Sequential recurrent neural networks such as LSTMs (Hochreiter & Schmidhuber, 1997) are the
basis of state-of-the-art models of natural language in various tasks. They effectively learn to capture
dependencies between events separated in time by learning to store and retrieve information in a
hidden state. However, the ability of these methods to discover long-term dependencies is limited by
the capacity of their hidden state and the difficulty of propagating reliable gradients. For example,
LSTM language models have been shown to struggle to capture non-sequential syntactic dependencies
in complex sentences without explicit supervision (Linzen et al., 2016). As an illustration of the
kind of dependencies they have difficulty learning, in the sentence, the loss of basic needs providers
emigrating from impoverished countries has a damaging effect, correctly predicting singular has
rather than its plural form have requires that the LSTM have learned that it depends on the subject, in
this case the first noun (loss) rather than any of the intervening non-subject nouns, such as countries.
Linzen et al. (2016) show that LSTM language models fail to capture this kind of dependencies,
especially as the number of attractors (underlined) increases.

Attempts to improve language models’ ability to capture non-local dependencies have recently
been undertaken by introducing an external memory components. These include (i) a soft attention
mechanism (Daniluk et al., 2017) and (ii) an explicit memory block or cache model (Tran et al., 2016;
Grave et al., 2017). However, since very local context is often most highly informative for predicting
the next word, existing memory-augmented RNN LMs use memory just to store information about
local context (Daniluk et al., 2017).

In this work, we compare several memory architectures for recurrent neural network language models.
Since our goal is to evaluate how well these types of memory architectures learn long term and
syntactic dependencies, we focus on language models that are static as opposed to non-static models
such as neural cache (Grave et al., 2017) and dynamic evaluation (Krause et al., 2017) that can update
their distribution at test time. We consider increasing the capacity of a purely sequential memory
model by increasing the capacity of an LSTM, a random access memory model as typified by an
attention-based LSTM, and a new variant of a stack augmented recurrent neural network.

1

Published as a conference paper at ICLR 2018

Unlike random access memory models, a stack has a built-in bias to discover hierarchical structures
that are important in language. A continuous stack memory has been proposed to improve recurrent
neural networks (Joulin & Mikolov, 2015; Grefenstette et al., 2015), although it has never been
carefully evaluated in benchmark language modeling experiments. In the only set of results for a
stack augmented recurrent language model, Joulin & Mikolov (2015) show that a stack augmented
vanilla RNN outperforms a standard RNN and is comparable to an LSTM. We augment an LSTM
with a stack memory and perform thorough comparisons to evaluate its efficacy as a language model.
In contrast to prior work, our continuous stack allows for push, stay, and a variable number of
pop operations at each time step (multiple pop operations are useful in modeling natural language
sentences since while only a single new word is presented at each time step, multiple syntactic units
may come to an end concurrently).

Our motivating hypothesis is that allowing the memory to dynamically store and retrieve contextual
information with a stack will drive the model to use the memory to learn dependencies that are difficult
to capture by a sequential model. Sequential memory has an easier time learning local dependencies,
but it often fails to capture long term dependencies. Random access memory models capture longer
range dependencies (i.e., proportional to the window size), but the learner has to infer these from data
without any informative structural bias. We hypothesize that introducing a more appropriate inductive
bias will make it easier for the model to learn long range and structurally meaningful dependencies,
given that the variance in learning such dependencies can be high. Linguistic insights reveal that
one possible inductive bias is in the form of a hierarchical nested structure that captures syntactic
dependencies. Stack memory models provide a natural way for capturing hierarchical structures,
providing an easier path for gradients to flow to particular locations in the past.

Our main contributions in this paper are as follows:

• We thoroughly evaluate the efficacy of a stack augmented RNN as a language model and
propose a more expressive extension to existing stack models (§2.1).
• We compare how a recurrent neural network uses a stack memory, a sequential memory cell

(i.e., an LSTM memory cell), and a random access memory (i.e., an attention mechanism)
for language modeling. Experiments on the Penn Treebank and Wikitext-2 datasets (§3.2)
show that both the stack model and the attention-based model outperform the LSTM model
with a comparable (or even larger) number of parameters, and that the stack model eliminates
the need to tune window size to achieve the best perplexity.
• We assess the ability of these memory models to discover long range structural dependencies

commonly encountered in natural language using the subject-verb agreement dataset (Linzen
et al., 2016). We achieve new state of the art results and show that the gap in accuracy
between a sequential or random access memory model with a stack model gets bigger as the
dependencies become more complex (i.e., number of attractors increases; §3.3). We also
analyze the stack and find that the model tends to use it to enhance its sequential memory
component in high entropy prediction contexts (§3.4).

2 MODEL

We consider a language modeling problem where the goal is to predict the next word xt given
previously seen context words x0, . . . , xt−1. We represent each input word x by its D-dimensional
embedding vector x ∈ RD.

Our base model is an LSTM that computes a hidden state at timestep t as follows:
it = σ(Wi,xxt +Wi,hht−1 + bi) ft = σ(Wf,xxt +Wf,hht−1 + bf)

ot = σ(Wo,xxt +Wo,hht−1 + bo) gt = tanh(Wg,xxt +Wg,hht−1 + bg)

ct = ft � ct−1 + it � gt ht = ot � tanh(ct)

Sequential memory. An LSTM has a sequential memory cell c to store and retrieve information
that is regulated by the input, output, and forget gates. In order for long-term contextual information
to be used in the future, it has to pass through these gates for multiple timesteps.

Random access memory. One common approach to retrieve information from the distant past
more reliably is to augment the model with a random access memory block via an attention based

2

Published as a conference paper at ICLR 2018

xt�1 xt xt+1

ht+1htht�1

mk
t+1mk

tmk
t�1 K K K

xt xt+1 xt+2

Figure 1: Multipop Adaptive Computation Stack Recurrent Neural Network.

method. In this model, we consider the previous K states as the memory block, and construct a
memory vector mt by a weighted combination of these states:

mt =

t−1∑
i=t−K

aihi,where ai ∝ exp(wm,ihi +wm,hht)

Such method can be improved further by partitioning h into a key, value, and predict subvectors
(Daniluk et al., 2017).

Given the LSTM hidden state ht and the memory state mt, we combine them using a simple function:

h̃t = Wh,hht +Wh,mmt

to get the final representation h̃t. We compute the probability of predicting the next word as
p(xt | x<t) ∝ exp(x>t h̃t+ by,xt

), where we follow Inan et al. (2017) and reuse the word embedding
matrix X as the softmax parameters.

Stack memory. In this work, we propose to augment a recurrent LSTM language model with a
stack memory M that has three basic operations:

• PUSH: Push the current hidden state ht onto the stack.

• POP: Remove the top element of the stack.

• STAY: Keep the stack unchanged.

Figure 1 shows an illustration of our stack augmented RNN. We describe the stack memory in details
in the followings.

2.1 MULTIPOP ADAPTIVE COMPUTATION STACK

Our stack is a multipop adaptive computation stack—it learns how many POP operations need to
be performed before predicting an output. In previous work (Joulin & Mikolov, 2015; Grefenstette
et al., 2015), at every timestep t, the job of the memory (stack) controller is to decide whether (i) to
push the current state (either ht or xt) onto the stack, (ii) to pop the top element of the stack m0, or
(iii) to stay and keep the stack state unchanged. The stack of Joulin & Mikolov (2015) is primarily
designed as a single computation stack that performs one of the available operations at every timestep.
In order to capture long-term dependencies, the stack learns to carry the information across multiple
timesteps by mainly relying on the LSTM hidden states for predictions in between and keeping the
state of the stack the same (i.e., by choosing to stay), or by pushing and popping the same number
of times in between these timesteps. While this promotes discoveries of hierarchical dependencies,
the kind of hierarchical dependencies that it can discover is limited. A multipop stack, on the other
hand, has greater flexibility since there are more ways to manipulate its state at each timestep. The
stack of Grefenstette et al. (2015) implicitly allows multiple pop operations in a single timestep by
setting the pop weights to be greater than one. However, the controller makes this decision based
only on the element at the top of the stack (along with the input and the current hidden state), making

3

Published as a conference paper at ICLR 2018

it less plausible to know whether more than one pop operations are needed since it does not look at
other elements of the stack. Our formulation of the multipop operations is more intuitive and takes
inspirations from adaptive computation time (Graves, 2017).

Concretely, consider a stack memory with K elements. In all our experiments, we limit the size of
the stack to K = 10 for computational considerations. If the stack requires more than K elements,
the bottom element of the stack is removed to make space for the new element, which is added on the
top of the stack. In a single computation stack, a feedforward policy network is used to compute the
probability of choosing an action a ∈ {STAY, PUSH, POP}.
In our stack, we also use a feedforward policy network, but the number of possible POPs is k ∈
{0, 1, . . . ,K}. Denote the current top two elements of the stack after performing k pops by mk,0

mk,1, and the state of the stack after k pops by STAYk (i.e., do k pops and stay) or PUSHk (i.e., do
k pops and push the current hidden state ht). We compute the probability of choosing an action
recursively:

p(STAYk | xt,M) = p(POPk−1 | xt,mk−1,0,mk−1,1)× p(STAYk | xt,mk,0,mk,1)

p(PUSHk | xt,M) = p(POPk−1 | xt,mk−1,0,mk−1,1)× p(PUSHk | xt,mk,0,mk,1)

p(POPk | xt,M) = p(POPk−1 | xt,mk−1,0,mk−1,1)× p(POPk | xt,mk,0,mk,1).

As a base case, we have p(POP−1 | xt,mk−1,0,mk−1,1) = 1. To ensure that the probability sums to
one, we set p(POPK+1 | xt,mK,0,mK,1) = 0.

The final stack state is then computed as:

M =

K∑
k=0

p(STAYk | xt,M)MSTAYk
+ p(PUSHk | xt,M)MPUSHk

, (1)

where M∗k is the stack state after performing k POP and PUSH or STAY. Denote the top of the final
stack at timestep t as mt. The final representation is

h̃t = Wh,hht +Wh,mmt.

We propose to treat this stack as a fully differentiable continuous stack. Alternatively, our stack can
also be treated as a discrete stack and trained with reinforcement learning (e.g., with REINFORCE;
Williams, 1992). In this case, instead of summing over all possible stack states, we sample according
to the probabilities. However, such methods can have slow convergence due to high variance. We
include comparisons to discrete and continuous single computation stacks in our experiments (§3).

Adaptive and Variable Computation Networks Previous work on adaptive computation time
(Graves, 2017) consider the number of computations as “thinking time”, where they show that
their models use more computation time for more difficult predictions. In our work, the number of
computations is related to how further back we need to look back when making a prediction at a given
timestep. Note that when we decide to push, we push the current hidden state ht onto the stack. Since
this operation is performed before making a prediction at every timestep, it is possible to use the stack
to increase the number of parameters for some predictions (i.e., by pushing ht and immediately use it
to compute h̃t = Wh,hht +Wh,mmt, because immediately after a push mt = ht). As a result, our
stack is also related to variable computation recurrent networks Jernite et al. (2017) that decide the
number of dimensions to be used at each timestep.

3 EXPERIMENTS

3.1 SETUP

We compare the following methods in our experiments:

• Sequential memory: 650-dimension and 920-dimension vanilla LSTMs (650 or 920 for both
the word embedding and the LSTM hidden size).
• Random access memory: a 650-dimension attention-based LSTM with attention size K =
{1, 3, 5, 10, 15}.

4

Published as a conference paper at ICLR 2018

• Stack memory: a single computation discrete or continuous stack, or a multipop adaptive
computation continuous stack on top of a 650-dimension LSTM.

Following Inan et al. (2017), we tie word embedding and word classifier layers and apply dropout to
these layers with probability 0.6 (value chosen based on preliminary experiment results). We also use
recurrent dropout (Semeniuta et al., 2016) and set it to 0.1. We perform non-episodic training with
batch size 32 using RMSprop (Hinton, 2012) as our optimization method. We tune the RMSprop
learning rate and `2 regularization parameter for all models on a development set by random search
from [0.004, 0.009] and [0.0001, 0.0005] respectively, and use perplexity on the development set to
choose the best model.

3.2 PERPLEXITY

We use standard language modeling datasets, the Penn TreeBank (PTB) and Wikitext-2 (Wik-2)
corpora to evaluate perplexity. Our main results are summarized in Table 1, where we also show
comparisons with previous work on these datasets.

Our basic LSTM model is comparable to some of the best LSTM models. The results show that
increasing the sequential memory capacity by increasing the hidden size improves performance.
However, the improvement is not as significant as adding random access or stack memory. The best
attention model is the one with K = 10 and K = 15 on PTB and Wik-2 respectively, highlighting
the necessity to tune to get the optimal window size. Our results generally agree with Daniluk et al.
(2017) that show that increasing the attention size generally improves performance up to a certain
threshold.

While both the discrete and continuous single computation stack models perform reasonably well,
the discrete model underperforms the continuous model on Wik-2. Recall that we use REINFORCE to
learn the optimal discrete stack operations. We leave it to future work to investigate whether better
techniques can be used to improve the performance of the discrete stack. The best model on both
datasets is consistently the multipop stack.

Overall perplexity on these datasets is strongly dominated by words that require little to no long term
dependencies, making it difficult to assess when memory helps. In the next section, we look into a
specifically designed linguistic task to get a better understanding of these memory models.

3.3 SYNTACTIC DEPENDENCIES

We evaluate these memory models for learning syntax-sensitive dependencies on the number predic-
tion dataset from Linzen et al. (2016). In this dataset, the model is given a sentence up to—but not
including—its verb, and the goal is to predict the number of the following verb (singular or plural).
For example, given a sentence prefix with different numbers of intervening nouns:

• this robot {is, are}

• the users he mentioned {is, are}

• many systems , in addition to VBG a page of free text for each knowledge element , also
{permit, permits}

the goal is to predict the correct verb form out of the possible answers in the brackets. In total, there
are approximately 1.4 million test examples in this dataset with varying degrees of difficulty. One
proxy to assess the difficulty of a test example is through the number of attractors (underlined)—
which are defined as intervening nouns of the opposite singular/plural form to the subject. Each of
the example above has zero, one, and four attractors, respectively. Naturally, examples with fewer
numbers of attractors between the head of the syntactic subject and the predicted verb are easier than
those with more. We follow the experimental setup in Linzen et al. (2016) and only use test examples
where all the attractors are of contrasting form to the main subject (i.e., all intervening nouns between
the subject and the verb must be plural if the subject is singular, and vice versa).

One way to do this task is to train a binary classifier that takes the context and predicts an answer. We
approach this task from a language modeling perspective, where we simply train a language model

5

Published as a conference paper at ICLR 2018

Model LSTM # of PTB Wik-2
hidden size params. Dev Test Dev Test

Var LSTM (Gal & Ghahramani, 2016) - 20M 81.9 79.7 101.7 96.3
Var LSTM+REAL (Inan et al., 2017) 1500 51M 71.1 68.5 - -
Pointer LSTM (Merity et al., 2017b) - 21M 72.4 70.9 84.8 80.8

Neural Cache (Grave et al., 2017) - - - 72.1 - 81.6
Neural Cache (Grave et al., 2017) - - - - - 68.9

NAS (Zoph & Le, 2017) - 54M - 62.4 - -
Optimized LSTM (Melis et al., 2017) - 24M 60.9 58.3 69.1 65.9

AWD LSTM (Merity et al., 2017a) - 24M 60.0 57.3 68.6 65.8
AWD LSTM + Cache (Merity et al., 2017a) - 24M 53.9 52.8 53.8 52.0

LSTM 650 10M/25M 69.2 67.2 83.9 80.8
LSTM 920 16M/40M 67.8 65.4 79.8 77.4

Attention-1

650 12M/28M

68.6 66.1 80.4 76.3
Attention-3 67.9 65.4 78.7 74.6
Attention-5 67.5 65.2 78.2 74.6

Attention-10 67.2 64.7 77.6 73.7
Attention-15 66.6 63.6 77.7 74.3

Single Comp. Discrete Stack
11M/26M

66.1 63.5 78.1 74.7
Single Comp. Continuous Stack 650 65.8 63.8 76.7 73.0

Multipop Adaptive Continuous Stack 65.9 63.5 75.9 72.4

Table 1: Perplexity on PTB and Wikitext-2 datasets. The two numbers (*M/*M) in the # of params.
column for models that we implemented denote the number of parameters for PTB and Wik-2
respectively.

and take the word with the higher probability between the two possible answers as the prediction.
Success on this task requires a language model that understands syntactic—and in some cases long
term—dependencies in natural language. For a purely sequential memory model to do well on this
task, it has to be able to carry dependencies over multiple timesteps and attractors. On the other hand,
our memory augmented recurrent models need to use the random access or stack memory component
in conjunction with the sequential memory of their LSTM core to capture these dependencies.

Linzen et al. (2016) concluded that a vanilla LSTM trained only with a language modeling signal
is insufficient for capturing such dependencies. They reported an overall accuracy of 93.22 with
a language modeling objective (using a 50 dimension LSTM), and 99.17 with a supervised binary
classifier objective.

We train the best vanilla LSTM (920 dimensions), the best attention-based LSTM (K = 10, since
the Linzen dataset is derived from Wikipedia articles similar to Wik-2), and the best stack LSTM
(multipop stack) on the provided training set that contains sentences of similar structures to the test
set. There are approximately 3 million tokens on the training set (∼140,000 sentences). We tune the
learning rate and `2 hyperparameter on the development set using perplexity as the tuning criterion.

Our results are shown in Table 2. We report accuracies per number of attractors, as well as the overall
accuracy and perplexity. Contrary to the Linzen et al. (2016) results, all of our language models
perform surprisingly well on this dataset. Our vanilla LSTM model outperforms Linzen’s best LSTM
by a significant margin (99.11 vs. 93.22). One possible reason is that we are able to train a much
bigger LSTM than Linzen—almost 20 times bigger in hidden size. The results clearly demonstrate
the improvements from adding random access and stack memory. The performance of the attention
model slowly degrades to the performance of a vanilla LSTM model as the number of attractors
increases, since it becomes more difficult for a random access memory mechanism to attend to the
syntactic head in the presence of multiple attractors. For example, when there are five attractors, our
attention model performs just as well as our vanilla LSTM model.

6

Published as a conference paper at ICLR 2018

Model Number of attractors Acc. Ppx.
0 1 2 3 4 5

Best LSTM 99.3 97.2 95.0 92.2 90.0 84.2 99.11 23.8
Best attention 99.4 97.7 95.9 92.9 90.7 84.2 99.18 22.7

Best stack 99.4 97.9 96.5 93.5 91.6 88.0 99.23 22.2

Table 2: Accuracies on the Linzen number prediction dataset. 0, 1, 2, 3, 4, and 5 refer to the number
of attractors between the subject and the predicted verb (see text for details).

Model Example
LSTM attention stack

7 7 7 the NN notes and front cover title {is,are}
7 7 3 other NNS that in the recent past were part of the JJ parish {is,are}
7 3 7 the class of all VBN sets with JJ functions as NNS {form,forms}
3 7 7 various brands of JJ compound or NN NN {helps,help}
7 3 3 score based on penalties for fallen bars , NNS , {falls,fall}
3 7 3 the loss of basic needs providers VBG from VBN countries {has,have}
3 3 7 the construction of the JJ walls , floors , and VBG walls {is,are}

Table 3: Examples of mistakes made by competing models on the Linzen number prediction dataset.
7 indicates an incorrect prediction, whereas 3 indicates a correct prediction. In general, we observe
that the mistakes made by both the LSTM and attention models that are correctly predicted by the
stack model (row 2) typically involve longer sentences regardless of the number of attractors.

6115

1306

1606

1232

3942

2534 1938

LSTM
attention

stack

Figure 2: A Venn diagram of mistakes
made on the Linzen dataset.

The stack model performs best on this dataset, across all
numbers of attractors (except zero, tie with attention), No-
tably, the advantage of the stack model becomes more
pronounced as the number of attractors increases. In §3.4,
we analyze how the model uses its stack. We take this
collection of results as evidence that a hierarchical bias
introduced by a stack-like data structure helps the lan-
guage model to learn better syntactic natural language
dependencies.

We also investigate whether mistakes are made on the same
test examples. Figure 2 shows a Venn diagram of mistakes
made by each of the models. Most mistakes (6115) are
the same across all three models. It is clear that adding
a stack or an attention mechanism improves a vanilla LSTM model, as shown by the significant
decrease in the number of mistakes that are made only by LSTM (3942) to 1938 and 2534 respectively.
Nonetheless, since there are still a large number of mistakes that are complementary, an interesting
future direction is to combine all three kinds of memory models efficiently in a single language model.
Table 3 shows examples of mistakes made by each of these models.

3.4 ANALYSIS

In this section, we analyze how our stack model uses its memory to improve predictions.
Recall that our adaptive continuous stack has 22 possible stack states at each timestep—
STAY0, PUSH0, STAY1, PUSH1, . . . , STAY10, PUSH10—where the subscript indicates the number of
pops that are performed, limited to K = 10 in our experiments. In Figure 3, we show the number of
times each stack state has the highest probability on the Wik-2 test set (left figure, red denotes STAY
and blue denotes PUSH) and the maximum action probability (right figure). The LSTM hidden states
are not pushed onto the stack most of the times. We inspect what is pushed and find that the model
uses the stack to mostly store hidden states for difficult predictions (more details below). While the
overall distribution of the maximum action probability is not very peaky since the stack is not used

7

Published as a conference paper at ICLR 2018

number of pops

lo
g

fre
qu

en
cy

0
2

4
6

8
10

0 1 2 3 4 5 6 7 8 9 10

stay
push

(a) Number of maximum action probability

max action probability

fre
qu
en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10
00

30
00

50
00

(b) Value of maximum action probability

Figure 3: Statistics of the stack actions on Wik-2 test dataset. The left plot shows the number of times
(in log space) each stack state has the highest probability. The x-axis represents the number of pops,
and the color represents the last action taken after POP (red represents STAY, blue represents PUSH).
We can see that most words are not pushed onto the stack and that the model takes advantage of the
flexibility of the stack to pop multiple times. The right plot shows the value of the maximum action
probability for all timesteps. We observe that for most words the maximum action probabilities are
not peaky (the distribution is roughly uniform across all stack states). They tend to be peaky only
when the model wants to use the stack.

{has, have}

lossthe of basic needs

<s> lossthe of basic

needs providers from

providers emigrating (VBG) from impoverished (VBN) countries

countriesemigrating (VBG) impoverished (VBN)

Figure 4: An illustration of how the stack memory is written and read for a correct prediction. We
follow Linzen et al. (2016) and convert some words (e.g., emigrating, impoverished) to their part of
speech tags–given inside the brackets in the example above—to limit the vocabulary size.

most of the times, we also observe that the action probability is relatively peaky when the stack is
activated.

We next investigate how the stack improves accuracy on the Linzen dataset by looking into how it
operates when making both a correct prediction and a wrong prediction. In Figure 4, we show a
randomly selected test sentence the loss of basic needs providers VBG from VBN countries {has,
have}. Similar to Figure 3, the red and blue bars represent STAY and PUSH, while the x-axis denotes
the number of POPs. The y-axis, on the other hand, denotes the probability of each action. The green
dots above each word shows the magnitude of the norm of the contribution of the memory vector
Wh,mmt to the final hidden state h̃t (bigger dots represent higher magnitudes). Interestingly, the
model seems to use and push onto the stack when the next word prediction has a high entropy. For
example, after the word the, of, or from, the model decides to increase its capacity by pushing the
current hidden state onto the stack and activates its memory component (as illustrated by bigger green
dots). In §2.1, we discuss connections of our stack model to adaptive computation time and variable
computation RNN, which are designed to explicitly increase their capacity for difficult predictions.
Our analysis shows that our stack model also exhibits this kind of behavior. For the Linzen dataset,
we conjecture that the stack model is able to perform the best because it uses the stack as a controller
to allow the sequential memory component from its base LSTM to carry longer term dependencies
(e.g., tracking the subject of the sentence).

8

Published as a conference paper at ICLR 2018

For comparison, we also show how the stack operates when it makes an incorrect prediction in
Figure 5. Here, the stack behaves similarly, being mostly active for higher entropy predictions,
although the model was unable to predict the correct verb right after walls.

constructionthe of the labyrinth (JJ)

walls , floors , and

dividing (VBG) walls {is, are}

<s> constructionthe of the

walls , floors ,

and walls

labyrinth (JJ)

dividing (VBG)

Figure 5: An illustration of how the stack memory is written and read for an incorrect prediction.

4 CONCLUSION

We proposed a generalization of the continuous stack model that allows a variable number of pop
operations, and compared sequential, random access, and stack memory architectures for recurrent
neural network language models. Our experiments on PTB and Wik-2 showed that adding the stack
memory eliminates the need to tune window size in the random access attention model to achieve the
best perplexity. We also evaluated these models on the Linzen syntactic dependencies dataset and
demonstrated that the stack augmented model outperforms other methods in terms of both accuracy
and perplexity, especially as the number of syntactic attractors increases.

ACKNOWLEDGEMENTS

The authors thank Edward Grefenstette for valuable feedback on an earlier draft of this paper, Tal
Linzen for his assistance with the Linzen dataset, and the DeepMind language group for helpful
discussions.

REFERENCES

Daniluk, Michal, Rocktaschel, Tim, Welbl, Johannes, and Riedel, Sebastian. Frustratingly short
attention spans in neural language modeling. In Proc. of ICLR, 2017.

Gal, Yarin and Ghahramani, Zoubin. A theoretically grounded application of dropout in recurrent
neural networks. In Proc. of NIPS, 2016.

Grave, Edouard, Joulin, Armand, and Usunier, Nicolas. Improving neural language models with a
continuous cache. In Proc. of ICLR, 2017.

9

Published as a conference paper at ICLR 2018

Graves, Alex. Adaptive computation time for recurrent neural networks. arXiv preprint, 2017.

Grefenstette, Edward, Hermann, Karl Moritz, Suleyman, Mustafa, and Blunsom, Phil. Learning to
transduce with unbounded memory. In Proc. of NIPS, 2015.

Hinton, Geoffrey. Neural networks for machine learning, 2012. Lecture 6.5.

Hochreiter, Sepp and Schmidhuber, Jurgen. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997.

Inan, Hakan, Khosravi, Khashayar, and Socher, Richard. Tying word vectors and word classifiers: A
loss framework for language modeling. In Proc. of ICLR, 2017.

Jernite, Yacine, Grave, Edouard, Joulin, Armand, and Mikolov, Tomas. Variable computation in
recurrent neural networks. In Proc. of ICLR, 2017.

Joulin, Armand and Mikolov, Tomas. Inferring algorithmic patterns with stack-augmented recurrent
nets. arXiv preprint, 2015.

Krause, Ben, Kahembwe, Emmanuel, Murray, Iain, and Renals, Steve. Dynamic evaluation of neural
sequence models. arXiv preprint, 2017.

Linzen, Tal, Dupoux, Emmanuel, and Goldberg, Yoav. Assessing the ability of lstms to learn syntax-
sensitive dependencies. Transactions of the Association for Computational Linguistics, 4:521–535,
2016.

Melis, Gabor, Dyer, Chris, and Blusom, Phil. On the state of the art of evaluation in neural language
models. arXiv preprint, 2017.

Merity, Stephen, Keskar, Nitish Shirish, and Socher, Richard. Regularizing and optimizing lstm
language models. arXiv preprint, 2017a.

Merity, Stephen, Xiong, Caiming, and an Richard Socher, James Bradbury. Pointer sentinel mixture
models. In Proc. of ICLR, 2017b.

Semeniuta, Stanislau, Severyn, Aliaksei, and Barth, Erhardt. Recurrent dropout without memory loss.
In Proc. of COLING, 2016.

Tran, Ke, Bisazza, Arianna, and Monz, Christof. Recurrent memory networks for language modeling.
In Proc. of NAACL-HLT, 2016.

Williams, Ronald J. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8:229–256, 1992.

Zoph, Barret and Le, Quoc V. Neural architecture search with reinforcement learning. In Proc. of
ICLR, 2017.

10

	Introduction
	Model
	Multipop Adaptive Computation Stack

	Experiments
	Setup
	Perplexity
	Syntactic Dependencies
	Analysis

	Conclusion

